File size: 16,631 Bytes
3a991f9
 
 
 
 
 
 
 
 
 
 
156c8f9
3a991f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dc33de
 
156c8f9
4925097
3a991f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4925097
fb0878b
3a991f9
 
 
4dc33de
3a991f9
4dc33de
156c8f9
4925097
3a991f9
 
 
 
 
 
 
4dc33de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a991f9
 
 
4dc33de
3a991f9
4dc33de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a991f9
4dc33de
 
 
 
 
 
 
 
154c30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a991f9
4dc33de
3a991f9
4dc33de
154c30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a991f9
4dc33de
3a991f9
4dc33de
3a991f9
4dc33de
3a991f9
4dc33de
3a991f9
 
4dc33de
3a991f9
4dc33de
3a991f9
4dc33de
3a991f9
4dc33de
3a991f9
 
 
 
 
 
 
 
 
 
 
4dc33de
3a991f9
4dc33de
3a991f9
4dc33de
3a991f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dc33de
 
5903d50
4dc33de
3a991f9
 
fb0878b
 
 
 
 
 
 
 
 
3a991f9
 
4dc33de
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
---
layout: default
title: Home
nav_order: 1
has_children: false

annotations_creators:
- no-annotation
language:
- en
language_creators:
- found
license:
- cc0-1.0
multilinguality:
- multilingual
pretty_name: DiffusionDB
size_categories:
- n>1T
source_datasets:
- original
tags:
- stable diffusion
- prompt engineering
- prompts
- research paper
task_categories:
- text-to-image
- image-to-text
task_ids:
- image-captioning
---

# DiffusionDB

<img width="100%" src="https://user-images.githubusercontent.com/15007159/198505835-bcc3a34f-a782-4064-989b-135e32b577a7.gif">

## Table of Contents

- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [DiffusionDB homepage](https://poloclub.github.io/diffusiondb)
- **Repository:** [DiffusionDB repository](https://github.com/poloclub/diffusiondb)
- **Distribution:** [DiffusionDB Hugging Face Dataset](https://huggingface.co/datasets/poloclub/diffusiondb)
- **Paper:** [DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models](https://arxiv.org/abs/2210.14896)
- **Point of Contact:** [Jay Wang](mailto:jayw@gatech.edu)

### Dataset Summary

DiffusionDB is the first  large-scale text-to-image prompt dataset. It contains 2 million images generated by Stable Diffusion using prompts and hyperparameters specified by real users.

DiffusionDB is publicly available at [🤗 Hugging Face Dataset](https://huggingface.co/datasets/poloclub/diffusiondb).

### Supported Tasks and Leaderboards

The unprecedented scale and diversity of this human-actuated dataset provide exciting research opportunities in understanding the interplay between prompts and generative models, detecting deepfakes, and designing human-AI interaction tools to help users more easily use these models.

### Languages

The text in the dataset is mostly English. It also contains other languages such as Spanish, Chinese, and Russian.

## Dataset Structure

We use a modularized file structure to distribute DiffusionDB. The 2 million images in DiffusionDB are split into 2,000 folders, where each folder contains 1,000 images and a JSON file that links these 1,000 images to their prompts and hyperparameters.

```
./
├── images
│   ├── part-000001
│   │   ├── 3bfcd9cf-26ea-4303-bbe1-b095853f5360.png
│   │   ├── 5f47c66c-51d4-4f2c-a872-a68518f44adb.png
│   │   ├── 66b428b9-55dc-4907-b116-55aaa887de30.png
│   │   ├── 99c36256-2c20-40ac-8e83-8369e9a28f32.png
│   │   ├── f3501e05-aef7-4225-a9e9-f516527408ac.png
│   │   ├── [...]
│   │   └── part-000001.json
│   ├── part-000002
│   ├── part-000003
│   ├── part-000004
│   ├── [...]
│   └── part-002000
└── metadata.parquet
```

These sub-folders have names `part-00xxxx`, and each image has a unique name generated by [UUID Version 4](https://en.wikipedia.org/wiki/Universally_unique_identifier). The JSON file in a sub-folder has the same name as the sub-folder. Each image is a PNG file. The JSON file contains key-value pairs mapping image filenames to their prompts and hyperparameters.

### Data Instances

For example, below is the image of `f3501e05-aef7-4225-a9e9-f516527408ac.png` and its key-value pair in `part-000001.json`.

<img width="300" src="https://i.imgur.com/gqWcRs2.png">

```json
{
  "f3501e05-aef7-4225-a9e9-f516527408ac.png": {
    "p": "geodesic landscape, john chamberlain, christopher balaskas, tadao ando, 4 k, ",
    "se": 38753269,
    "c": 12.0,
    "st": 50,
    "sa": "k_lms"
  },
}
```

### Data Fields

- key: Unique image name
- `p`: Prompt
- `se`: Random seed
- `c`: CFG Scale (guidance scale)
- `st`: Steps
- `sa`: Sampler

At the top level folder of DiffusionDB, we include a metadata table in Parquet format `metadata.parquet`.
This table has seven columns: `image_name`, `prompt`, `part_id`, `seed`, `step`, `cfg`, and `sampler`, and it has 2 million rows where each row represents an image. `seed`, `step`, and `cfg` are We choose Parquet because it is column-based: researchers can efficiently query individual columns (e.g., prompts) without reading the entire table. Below are the five random rows from the table.

| image_name                               | prompt                                                                                                                                                                                                  | part_id | seed       | step | cfg | sampler |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|------|-----|---------|
| 49f1e478-ade6-49a8-a672-6e06c78d45fc.png | ryan gosling in fallout 4 kneels near a nuclear bomb                                                                                                                                                    | 1643    | 2220670173 | 50   | 7.0 | 8       |
| b7d928b6-d065-4e81-bc0c-9d244fd65d0b.png | A beautiful robotic woman dreaming, cinematic lighting, soft bokeh, sci-fi, modern, colourful, highly detailed, digital painting, artstation, concept art, sharp focus, illustration, by greg rutkowski | 87      | 51324658   | 130  | 6.0 | 8       |
| 19b1b2f1-440e-4588-ba96-1ac19888c4ba.png | bestiary of creatures from the depths of the unconscious psyche, in the style of a macro photograph with shallow dof                                                                                    | 754     | 3953796708 | 50   | 7.0 | 8       |
| d34afa9d-cf06-470f-9fce-2efa0e564a13.png | close up portrait of one calico cat by vermeer. black background, three - point lighting, enchanting, realistic features, realistic proportions.                                                        | 1685    | 2007372353 | 50   | 7.0 | 8       |
| c3a21f1f-8651-4a58-a4d4-7500d97651dc.png | a bottle of jack daniels with the word medicare replacing the word jack daniels                                                                                                                         | 243     | 1617291079 | 50   | 7.0 | 8       |

To save space, we use an integer to encode the `sampler` in the table above.

|Sampler|Integer Value|
|:--|--:|
|ddim|1|
|plms|2|
|k_euler|3|
|k_euler_ancestral|4|
|ddik_heunm|5|
|k_dpm_2|6|
|k_dpm_2_ancestral|7|
|k_lms|8|
|others|9|

### Data Splits

We split 2 million images into 2,000 folders where each folder contains 1,000 images and a JSON file.

### Loading Data Subsets

DiffusionDB is large (1.6TB)! However, with our modularized file structure, you can easily load a desirable number of images and their prompts and hyperparameters. In the [`example-loading.ipynb`](https://github.com/poloclub/diffusiondb/blob/main/notebooks/example-loading.ipynb) notebook, we demonstrate three methods to load a subset of DiffusionDB. Below is a short summary.

#### Method 1: Using Hugging Face Datasets Loader

You can use the Hugging Face [`Datasets`](https://huggingface.co/docs/datasets/quickstart) library to easily load prompts and images from DiffusionDB. We pre-defined 16 DiffusionDB subsets (configurations) based on the number of instances. You can see all subsets in the [Dataset Preview](https://huggingface.co/datasets/poloclub/diffusiondb/viewer/all/train).

```python
import numpy as np
from datasets import load_dataset

# Load the dataset with the `random_1k` subset
dataset = load_dataset('poloclub/diffusiondb', 'random_1k')
```

#### Method 2. Manually Download the Data

All zip files in DiffusionDB have the following URLs, where `{xxxxxx}` ranges from `000001` to `002000`. Therefore, you can write a script to download any number of zip files and use them for your task.

`https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/images/part-{xxxxxx}.zip`

```python
from urllib.request import urlretrieve
import shutil

# Download part-000001.zip
part_id = 1
part_url = f'https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/images/part-{part_id:06}.zip'
urlretrieve(part_url, f'part-{part_id:06}.zip')

# Unzip part-000001.zip
shutil.unpack_archive(f'part-{part_id:06}.zip', f'part-{part_id:06}')
```

#### Method 3. Use `metadata.parquet` (Text Only)

If your task does not require images, then you can easily access all 2 million prompts and hyperparameters in the `metadata.parquet` table.

```python
from urllib.request import urlretrieve
import pandas as pd

# Download the parquet table
table_url = f'https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/metadata.parquet'
urlretrieve(table_url, 'metadata.parquet')

# Read the table using Pandas
metadata_df = pd.read_parquet('metadata.parquet')
```

## Dataset Creation

### Curation Rationale

Recent diffusion models have gained immense popularity by enabling high-quality and controllable image generation based on text prompts written in natural language. Since the release of these models, people from different domains have quickly applied them to create awardwinning artworks, synthetic radiology images, and even hyper-realistic videos.

However, generating images with desired details is difficult, as it requires users to write proper prompts specifying the exact expected results. Developing such prompts requires trial and error, and can often feel random and unprincipled. Simon Willison analogizes writing prompts to wizards learning “magical spells”: users do not understand why some prompts work, but they will add these prompts to their “spell book.” For example, to generate highly-detailed images, it has become a common practice to add special keywords such as “trending on artstation” and “unreal engine” in the prompt.

Prompt engineering has become a field of study in the context of text-to-text generation, where researchers systematically investigate how to construct prompts to effectively solve different down-stream tasks. As large text-to-image models are relatively new, there is a pressing need to understand how these models react to prompts, how to write effective prompts, and how to design tools to help users generate images.
To help researchers tackle these critical challenges, we create DiffusionDB, the first large-scale prompt dataset with 2 million real prompt-image pairs.

### Source Data

#### Initial Data Collection and Normalization

We construct DiffusionDB by scraping user-generated images on the official Stable Diffusion Discord server. We choose Stable Diffusion because it is currently the only open-source large text-to-image generative model, and all generated images have a CC0 1.0 Universal Public Domain Dedication license that waives all copyright and allows uses for any purpose. We choose the official [Stable Diffusion Discord server](https://discord.gg/stablediffusion) because it is public, and it has strict rules against generating and sharing illegal, hateful, or NSFW (not suitable for work, such as sexual and violent content) images. The server also disallows users to write or share prompts with personal information.

#### Who are the source language producers?

The language producers are users of the official [Stable Diffusion Discord server](https://discord.gg/stablediffusion).

### Annotations

The dataset does not contain any additional annotations.

#### Annotation process

[N/A]

#### Who are the annotators?

[N/A]

### Personal and Sensitive Information

The authors removed the discord usernames from the dataset.
We decide to anonymize the dataset because some prompts might include sensitive information: explicitly linking them to their creators can cause harm to creators.

## Considerations for Using the Data

### Social Impact of Dataset

The purpose of this dataset is to help develop better understanding of large text-to-image generative models.
The unprecedented scale and diversity of this human-actuated dataset provide exciting research opportunities in understanding the interplay between prompts and generative models, detecting deepfakes, and designing human-AI interaction tools to help users more easily use these models.

It should note that we collect images and their prompts from the Stable Diffusion Discord server. The Discord server has rules against users generating or sharing harmful or NSFW (not suitable for work, such as sexual and violent content) images. The Stable Diffusion model used in the server also has an NSFW filter that blurs the generated images if it detects NSFW content. However, it is still possible that some users had generated harmful images that were not detected by the NSFW filter or removed by the server moderators. Therefore, DiffusionDB can potentially contain these images. To mitigate the potential harm, we provide a [Google Form](https://forms.gle/GbYaSpRNYqxCafMZ9) on the [DiffusionDB website](https://poloclub.github.io/diffusiondb/) where users can report harmful or inappropriate images and prompts. We will closely monitor this form and remove reported images and prompts from DiffusionDB.

### Discussion of Biases

The 2 million images in DiffusionDB have diverse styles and categories. However, Discord can be a biased data source. Our images come from channels where early users could use a bot to use Stable Diffusion before release. As these users had started using Stable Diffusion before the model was public, we hypothesize that they are AI art enthusiasts and are likely to have experience with other text-to-image generative models. Therefore, the prompting style in DiffusionDB might not represent novice users. Similarly, the prompts in DiffusionDB might not generalize to domains that require specific knowledge, such as medical images.

### Other Known Limitations

**Generalizability.** Previous research has shown a prompt that works well on one generative model might not give the optimal result when used in other models.
Therefore, different models can need users to write different prompts. For example, many Stable Diffusion prompts use commas to separate keywords, while this pattern is less seen in prompts for DALL-E 2 or Midjourney. Thus, we caution researchers that some research findings from DiffusionDB might not be generalizable to other text-to-image generative models.

## Additional Information

### Dataset Curators

DiffusionDB is created by [Jay Wang](https://zijie/wang), [Evan Montoya](https://www.linkedin.com/in/evan-montoya-b252391b4/), [David Munechika](https://www.linkedin.com/in/dmunechika/), [Alex Yang](https://alexanderyang.me), [Ben Hoover](https://www.bhoov.com), [Polo Chau](https://faculty.cc.gatech.edu/~dchau/).


### Licensing Information

The DiffusionDB dataset is available under the [CC0 1.0 License](https://creativecommons.org/publicdomain/zero/1.0/).
The Python code in this repository is available under the [MIT License](https://github.com/poloclub/diffusiondb/blob/main/LICENSE).

### Citation Information

```bibtex
@article{wangDiffusionDBLargescalePrompt2022,
  title = {{{DiffusionDB}}: {{A}} Large-Scale Prompt Gallery Dataset for Text-to-Image Generative Models},
  author = {Wang, Zijie J. and Montoya, Evan and Munechika, David and Yang, Haoyang and Hoover, Benjamin and Chau, Duen Horng},
  year = {2022},
  journal = {arXiv:2210.14896 [cs]},
  url = {https://arxiv.org/abs/2210.14896}
}
```

### Contributions

If you have any questions, feel free to [open an issue](https://github.com/poloclub/diffusiondb/issues/new) or contact [Jay Wang](https://zijie.wang).