Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
json
Sub-tasks:
extractive-qa
Languages:
Catalan
Size:
< 1K
ArXiv:
License:
upload dataset
Browse files- README.md +218 -0
- dev.json +0 -0
- test.json +0 -0
- train.json +0 -0
- viquiquad.py +124 -0
README.md
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
languages:
|
3 |
+
- ca
|
4 |
+
---
|
5 |
+
# ViquiQuAD, An extractive QA dataset for catalan, from the Wikipedia
|
6 |
+
|
7 |
+
## BibTeX citation
|
8 |
+
|
9 |
+
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
|
10 |
+
|
11 |
+
```bibtex
|
12 |
+
@inproceedings{armengol-estape-etal-2021-multilingual,
|
13 |
+
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
|
14 |
+
author = "Armengol-Estap{\'e}, Jordi and
|
15 |
+
Carrino, Casimiro Pio and
|
16 |
+
Rodriguez-Penagos, Carlos and
|
17 |
+
de Gibert Bonet, Ona and
|
18 |
+
Armentano-Oller, Carme and
|
19 |
+
Gonzalez-Agirre, Aitor and
|
20 |
+
Melero, Maite and
|
21 |
+
Villegas, Marta",
|
22 |
+
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
|
23 |
+
month = aug,
|
24 |
+
year = "2021",
|
25 |
+
address = "Online",
|
26 |
+
publisher = "Association for Computational Linguistics",
|
27 |
+
url = "https://aclanthology.org/2021.findings-acl.437",
|
28 |
+
doi = "10.18653/v1/2021.findings-acl.437",
|
29 |
+
pages = "4933--4946",
|
30 |
+
}
|
31 |
+
```
|
32 |
+
|
33 |
+
|
34 |
+
# Digital Object Identifier (DOI) and access to dataset files
|
35 |
+
|
36 |
+
https://doi.org/10.5281/zenodo.4562345
|
37 |
+
|
38 |
+
|
39 |
+
## Introduction
|
40 |
+
|
41 |
+
This dataset contains 3111 contexts extracted from a set of 597 high quality original (no translations) articles in the Catalan Wikipedia "Viquipèdia" (ca.wikipedia.org), and 1 to 5 questions with their answer for each fragment.
|
42 |
+
|
43 |
+
Viquipedia articles are used under [CC-by-sa] (https://creativecommons.org/licenses/by-sa/3.0/legalcode) licence.
|
44 |
+
|
45 |
+
This dataset can be used to fine-tune and evaluate extractive-QA and Language Models. It is part of the Catalan Language Understanding Benchmark (CLUB) as presented in:
|
46 |
+
|
47 |
+
Armengol-Estapé J., Carrino CP., Rodriguez-Penagos C., de Gibert Bonet O., Armentano-Oller C., Gonzalez-Agirre A., Melero M. and Villegas M.,Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan". Findings of ACL 2021 (ACL-IJCNLP 2021).
|
48 |
+
|
49 |
+
### Supported Tasks and Leaderboards
|
50 |
+
|
51 |
+
Extractive-QA, Language Model
|
52 |
+
|
53 |
+
### Languages
|
54 |
+
|
55 |
+
CA- Catalan
|
56 |
+
|
57 |
+
### Directory structure
|
58 |
+
|
59 |
+
* README
|
60 |
+
* dev.json
|
61 |
+
* test.json
|
62 |
+
* train.json
|
63 |
+
* viquiquad.py
|
64 |
+
|
65 |
+
## Dataset Structure
|
66 |
+
|
67 |
+
### Data Instances
|
68 |
+
|
69 |
+
json files
|
70 |
+
|
71 |
+
### Data Fields
|
72 |
+
|
73 |
+
Follows ((Rajpurkar, Pranav et al., 2016) for squad v1 datasets. (see below for full reference)
|
74 |
+
|
75 |
+
### Example:
|
76 |
+
<pre>
|
77 |
+
{
|
78 |
+
"data": [
|
79 |
+
{
|
80 |
+
"title": "Frederick W. Mote",
|
81 |
+
"paragraphs": [
|
82 |
+
{
|
83 |
+
"context": "L'historiador Frederick W. Mote va escriure que l'ús del terme \\\\\\\\\\\\\\\\"classes socials\\\\\\\\\\\\\\\\" per a aquest sistema era enganyós i que la posició de les persones dins del sistema de quatre classes no era una indicació del seu poder social i riquesa reals, sinó que només implicava \\\\\\\\\\\\\\\\"graus de privilegi\\\\\\\\\\\\\\\\" als quals tenien dret institucionalment i legalment, de manera que la posició d'una persona dins de les classes no era una garantia de la seva posició, ja que hi havia xinesos rics i amb bona reputació social, però alhora hi havia menys mongols i semu rics que mongols i semu que vivien en la pobresa i eren maltractats.",
|
84 |
+
"qas": [
|
85 |
+
{
|
86 |
+
"answers": [
|
87 |
+
{
|
88 |
+
"text": "Frederick W. Mote",
|
89 |
+
"answer_start": 14
|
90 |
+
}
|
91 |
+
],
|
92 |
+
"id": "5728848cff5b5019007da298",
|
93 |
+
"question": "Qui creia que el sistema de classes socials de Yuan no s’hauria d’anomenar classes socials?"
|
94 |
+
},
|
95 |
+
...
|
96 |
+
]
|
97 |
+
}
|
98 |
+
]
|
99 |
+
},
|
100 |
+
...
|
101 |
+
]
|
102 |
+
}
|
103 |
+
|
104 |
+
</pre>
|
105 |
+
|
106 |
+
### Data Splits
|
107 |
+
|
108 |
+
train.development,test
|
109 |
+
|
110 |
+
## Content analysis
|
111 |
+
|
112 |
+
### Number of articles, paragraphs and questions
|
113 |
+
|
114 |
+
* Number of articles: 597
|
115 |
+
* Number of contexts: 3111
|
116 |
+
* Number of questions: 15153
|
117 |
+
* Questions/context: 4.87
|
118 |
+
* Number of sentences in contexts: 15100
|
119 |
+
* Sentences/context: 4.85
|
120 |
+
|
121 |
+
### Number of tokens
|
122 |
+
|
123 |
+
* tokens in context: 469335
|
124 |
+
* tokens/context 150.86
|
125 |
+
* tokens in questions: 145249
|
126 |
+
* tokens/questions: 9.58
|
127 |
+
* tokens in answers: 63246
|
128 |
+
* tokens/answers: 4.17
|
129 |
+
|
130 |
+
### Lexical variation
|
131 |
+
|
132 |
+
After filtering (tokenization, stopwords, punctuation, case), 83,88% of the words in the question can be found in the Context
|
133 |
+
|
134 |
+
### Question type
|
135 |
+
|
136 |
+
| Question | Count | % |
|
137 |
+
|--------|-----|------|
|
138 |
+
| què | 4220 | 27.85 % |
|
139 |
+
| qui | 2239 | 14.78 % |
|
140 |
+
| com | 1964 | 12.96 % |
|
141 |
+
| quan | 1133 | 7.48 % |
|
142 |
+
| on | 1580 | 10.43 % |
|
143 |
+
| quant | 925 | 6.1 % |
|
144 |
+
| quin | 3399 | 22.43 % |
|
145 |
+
| no question mark | 21 | 0.14 % |
|
146 |
+
|
147 |
+
### Question-answer relationships
|
148 |
+
|
149 |
+
From 100 randomly selected samples:
|
150 |
+
|
151 |
+
* Lexical variation: 33.0%
|
152 |
+
* World knowledge: 16.0%
|
153 |
+
* Syntactic variation: 35.0%
|
154 |
+
* Multiple sentence: 17.0%
|
155 |
+
|
156 |
+
## Dataset Creation
|
157 |
+
|
158 |
+
### Methodology
|
159 |
+
|
160 |
+
From a set of high quality, non-translation, articles in the Catalan Wikipedia (ca.wikipedia.org), 597 were randomly chosen, and from them 3111, 5-8 sentence contexts were extracted. We commissioned creation of between 1 and 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)], (http://arxiv.org/abs/1606.05250). In total, 15153 pairs of a question and an extracted fragment that contains the answer were created.
|
161 |
+
|
162 |
+
### Curation Rationale
|
163 |
+
|
164 |
+
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
|
165 |
+
|
166 |
+
### Source Data
|
167 |
+
|
168 |
+
- https://ca.wikipedia.org
|
169 |
+
|
170 |
+
#### Initial Data Collection and Normalization
|
171 |
+
|
172 |
+
The source data are scraped articles from the Catalan wikipedia site (https://ca.wikipedia.org).
|
173 |
+
|
174 |
+
#### Who are the source language producers?
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
### Annotations
|
179 |
+
|
180 |
+
#### Annotation process
|
181 |
+
|
182 |
+
We commissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)), http://arxiv.org/abs/1606.05250.
|
183 |
+
|
184 |
+
#### Who are the annotators?
|
185 |
+
|
186 |
+
Native language speakers.
|
187 |
+
|
188 |
+
### Dataset Curators
|
189 |
+
|
190 |
+
Carlos Rodríguez and Carme Armentano, from BSC-CNS
|
191 |
+
|
192 |
+
### Personal and Sensitive Information
|
193 |
+
|
194 |
+
No personal or sensitive information included.
|
195 |
+
|
196 |
+
## Considerations for Using the Data
|
197 |
+
|
198 |
+
### Social Impact of Dataset
|
199 |
+
|
200 |
+
[More Information Needed]
|
201 |
+
|
202 |
+
### Discussion of Biases
|
203 |
+
|
204 |
+
[More Information Needed]
|
205 |
+
|
206 |
+
### Other Known Limitations
|
207 |
+
|
208 |
+
[More Information Needed]
|
209 |
+
|
210 |
+
|
211 |
+
## Contact
|
212 |
+
|
213 |
+
Carlos Rodríguez-Penagos (carlos.rodriguez1@bsc.es) and Carme Armentano-Oller (carme.armentano@bsc.es)
|
214 |
+
|
215 |
+
|
216 |
+
## License
|
217 |
+
|
218 |
+
<a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/"><img alt="Attribution-ShareAlike 4.0 International License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>.
|
dev.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
test.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
viquiquad.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Loading script for the ViquiQuAD dataset.
|
2 |
+
import json
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
logger = datasets.logging.get_logger(__name__)
|
6 |
+
|
7 |
+
_CITATION = """
|
8 |
+
Rodriguez-Penagos, Carlos Gerardo, & Armentano-Oller, Carme. (2021).
|
9 |
+
ViquiQuAD: an extractive QA dataset from Catalan Wikipedia (Version ViquiQuad_v.1.0.1)
|
10 |
+
[Data set]. Zenodo. http://doi.org/10.5281/zenodo.4761412
|
11 |
+
"""
|
12 |
+
|
13 |
+
_DESCRIPTION = """
|
14 |
+
ViquiQuAD: an extractive QA dataset from Catalan Wikipedia.
|
15 |
+
This dataset contains 3111 contexts extracted from a set of 597 high quality original (no translations)
|
16 |
+
articles in the Catalan Wikipedia "Viquipèdia" (ca.wikipedia.org), and 1 to 5 questions with their
|
17 |
+
answer for each fragment. Viquipedia articles are used under CC-by-sa licence.
|
18 |
+
This dataset can be used to build extractive-QA and Language Models.
|
19 |
+
Funded by the Generalitat de Catalunya, Departament de Polítiques Digitals i Administració Pública (AINA),
|
20 |
+
MT4ALL and Plan de Impulso de las Tecnologías del Lenguaje (Plan TL).
|
21 |
+
"""
|
22 |
+
|
23 |
+
_HOMEPAGE = """https://zenodo.org/record/4562345#.YK41aqGxWUk"""
|
24 |
+
|
25 |
+
_URL = "https://huggingface.co/datasets/bsc/viquiquad/resolve/main/"
|
26 |
+
_TRAINING_FILE = "train.json"
|
27 |
+
_DEV_FILE = "dev.json"
|
28 |
+
_TEST_FILE = "test.json"
|
29 |
+
|
30 |
+
|
31 |
+
class ViquiQuADConfig(datasets.BuilderConfig):
|
32 |
+
""" Builder config for the ViquiQuAD dataset """
|
33 |
+
|
34 |
+
def __init__(self, **kwargs):
|
35 |
+
"""BuilderConfig for ViquiQuAD.
|
36 |
+
Args:
|
37 |
+
**kwargs: keyword arguments forwarded to super.
|
38 |
+
"""
|
39 |
+
super(ViquiQuADConfig, self).__init__(**kwargs)
|
40 |
+
|
41 |
+
|
42 |
+
class ViquiQuAD(datasets.GeneratorBasedBuilder):
|
43 |
+
"""ViquiQuAD Dataset."""
|
44 |
+
|
45 |
+
BUILDER_CONFIGS = [
|
46 |
+
ViquiQuADConfig(
|
47 |
+
name="ViquiQuAD",
|
48 |
+
version=datasets.Version("1.0.1"),
|
49 |
+
description="ViquiQuAD dataset",
|
50 |
+
),
|
51 |
+
]
|
52 |
+
|
53 |
+
def _info(self):
|
54 |
+
return datasets.DatasetInfo(
|
55 |
+
description=_DESCRIPTION,
|
56 |
+
features=datasets.Features(
|
57 |
+
{
|
58 |
+
"id": datasets.Value("string"),
|
59 |
+
"title": datasets.Value("string"),
|
60 |
+
"context": datasets.Value("string"),
|
61 |
+
"question": datasets.Value("string"),
|
62 |
+
"answers":[
|
63 |
+
|
64 |
+
{
|
65 |
+
|
66 |
+
"text": datasets.Value("string"),
|
67 |
+
|
68 |
+
"answer_start": datasets.Value("int32"),
|
69 |
+
|
70 |
+
}
|
71 |
+
|
72 |
+
]
|
73 |
+
}
|
74 |
+
),
|
75 |
+
# No default supervised_keys (as we have to pass both question
|
76 |
+
# and context as input).
|
77 |
+
supervised_keys=None,
|
78 |
+
homepage=_HOMEPAGE,
|
79 |
+
citation=_CITATION,
|
80 |
+
)
|
81 |
+
|
82 |
+
def _split_generators(self, dl_manager):
|
83 |
+
"""Returns SplitGenerators."""
|
84 |
+
urls_to_download = {
|
85 |
+
"train": f"{_URL}{_TRAINING_FILE}",
|
86 |
+
"dev": f"{_URL}{_DEV_FILE}",
|
87 |
+
"test": f"{_URL}{_TEST_FILE}",
|
88 |
+
}
|
89 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
90 |
+
|
91 |
+
return [
|
92 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
93 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
94 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
95 |
+
]
|
96 |
+
|
97 |
+
def _generate_examples(self, filepath):
|
98 |
+
"""This function returns the examples in the raw (text) form."""
|
99 |
+
logger.info("generating examples from = %s", filepath)
|
100 |
+
with open(filepath, encoding="utf-8") as f:
|
101 |
+
viquiquad = json.load(f, encoding="utf-8")
|
102 |
+
for article in viquiquad["data"]:
|
103 |
+
title = article.get("title", "").strip()
|
104 |
+
for paragraph in article["paragraphs"]:
|
105 |
+
context = paragraph["context"].strip()
|
106 |
+
for qa in paragraph["qas"]:
|
107 |
+
question = qa["question"].strip()
|
108 |
+
id_ = qa["id"]
|
109 |
+
|
110 |
+
# answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
111 |
+
# answers = [answer["text"].strip() for answer in qa["answers"]]
|
112 |
+
|
113 |
+
text = qa["answers"][0]["text"]
|
114 |
+
answer_start = qa["answers"][0]["answer_start"]
|
115 |
+
|
116 |
+
# Features currently used are "context", "question", and "answers".
|
117 |
+
# Others are extracted here for the ease of future expansions.
|
118 |
+
yield id_, {
|
119 |
+
"title": title,
|
120 |
+
"context": context,
|
121 |
+
"question": question,
|
122 |
+
"id": id_,
|
123 |
+
"answers": [{"text": text, "answer_start": answer_start}]
|
124 |
+
}
|