Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
{'gender_submission'}
Error code:   UnexpectedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

PassengerId
int32
Survived
int32
Pclass
int32
Name
string
Sex
string
Age
float32
SibSp
int32
Parch
int32
Ticket
string
Fare
float32
Cabin
string
Embarked
string
1
0
3
Braund, Mr. Owen Harris
male
22
1
0
A/5 21171
7.25
null
S
2
1
1
Cumings, Mrs. John Bradley (Florence Briggs Thayer)
female
38
1
0
PC 17599
71.2833
C85
C
3
1
3
Heikkinen, Miss. Laina
female
26
0
0
STON/O2. 3101282
7.925
null
S
4
1
1
Futrelle, Mrs. Jacques Heath (Lily May Peel)
female
35
1
0
113803
53.1
C123
S
5
0
3
Allen, Mr. William Henry
male
35
0
0
373450
8.05
null
S
6
0
3
Moran, Mr. James
male
null
0
0
330877
8.4583
null
Q
7
0
1
McCarthy, Mr. Timothy J
male
54
0
0
17463
51.8625
E46
S
8
0
3
Palsson, Master. Gosta Leonard
male
2
3
1
349909
21.075
null
S
9
1
3
Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)
female
27
0
2
347742
11.1333
null
S
10
1
2
Nasser, Mrs. Nicholas (Adele Achem)
female
14
1
0
237736
30.0708
null
C
11
1
3
Sandstrom, Miss. Marguerite Rut
female
4
1
1
PP 9549
16.7
G6
S
12
1
1
Bonnell, Miss. Elizabeth
female
58
0
0
113783
26.55
C103
S
13
0
3
Saundercock, Mr. William Henry
male
20
0
0
A/5. 2151
8.05
null
S
14
0
3
Andersson, Mr. Anders Johan
male
39
1
5
347082
31.275
null
S
15
0
3
Vestrom, Miss. Hulda Amanda Adolfina
female
14
0
0
350406
7.8542
null
S
16
1
2
Hewlett, Mrs. (Mary D Kingcome)
female
55
0
0
248706
16
null
S
17
0
3
Rice, Master. Eugene
male
2
4
1
382652
29.125
null
Q
18
1
2
Williams, Mr. Charles Eugene
male
null
0
0
244373
13
null
S
19
0
3
Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)
female
31
1
0
345763
18
null
S
20
1
3
Masselmani, Mrs. Fatima
female
null
0
0
2649
7.225
null
C
21
0
2
Fynney, Mr. Joseph J
male
35
0
0
239865
26
null
S
22
1
2
Beesley, Mr. Lawrence
male
34
0
0
248698
13
D56
S
23
1
3
McGowan, Miss. Anna "Annie"
female
15
0
0
330923
8.0292
null
Q
24
1
1
Sloper, Mr. William Thompson
male
28
0
0
113788
35.5
A6
S
25
0
3
Palsson, Miss. Torborg Danira
female
8
3
1
349909
21.075
null
S
26
1
3
Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)
female
38
1
5
347077
31.3875
null
S
27
0
3
Emir, Mr. Farred Chehab
male
null
0
0
2631
7.225
null
C
28
0
1
Fortune, Mr. Charles Alexander
male
19
3
2
19950
263
C23 C25 C27
S
29
1
3
O'Dwyer, Miss. Ellen "Nellie"
female
null
0
0
330959
7.8792
null
Q
30
0
3
Todoroff, Mr. Lalio
male
null
0
0
349216
7.8958
null
S
31
0
1
Uruchurtu, Don. Manuel E
male
40
0
0
PC 17601
27.7208
null
C
32
1
1
Spencer, Mrs. William Augustus (Marie Eugenie)
female
null
1
0
PC 17569
146.5208
B78
C
33
1
3
Glynn, Miss. Mary Agatha
female
null
0
0
335677
7.75
null
Q
34
0
2
Wheadon, Mr. Edward H
male
66
0
0
C.A. 24579
10.5
null
S
35
0
1
Meyer, Mr. Edgar Joseph
male
28
1
0
PC 17604
82.1708
null
C
36
0
1
Holverson, Mr. Alexander Oskar
male
42
1
0
113789
52
null
S
37
1
3
Mamee, Mr. Hanna
male
null
0
0
2677
7.2292
null
C
38
0
3
Cann, Mr. Ernest Charles
male
21
0
0
A./5. 2152
8.05
null
S
39
0
3
Vander Planke, Miss. Augusta Maria
female
18
2
0
345764
18
null
S
40
1
3
Nicola-Yarred, Miss. Jamila
female
14
1
0
2651
11.2417
null
C
41
0
3
Ahlin, Mrs. Johan (Johanna Persdotter Larsson)
female
40
1
0
7546
9.475
null
S
42
0
2
Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)
female
27
1
0
11668
21
null
S
43
0
3
Kraeff, Mr. Theodor
male
null
0
0
349253
7.8958
null
C
44
1
2
Laroche, Miss. Simonne Marie Anne Andree
female
3
1
2
SC/Paris 2123
41.5792
null
C
45
1
3
Devaney, Miss. Margaret Delia
female
19
0
0
330958
7.8792
null
Q
46
0
3
Rogers, Mr. William John
male
null
0
0
S.C./A.4. 23567
8.05
null
S
47
0
3
Lennon, Mr. Denis
male
null
1
0
370371
15.5
null
Q
48
1
3
O'Driscoll, Miss. Bridget
female
null
0
0
14311
7.75
null
Q
49
0
3
Samaan, Mr. Youssef
male
null
2
0
2662
21.6792
null
C
50
0
3
Arnold-Franchi, Mrs. Josef (Josefine Franchi)
female
18
1
0
349237
17.8
null
S
51
0
3
Panula, Master. Juha Niilo
male
7
4
1
3101295
39.6875
null
S
52
0
3
Nosworthy, Mr. Richard Cater
male
21
0
0
A/4. 39886
7.8
null
S
53
1
1
Harper, Mrs. Henry Sleeper (Myna Haxtun)
female
49
1
0
PC 17572
76.7292
D33
C
54
1
2
Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)
female
29
1
0
2926
26
null
S
55
0
1
Ostby, Mr. Engelhart Cornelius
male
65
0
1
113509
61.9792
B30
C
56
1
1
Woolner, Mr. Hugh
male
null
0
0
19947
35.5
C52
S
57
1
2
Rugg, Miss. Emily
female
21
0
0
C.A. 31026
10.5
null
S
58
0
3
Novel, Mr. Mansouer
male
28.5
0
0
2697
7.2292
null
C
59
1
2
West, Miss. Constance Mirium
female
5
1
2
C.A. 34651
27.75
null
S
60
0
3
Goodwin, Master. William Frederick
male
11
5
2
CA 2144
46.9
null
S
61
0
3
Sirayanian, Mr. Orsen
male
22
0
0
2669
7.2292
null
C
62
1
1
Icard, Miss. Amelie
female
38
0
0
113572
80
B28
null
63
0
1
Harris, Mr. Henry Birkhardt
male
45
1
0
36973
83.475
C83
S
64
0
3
Skoog, Master. Harald
male
4
3
2
347088
27.9
null
S
65
0
1
Stewart, Mr. Albert A
male
null
0
0
PC 17605
27.7208
null
C
66
1
3
Moubarek, Master. Gerios
male
null
1
1
2661
15.2458
null
C
67
1
2
Nye, Mrs. (Elizabeth Ramell)
female
29
0
0
C.A. 29395
10.5
F33
S
68
0
3
Crease, Mr. Ernest James
male
19
0
0
S.P. 3464
8.1583
null
S
69
1
3
Andersson, Miss. Erna Alexandra
female
17
4
2
3101281
7.925
null
S
70
0
3
Kink, Mr. Vincenz
male
26
2
0
315151
8.6625
null
S
71
0
2
Jenkin, Mr. Stephen Curnow
male
32
0
0
C.A. 33111
10.5
null
S
72
0
3
Goodwin, Miss. Lillian Amy
female
16
5
2
CA 2144
46.9
null
S
73
0
2
Hood, Mr. Ambrose Jr
male
21
0
0
S.O.C. 14879
73.5
null
S
74
0
3
Chronopoulos, Mr. Apostolos
male
26
1
0
2680
14.4542
null
C
75
1
3
Bing, Mr. Lee
male
32
0
0
1601
56.4958
null
S
76
0
3
Moen, Mr. Sigurd Hansen
male
25
0
0
348123
7.65
F G73
S
77
0
3
Staneff, Mr. Ivan
male
null
0
0
349208
7.8958
null
S
78
0
3
Moutal, Mr. Rahamin Haim
male
null
0
0
374746
8.05
null
S
79
1
2
Caldwell, Master. Alden Gates
male
0.83
0
2
248738
29
null
S
80
1
3
Dowdell, Miss. Elizabeth
female
30
0
0
364516
12.475
null
S
81
0
3
Waelens, Mr. Achille
male
22
0
0
345767
9
null
S
82
1
3
Sheerlinck, Mr. Jan Baptist
male
29
0
0
345779
9.5
null
S
83
1
3
McDermott, Miss. Brigdet Delia
female
null
0
0
330932
7.7875
null
Q
84
0
1
Carrau, Mr. Francisco M
male
28
0
0
113059
47.1
null
S
85
1
2
Ilett, Miss. Bertha
female
17
0
0
SO/C 14885
10.5
null
S
86
1
3
Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)
female
33
3
0
3101278
15.85
null
S
87
0
3
Ford, Mr. William Neal
male
16
1
3
W./C. 6608
34.375
null
S
88
0
3
Slocovski, Mr. Selman Francis
male
null
0
0
SOTON/OQ 392086
8.05
null
S
89
1
1
Fortune, Miss. Mabel Helen
female
23
3
2
19950
263
C23 C25 C27
S
90
0
3
Celotti, Mr. Francesco
male
24
0
0
343275
8.05
null
S
91
0
3
Christmann, Mr. Emil
male
29
0
0
343276
8.05
null
S
92
0
3
Andreasson, Mr. Paul Edvin
male
20
0
0
347466
7.8542
null
S
93
0
1
Chaffee, Mr. Herbert Fuller
male
46
1
0
W.E.P. 5734
61.175
E31
S
94
0
3
Dean, Mr. Bertram Frank
male
26
1
2
C.A. 2315
20.575
null
S
95
0
3
Coxon, Mr. Daniel
male
59
0
0
364500
7.25
null
S
96
0
3
Shorney, Mr. Charles Joseph
male
null
0
0
374910
8.05
null
S
97
0
1
Goldschmidt, Mr. George B
male
71
0
0
PC 17754
34.6542
A5
C
98
1
1
Greenfield, Mr. William Bertram
male
23
0
1
PC 17759
63.3583
D10 D12
C
99
1
2
Doling, Mrs. John T (Ada Julia Bone)
female
34
0
1
231919
23
null
S
100
0
2
Kantor, Mr. Sinai
male
34
1
0
244367
26
null
S
End of preview.

Dataset Card for Titanic Survival Prediction

Dataset Details

Dataset Description

This dataset is a copy of the original Kaggle Titanic dataset made to explore the Hugging Face Datasets feature.

The Titanic Survival Prediction dataset is widely used in machine learning and statistics. It originates from the Titanic: Machine Learning from Disaster competition on Kaggle. The dataset consists of passenger details from the RMS Titanic disaster, including demographic and ticket-related attributes, with the goal of predicting whether a passenger survived.

  • Curated by: Kaggle
  • Funded by: Kaggle
  • Shared by: Kaggle
  • Language(s) (NLP, if applicable): English
  • License: Subject to Competition Rules

Dataset Sources

Uses

Direct Use

The dataset is primarily used for:

  • Supervised learning: Predicting survival outcomes based on passenger characteristics.
  • Feature engineering: Extracting new insights from existing features.
  • Data preprocessing techniques: Handling missing values, encoding categorical variables, and normalizing data.
  • Benchmarking machine learning models: Logistic regression, decision trees, random forests, neural networks, etc.

Out-of-Scope Use

This dataset is not meant for:

  • Real-world survival predictions: It is based on a historical dataset and should not be used for real-world survival predictions.
  • Sensitive or personally identifiable information analysis: The dataset does not contain modern personal data but should still be used responsibly.

Dataset Structure

The dataset consists of three CSV files:

  1. train.csv (891 entries) – Includes the "Survived" column as labels for training.
  2. test.csv (418 entries) – Used for evaluation, with missing "Survived" labels.
  3. gender_submission.csv – A sample submission file assuming all female passengers survived.

Data Dictionary

Column Description
PassengerId Unique ID for each passenger
Survived Survival status (0 = No, 1 = Yes)
Pclass Ticket class (1st, 2nd, 3rd)
Name Passenger name
Sex Gender (male/female)
Age Passenger age
SibSp Number of siblings/spouses aboard
Parch Number of parents/children aboard
Ticket Ticket number
Fare Ticket fare
Cabin Cabin number (if known)
Embarked Port of embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)

Dataset Creation

Curation Rationale

The dataset was created to help users develop predictive models for classification tasks and serves as an entry-level machine learning dataset.

Source Data

Data Collection and Processing

The dataset originates from historical records of the RMS Titanic disaster and has been structured for machine learning purposes. Some entries contain missing values, particularly in Age and Cabin, requiring imputation or removal.

Who are the source data producers?

The dataset is derived from Titanic passenger records.

Annotations

Annotation process

The dataset is not annotated beyond the Survived label.

Who are the annotators?

The survival labels come from historical records.

Personal and Sensitive Information

The dataset does not contain sensitive or personally identifiable information.

Bias, Risks, and Limitations

The dataset represents historical biases in survival rates:

  • Women and children had a higher chance of survival due to evacuation priorities.
  • First-class passengers had a higher survival rate compared to lower-class passengers.
  • Some data is missing or estimated, particularly age and cabin numbers.

Recommendations

  • Use fairness metrics when training models to assess potential biases.
  • Avoid real-world applications for decision-making, as this is a historical dataset.

Citation

Since this dataset originates from Kaggle, it does not have an official citation. However, you can reference it as follows:

APA: Kaggle. (n.d.). Titanic - Machine Learning from Disaster. Retrieved from https://www.kaggle.com/competitions/titanic/data

BibTeX:

@misc{kaggle_titanic,
  title = {Titanic - Machine Learning from Disaster},
  author = {Kaggle},
  year = {n.d.},
  url = {https://www.kaggle.com/competitions/titanic/data}
}
Downloads last month
38