contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC106 (for experts) | https://onlinemathcontest.com/contests/omc106 | https://onlinemathcontest.com/contests/omc106/tasks/3733 | D | OMC106(D) | 500 | 67 | 110 | [
{
"content": "ã$AC = x$ ãšã, $AC$ ããç¹ $B, D$ ãžã®è·é¢ããããã $y, z$ ãšãã.\r\n$x, y$ ãåºå®ãããšã, $S(ABC) = \\displaystyle\\frac{xy}2$ ã§ãã,\r\n$AB^2 + BC^2$ 㯠$AB = BC$ ã®ãšãã«æå°å€ $\\displaystyle \\frac{x^2}2 + 2y^2$ ããšã.\r\nå®é, $H$ ã $B$ ãã $AC$ ã«äžãããåç·ã®è¶³ãšãããš,\r\näžå¹³æ¹ã®å®çãã\r\n$AB^2 + BC^2 = 2y^2 + AH^2 + CH^2$ ãããã,\r\nãã®å³èŸºã¯ $AH = CH = \\displaystyle\\frac{x}2$ ã®ãšãã«æå°åãããã®ã§ãã.\r\n$D$ ã«ã€ããŠãåæ§ãªã®ã§, $K$ ã¯äžçåŒ\r\n$$\r\n x^2 + 2y^2 + 2z^2 \\ge k\\biggl( \\frac{3xy}2 + \\frac{5xz}2 \\biggr)\r\n$$\r\nãæºããæ倧㮠$k$ ã§ããããšãããã.\r\nçžå ã»çžä¹å¹³åã®äžçåŒã䜿ãããšã§,\r\n$$\r\n x^2 + 2y^2 + 2z^2 = \\biggl(\\frac{9x^2}{34} + 2y^2\\biggr) +\r\n \\biggl(\\frac{25x^2}{34} + 2z^2\\biggr)\r\n \\ge \\frac{6xy}{\\sqrt{17}} + \\frac{10xz}{\\sqrt{17}}\r\n$$\r\nãåŸãã, å®éã« $y = \\displaystyle \\frac{3x}{2\\sqrt{17}}$,\r\n$z = \\displaystyle \\frac{5x}{2\\sqrt{17}}$ ã®ãšãã«çå·ãæç«ãã.\r\nãããã£ãŠ, $K = \\displaystyle\\frac4{\\sqrt{17}}$ ã§ãã, 解ç㯠$\\bm{33}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc106/editorial/3733"
},
{
"content": "â»å¹Ÿäœçãªå·¥å€«ãå¿
èŠãšããªãïŒäžçåŒã§ãŽãªæŒããã解æ³ã§ã\r\n\r\n----\r\n\r\nã$AB = a,\\\\, BC = b,\\\\, CD = c,\\\\, DA = d,\\\\, AC = x$ ãšããïŒãã®ãšã Heron ã®å
¬åŒãçšãããïŒãŸãã¯ä»¥äžã®ãããªïŒç¬¬äºäœåŒŠå®çãçšããåŒå€åœ¢ã«ãã£ãŠ\r\n$$ S(ABC) = \\frac{ab}2 \\sin B = \\frac{ab}2 \\sqrt{1 - \\cos^2 B} = \\frac{ab}2\\sqrt{1 - \\left(\\frac{a^2 + b^2 - x^2}{2ab}\\right)^2} = \\frac12\\sqrt{(ab)^2-\\left(\\frac{a^2 + b^2 - x^2}2\\right)^2} $$\r\nãšãªãïŒåæ§ã«\r\n$$ S(ACD) = \\frac12\\sqrt{(cd)^2-\\left(\\frac{c^2 + d^2 - x^2}2\\right)^2}. $$\r\nããããã£ãŠ\r\n$$\\begin{aligned}\r\n\\frac{AB^2 + BC^2 + CD^2 + DA^2}{3S(ABC) + 5S(CDA)} &= \\frac{a^2 + b^2 + c^2 + d^2}{\\frac32\\sqrt{(ab)^2-\\left(\\frac{a^2 + b^2 - x^2}2\\right)^2} + \\frac52\\sqrt{(cd)^2-\\left(\\frac{c^2 + d^2 - x^2}2\\right)^2}} \\\\\\\\\r\n&\\\\!\\\\!\\\\!\\\\!\\\\!\\\\!\\\\!\\\\:\\stackrel{\\smash{\\text{AM-GM}}}\\ge\\\\!\\\\!\\\\!\\\\!\\\\!\\\\!\\\\!\\\\: \\frac{a^2 + b^2 + c^2 + d^2}{\\frac32\\sqrt{\\left(\\frac{a^2 + b^2}2\\right)^2-\\left(\\frac{a^2 + b^2 - x^2}2\\right)^2} + \\frac52\\sqrt{\\left(\\frac{c^2 + d^2}2\\right)^2-\\left(\\frac{c^2 + d^2 - x^2}2\\right)^2}} \\\\\\\\\r\n&= \\frac{a^2 + b^2 + c^2 + d^2}{\\frac32\\sqrt{\\frac{x^2}2 \\left(a^2 + b^2 - \\frac{x^2}2\\right)} + \\frac52\\sqrt{\\frac{x^2}2 \\left(c^2 + d^2 - \\frac{x^2}2\\right)}} \\\\\\\\\r\n&= \\frac1{\\frac32\\sqrt{X \\left(P - X\\right)} + \\frac52\\sqrt{X \\left(1 - P - X\\right)}} \\\\\\\\\r\n&= \\frac2{\\sqrt{34}} \\left(\\frac{\\left(3\\sqrt{X \\left(P - X\\right)} + 5\\sqrt{X \\left(1 - P - X\\right)}\\right)^2}{3^2 + 5^2}\\right)^{-\\frac12} \\\\\\\\\r\n&\\\\!\\\\!\\\\;\\stackrel{\\text{CS}}\\ge\\\\!\\\\!\\\\; \\sqrt{\\frac2{17}} \\left(\\frac{3^2\\\\, X \\left(P - X\\right)}{3^2} + \\frac{5^2\\\\, X \\left(1 - P - X\\right)}{5^2}\\right)^{-\\frac12} \\\\\\\\\r\n&= \\sqrt{\\frac2{17}} \\times \\frac1{\\sqrt{X \\left(1 - 2X\\right)}} = \\frac1{\\sqrt{17X \\left(\\frac12 - X\\right)}} \\\\\\\\\r\n&\\ge \\frac1{\\sqrt{17 \\left(\\frac14\\right)^2}} = \\sqrt{\\frac{16}{17}}.\r\n\\end{aligned}$$\r\nãã ã\r\n$$P \\coloneqq \\frac{a^2 + b^2}{a^2 + b^2 + c^2 + d^2},\\qquad X \\coloneqq \\frac{x^2}{2 \\left(a^2 + b^2 + c^2 + d^2\\right)}. $$\r\nãã®ãšãïŒåäžçåŒã®çå·æç«æ¡ä»¶ïŒ\r\n$$ a = b\\quad \\text{and}\\quad c = d,\\qquad \\frac19 \\left(P - X\\right) = \\frac1{25} \\left(1 - P - X\\right) \\iff P = \\frac9{34},\\qquad X = \\frac14 $$\r\nã¯äžããããå³ã§å®çŸå¯èœã§ããããïŒ $K = \\sqrt{\\dfrac{16}{17}}$ ãåããïŒçã㯠$\\textbf{33}$ïŒ",
"text": "äžçåŒã§ãŽãªæŒãïŒ",
"url": "https://onlinemathcontest.com/contests/omc106/editorial/3733/93"
}
] | ãå¹³é¢äžã®ä»»æã®åè§åœ¢ $ABCD$ïŒåžãšã¯éããªãïŒã«å¯ŸããŠïŒ
$$ AB^2 + BC^2 + CD^2 + DA^2 \geq k(3S(ABC) + 5S(ACD)) $$
ãã¿ãããããªå®æ° $k$ ãšããŠããåŸãæ倧ã®å€ã $K$ ãšããŸãïŒãã®ãšãïŒäºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$K = \displaystyle\sqrt{\frac{a}b}$ ãšè¡šããã®ã§ïŒ$a + b$ ã解çããŠãã ããïŒ\
ããã ãïŒå¹³é¢äžã®äžè§åœ¢ $XYZ$ ã«å¯ŸããŠïŒ$S(XYZ)$ ã§ãã®é¢ç©ãè¡šããŸãïŒ |
OMC106 (for experts) | https://onlinemathcontest.com/contests/omc106 | https://onlinemathcontest.com/contests/omc106/tasks/2987 | E | OMC106(E) | 700 | 11 | 41 | [
{
"content": "ã解説äžã®åååŒã¯å
šãŠ $p$ ãæ³ãšããŠèãã. \r\n\r\n----\r\n**è£é¡1.**ãåé¡æã®äžã€ç®ã®æ¡ä»¶ã¯, $1$ ä»¥äž $p-1$ 以äžã®æŽæ° $y$ ãååšã㊠$y + y^{-1} \\equiv c$ ãæºããããšãšåå€ã§ãã. \\\r\n**蚌æ.**ãåŸè
㯠$y^2 - cy + 1 \\equiv 0$ ãšãªãæŽæ° $y$ ã®ååšãšåå€. ãã®äž¡èŸºã $4$ åããŠå¹³æ¹å®æããã°ãã.ã(蚌æçµ) \r\n\r\n----\r\nã$y + y^{-1} \\equiv c$ ãæãç«ã€ãšã, æ°å $F_0, F_1, \\ldots$ ã\r\n$$F_0 = 0, \\quad F_1 = 1, \\quad F_{k+2} = F_{k+1} +F_k \\quad (k = 0, 1, \\ldots)$$\r\nã§å®ãããš, $a_k \\equiv y^{F_k} + y^{- F_k}$ ã§ããããšãåž°çŽçã«åãã. $F_{18} = 2584$ ãã, $a_{18} \\equiv y^{2584} + y^{-2584}$ ã§ãã. ãããã£ãŠ, è£é¡1ããæ±ããå€ã¯ $y^{2584} + y^{-2584}$ ã $p$ ã§å²ã£ãäœãã®çš®é¡æ°ãšäžèŽãã. \\\r\nãããã§, æ³ $p$ ã«ãããåå§æ ¹ã®äžã€ã $g$ ãšãããš, $\\gcd(p-1, 2584) = 136$ ãã, \r\n$$1^{2584},\\quad 2^{2584},\\quad \\ldots, \\quad (p-1)^{2584}$$\r\nã $p$ ã§å²ã£ãäœãã¯å
šãŠ $g^{136 i} \\pmod{p}~(0 \\leq i \\leq 2^{20} \\times 7 - 1)$ ã®åœ¢ã§è¡šãããããšã«æ³šæãã.\r\n\r\n----\r\n**è£é¡2.**ãçžç°ãªã $1$ ä»¥äž $p-1$ 以äžã®æŽæ° $a$, $b$ ã $a + a^{-1} \\equiv b + b^{-1}$ ãæºãããšã, $a \\equiv b^{-1}$ ã§ãã. \\\r\n**蚌æ.**ã䞡蟺ã $a$ åããŠå€åœ¢ãããš, 以äžãåŸã. $a \\neq b$ ãã, $a \\equiv b^{-1}$ ã§ãã.ã(蚌æçµ) \r\n$$(a - b)(a - b^{-1}) \\equiv 0$$\r\n\r\n----\r\nãè£é¡2ãã, æ±ããå€ã¯ $g^{136 i} \\pmod{p}$ ã«å¯Ÿã, $p$ ãæ³ãšããéå
ã«ãªãæ°å士ããã¢ã«ãããšãã®ãã¢ã®åæ°ãšäžèŽãã. $i=0, 2^{19} \\times 7$ ã®ãšã (ããªãã¡ $g^{136 i} \\equiv \\pm 1$ ã®ãšã) ã«éãèªåèªèº«ãšãã¢ãçµããã, çã㯠\r\n$$(2^{20} \\times 7 - 2)\\/2 + 2 = 2^{19} \\times 7 +1 = \\textbf{3670017}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc106/editorial/2987"
}
] | ãçŽ æ° $p$ ã $p = 998244353 (= 2^{23} \times 7 \times 17 + 1) $ ã§å®ããŸãïŒ$0$ ä»¥äž $p-1$ 以äžã®æŽæ° $n$ ã®ãã¡ïŒä»¥äžã®æ¡ä»¶ãæºããæŽæ° $c$ ãååšãããã®ã®åæ°ãæ±ããŠãã ããïŒ
- $c^2 - 4 \equiv x^2 \pmod{p}$ ãšãªãæŽæ° $x$ ãååšããïŒ
- æŽæ°å $a_0, a_1, \ldots$ ã以äžã§å®ãããšïŒ $a_{18} \equiv n \pmod{p}$ ãæç«ããïŒ
$$a_0 = 2, \quad a_1 = a_2 =c, \quad a_{k+3} = a_{k+2} a_{k+1} - a_k \quad (k = 0, 1, \ldots)$$ |
OMC106 (for experts) | https://onlinemathcontest.com/contests/omc106 | https://onlinemathcontest.com/contests/omc106/tasks/3735 | F | OMC106(F) | 900 | 3 | 24 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®é¢ç©ã確çå€æ° $S$ ã§è¡šã, æåŸ
å€ $\\mathrm{E}[S]$ ãš $\\mathrm{E}[S^2]$ ã«ã€ããŠ,\r\nããã€ãã®äž»åŒµã瀺ã.\\\r\nã$5$ ç¹ $A, B, C, X, Y$ ã®ãã¡ãããã® $3$ ç¹ã«ã€ããŠãããããäžçŽç·äžã«äžŠã¶ç¢ºç㯠$0$ ã§ããããšã«æ³šæ.\r\n----\r\n**è£é¡1.**ãç·å $AB, XY$ ã亀ãã確ç㯠$\\displaystyle \\frac13 - \\frac43\\mathrm{E}[S]$ ã«çãã.\r\n\r\n**蚌æ.**ããŸã $4$ ç¹ãåžåè§åœ¢ã«ãªããªã確çãæ±ãã.\r\nãã®ãšã $4$ ç¹ã®åžå
ã¯ç¢ºç $1$ ã§äžè§åœ¢ã§ãã,\r\näžã«å
¥ã $1$ ç¹ã $4$ éãããã®ã§, 察称æ§ãã確çã¯\r\n$4\\cdot\\mathrm{P}(Y \\in \\triangle ABX) = 4\\mathrm{E}[S]$ ã«çãã.\r\nãããã£ãŠ $4$ ç¹ãåžåè§åœ¢ããªã確ç㯠$1 - 4\\mathrm{E}[S]$ ã§ãã,\r\nãã®ãã¡ $AB$ ã察è§ç·ããªã確çã¯å¯Ÿç§°æ§ãããã® $1\\/3$ ã§ãã. (蚌æçµ)\r\n----\r\n**è£é¡2.**ãç·å $AB, BC, CA$ ã®ãã¡ã¡ããã© $1$ ã€ãšç·å $XY$ ã亀ãã確çã¯\r\n$2(\\mathrm{E}[S] - \\mathrm{E}[S^2])$\r\nã«çãã.\r\n\r\n**蚌æ.**ããã㯠$2$ ç¹ $X, Y$ ã®ãã¡çæ¹ãäžè§åœ¢ $ABC$ ã®å
éšã«ããããçæ¹ãå€éšã«ãã確çã«çãã.\r\n$A, B, C$ ãåºå®ãããšããã®ç¢ºç㯠$2S(1-S)$ ãªã®ã§, ãã®å¹³åããšããšãã. (蚌æçµ)\r\n----\r\nãããã§, ç·å $XY$ ã $AB, BC, CA$ ãšäº€ããäºè±¡ããããã $F_1, F_2, F_3$ ãšãããš,\r\næ±ãã確çã¯\r\n$$\r\n\\begin{aligned}\r\n \\mathrm{P}(F_3) + \\mathrm{P}(F_1\\cap \\overline{F_2} \\cap \\overline{F_3})\r\n + \\mathrm{P}(\\overline{F_1} \\cap F_2 \\cap \\overline{F_3})\r\n \\&= \\biggl(\\frac13 - \\frac43\\mathrm{E}[S]\\biggr)\r\n + \\frac23(2(\\mathrm{E}[S] - \\mathrm{E}[S^2])) \\\\\\\\\r\n \\&= \\frac13 - \\frac43\\mathrm{E}[S^2] \\tag{1}\r\n\\end{aligned}\r\n$$\r\nãšãªã.\r\nãã£ãŠ $\\mathrm{E}[S^2]$ ãæ±ããã°ãã.\\\r\nã$A, B, C$ ã®åº§æšããããã $(A_x, A_y), (B_x, B_y), (C_x, C_y)$ ãšè¡šã.\r\nãã®ãšã,\r\n$$\\overrightarrow{AB} = (B_x - A_x, B_y - A_y), \\quad \\overrightarrow{AC} = (C_x - A_x, C_y - A_y)$$\r\nãªã®ã§\r\n$$\r\n\\begin{aligned}\r\n (2S)^2 \\&= \\bigl((B_x - A_x)(C_y - A_y) - (B_y - A_y)(C_x - A_x)\\bigr)^2 \\\\\\\\\r\n \\& = \\bigl(\r\n (A_x B_y - A_y B_x) + (B_x C_y - B_y C_x) + (C_x A_y - C_y A_x)\r\n \\bigr)^2 \\tag{2}\r\n\\end{aligned}\r\n$$\r\nãåŸã.\r\nãã㧠$\\mathrm{E}[A_x] = \\mathrm{E}[A_y] = 0$ ãšç¬ç«æ§ãã,\r\n$$\\mathrm{E}[(A_x B_y - A_y B_x)(B_x C_y - B_y C_x)]= 0$$\r\nã§ãã. ãŸã, $\\mathrm{E}[A_xA_y] = 0$ ãšå¯Ÿç§°æ§ãã\r\n$$\r\n\\begin{aligned}\\mathrm{E}[(A_x B_y - A_y B_x)^2] \\&= \\mathrm{E}[A_x^2]\\mathrm{E}[B_y^2]\r\n + \\mathrm{E}[A_y^2]\\mathrm{E}[B_x^2] - 2\\mathrm{E}[A_xA_y]\\mathrm{E}[B_xB_y] \\\\\\\\\r\n \\& = 2\\mathrm{E}[A_x^2]\\mathrm{E}[B_y^2]\\\\\\\\ \\&=\r\n \\frac12\\mathrm{E}[A_x^2 + A_y^2]\\mathrm{E}[B_x^2+B_y^2]\\\\\\\\\r\n \\&= \\frac12\\biggl(\\frac1{2\\pi}\\biggr)^2 = \\frac1{8\\pi^2}\r\n\\end{aligned}\r\n$$\r\nãšãªã.\r\nãã ãæåŸããäºçªç®ã®çåŒã§ $\\mathrm{E}[OZ^2] = \\displaystyle\\frac1{2\\pi}$ ãçšãã.\r\nãããã£ãŠ $(2)$ ãã\r\n$$\r\n \\mathrm{E}[S^2] = \\frac34\\mathrm{E}[(A_x B_y - A_y B_x)^2] = \\frac3{32\\pi^2}\r\n$$\r\nã§ãã,\r\næ±ãã確ç㯠$(1)$ ãã $\\displaystyle\\frac13 - \\frac1{8\\pi^2}$ ãšãªã. ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{3206681}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc106/editorial/3735"
},
{
"content": "ã$A, B, C, X, Y, O$ãåäžçŽç·äžã«ãªããšããŠã確çã¯å€ãããªãã®ã§, ããä»®å®ãã. ãŸã, äžè§åœ¢ $DEF$ ã®ç¬Šå·ä»é¢ç©ã $S(DEF)$ ãšè¡šèšãã. \\\r\nããã $5$ ã€ã®ç¹ã« $A, B, C, X, Y$ ãäžåãã€å²ãåœãŠãæ¹æ³ã¯ $120$ éãããã, ãã®ãã¡åé¡ã®æ¡ä»¶ãæºããããã«å²ãåœãŠãæ¹æ³ã¯, $5$ ç¹ã®åžå
ã $5, 4$ è§åœ¢ã®æ $40$ éã, $3$ è§åœ¢ã®æ $24$ éãã§ããããšã確èªã§ãã. ãã£ãŠ, å $\\omega$ ã®å
éšã«ã©ã³ãã ã«ç¹ã $5$ ã€ç¬ç«ã«åã£ãæã«ãã®åžå
ã $3$ è§åœ¢ã§ãã確çã $s$ ã§ãããšãããš, æ±ãã確ç $p$ 㯠$$\\frac{40}{120}(1-s)+\\frac{24}{120}s=\\frac{1}{3}-\\frac{2}{15}s$$ ã§ããããšãåãã. ãŸã $$s =(å \\omega ã®å
éšã«ã©ã³ãã ã«ç¹ã 3 〠(P, Q, Rãšãã) ãåã£ãåŸããã« 2 ç¹ãšã£ãæã«, $$ $$ãã® 2 ç¹ãæåã«åã£ã 3 ç¹ãé ç¹ãšããäžè§åœ¢ã®é åå
ã«ãã確ç) \\times {}_5 \\mathrm{C}_3$$$$=10S(PQR)^2$$ ãªã®ã§, $S(PQR)^2$ã®å¹³åãèšç®ããã°ãã. \\\r\nã$P, Q$ ã $O$ ã§ç¹å¯Ÿç§°ç§»åãããç¹ããããã $Pâ, Qâ$ ãšãã. $S(QOP)=a, S(ROQ)=b, S(POR)=c$ ãšãããš, $S(PQR), S(PâQR), S(PQâR), S(PâQâR)$ ã¯ãããã $a+b+c, -a+b-c, -a-b+c, -a+b+c$ ãªã®ã§, $$S(PQR)^2+S(PâQR)^2+S(PQâR)^2+S(PâQâR)^2=(a+b+c)^2+(-a+b-c)^2+(-a-b+c)^2+(-a+b+c)^2$$ $$=4(a^2+b^2+c^2)$$\r\nãã£ãŠ, $$S(PQR)^2ã®å¹³å=3S(QOP)^2ã®å¹³å$$\r\nã§ããããšãåãã.\r\n$$3(QOP)^2ã®å¹³å=\\frac{3}{4}(OP^2ã®å¹³å)(OQ^2ã®å¹³å)(\\frac{\\int_0^{2\\pi}sin^2\\theta d\\theta}{2\\pi})=\\frac{3}{4}\\frac{1}{2\\pi}\\frac{1}{2\\pi}\\frac{\\pi}{2\\pi}=\\frac{3}{32\\pi^2}$$\r\nãããã£ãŠ, $$p=\\frac{1}{3}-\\frac{2}{15}s=\\frac{1}{3}-\\frac{2}{15}\\frac{30}{32\\pi^2}=\\frac{1}{3}-\\frac{1}{8\\pi^2}$$\r\næ±ããå€ã¯$\\textbf{3206681}$.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc106/editorial/3735/94"
}
] | ãå¹³é¢äžã®åç¹ $O$ ãäžå¿ãšããé¢ç© $1$ ã®å $\omega$ ã®å
éšããïŒç¹ $A,B,C,X,Y$ ãã©ã³ãã ãã€ç¬ç«ã«ãšããšãïŒæ¬¡ã®æ¡ä»¶ããšãã«æç«ãã確çã $p$ ãšããŸãïŒ
- ç·å $XY$ ã¯ïŒç·å $AB$, $BC$, $CA$ ã®ãã¡äžã€ä»¥äžãšäº€ããïŒ
- ç·å $XY$ ã¯ïŒç·å $AB$, $BC$ ã®äž¡æ¹ãšã¯äº€ãããªãïŒ
ããã®ãšãïŒ$p\times 10^7$ ã®æŽæ°éšåã解çããŠãã ããïŒãã ãïŒ
$$3.141592 \lt \pi \lt 3.141593$$
ãçšããŠãæ§ããŸããïŒ
---
ãããã§ïŒç¹ $Z$ ã $\omega$ ã®å
éšãã**ã©ã³ãã ã«ãšã**ãšã¯ïŒå $\omega$ å
ã®é¢ç© $s$ ã®é åã«å¯Ÿã㊠$Z$ ããã®é åã«å
¥ã確çã $s$ ã§ããããšãšããŸãïŒãŸãïŒãã®ãã㪠$Z$ ã«å¯Ÿã㊠$OZ^2$ïŒåç¹ããã®è·é¢ã® $2$ ä¹ïŒã®æåŸ
å€ã $1\/(2\pi)$ ã§ããããšãçšããŠãæ§ããŸãã. |
OMC105 (for beginners) | https://onlinemathcontest.com/contests/omc105 | https://onlinemathcontest.com/contests/omc105/tasks/3276 | A | OMC105(A) | 100 | 276 | 284 | [
{
"content": "ãåäŸ $i$ ãè·³ã¶ã®ã«æåãã確çã¯\r\n$$1 - \\frac{1}{i + 1} = \\frac{i}{i + 1}$$\r\nãªã®ã§, å
šå¡ãè·³ã¹ã確çã¯\r\n$$\\frac{1}{2} \\times \\frac{2}{3} \\times \\frac{3}{4} \\times \\cdots \\times \\frac{1999}{2000} = \\frac{1}{2000}$$\r\nãã解çãã¹ãå€ã¯ $\\textbf{2001}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc105/editorial/3276"
}
] | ãTKGåã«ã¯å
šéšã§ $1999$ 人ã®åäŸãããïŒåœŒãã«å€§çžè·³ã³ããããããšã«ããŸããïŒãããïŒçžãã¡ããã© $1$ åã ãåãããšãïŒ$i$ çªç®ã®åäŸïŒ$i=1,2,\ldots,1999$ïŒã¯ $\dfrac{1}{i+1}$ ã®ç¢ºçã§è·³ã¶ã®ã«å€±æããããšãããããŸããïŒ$1999$ 人å
šå¡ãçžã«å
¥ã£ãŠã¡ããã© $1$ åã ãåããšãïŒå
šå¡ãè·³ã¶ã®ã«æåãã確çãæ±ããŠãã ããïŒãã ãïŒæ±ãã確çã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠäžãã. \
ããªãïŒããããã®åäŸã¯çžè·³ã³ã®éã¯ãäºãã«å¹²æžããªããã®ãšããŸãïŒ |
OMC105 (for beginners) | https://onlinemathcontest.com/contests/omc105 | https://onlinemathcontest.com/contests/omc105/tasks/2798 | B | OMC105(B) | 200 | 258 | 269 | [
{
"content": "ã$a = \\lfloor\\sqrt{n}\\rfloor$ ãšãããš, $a^2$ 㯠$n$ 以äžã®æ倧ã®å¹³æ¹æ°ã§ãããã $(a + 1)^2 \\gt n$ ãæãç«ã¡, ç¹ã«\r\n$$(a + 1)^2 - a^2 \\gt n - \\lfloor \\sqrt{n} \\rfloor^2 = 100$$\r\nããªãã¡ $a \\geq 50$ ãå¿
èŠã§ãã. éã« $a = 50$ ã®ãšã, $n = \\textbf{2600}$ ãäžåŒãã¿ãã, ãããæ±ããæå°ã®ãã®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc105/editorial/2798"
}
] | ã以äžã®çåŒãã¿ããæå°ã®æ£æŽæ° $n$ ãæ±ããŠãã ããïŒ
$$n - \lfloor \sqrt{n} \rfloor^2 = 100$$
ãã ã, å®æ° $r$ ã«å¯Ÿã $\lfloor r \rfloor$ 㧠$r$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šããŸã. |
OMC105 (for beginners) | https://onlinemathcontest.com/contests/omc105 | https://onlinemathcontest.com/contests/omc105/tasks/3278 | C | OMC105(C) | 200 | 253 | 270 | [
{
"content": "ãã¡ãã©ãŠã¹ã®å®çãã $BT:TS=2:1$ ã§ããããïŒ$\\triangle{TQC}$ ã®é¢ç©ã¯æ¬¡ã®ããã«èšç®ã§ãã.\r\n$$\\triangle{TQC} = \\frac{1}{2} \\triangle{TBC} = \\frac{1}{2} \\times \\frac{2}{3} \\triangle{SBC} = \\frac{1}{2} \\times \\frac{2}{3} \\times \\frac{1}{2} = \\frac{1}{6}$$\r\n察称æ§ãã $\\triangle{TQC} = \\triangle{TRC}$ ã§ããïŒãŸã $\\triangle{CQR} = \\dfrac{1}{8}$ ã§ããããïŒ\r\n$$\\triangle{TQR} = \\triangle{TQC}+\\triangle{TRC}-\\triangle{CQR}=2\\times \\frac{1}{6} - \\frac{1}{8} = \\frac{5}{24}$$\r\nãã£ãŠè§£çãã¹ãå€ã¯ $\\textbf{29}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc105/editorial/3278"
},
{
"content": "ã$AC$ ãš $BD,QR$ ã®äº€ç¹ããããã $X,Y$ ãšããïŒ$T$ 㯠$\\triangle ABD$ ã®éå¿ã ãã $AT:TX=2:1$ ã§ããïŒ\r\n$$AX:XC = XY:YC=1:1$$\r\nãšåãã㊠$TY:YC=5:3$ ãåŸãïŒ$\\triangle CQR$ ã®é¢ç©ã¯ $\\dfrac 18$ ã ããïŒæ±ããé¢ç©ã¯ $\\dfrac 18 \\times \\dfrac 53 = \\dfrac{5}{24}$ ã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{29}.$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc105/editorial/3278/92"
}
] | ãäžèŸºã®é·ãã $1$ ã®æ£æ¹åœ¢ $ABCD$ ã«ãããŠ, 蟺 $AB, BC, CD, DA$ ã®äžç¹ããããã $P, Q, R, S$ ãšã, ç·å $BS$ ãš $DP$ ã®äº€ç¹ã $T$ ãšããŸã. ãã®ãšã, äžè§åœ¢ $TQR$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a + b$ ã解çããŠäžãã. |
OMC105 (for beginners) | https://onlinemathcontest.com/contests/omc105 | https://onlinemathcontest.com/contests/omc105/tasks/3282 | D | OMC105(D) | 300 | 171 | 202 | [
{
"content": "$$\\begin{aligned}\r\n\\sum_{i = 1}^{1999}{\\frac{x_i^3}{x_i^2 + 2x_i + 4}} - 8\\sum_{i = 1}^{1999}{\\frac{1}{x_i^2 + 2x_i + 4}} &= \\sum_{i = 1}^{1999}{\\frac{x_i^3 - 8}{x_i^2 + 2x_i + 4}}\\\\\\\\\r\n&= \\sum_{i = 1}^{1999}{\\frac{(x_i - 2)(x_i^2 + 2x_i + 4)}{x_i^2 + 2x_i + 4}}\\\\\\\\\r\n&= \\sum_{i = 1}^{1999}{(x_i - 2)}\\\\\\\\\r\n&= - 2 \\times 1999 + \\sum_{i = 1}^{1999}{x_{i}}\r\n\\end{aligned}$$\r\nããïŒæ±ããå€ã¯ $\\textbf{4718}$ ãšèšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc105/editorial/3282"
}
] | ã$1999$ åã®å®æ° $x_1, x_2, \cdots, x_{1999}$ ã¯æ¬¡ãæºãããŸãïŒ
$$\sum_{i = 1}^{1999}{\frac{1}{x_i^2 + 2x_i + 4}} = 160,\quad \sum_{i = 1}^{1999}{\frac{x_i^3}{x_i^2 + 2x_i + 4}} = 2000$$
ãã®ãšã, $x_1 + x_2 + \cdots + x_{1999}$ ã®å€ãæ±ããŠäžããïŒ |
OMC105 (for beginners) | https://onlinemathcontest.com/contests/omc105 | https://onlinemathcontest.com/contests/omc105/tasks/3279 | E | OMC105(E) | 300 | 219 | 243 | [
{
"content": "ã$a_{1997}$ ã¯å¥æ°ã§ãããã, æ£æŽæ°$k$ ãçšã㊠$a_{1997} = 2k + 1$ ãšè¡šããš,\r\n$$a_{1998} = 3^{2k + 1} = 9^k \\times 3 \\equiv 3 \\pmod 8$$\r\nãã£ãŠæ£æŽæ° $l$ ãçšã㊠$a_{1998} = 8l + 3$ ãšè¡šããš,\r\n$$a_{1999} = 3^{8l + 3} = 81^{2l} \\times 27 \\equiv (-1)^{2l} \\times 27 = 27 \\pmod {82}$$\r\nããçã㯠$\\textbf{27}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc105/editorial/3279"
},
{
"content": "ãå
¬åŒè§£èª¬ãäžè¬åã, $n\\geq2$ ã«å¯Ÿã㊠$a_n \\equiv 27 \\pmod{82}$ ã§ããããšã瀺ã.ã\r\n\r\n$3^8\\equiv1\\pmod{82}$ ãã, $a_n\\mod{8}$ ã«ã€ããŠèãã.\r\nåž°çŽçã« $a_n$ ã¯æ£ã®å¥æ°ã§ãããã, éè² æŽæ° $k_n$ ãçšããŠ, $a_n=2k_n+1$ ãšè¡šãã.\r\nãã£ãŠ, \r\n$$a_{n+1}=3^{2k_n+1}=9^{k_n} \\times 3 \\equiv 1^{k_n} \\times 3 = 3 \\pmod{8}$$\r\nããã³ $a_1=3\\equiv3\\pmod{8}$ ãã, $n \\geq 1$ ã«å¯Ÿã㊠$a_n \\equiv 3\\pmod{8}$.\r\n\r\nãã£ãŠ, éè² æŽæ° $l_n$ ãçšããŠ, $a_n=8l_n+3$ ãšè¡šãã.\r\n以äžãã,\r\n$$a_{n+1}=3^{8l_n+3}=\\left(3^8\\right)^{l_n} \\times 27 \\equiv 1^{l_n} \\times 27=27\\pmod{82}$$\r\nããªãã¡, $n\\geq2$ ã«å¯ŸããŠ, $a_n \\equiv 27 \\pmod{82}$ ã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc105/editorial/3279/91"
}
] | ã以äžã§å®ãŸãæ°å $\\{a_n\\}\_{n=1,2,\ldots}$ ã«ã€ããŠïŒ$a\_{1999}$ ã $82$ ã§å²ã£ãäœããæ±ããŠäžããïŒ
$$a_1 = 3,\quad a_{n + 1} = 3^{a_n} \quad (n = 1,2,\ldots)$$
ã |
OMC105 (for beginners) | https://onlinemathcontest.com/contests/omc105 | https://onlinemathcontest.com/contests/omc105/tasks/3288 | F | OMC105(F) | 400 | 68 | 140 | [
{
"content": "ãçŽç· $AD$ ãš $\\triangle{ABC}$ ã®å€æ¥åã®äº€ç¹ã $M (\\neq A)$ ãšãããš $\\angle{AIO} = 90^\\circ$ ãã $I$ 㯠$AM$ ã®äžç¹ã§ãã. ãã㧠$M$ 㯠$\\triangle{IBC}$ ã®å€å¿ã§ãããã, $AM : CM = 2 : 1$ ãåŸã. ãŸã\r\n$$\\angle{DCM} = \\angle{BAM} = \\angle{CAM}$$\r\nãã $\\triangle{CDM} \\sim \\triangle{ACM}$ ãåŸã. 以äžãã, $x = DM$ ãšããã°, $CM=2x,AD=3x$ ãæãç«ã€ããšãããããã, ç¹ $D$ ã«ãããŠæ¹ã¹ãã®å®çãã\r\n$$3x \\times x = 7 \\times 3 \\implies x = \\sqrt{7}$$\r\nã§ãã. ç¹ã« $AD^2 = (3x)^2 = \\textbf{63}$ ãšããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc105/editorial/3288"
},
{
"content": "ããã§ã¯å€æ¥åãçšããªã解æ³ã玹ä»ããŸãïŒç¹ã«è£é¡2ã¯èŠããŠãããšæã
䜿ããŠäŸ¿å©ã§ãïŒ\r\n\r\n次ã®2ã€ã®è£é¡ãçšããïŒ\\\r\nãè£é¡1: $\\angle AIO=90^\\circ$ ã®ãšã $AB+AC=2BC$\\\r\nãè£é¡2: $AB\\cdot AC-BD\\cdot CD=AD^2$\r\n\r\nè£é¡1ãšè§ã®äºçåç·ã®å®çãã\r\n$$AB+AC=20,ãAB:AC=7:3\\Longrightarrow AB=14,ãAC=6$$\r\nãããã£ãŠè£é¡2ãã $AD^2=14\\cdot6-7\\cdot3=\\textbf{63}$ ãåŸã.\r\n\r\nè£é¡1ã®èšŒæ:\\\r\n蟺 $AB,AC$ ã®äžç¹ããããã $M,N$ ãšãããš5ç¹ $A,O,I,M,N$ ã¯åäžååš(ç·å $AO$ ãçŽåŸãšããå)äžã«ããïŒ\\\r\nãããã£ãŠå
æ¥åãšèŸº $AB,AC$ ã®æ¥ç¹ããããã $E,F$ ãšããã°,\r\n$$\\angle IME=\\angle INF,ãIE=IF\\Longrightarrow\\triangle IME\\equiv\\triangle INF\\Longrightarrow ME=NF$$\r\nãæãç«ã€ã®ã§æ¬¡ã®èšç®ã«ããææã®åŒãåŸãïŒ\r\n$$AB+AC-BC=AE+AF=(AM-ME)+(AN+NF)=\\dfrac{1}{2}(AB+AC)$$\r\n\r\nè£é¡2ã®èšŒæ:\\\r\näœåŒŠå®çããã³ $AB\\cdot CD=AC\\cdot BD$ ãçšããŠ\r\n$$\\begin{aligned}\r\n&ã\\dfrac{AB^2+AD^2-BD^2}{2AB\\cdot AD}=\\dfrac{AC^2+AD^2-CD^2}{2AC\\cdot AD}\\\\\\\\\r\n&\\Longrightarrow AC(AB^2+AD^2-BD^2)=AB(AC^2+AD^2-CD^2)\\\\\\\\\r\n&\\Longrightarrow (AB-AC)(AB\\cdot AC-AD^2)=AC\\cdot BD^2-AB\\cdot CD^2=AB\\cdot BD\\cdot CD-AC\\cdot BD\\cdot CD=(AB-AC)(BD\\cdot CD)\r\n\\end{aligned}$$\r\nãã£ãŠ $AB\\cdot AC-BD\\cdot CD=AD^2$ ã瀺ãããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc105/editorial/3288/77"
}
] | ãå
å¿ã $I$, å€å¿ã $O$ ãšããäžè§åœ¢ $ABC$ ã«ã€ããŠ, çŽç· $AI$ ãšèŸº $BC$ ã®äº€ç¹ã $D$ ãšãããšã,
$$\angle{AIO} = 90^\circ,\quad BD = 7,\quad CD = 3$$
ãæãç«ã¡ãŸãã. ãã®ãšã, $AD$ ã®é·ãã®äºä¹ãæ±ããŠäžãã. |
OMC104 | https://onlinemathcontest.com/contests/omc104 | https://onlinemathcontest.com/contests/omc104/tasks/3983 | A | OMC104(A) | 100 | 232 | 256 | [
{
"content": "ãå·»ãå°º $A$ ã® $1$ ç®çãã $a[\\mathrm{cm}]$ ïŒå·»ãå°º $B$ ã® $1$ ç®çãã $b[\\mathrm{cm}]$ ãšãããšïŒ$a\\gt b$ ã«æ³šæããã°\r\n$$2000a=2005b,\\quad 8000a=8000b+25$$\r\nãåŸãïŒããã解ãã° $2000a=2005b=10025\\/4$ ãåããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{10029}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc104/editorial/3983"
}
] | ãé·ããäžæ£ç¢ºãª $2$ ã€ã®å·»ãå°º $A,B$ ãããïŒã©ã¡ããçééã« $1\mathrm{cm}$ ããã¿ã®è¡šç€ºã§ $80\mathrm{m}$ ãŸã§ç®çããæžãããŠããŸãïŒãããã£ãŠå®éã®é·ã㯠$80\mathrm{m}$ ã§ã¯ãããŸããïŒïŒ\
ã$2$ å°ç¹ $X,Y$ éã®è·é¢ãå·»ãå°º $A$ ã§æž¬å®ãããšã¡ããã© $20\mathrm{m}$ ã§ããïŒå·»ãå°º $B$ ã§æž¬å®ãããšã¡ããã© $20.05\mathrm{m}$ ã§ããïŒãŸã, $A,B$ ã®å
šé·ã®å·®ãæ£ç¢ºãªãã®ããã§æž¬å®ãããš $25\mathrm{cm}$ ã§ããïŒãã®ãšãïŒ$2$ å°ç¹ $X,Y$ éã®æ£ããè·é¢ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $p,q$ ã«ãã£ãŠ $\dfrac{p}{q}\mathrm{cm}$ ãšè¡šãããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC104 | https://onlinemathcontest.com/contests/omc104 | https://onlinemathcontest.com/contests/omc104/tasks/4159 | B | OMC104(B) | 200 | 249 | 254 | [
{
"content": "ãçŽãéãªã£ãŠããäžè§åœ¢ã®é åã®é¢ç©ãæ±ããã°ãã. ç¹ $A$ ãšç¹ $C$ ãéãªãããã«æã£ããšã, æãç®ã¯ç·å $AC$ ã®åçŽäºçåç·ã§ãã. ãã®çŽç·ãšç·å $AC, AD, BC$ ã®äº€ç¹ãããããç¹ $M, E, F$ ãšãããš, $AECF$ ã¯ã²ã圢ã§ãã. $M$ ãç¹ã«ç·å $AC$ ã®äžç¹ã§ããããšãã\r\n$$AM = \\frac{1}{2}\\sqrt{AB^2 + BC^2} = 13$$\r\nã§ãã. ãŸã, äžè§åœ¢ $AME$ ãšäžè§åœ¢ $ADC$ ã¯çžäŒŒã§ãããã \r\n$$\r\nEM = CD\\times\\frac{AM}{AD}=\\frac{65}{12}\r\n$$\r\nã§ãã. ãã£ãŠ, çŽãéãªã£ãŠããéšåã®é¢ç©ã¯ $AM\\times EM=845\\/12$ ã§ãããã, æ±ããé¢ç©ã¯ $10\\times 24-845\\/12=2035\\/12$ ã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{2047}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc104/editorial/4159"
}
] | ã$AB=10$ïŒ$BC=24$ ã§ããé·æ¹åœ¢ã®çŽ $ABCD$ ãããïŒç¹ $A$ ãšç¹ $C$ ãéãªãããã«æããŸããïŒãã®ç¶æ
ã§çŽãå ããäºè§åœ¢ã®é åã®é¢ç©ã¯ïŒäºãã«çŽ 㪠$2$ ã€ã®æ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC104 | https://onlinemathcontest.com/contests/omc104 | https://onlinemathcontest.com/contests/omc104/tasks/2203 | C | OMC104(C) | 300 | 161 | 215 | [
{
"content": "ã以äžã®åååŒã¯ãã¹ãŠ $3371$ ãæ³ãšããŠèãã. Wilsonã®å®çãã $3369!\\equiv 1$ ã§ãããã, \r\n$$a_1=3367! \\equiv (3369\\times3368)^{-1} \\equiv 3368^{-1}-3369^{-1}$$\r\nãããã,\r\n$$a_2=a_{1}\\times\\frac{3369}{3367} \\equiv (3368\\times3367)^{-1} \\equiv 3367^{-1}-3368^{-1}$$\r\nåæ§ã«ããŠ,\r\n$$a_n=a_{1}\\times\\frac{3369}{3367}\\times\\frac{3368}{3366}\\times\\cdots\\times\\frac{3371-n}{3369-n} \\equiv (3369-n)^{-1}-(3370-n)^{-1}$$\r\nã§ãããã,\r\n$$\\sum_{k=1}^{3368}a_k \\equiv (3368^{-1}-3369^{-1})+\\cdots+(1^{-1}-2^{-1}) \\equiv 1-3369^{-1} \\equiv 1+2^{-1} \\equiv \\textbf{1687}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc104/editorial/2203"
}
] | ã$a_1=3367!$ ããã³ $n=2,3,\ldots,3368$ ã«ãããŠ
$$a_n=\frac{3371-n}{3369-n}\times a_{n-1}$$
ã§å®çŸ©ãããæŽæ°å $\\{a_n\\}\_{n=1,2,\ldots,3368}$ ã«ã€ããŠïŒ
$$a_1+a_2+\cdots+a_{3368}$$
ãçŽ æ° $3371$ ã§å²ã£ãäœããæ±ããŠãã ãã. |
OMC104 | https://onlinemathcontest.com/contests/omc104 | https://onlinemathcontest.com/contests/omc104/tasks/2261 | D | OMC104(D) | 300 | 129 | 192 | [
{
"content": "ãå
šäœãã°ã©ããšããŠè§£éããã°, ããããã®é£çµæåã¯åè²ã®è² $1$ ã€ãã€ãå«ã¿, ãã®ãããªå³¶ã®åå²ã¯ããè²ã®å³¶ãåºå®ããããšã§ $(3!)^3$ éãã§ãã. ãŸã, åé£çµæåã«ã€ããŠæ©ã $3$ æ¬ä»¥äžæ¶ããã°ãããã (ãã ãã¡ããã© $3$ æ¬ã§ããããã«ãŒãããªãæ§é ã¯äžå¯), ããããã®æ¶ãæ¹ã¯ ${}\\_{6}\\mathrm{C}\\_{6}+{}\\_{6}\\mathrm{C}\\_{5}+{}\\_{6}\\mathrm{C}\\_{4}+{}\\_{6}\\mathrm{C}\\_{3}-4=38$ éãã§ãã.\\\r\nã以äžãã, å
šäœã§ã¯ $(3!)^3\\times 38^3=\\textbf{11852352}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc104/editorial/2261"
}
] | ãèµ€è²ã®å³¶ïŒéè²ã®å³¶ïŒç·è²ã®å³¶ïŒé»è²ã®å³¶ãããããã¡ããã© $3$ ã€ãã€ããïŒåè²ã®å³¶å士ãåºå¥ã§ããŸãïŒãããã®å³¶ã«ä»¥äžã® $3$ æ¡ä»¶ãã¿ããããã«ããã€ãã®æ©ãæ¶ããæ¹æ³ã¯äœéããããŸããïŒ
- ã©ã® $2$ ã€ã®å³¶ãïŒã¡ããã© $1$ æ¬ã®æ©ã§çµã°ããŠãããçµã°ããŠããªããã®ããããã§ãã£ãŠïŒæ©ã®äž¡ç«¯ã¯çžç°ãªã $2$ ã€ã®å³¶ã«ç¹ãã£ãŠããïŒæ©ã¯äž¡ç«¯ã®å³¶ã®éã®åæ¹åã®è¡ãæ¥ãå¯èœãšããïŒ
- ã©ã®åè²ã®å³¶å士ã $1$ ã€ä»¥äžã®æ©ãçµç±ããŠäºãã«è¡ãæ¥ã§ããªãïŒ
- ã©ã®å³¶ã $1$ ã€ä»¥äžã®æ©ãçµç±ããŠä»ã® $3$ ã€ä»¥äžã®å³¶ãšäºãã«è¡ãæ¥ã§ããïŒ |
OMC104 | https://onlinemathcontest.com/contests/omc104 | https://onlinemathcontest.com/contests/omc104/tasks/2562 | E | OMC104(E) | 500 | 56 | 101 | [
{
"content": "ãèµ€, éã®ã«ãŒãããããã $1$, $-1$ ã«å¯Ÿå¿ãããããšã§, $A-B$ ã以äžã®å€ã«çããããšãããã.\r\n\r\n- ãããã $2n$ åã® $1$ ãš $-1$ ã®äžãã $2n$ åãéžã¶æ¹æ³ãã¹ãŠã«ã€ããŠ, ãã®ç·ç©ã®ç·å.\r\n\r\nãã㯠$(x+1)^{2n} (x-1)^{2n}$ ã® $x^{2n}$ ã®ä¿æ°ã«çãããã, çµå± $|A-B|= {}\\_{2n} \\mathrm{C}\\_{n}$ ã§ãã.$\\\\\\\\$\r\nããã®ãšã, $f(n)$ 㯠$n$ ã® $2$ é²æ³ã§ã®åäœã®åãšãªããã (**[OMC039(D)ã®è§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc039\\/editorial\\/262)** ãåç
§ãã), æ±ããå€ã¯\r\n$$\\sum _{n=1}^{500} f(n)=\\sum _{n=1}^{2^{9}-1} f(n)-82=256 \\times 9-82=\\mathbf{2222}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc104/editorial/2562"
}
] | ã$n$ ãæ£æŽæ°ãšããŸãïŒèš $4n$ æã®**äºãã«åºå¥ã§ãã**ã«ãŒããããïŒãã®ãã¡ $2n$ æãèµ€è²ã«ïŒæ®ãã® $2n$ æãéè²ã«å¡ãããŠããŸãïŒãã®äžãã $2n$ æãéžã¶æ¹æ³ã®ãã¡ïŒèµ€ã»éããããã®è²ããšãã«å¶æ°æã§ãããã®ã®ç·æ°ã $A$ ãšãïŒãšãã«å¥æ°æã§ãããã®ã®ç·æ°ã $B$ ãšããŸãïŒããã« $A$ ãš $B$ ã®å·®ïŒã®çµ¶å¯Ÿå€ïŒã $2$ ã§å²ãåããæ倧ã®åæ°ã $f(n)$ ã§è¡šããŸãïŒãã®ãšãïŒä»¥äžã®ç·åãæ±ããŠãã ããïŒ
$$f(1)+f(2)+f(3)+\cdots+f(500)$$
ããã ãïŒä»»æã® $n$ 㧠$A\neq B$ïŒããªãã¡ $f(n)$ ãå®çŸ©ã§ããããšãä¿èšŒãããŸãïŒ |
OMC104 | https://onlinemathcontest.com/contests/omc104 | https://onlinemathcontest.com/contests/omc104/tasks/281 | F | OMC104(F) | 600 | 18 | 60 | [
{
"content": "ã$AC$ äžã« $BC=BC^\\prime$ ãªãç¹ $C^\\prime$ ã, $BC$ äžã« $EF=EF^\\prime$ ãªãç¹ $F^\\prime$ ããšããš, ç°¡åãªè§åºŠèšç®ã«ããäžè§åœ¢ $BC^\\prime E$ ããã³ $F^\\prime CE$ ã¯çžäŒŒã§ãã, ç¹ã« $C^\\prime E:EC=BE:3$ ã§ãã. äžæ¹ã§, ãããã $A,E$ ãéã $BC$ ãšå¹³è¡ãªçŽç·ãš $BC^\\prime$ ã®äº€ç¹ã $A^\\prime,E^\\prime$ ãšããã°, $C^\\prime A^\\prime:A^\\prime B=C^\\prime A:AC=2:1$ ã§ãã,\r\n$$C^\\prime E:EC=C^\\prime E^\\prime:E^\\prime B=2BD+DE:BE=2BE+24:BE$$\r\nããããé£ç«ãããããšã§ $BE=12$ ãåŸã. ãã®ãšã, äžè§åœ¢ $ABE$ ã«ãããŠäœåŒŠå®çãã $AB=\\dfrac{20}{13}\\sqrt{39}$ ãããããã, $ABCD$ ã®é¢ç©ã¯ $\\dfrac{500}{13}\\sqrt{3}$ ãšèšç®ã§ã, 解çãã¹ãå€ã¯ $\\textbf{516}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc104/editorial/281"
},
{
"content": "å
¬åŒè§£èª¬ããèšç®ã¯éãã§ãã, æãã€ãããããšæããŸã. (ãããã)\r\n\r\n$AD$ ãš $FE$ ã®äº€ç¹ã $P$ , $BA$ ãš $FE$ ã®äº€ç¹ã $Q$ ãšãã. $AE=xy, EC=x(1-y)$ ãšãã. ãã®ãšã, $AB=x$ ã§ãã. ãŸã, $AD \\parallel BC$ ãã $AE:EC=PE:EF=DE:EB$ ã§ãã, 以äžãããã. \r\n$$EB=DE\\times \\frac{EC}{AE}=\\frac{8-8y}{y}ïŒPE=EF\\times \\frac{AE}{EC}=\\frac{3y}{1-y}$$\r\nãŸã, $\\triangle BAE \\sim \\triangle BEQ$ ãã以äžãããã. \r\n$$BQ=BE\\times\\frac{BE}{BA}=\\frac{(8-8y)^2}{xy^2}ïŒEQ=AE\\times\\frac{BE}{BA}=8-8y$$\r\n$AD \\parallel BC$ ãã, $QB:QF=AB:PF$ , äœåŒŠå®çãã $AB^2+AB\\times AE+AE^2=EB^2$ ã§ãã. \r\n$$\\begin{cases}\r\n\\dfrac{(8-8y)^2}{xy^2}\\times \\dfrac{3}{1-y}=(11-8y)\\times x \\\\\\\\\r\nx^2+x^2y+x^2y^2=\\dfrac{(8-8y)^2}{y^2}\r\n\\end{cases}$$\r\n\r\nãã®é£ç«æ¹çšåŒã $0\\lt y\\lt 1$ ã«æ³šæããŠè§£ãããšã§, $(x, y)=(\\dfrac{20}{13}\\sqrt{39}, \\dfrac{2}{5})$ ãããã.\\\r\nå®éã«è§£ããšãã¯\r\n$$x^2=\\dfrac{3(8-8y)^2}{y^2(11-8y)(1-y)}=\\dfrac{(8-8y)^2}{y^2(1+y+y^2)}$$\r\nãšå€åœ¢ã㊠$y$ ã®äºæ¬¡æ¹çšåŒã解ããšããã ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc104/editorial/281/122"
}
] | ã$AB=AC$ ããã³ $AD\parallel BC$ ãã¿ããåžåè§åœ¢ $ABCD$ ã«ãããŠïŒå¯Ÿè§ç·ã®äº€ç¹ã $E$ ãšãïŒèŸº $BC$ äžã«ç¹ $F$ ããšããšïŒä»¥äžãæç«ããŸããïŒ
$$\angle BAC=\angle DEF=120^\circ,\quad DE=8, \quad EF=3$$
ãã®ãšãïŒåè§åœ¢ $ABCD$ ã®é¢ç©ãæ±ããŠãã ããïŒ\
ããã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,c$ ããã³ å¹³æ¹å åããããªãæ£æŽæ° $b$ ã«ãã£ãŠ $\dfrac{a\sqrt{b}}{c}$ ãšè¡šãããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMC103 (for beginners) | https://onlinemathcontest.com/contests/omc103 | https://onlinemathcontest.com/contests/omc103/tasks/1756 | A | OMC103(A) | 100 | 243 | 244 | [
{
"content": "ã$n^3$ ã®äžã®äœã $3$ ã§ããããšã¯, $n$ ã®äžã®äœã $7$ ã§ããããšãšåå€ã§ãã. ãã£ãŠ, æ±ããåæ°ã¯ $7,17,\\ldots,1747$ ã® $\\textbf{175}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/1756"
}
] | ã$1756$ åã®æŽæ° $1^{3}, 2^{3}, \ldots , 1756^{3}$ ã®ãã¡, åé²æ³è¡šèšã§äžã®äœã®æ°åã $3$ ã§ãããã®ã¯ããã€ãããŸããïŒ |
OMC103 (for beginners) | https://onlinemathcontest.com/contests/omc103 | https://onlinemathcontest.com/contests/omc103/tasks/3177 | B | OMC103(B) | 200 | 215 | 228 | [
{
"content": "ãäžç·å®çãã以äžãæç«ããããšããããã®ã§ïŒããããå€ã代å
¥ã㊠$AC=\\bf{28}$ ãåŸãïŒ \r\n$$AC^2 + BD^2 = 2( AB^2 + AD^2 )$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/3177"
}
] | ãå¹³è¡å蟺圢 $ABCD$ ã«ãããŠ
$$AB = 17 ,\quad AD = 21 ,\quad BD = 26$$
ãæç«ãããšãïŒ$AC$ ã®é·ããæ±ããŠãã ããïŒ |
OMC103 (for beginners) | https://onlinemathcontest.com/contests/omc103 | https://onlinemathcontest.com/contests/omc103/tasks/1763 | C | OMC103(C) | 200 | 184 | 230 | [
{
"content": "ã衚瀺ãããæ°åã®ç©ã $3$ ã®åæ°ã§ã $5$ ã®åæ°ã§ããªãããšã¯, $1,2,4,7$ ã®ã¿ã衚瀺ãããããšãšåå€ã§ãã. ããã $4$ æ°ã«ã€ããŠ, $4$ ã§å²ã£ãäœãããã¹ãŠç°ãªãããšãã, å $3$ åã®çµæãåºå®ãããšã, $4$ åç®ã®çµæãšããŠããåŸããã®ãã¡ããã© $1$ ã€ãã€ååšãã. ãã£ãŠ, 解çãã¹ãå€ã¯ $4^3+7^4=\\textbf{2465}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/1763"
}
] | ãäžåºŠæŒããã³ã« $1$ ãã $7$ ãŸã§ã®æ°åãç確çã§è¡šç€ºããããã¿ã³ããããŸã. ãã®ãã¿ã³ã $4$ åæŒãããšã, 衚瀺ããã $4$ æ°ã«ã€ããŠ, ãããã®ç©ã $3$ ã®åæ°ã§ã $5$ ã®åæ°ã§ããªã, ãã€ãããã®åã $4$ ã®åæ°ãšãªã確çãæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a + b$ ã解çããŠãã ãã. |
OMC103 (for beginners) | https://onlinemathcontest.com/contests/omc103 | https://onlinemathcontest.com/contests/omc103/tasks/1812 | D | OMC103(D) | 300 | 193 | 205 | [
{
"content": "ãäžåŒãå€åœ¢ããããšã§, $(xy-y-2)(x-1)=16$ ãåŸã. ããã«çæããŠ, $16$ ã®äºã€ã®æ£æŽæ°ã®ç©ãžã®å解ã調ã¹ãããšã§, $(x,y)=(2,18),(3,5)$ ã解ã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{28}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/1812"
},
{
"content": "$x^2yâ2xyâ2xïŒyâ14=0$ ã $y$ ã«ã€ããŠè§£ããš $x\\gt1,\\ y=\\dfrac{2x+14}{x^2-2x+1}$ ãããã. $y\\geq1$ ãªã®ã§ $2x+14\\geq x^2-2x+1$ ãšãªããããã $x=2,3,4,5,6$ ãããã. ãã£ãŠ $(x,y)=(2,18),(3,5)$ ãšãªãããæ±ããå€ã¯ $2+18+3+5=\\mathbf{28}$ã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/1812/85"
},
{
"content": "$x=1$ ã¯äžåŒãæºãããªã. $x\\gt1$ ã®ãšã, äžåŒã $y$ ã«ã€ããŠè§£ããš, \r\n$$y=\\frac{2x+14}{x^2-2x+1}$$\r\nãšãªã. $y\\geq 1$ ãã, ãããæºãã $x$ ã¯, $x=2, 3, 4, 5, 6$ ã®ã¿ã§ãã.\r\n\r\nãã£ãŠ, ãããã代å
¥ã㊠$y$ ãæŽæ°ãšãªãã確ãããããšã§, $(x, y)=(2, 18), (3, 5)$ ãšãªã. 解çãã¹ãå€ã¯, $2+18+3+5={\\bf 28}$ ã§ãã.",
"text": "äžåŒã®å æ°å解ãæãã€ããªãå Žå: y ã®æ£æŽæ°æ¡ä»¶ããç¯å²ãçµã",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/1812/86"
}
] | ã以äžã®çåŒãã¿ããæ£æŽæ°ã®çµ $(x,y)$ ãã¹ãŠã«ã€ããŠ, $x+y$ ã®ç·åãæ±ããŠãã ãã.
$$x^2y-2xy-2x+y-14=0$$ |
OMC103 (for beginners) | https://onlinemathcontest.com/contests/omc103 | https://onlinemathcontest.com/contests/omc103/tasks/2186 | E | OMC103(E) | 300 | 103 | 162 | [
{
"content": "ã$ABC$ ã®åå¿ã $H$ ãšããã°, $O,G,H$ ã¯åäžçŽç·äžã§ $HG:GO=2:1$ ãæç«ãããã, $AH$ ã®é·ãã¯\r\n$$AH=\\sqrt{(11^2-10^2)\\times 3^2+10^2}=17$$\r\n$BC$ ã®äžç¹ã $M$ ãšãããš\r\n$$2AO\\cos A=2BO\\cos \\angle BOM=2OM=AH$$\r\nãããã, $BC$ ã®é·ãã«ã€ããŠ\r\n$$BC=2AO\\sin{A}= \\sqrt{(2AO)^2-(2AO\\cos{A})^2}=\\sqrt{(2AO)^2-(AH)^2}=\\sqrt{\\textbf{111}}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/2186"
},
{
"content": "$BC$ã®äžç¹ã$M$ãšãããš, $M$ã¯çŽç·$AG$äžã«ãã,\r\n$$AM=\\frac{3}{2}AG=\\frac{33}{2}$$\r\n$$\\cos{\\angle OAM}=\\frac{AO}{AG}=\\frac{10}{11}$$\r\n$$BO=AO=10$$\r\n$$\\angle OMB=90\\degree$$\r\näžè§åœ¢$OAM$ã«ãããŠäœåŒŠå®çãã,\r\n$$OM^2=AO^2+AM^2-2AO \\times AM \\cos{\\angle OAM}=\\frac{289}{4}$$\r\näžè§åœ¢$OBM$ã«ãããŠäžå¹³æ¹ã®å®çãã,\r\n$$BM^2=BO^2-OM^2=\\frac{111}{4}$$\r\nãã£ãŠ, $BC^2=(2BM)^2={\\bf 111}$.",
"text": "Euler ç·ãç¥ããªãå Žåã®å¹ŸäœåŠç解æ³",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/2186/83"
},
{
"content": "ãã¯ãã«ãçšããŠè§£ããŸã.\r\n\r\n$\\overrightarrow{OA}=\\vec{a},\\overrightarrow{OB}=\\vec{b},\\overrightarrow{OC}=\\vec{c}$ãšãããŸã.\\\r\n\\\r\nãã®ãšãæ¡ä»¶ã¯ä»¥äžã®åŒã§è¡šãããŸã.\r\n- $|\\vec{a}|=|\\vec{b}|=|\\vec{c}|$\r\n- $|\\frac{\\vec{a}+\\vec{b}+\\vec{c}}{3}-\\vec{a}|=11$\r\n- $|\\vec{a}|=10$\r\n- $\\frac{\\vec{a}+\\vec{b}+\\vec{c}}{3}\\cdot\\vec{a}=0$\r\n\r\nããããæŽçããŠ,\r\n- $|\\vec{a}|^2=|\\vec{b}|^2=|\\vec{c}|^2$\r\n- $4|\\vec{a}|^2+|\\vec{b}|^2+|\\vec{c}|^2-4\\vec{a}\\cdot\\vec{b}+2\\vec{b}\\cdot\\vec{c}-4\\vec{c}\\cdot\\vec{a}=1089$\r\n- $|\\vec{a}|^2=100$\r\n- $|\\vec{a}|^2+\\vec{a}\\cdot\\vec{b}+\\vec{c}\\cdot\\vec{a}=0$\r\n\r\n以äžã®åŒããç¹ã«$|\\vec{b}|^2=|\\vec{c}|^2=100,\\vec{b}\\cdot\\vec{c}=\\frac{89}{2}$ãåãããŸã.\\\r\nãããã£ãŠæ±ããå€ã¯,\\\r\n$$BC^2=|\\vec{c}-\\vec{b}|^2=|\\vec{b}|^2+|\\vec{c}|^2-2\\vec{b}\\cdot\\vec{c}=\\mathbf{111}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/2186/87"
},
{
"content": "ãæ¹ã¹ãã®å®çã䜿ã£ã解æ³.\r\nç·å $BC$ ã®äžç¹ã $M$ ãšãã.\r\näžè§åœ¢ $ABC$ ã®å€æ¥åãšçŽç· $AG$, $AO$ ã®äº€ç¹ ($ \\neq A$) ããããã $D, E$ ãšãã.\r\nç·å $AO$, $AG$ ã®é·ãããããã $a \\\\ (= 10)$, $b \\\\ (= 11)$ ãšãã.\r\näžè§åœ¢ $AOG$ ãš $ADE$ ã®çžäŒŒãã, $AD = AE \\cdot AO\\/AG = 2a^2\\/b$ ãåŸã.\r\n$3$ç¹ $A, M, D$ ã¯åäžçŽç·äžã«ãããã, æ¹ã¹ãã®å®çãã,\r\n\r\n$$BC^2 = 4BM^2 = 4 AM \\cdot MD = 4\\cdot \\frac{3b}{2} \\left(\\frac{2a^2}{b} - \\frac{3b}{2}\\right) = 12a^2 - 9b^2 = \\mathbf{111}$$\r\n\r\nã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/2186/89"
},
{
"content": "â» æ¬è³ªçã«ã¯ä»ã®è§£èª¬ãšåããããããªãã§ã\r\n\r\n---\r\n\r\nãç·å $BC$ ã®äžç¹ã $M$ïŒ$M$ ããçŽç· $OA$ ã«ããããåç·ã®è¶³ã $H$ ãšãããšïŒ$\\triangle AOG$ ãš $\\triangle AHM$ ã®çžäŒŒæ¯ã $2 : 3$ ã§ããããšãäžå¹³æ¹ã®å®çãªã©ãå©çšããŠïŒä»¥äžã®åŒãã¡ãæç«ããïŒ\r\n* $BC^2 = 4 \\left(BO^2 - MO^2\\right)$\r\n* $BO^2 = \\left(\\triangle ABC\\text{ ã®å€æ¥åã®ååŸ}\\right)^2 = AO^2 = 100$\r\n* $MO^2 = HO^2 + HM^2$\r\n* $HO^2 = \\left(\\dfrac12\\\\, AO\\right)^2 = 25$\r\n* $HM^2 = \\left(\\dfrac32\\\\, GO\\right)^2 = \\dfrac94\\\\, GO^2$\r\n* $GO^2 = AG^2 - AO^2 = 21$\r\n\r\nããã£ãŠããããé ã«ä»£å
¥ããŠãã£ãŠïŒ$BC^2 = \\mathbf{111}$ ãåŸãïŒ",
"text": "é åãïŒ",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/2186/90"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠ, ãã®éå¿ã $G$, å€å¿ã $O$ ãšãããšã, 以äžã®æ¡ä»¶ãæç«ããŸããïŒ
$$AG=11,\quad AO=10,\quad \angle{AOG}=90^\circ$$
ãã®ãšã, $BC$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ãã. |
OMC103 (for beginners) | https://onlinemathcontest.com/contests/omc103 | https://onlinemathcontest.com/contests/omc103/tasks/1741 | F | OMC103(F) | 400 | 109 | 161 | [
{
"content": "ããã³ã³ã¢ãã $n$ å以äžéšåæååãšããŠå«ããã®ã®åæ°ã $a_{n}$ ãšãã. ãã ã, $n$ åããå€ããã³ã³ã¢ããå«ãŸãããã®ã¯éè€ããŠæ°ãã. ããšãã°, ãã³ã³ã¢ã³ã³ã¢ã³ã³ã¢ã³ã³ã¢ã㯠$a_1,a_3$ ã«ã¯ $4$ å, $a_2$ ã«ã¯ $6$ åæ°ããããŠãããšãã. 以äž, ãâã㯠$2$ çš®é¡ã®æåãã¢ããã³ãã®ããããäžæ¹ãåœãŠã¯ãŸãããšãè¡šããšãããš, 以äžã®ããã«èšç®ã§ãã.\r\n\r\n- $n = 1$ ã®ãšã, ãã³ã³ã¢ã $1$ åãšãâã $9$ åã®é åãèããŠ, $a_{1} = {}\\_{10}\\mathrm{C}\\_{1}\\times 2^{9} = 5120$.\r\n- $n = 2$ ã®ãšã, ãã³ã³ã¢ã $2$ åãšãâã $6$ åã®é åãèããŠ, $a_{2} = {}\\_{8}\\mathrm{C}\\_{2}\\times 2^{6} = 1792$.\r\n- $n = 3$ ã®ãšã, ãã³ã³ã¢ã $3$ åãšãâã $3$ åã®é åãèããŠ, $a_{3} = {}\\_{6}\\mathrm{C}\\_{3}\\times 2^{3} = 160$.\r\n- $n = 4$ ã®ãšãæããã« $a_{4} = 1$ ã§, $n\\geq 5$ ã®ãšãæããã« $a_{n}=0$.\r\n\r\nãå
é€åçãçšããŠéè€ãé©åã«é€å€ããããšã§, æ±ããå€ã¯ $a_{1} - a_{2} + a_{3} - a_{4} = 5120 - 1792 + 160 - 1 = \\bm{3487}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/1741"
},
{
"content": "ãå
é€åçããŒãã«ã€ããŠè£è¶³ãããŠãããŸãïŒïŒå
é€åçãç¥ããªãæ¹ã¯å
ã«å
é€åçã«ã€ããŠèª¿ã¹ãŠã¿ãŠãã ããïŒïŒ\r\n\r\nãç°¡åã®ããïŒããã§ã¯ $7$ æåãããªãæååã®å Žåã«ã€ããŠèããŸãïŒ$i, i+1, i+2$ æåç®ããã³ã³ã¢ãã§ãããããªæååã®éåã $S_{i,i+1,i+2}$ ãšçœ®ããŸãïŒãã®ãšãïŒæ±ãããã®ã¯ $|S_{1,2,3}\\cup S_{2,3,4}\\cup S_{3,4,5}\\cup S_{4,5,6}\\cup S_{5,6,7}|$ ã§ãïŒããã§ïŒå
é€åçãã次ãæãç«ã¡ãŸãïŒ\r\n$$\\begin{aligned}\r\n&|S_{1,2,3}\\cup S_{2,3,4}\\cup\\ldots\\cup S_{5,6,7}|\\\\\\\\\r\n=&+|S_{1,2,3}|+|S_{2,3,4}|+|S_{3,4,5}|+|S_{4,5,6}|+|S_{5,6,7}|\\\\\\\\\r\n&-|S_{1,2,3}\\cap S_{2,3,4}|-|S_{1,2,3}\\cap S_{3,4,5}|-|S_{1,2,3}\\cap S_{4,5,6}|-\\cdots-|S_{4,5,6}\\cap S_{5,6,7}|\\\\\\\\\r\n&+|S_{1,2,3}\\cap S_{2,3,4}\\cap S_{3,4,5}|+|S_{1,2,3}\\cap S_{2,3,4}\\cap S_{4,5,6}|+\\cdots+|S_{3,4,5}\\cap S_{4,5,6}\\cap S_{5,6,7}|\\\\\\\\\r\n&-|S_{1,2,3}\\cap S_{2,3,4}\\cap S_{3,4,5}\\cap S_{4,5,6}|-\\cdots-|S_{2,3,4}\\cap S_{3,4,5}\\cap S_{4,5,6}\\cap S_{5,6,7}|\\\\\\\\\r\n&+|S_{1,2,3}\\cap S_{2,3,4}\\cap S_{3,4,5}\\cap S_{4,5,6}\\cap S_{5,6,7}|\r\n\\end{aligned}$$\r\n\r\nãå³èŸºã®åŒã® $2$ 段ç®ã® $|S_{1,2,3}\\cap S_{2,3,4}|+\\cdots+|S_{4,5,6}\\cap S_{5,6,7}|$ ã«æ³šç®ããŠã¿ãŸãããïŒ$S_{1,2,3}\\cap S_{2,3,4}$ ã¯ïŒ$1,2,3$ æåç®ãš $2,3,4$ æåç®ããããããã³ã³ã¢ãã§ãããããªãã®ã®éåã§ããïŒãã®ãããªãã®ã¯ååšããªãã®ã§ $|S_{1,2,3}\\cap S_{2,3,4}|=0$ ã§ãïŒåæ§ã«èãããšïŒ$2$ 段ç®ã®é
ã®ãã¡ $0$ ã§ãªããã®ã¯ $|S_{1,2,3}\\cap S_{4,5,6}|,|S_{1,2,3}\\cap S_{5,6,7}|,|S_{2,3,4}\\cap S_{5,6,7}|$ ã®ã¿ã§ãïŒ$S_{1,2,3}\\cap S_{4,5,6}$ ã®èŠçŽ æ°ã¯ $7$ æåç®ãèªç±ã«æ±ºããããšã§ $2^1$ ã€ãšæ±ããããšãã§ããŸãïŒæ®ããåæ§ã«èãããšãããã $2^1$ ã€ãšæ±ããããšãã§ããŸãïŒ\r\n\r\nãããã§ïŒéèŠãªèå¯ãšããŠïŒ$2$ 段ç®ã®é
ã«çŸããå€ã¯ $0$ ã $2$ ã® $2$ éãã§ãïŒå®ã¯ïŒä»»æã®æ®µã«ã€ããŠïŒç»å Žããå€ã¯ $0$ ãŸãã¯ããç¹å®ã®å€ $K$ïŒ$=2^{(èªç±ã«æ±ºããããæåã®åæ°)}$ïŒã®é«ã
$2$ éãã«ãªããŸãïŒããã¯ïŒé·ãã $7$ ã®å Žåã§ãªããŠãæãç«ã¡ãŸãïŒïŒãããã£ãŠïŒå段ã«ã€ããŠïŒ $K$ ãäœåç»å Žãããããããã°ïŒç»å Žåæ°ã« $K$ ããããå€ã段å
šäœã®å€ã«ãªããŸãïŒ\r\n\r\nãããã«ïŒ$i$ 段ç®ã®åŒã«ç»å Žãã $K$ ã®åæ°ã¯ïŒ$i$ åã®ãã³ã³ã¢ãã®é
眮ã®æ¹æ³ã®æ°ã«äžèŽããŸãïŒå
ã»ã©ã®äŸã§ã¯ïŒ$(1,2,3)$ ãš $(4,5,6)$ ã«é
眮ããæ¹æ³ïŒ$(1,2,3),(5,6,7)$ ã«é
眮ããæ¹æ³ïŒ$(2,3,4),(5,6,7)$ ã«é
眮ããæ¹æ³ã® $3$ éãã§ãïŒ$(1,2,3)$ ãš $(2,3,4)$ ã®ããã«éããŠé
眮ããããšã¯ã§ããŸããïŒïŒãã®é
眮ã®æ¹æ³ã¯ïŒå
¬åŒè§£èª¬ã«ããããã«ïŒãã³ã³ã¢ã$2$ åãšãâã$1$ åã®äžŠã¹æ¹ã«åž°çããããšãã§ããŸãïŒ\r\n\r\nãæŽçãããšïŒ$i$ 段ç®ã®å€ ïŒ$=a_i$ ãšããïŒã¯ïŒèªç±ã«æ±ºããããæåã®åæ°ã $k$ åïŒ$i$ åã®ã³ã³ã¢ã®é
眮ã®æ¹æ³ã $m$ éããšãããš $a_i=2^km$ ã§ãïŒããªãã¡ïŒ\r\n- $1$ 段ç®ã«ã€ããŠïŒ$1$ åã®ãã³ã³ã¢ãã®é
眮ã®æ¹æ³ã¯ ${}\\_{5}\\mathrm{C}\\_{1}$ éãïŒèªç±ã«æ±ºããããæåã®åæ°ã $4$ åã ãã\r\n$a_1=2^4\\times5=80$ ïŒ\r\n- $2$ 段ç®ã«ã€ããŠïŒ$2$ åã®ãã³ã³ã¢ãã®é
眮ã®æ¹æ³ã¯ ${}\\_{3}\\mathrm{C}\\_{2}$ éãïŒèªç±ã«æ±ºããããæåã®åæ°ã $1$ åã ãã\r\n$a_2=2^1\\times3=6$ ïŒ\r\n- $3$ 段ç®ã«ã€ããŠïŒ$3$ åã®ã³ã³ã¢ã®é
眮ã®æ¹æ³ã¯ååšããªãããïŒ$a_3=0$\r\n- $4,5$ 段ç®ã«ã€ããŠãïŒ$4,5$ åã®ã³ã³ã¢ã®é
眮ã®æ¹æ³ã¯ååšããªãããïŒ$a_4, a_5=0$\r\n\r\nããããããšã®åŒã«ä»£å
¥ããããšã§ïŒ$|S_{1,2,3}\\cup S_{2,3,4}\\cup\\ldots\\cup S_{5,6,7}|=a_1-a_2+a_3-a_4+a_5=80-6+0-0+0=74$ ãšæ±ããããšãã§ããŸãïŒ$12$ æåãããªãæååã®å Žåãåæ§ã«èããããšãå¯èœã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/1741/78"
},
{
"content": "ãããã§ã¯, ãã³ã³ã¢ããéšåæååãšããŠå«ãŸãªããã®ã®åæ°ãæ°ããŠã¿ãŸã. \r\nããŸã, $12$ æåãå
šãŠãã³ãã®ãšã㧠$1$ éãã§ã. \r\nãäžã®ãã¿ãŒã³ãé€ãã°, å°ãªããšã$1$ æåã¯ãã¢ããå«ãŸããã®ã§, 以äžã¯ãã®ãã¡æãå³ã«ãããã¢ããå·Šãã $i$ æåç® $(1\\leq{i}\\leq12)$ ã«ããå Žåã«ã€ããŠ, ãã³ã³ã¢ããéšåæååãšããŠå«ãŸãªããã®ã®åæ°ã $F_{i}$ ãšããŠããããæ°ãäžããããŸã. \r\nãããã $i$ æåç®ã«ãããšã, $i+1$ æåç®ä»¥éã¯ãã³ãããæžãããŠããŸãã. ããã«å ããŠ, ãã³ã³ã¢ããéšåæååãšããŠå«ãŸãªãããã®å¿
èŠååæ¡ä»¶ã¯ä»¥äžã®éãã§ã. \r\n - $1$ æåç®ãã $i-1$ æåç®ãŸã§ã«ãã³ããé£ç¶ããªã. \r\n\r\nããã®ããšã«çæããŠ, $F_{i}$ ãå®éã«æ±ããŠã¿ãŸããã. $F_1=1, F_2=2$ ã§, $i\\geq3$ ã«ã€ããŠ, \r\n - $i-1$ æåç®ããã¢ãã§ãããšã, $F_{i-1}$ éã. \r\n - $i-1$ æåç®ããã³ãã§ãããšã, $i-2$ æåç®ããã¢ããšãªãããšãã $F_{i-2}$ éã. \r\n\r\nãã $F_{i}=F_{i-1}+F_{i-2}$ ãæãç«ã¡ãŸã. ãããã $F_{12}=233$ ãŸã§é ã«æ±ãŸã, $F_1+F_2+âŠ+F_{12}=1+2+âŠ+233=608$ éããšãªããŸã. \r\nã以äžãã, ãã³ã³ã¢ããéšåæååãšããŠå«ããããªå Žåã®æ°ã¯ $2^{12}-(1+608)=\\bf{3487}$ éãã§ã.\r\n\r\nãè£è¶³ãšããŠ, ãã£ããããæ°åã®åã«ã€ããŠ. $g_1=g_2=1, g_{n+2}=g_{n+1}+g_{n} (n=1,2,âŠ)$ ã§å®ãããããã£ããããæ°å $\\\\{ g_{n} \\\\}$ ã®ç¬¬ $n$ é
ãŸã§ã®å $S_{n}$ ã«ã€ããŠ, $S_{n}=g_{n+2}-1$ ãæãç«ã¡ãŸã. ãã㯠$g_{i}=g_{i+2}-g_{i+1}$ ãšããåŒã« $i=1,2,âŠ,n$ ã代å
¥ããŠ, ãããã蟺ã
é ã«è¶³ãããšã«ãã£ãŠåŸãããŸã. ãã®åŒãå©çšããã°, äžã® $F_1+F_2+âŠ+F_{12}$ ã¯, $$F_1+F_2+âŠ+F_{12}= g_2+g_3+âŠ+g_{13}=g_{15}-1-g_1=608$$ ãšãæ±ããããŸã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/1741/79"
},
{
"content": "ãé¡æã®å Žåã®æ°ã«ã€ããŠæååã®é·ã$n$ã«é¢ãã挞ååŒãç«ãŠãã\r\n\r\né·ã$n$ã®æååã§ãã³ã³ã¢ããéšåæååãšããŠå«ãŸãªããã®ã«ã€ããŠ, æ«å°Ÿ2æåããã³ã³ãã§ãããã®ã®åæ°ãã $a_n$, æ«å°Ÿ2æåããã¢ã³ãã§ãããã®ã®åæ°ãã $b_n$, æ«å°Ÿ1æåããã¢ãã§ãããã®ã®åæ°ãã $c_n$ãšãã. ãã ã, $n=0, 1$ ã«ã€ããŠã¯ä»¥äžã®éããšãã.\r\n$$a_0=b_0=0, \\quad c_0=1, \\quad a_1=0, \\quad b_1=c_1=1$$\r\næ«å°Ÿ2æåããã³ã³ãã§ãããšã, æ«å°Ÿã«ãã³ããä»ãå ãããšæ«å°Ÿ2æåããã³ã³ããšãªã, æ«å°Ÿã«ãã¢ããä»ãå ãããšæ«å°Ÿããã³ã³ã¢ããšãªã.\r\næ«å°Ÿ2æåããã¢ã³ãã§ãããšã, æ«å°Ÿã«ãã³ããä»ãå ãããšæ«å°Ÿ2æåããã³ã³ããšãªã, æ«å°Ÿã«ãã¢ããä»ãå ãããšæ«å°Ÿ1æåããã¢ããšãªã.\r\næ«å°Ÿ1æåããã¢ãã§ãããšã, æ«å°Ÿã«ãã³ããä»ãå ãããšæ«å°Ÿ2æåããã¢ã³ããšãªã, æ«å°Ÿã«ãã¢ããä»ãå ãããšæ«å°Ÿ1æåããã¢ããšãªã.\r\n\r\n以äžãã, 次ã®æŒžååŒãæãç«ã€.\r\n$$a_{n+1}=a_n + b_n$$\r\n$$b_{n+1}=c_{n}$$\r\n$$c_{n+1}=b_{n}+c_{n}$$\r\nãã£ããããæ°å $c_{n+2}=c_{n+1}+c_{n}$ãã, $c_{12}=233$.\r\nãŸã, $a_{12}=c_{12}-1=232, b_{12}=c_{11}=144$.\r\né·ã12ã®æååã§ãã³ã³ã¢ããéšåæååãšããŠå«ãŸãªããã®ã®åæ°ã¯, $a_{12}+b_{12}+c_{12}=609$.\r\nãã£ãŠ, é·ã12ã®æååã§ãã³ã³ã¢ããéšåæååãšããŠå«ããã®ã®åæ°ã¯, $2^{12}-609={\\bf 3487}$.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc103/editorial/1741/88"
}
] | ãå
šäœã§ $12$ æåãããªã, åæåããã¢ããŸãã¯ãã³ãã§ããæåå $2^{12}$ éãã®ãã¡,ãã³ã³ã¢ããéšåæååãšããŠå«ããã®ã¯ããã€ãããŸããïŒãã ã, ããæååãããã³ã³ã¢ããéšåæååãšããŠå«ãããšã¯, ããäœçœ®ãã**é£ç¶ãã** $3$ æåãæãåºãããšã, ããããã³ã³ã¢ããšãªãããšãæããŸã. |
OMC102 | https://onlinemathcontest.com/contests/omc102 | https://onlinemathcontest.com/contests/omc102/tasks/217 | A | OMC102(A) | 200 | 224 | 230 | [
{
"content": "ã$\\angle CAE=a,\\angle EAD=b$ ãšãããš, $\\angle ACB=\\angle ADB=\\angle CAD=a+b$ ã§ãã, ããã«\r\n$$\\angle CKA=\\angle SLB=\\angle ADB+\\angle DBE=a+2b$$\r\nããã§äžè§åœ¢ $ACK$ ã«ãããŠå
è§ã®å㯠$3a+3b$ ãšèšç®ã§ãããã, $a+b=60^{\\circ}$ ã§ãã. 以äžãã\r\n$$\\angle AKB=\\angle ACB+\\angle CAE=(a+b)+20^\\circ=\\textbf{80}^{\\circ}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc102/editorial/217"
}
] | ã$5$ ç¹ $A,C,E,D,B$ ã¯ãã®é ã«åäžååšäžã«ãã, $AC$ ãš $BD$ ã¯å¹³è¡ã§ã. $AE$ ãš $BC$ ã®äº€ç¹ã $K$, $AD$ ãš $BE$ ã®äº€ç¹ã $L$, $AD$ ãš $BC$ ã®äº€ç¹ã $S$ ãšãããš, äžè§åœ¢ $ACK$ ãš $BSL$ ãçžäŒŒãšãªããŸãã.\
ã$\angle CAE=20^\circ$ ã®ãšã, $\angle AKB$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ãã. |
OMC102 | https://onlinemathcontest.com/contests/omc102 | https://onlinemathcontest.com/contests/omc102/tasks/3162 | B | OMC102(B) | 200 | 86 | 188 | [
{
"content": "$$\\sum_{k=1}^6a_k=A,\\quad \\sum_{k=1}^6ka_k=B$$\r\nãšãããš, $a_n=An+B-1$ ã§ãããã, \r\n$$A=\\sum_{k=1}^6 (Ak+B-1)=21A+6B-6$$\r\nã§ãã, åæ§ã«\r\n$$B=\\sum_{k=1}^6 k(Ak+B-1)=91A+21B-21$$\r\nãšãªã. ããããã $A=\\dfrac{3}{73},\\ B=\\dfrac{63}{73}$ ãåãã,\r\n$$a_n=\\frac{3}{73}n+\\frac{63}{73}-1=\\frac{3n-10}{73}$$\r\nãã㯠$n=52$ ã§åããŠæŽæ°ãšãªãã®ã§, 解ç㯠$\\bf{52}$ .",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc102/editorial/3162"
}
] | ãå®æ°å $\\{a_n\\}\_{n=1,2,\ldots}$ãïŒä»»æã®æ£æŽæ° $n$ ã«å¯ŸããŠ
$$a_n+1=\sum_{k=1}^6(n+k)a_k$$
ãã¿ãããšãïŒ$a_n$ ãæŽæ°ãšãªãåŸããããªæå°ã®æ£æŽæ° $n$ ãæ±ããŠãã ãã. |
OMC102 | https://onlinemathcontest.com/contests/omc102 | https://onlinemathcontest.com/contests/omc102/tasks/2863 | C | OMC102(C) | 300 | 196 | 215 | [
{
"content": "ãäžè¬æ§ã倱ãã $a_1\\lt a_2\\lt \\cdots \\lt a_{10}$ ãšãã. å
šãŠã® $(a_i,a_j)$ ã®çµã¯åº§æšå¹³é¢äžã§\r\n$$(a_1,a_1),\\quad (a_{10},a_1),\\quad (a_{10},a_{10}),\\quad (a_1,a_{10})$$\r\nãé ç¹ãšããæ£æ¹åœ¢ã®å
éšïŒåšäžãå«ãïŒã«ååšãã. å€å¥åŒãèããã°ãã®æ£æ¹åœ¢ãæŸç©ç· $y=\\dfrac{1}{4}x^2$ ã®äžåŽïŒæŸç©ç·äžãå«ãïŒã«ããã°ãã. ãããã£ãŠ, æ¡ä»¶ã¯\r\n$$a_1+9\\leq a_{10} \\leq \\frac{1}{4} a_1^2$$\r\nãããæºãã $a_{10}$ ãååšããã®ã¯ $9\\leq a_1$ ã§ãã, éã« $a_1=9$ ã®ãšã $a_{10}$ ã¯æå°å€ $9+9=\\textbf{18}$ ããšã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc102/editorial/2863"
}
] | ã$10$ åã®çžç°ãªãæ£æŽæ°ã®çµ $(a_1,a_2,\ldots ,a_{10})$ ã¯ä»¥äžãæºãããŸã.
- çžç°ãªããšã¯éããªã $1\leq i,j\leq 10$ ã«ã€ããŠ, $x$ ã«ã€ããŠã®æ¹çšåŒ $x^2+a_ix+a_j=0$ ãå¿
ãå®æ°è§£ããã€.
ãã®ãšã, $\max\\{a_1,a_2,\ldots ,a_{10}\\}$ ãšããŠããåŸãæå°å€ãæ±ããŠãã ãã. |
OMC102 | https://onlinemathcontest.com/contests/omc102 | https://onlinemathcontest.com/contests/omc102/tasks/1295 | D | OMC102(D) | 400 | 74 | 129 | [
{
"content": "ããµã€ã³ãã $n$ åæãããšãã®ç·ç©ã¯ $(å¹³æ¹æ°)$ , $(å¹³æ¹æ°)Ã2$ , $(å¹³æ¹æ°)Ã3$ , $(å¹³æ¹æ°)Ã6$ , ã®ããããã§è¡šãããïŒããããã«ã€ããŠç®ã®åºæ¹ã $a_n$, $b_n$, $c_n$, $d_n$ éããããšãããšïŒä»¥äžã®é¢ä¿åŒãæç«ããïŒ$$a_{n+1}=c_{n+1}=2a_n+b_n+2c_n+d_n,\\quad a_n+b_n+c_n+d_n=6^n$$\r\nããªãã¡ $a_{n+1}=2a_n+6^n$ ã§ããïŒãããš $a_1=2$ ãã $$a_n=\\frac{2^n+6^n}{4}$$ ãåŸãïŒ\r\næ±ããçã㯠$a_{10^9+12}$ ã $ 10^9+7 $ã§å²ã£ãäœãã§ãããã, Fermatã®å°å®çãã$$\\begin{aligned}\r\na_{10^9+12}&=2^4\\cdot2^{10^9+6}+2^4\\cdot3^6\\cdot6^{10^9+6}\\\\\\\\\r\n&\\equiv{2^4+2^4\\cdot3^6}\\pmod {10^9+7}\\\\\\\\\r\n&\\equiv{\\mathbf{11680}}\\pmod{10^9+7}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc102/editorial/1295"
},
{
"content": "å°ã
ãŽãªæŒã解æ³ã§ã. åŒãèŠãããããããã« $n = 10^9 + 12$ ãšããŸã. ãµã€ã³ãã®ç®ã¯ $2^x \\cdot 3^y (x,y \\in \\mathbb{Z}, 0 \\leq x \\leq 2, 0 \\leq y \\leq 1)$ ã®åœ¢ã§è¡šããã $6$ ã€ã®æ°ãªã®ã§, $i$ åç®ã«æãããµã€ã³ãã®ç®ã $2^{x_i} \\cdot 3^{y_i} (x_i, y_i \\in \\mathbb{Z})$ ãšãããš,\r\n$$\\sum_{i = 1}^{n}{x_i}, \\quad \\sum_{i = 1}^{n}{y_i}$$\r\nããšãã«å¶æ°ã«ãªã $(x_1, x_2,\\ldots,x_n)$ ããã³ $(y_1, y_2,\\ldots,y_n)$ ã®æ°ãããããæ°ããã°ããã®ã§, $x_i$ ã®åãå¶æ°ã«ãªã $(x_1, x_2,\\ldots,x_n)$ ã®æ°ãš, $y_i$ ã®åãå¶æ°ã«ãªã $(y_1, y_2,\\ldots,y_n)$ ã®æ°ãããããæ°ããŠããããããåãããã°ããã§ã.\\\r\nã$x_i$ ã«ã€ããŠ, $x_i = 1$ ãšãªã $i$ ã®æ°ã $2k$ å $(0 \\leq k \\leq n \\/ 2)$ ãšãããš, $(x_1, x_2,\\ldots,x_n)$ ã®æ°ã¯\r\n$$\\sum_{k = 0}^{n\\/2}{{}\\_n\\text{C}\\_{2k}2^{n - 2k}} = \\sum_{k = 0}^{n\\/2}{{}\\_n\\text{C}\\_{2k}2^{2k}}$$\r\nãšãªããŸãã, äºé
å®çãã\r\n$$\\sum_{i = 0}^{n}{{}\\_n\\text{C}\\_i2^{i}} = 3^n,\\quad \\sum_{i = 0}^{n}{{}\\_n\\text{C}\\_i2^{i}(-1)^{i}} = 1$$\r\nãšãªãã®ã§\r\n$$\\sum_{k = 0}^{n\\/2}{{}\\_n\\text{C}\\_{2k}2^{2k}} = \\frac{3^n + 1}{2},\\quad \\sum_{k = 1}^{n\\/2}{{}\\_n\\text{C}\\_{2k - \r\n 1}2^{2k - 1}} = \\frac{3^n - 1}{2}$$\r\nãšãªããŸã. 次㫠$y_i$ ã®åã«ã€ããŠ, $y_i = 1$ ãšãªã $i$ ã®æ°ã $2k$ å $(0 \\leq k \\leq n \\/ 2)$ ãšãããš, $(y_1, y_2,\\ldots,y_n)$ ã®æ°ã¯\r\n$$\\sum_{k = 0}^{n\\/2}{{}\\_n\\text{C}\\_{2k}}$$\r\nãšãªããŸãã, äºé
å®çãã\r\n$$\\sum_{i = 0}^{n}{{}\\_n\\text{C}\\_i} = 2^n,\\quad \\sum_{i = 0}^{n}{{}\\_n\\text{C}\\_i(-1)^i} = 0$$\r\nãªã®ã§,\r\n$$\\sum_{k = 0}^{n\\/2}{{}\\_n\\text{C}\\_{2k}} = \\sum_{k = 1}^{n\\/2}{{}\\_n\\text{C}\\_{2k - 1}} = 2^{n - 1}$$\r\nã§ã. 以äžãã $N = 2^{n - 2}(3^n + 1)$ ãšãªããŸã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc102/editorial/1295/68"
},
{
"content": "ã$M=10^9+12$ ãšããïŒçŽ å æ° $2$ ã $x$ïŒ$3$ ã $y$ ã«å¯Ÿå¿ä»ããã°ïŒæ¬¡ã®å€é
åŒãå±éããæã«çŸããé
ã®ãã¡ $x$ ã®æ¬¡æ°ïŒ$y$ ã®æ¬¡æ°ãå
±ã«å¶æ°ã§ãããã®ã®ä¿æ°ã®ç·åã $N$ ã§ããïŒ\r\n$$f(x,y)=(1+x+y+x^2+xy+x^2y)^M=(1+x+x^2)^M(1+y)^M$$\r\nããã§å®éã«å±éããæ§åãèããã°æ¬¡ãæç«ãããã $N$ ãæ±ããããïŒããšã¯å
¬åŒè§£èª¬ãšåæ§ã§ããïŒ\r\n$$N=\\frac{f(1,1)+f(1,-1)+f(-1,1)+f(-1,-1)}{4}=2^{M-2}(3^M+1)$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc102/editorial/1295/71"
}
] | ãåé¢ã« $1,2,3,4,6,12$ ãæžãããå
é¢äœã®ãµã€ã³ããé ã« $10^9+12$ åæ¯ã£ããšãïŒåºãç®ã®ç·ç©ãå¹³æ¹æ°ãšãªããããªç®ã®åºæ¹ã¯ $N$ éããããŸãïŒ$N$ ãçŽ æ° $10^9+7$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC102 | https://onlinemathcontest.com/contests/omc102 | https://onlinemathcontest.com/contests/omc102/tasks/1692 | E | OMC102(E) | 400 | 51 | 117 | [
{
"content": "ãæççµè·¯ã§é·ã $6$ ãéãããšãã, æ£äžè§åœ¢ã®èŸºã«ãã£ãŠäœåã«ç§»åã§ããé·ã㯠$1$ æªæºã§ãã.\\\r\nãæ£äžè§åœ¢ã®èŸºã䜿ãå·Šå³ãŸãã¯å¯Ÿè§ç·ç¶ã«ç§»åããçµè·¯ã¯é·ã $2$ ãèŠãããã, åè
ã¯äœåã« $1$ æ¶è²»ããŠããããäžé©, åŸè
ã¯äœåã§ã䜿çšå¯èœã§ãã. äžæ¹ã§äžäžã«ç§»åããçµè·¯ã®é·ã㯠$\\displaystyle \\frac{2}{\\sqrt{3}}\\approx 1.15$ ã§ãã, ããã¯é«ã
$3$ åããçšããªãããšãã, å®è³ªçã«ç¡å¶éã«äœ¿çšå¯èœãšã¿ãªããŠãã. ãããã§å°œããããŠãã, äžäžç§»åã®æ¹æ³ã䞡端ã§ã¯ $2$ éã, ãã以å€ã§ã¯ $3$ éãããããšã«çæããŠä»¥äžã®ããã«æŒžååŒãèšç®ããããšã§, æ±ããå Žåã®æ°ã¯ $\\textbf{826}$ ã§ãã.\r\n\r\n![figure 1](\\/images\\/1DB0ADJyiaZQroZMbvCImCu1x0EozlRHHi6UcfsB)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc102/editorial/1692"
}
] | ãäžèŸºã®é·ãã $1$ ã§ããæ£æ¹åœ¢ã®å
éšã«æ£äžè§åœ¢ã $2$ ã€é
眮ããå³ $A$ ã«ç€ºãå³åœ¢ãïŒ$3\times 3$ ã«äžŠã¹ãŠå³ $B$ ã®ããã«é
眮ããŸããïŒç¹ $X$ ããç¹ $Y$ ãžé»ç·ã®äžã®ã¿ãäŒã£ãŠç§»åããçµè·¯ã®ãã¡ïŒåãç¹ã $2$ å以äžééããïŒãã€ãã®é·ãã $7$ **æªæº**ã§ãããã®ã¯äœéããããŸããïŒ
![figure 1](\/images\/qkP7DTe6V6kddEllUjbx6jwkE3FtaAi45mleTieL) |
OMC102 | https://onlinemathcontest.com/contests/omc102 | https://onlinemathcontest.com/contests/omc102/tasks/2377 | F | OMC102(F) | 500 | 6 | 32 | [
{
"content": "ãçŽç· $CM$ ãš $\\Omega$ ã®äº€ç¹ã®ãã¡ $C$ ã§ãªãæ¹ã $R$ ãšãããš, $AB$ ãš $QR$ ã¯å¹³è¡ã§ãã, ç¹ã« $AQ=BR,AR=BQ$ ãåãã. 次ã«, $\\triangle CAM \\sim \\triangle BRM, \\triangle ARM \\sim \\triangle CBM, AM=BM$ ãã\r\n$$CA:AQ=CA:BR=CM:BM=CM:AM=CB:AR=CB:BQ$$\r\nããªãã¡ $AC\\times BQ=AQ\\times BC$ ã§ãã. ããã«, åè§åœ¢ $AQBC$ ã«å¯ŸããŠãã¬ããŒã®å®çãé©çšãããš\r\n$$AC\\times BQ+AQ\\times BC=AB\\times CQ$$\r\nãããã£ãŠäžæ¡ä»¶ãã $CQ=5$ ãåŸã. ãŸã $\\Omega$ ã«ã€ããŠ, æ£åŒŠå®çãã\r\n$$\\frac{AB}{\\sin\\angle BCA}=\\frac{CQ}{\\sin\\angle QBC}$$\r\nã§ãããã $\\sin\\angle QBC=\\dfrac{5}{9}$ ã§ãã, $\\sin 2\\angle QBC=\\dfrac{20\\sqrt{14}}{81}$ ãšãªã. ããã§, $\\triangle MQR$ ã $MQ=MR$ ãªãäºç蟺äžè§åœ¢ã§ããããšã«æ³šæããã°, ç°¡åãªè§åºŠèšç®ãšæ¹ã¹ãã®å®çãã\r\n$$\\angle QMC=2\\angle QBC,\\quad CM\\times MQ=AM\\times BM=\\left(\\frac{18}{5}\\right)^2=\\frac{324}{25}$$\r\nãåããã®ã§, $\\triangle CQM$ ã®é¢ç©ã¯ä»¥äžã®èšç®ã§åŸãã, 解çãã¹ãå€ã¯ $896+25=\\textbf{921}$ ãšãªã.\r\n$$\\triangle CQM=\\frac{1}{2}\\times CM\\times MQ\\times \\sin\\angle QMC=\\frac{1}{2}\\times \\frac{324}{25}\\times \\frac{20\\sqrt{14}}{81}=\\frac{8\\sqrt{14}}{5}=\\sqrt{\\frac{896}{25}}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc102/editorial/2377"
},
{
"content": "ãããã§ã¯, ãã®åé¡ã«é¢é£ããæ§å³ã玹ä»ããããšã«éãããããŠè§£èª¬ãããŸã(解çã®æ¹éã¯ã»ãŒå
¬åŒè§£èª¬ãšå€ãããŸãã). ãŸã, èšèãäºã€å®çŸ©ããäžã§, äžè¬çã«æç«ããå®ç(æ§å³)ãäžã€åæããŸã. \r\n\r\n----\r\n**å®çŸ©1.**ãäžè§åœ¢ $ABC$ ã®$A$ ã«å¯Ÿããäžç·ã $m$ ãšãã. ãã®ãšã, $\\angle BAC$ ã®äºçåç·ã«é¢ã㊠$m$ ãšå¯Ÿç§°ãªçŽç·ã, äžè§åœ¢ $ABC$ ã® $A$ ã«å¯Ÿãã**ç䌌äžç·**ãŸãã¯**symmedian**ãšåŒã¶. \r\n\r\n**å®çŸ©2.**ãåè§åœ¢ $ABCD$ ã**調ååè§åœ¢**ã§ãããšã¯, åã«å
æ¥ã, ããã« $AB\\times CD = BC\\times DA$ ãæºããããšãèšã. \r\n\r\n**å®ç1.**ãäžè§åœ¢ $ABC$ ã®çŽç· $BC$ äžã« $2$ ç¹ $P, Q$ ããã, äžè§åœ¢ $ABC$ ã®å€æ¥åãšäžè§åœ¢ $APQ$ ã®å€æ¥åãæ¥ãããšã, çŽç· $AP$ ãšçŽç· $AQ$ 㯠$\\angle BAC$ ã®äºçåç·ã«é¢ããŠå¯Ÿç§°ã§ãã. \r\n\r\n**å®ç2.**ãäžè§åœ¢ $ABC$ ã®å€æ¥åãšäžè§åœ¢ $ABC$ ã® $A$ ã«å¯Ÿããsymmedianã®äº€ç¹ã $P$ ãšãããš, åè§åœ¢ $ABPC$ ã¯èª¿ååè§åœ¢ã§ãã. \r\n\r\n**å®ç3.**ã調ååè§åœ¢ $ABCD$ ã«ã€ããŠ, ãã®å€æ¥åã®äžå¿ã $O$, ç·å $BD$ ã®äžç¹ã $M$ ãšãããš, $4$ ç¹ $A, C, M, O$ ã¯åäžååšäžã«ãã. \r\n\r\n----\r\nå®ç1,2,3ã®èšŒæã¯çç¥ããŠ, ããã§ã¯å
ã«é²ã¿ãããšæããŸã. ãŸã, å®ç1ãã, çŽç· $CQ$ ã¯äžè§åœ¢ $ABC$ ã® $C$ ã«å¯Ÿããsymmedianã§ããããšãåãããŸã. åŸã£ãŠ, å®ç2ããåè§åœ¢ $AQBC$ ã¯èª¿ååè§åœ¢ã§ã. ãã£ãŠ, äžè§åœ¢ $ABC$ ã®å€å¿ã $O$ ãšããã°, å®ç3ãã $4$ ç¹ $C, Q, M, O$ ã¯åäžååšäžã«ãããŸã. 以äžãã, Ptolemyã®å®çãã, å®çŸ©2ã«æ°ãã€ããããšã§\r\n$$CQ = \\frac{AC\\times BQ + BC\\times AQ}{AB} = \\frac{2\\times AC\\times BQ}{AB} = 5$$\r\nãåãããŸã. ããã«, çŽç· $CM$ ãš $\\Omega$ ã®äº€ç¹ã $R$ ãšãããš, å®çŸ©1ãã $Q$ ãš $R$ ã¯ç·å $AB$ ã®åçŽäºçåç·ã«é¢ããŠå¯Ÿç§°ãªã®ã§, æ¹ã¹ãã®å®çãã\r\n$$CM\\times QM = CM\\times RM = AM\\times BM = \\frac{324}{25}$$\r\nãåãããŸã. ãããŠ, æ£åŒŠå®çãã \r\n$$\\sin\\angle CAQ = \\sin\\angle ACB \\times \\frac{CQ}{AB} = \\frac{5}{9}$$\r\nã§ããã®ã§, \r\n$$\\sin\\angle CMQ = \\sin\\angle COQ = \\frac{20\\sqrt{14}}{81}$$\r\nãåãããŸã. ãã£ãŠæ±ããé¢ç©ã¯\r\n$$\\frac{1}{2}\\times CM\\times QM\\times \\sin\\angle CMQ = \\frac{8\\sqrt{14}}{5}$$\r\nã§ã. \r\n\r\n\r\nãããŠ, æåŸã«, æ¬åã§ã¯äœ¿ããªãã£ã調ååè§åœ¢ãsymmedianã«ãŸã€ãã, å®ç2,3以å€ã®äž»ãªå®çã玹ä»ããŠçµãããããšæããŸã.\r\n\r\n----\r\n**å®ç4.**ãäžè§åœ¢ $ABC$ ã® $A$ ã«å¯Ÿããsymmedianãšäžè§åœ¢ $ABC$ ã®å€æ¥åã® $B, C$ ã§ã®æ¥ç·ã¯äžç¹ã§äº€ãã. \r\n\r\n**å®ç5.**ã調ååè§åœ¢ $ABCD$ ã«ã€ããŠ, 匧 $BCD$ ã®äžç¹ã $M$ ãšãããš, $\\angle DAB$ ã®å€è§ã®äºçåç·, çŽç· $BD$, çŽç· $CM$ ã¯äžç¹ã§äº€ãã. \r\n\r\n**å®ç6.**ãäžè§åœ¢ $ABC$ ã® $A$ ã«å¯ŸããsymmedianãšèŸº $BC$ ã®äº€ç¹ã $P$ ãšãããš $BP : CP = AB^2 : AC^2$.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc102/editorial/2377/82"
}
] | ãå€æ¥åã $\Omega$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $AB$ ã®äžç¹ã $M$ ãšããŸã. $M$ ãéã $C$ 㧠$\Omega$ ã«å
æ¥ããåã, ç·å $AM$ ãš $M$ ã§ãªãç¹ã§äº€ãã£ãã®ã§ããã $P$ ãšã, çŽç· $CP$ ãš $\Omega$ ã®äº€ç¹ã®ãã¡ $C$ ã§ãªãæ¹ã $Q$ ãšãããš,
$$AB=\frac{36}{5},\quad \sin\angle ACB=\frac{4}{5}, \quad AC\times BQ=18$$
ãæç«ããŸãã. ãã®ãšã, äžè§åœ¢ $CMQ$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\sqrt{\dfrac{a}{b}}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC101 (for beginners) | https://onlinemathcontest.com/contests/omc101 | https://onlinemathcontest.com/contests/omc101/tasks/1468 | A | OMC101(A) | 100 | 262 | 266 | [
{
"content": "ãåé
ã $4$ ã§å²ã£ãäœããé ã«æžãåºãã°,\r\n$$1, 1, 2, 3, 1, 0$$\r\nã®åšæãç¹°ãè¿ã, ç¹ã« $4$ ã®åæ°ã¯ $6$ é
ããšã«çŸãã. ãã£ãŠ, æ±ããå€ã¯ $[1000\\/6]=\\textbf{166}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc101/editorial/1468"
}
] | $$a_1=1, \quad a_2=1,\quad a_{n+2}=a_{n+1}+a_n\quad (n\geq 1)$$
ã§å®çŸ©ããããã£ããããæ°åã«ãããŠïŒç¬¬ $1000$ é
ç®ãŸã§ã« $4$ ã®åæ°ã¯ããã€ãããŸããïŒ |
OMC101 (for beginners) | https://onlinemathcontest.com/contests/omc101 | https://onlinemathcontest.com/contests/omc101/tasks/3221 | B | OMC101(B) | 100 | 263 | 263 | [
{
"content": "ã$OM$ ãš $BC$ ã¯åçŽã§ããããïŒ\r\n$$OM^2=OB^2-BM^2=13^2-12^2=25$$\r\nãããã£ãŠïŒ $OMC$ ã®é¢ç©ã¯ $5\\times12\\div2=\\textbf{30}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc101/editorial/3221"
}
] | ãå€å¿ã $O$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠïŒ
$$OB=13,\quad BC=24$$
ãæç«ããŸããïŒ$BC$ ã®äžç¹ã $M$ ãšãããšãïŒäžè§åœ¢ $OMC$ ã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC101 (for beginners) | https://onlinemathcontest.com/contests/omc101 | https://onlinemathcontest.com/contests/omc101/tasks/3022 | C | OMC101(C) | 200 | 230 | 259 | [
{
"content": "ãããæ£æŽæ°ã $3$ ã§å²ãåããããšã¯ãã®æ£æŽæ°ã®ïŒåé²è¡šèšã§ã®ïŒåæ¡ã®åã $3$ ã®åæ°ã§ããããšãšåå€ã§ããããïŒæ¡ä»¶ãã¿ããæ°ã«ãããŠæ¡ã«çšããããªãã£ã $2$ ã€ã®æ°åã $a\\lt b$ ãšããã°ïŒæ¡ä»¶ã¯ $a+b$ ã $3$ ã§å²ãåããããšãšåå€ã§ããïŒãã®ãããªçµ $(a,b)$ 㯠$15$ éããšæ°ãããïŒç¹ã« $a=0$ ã®ãã®ã $3$ éãã§ããïŒ$a=0$ ã®ãšã察å¿ããæ°ã¯ $8!$ éãããïŒ$a\\neq 0$ ã®ãšã察å¿ããæ°ã¯ $7\\times 7!$ éãããããïŒæ±ããå€ã¯ $\\textbf{544320}$ ã§ãããšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc101/editorial/3022"
}
] | ãåé²æ³è¡šèšã«ãã㊠$8$ æ¡ã®æ£ã®æŽæ°ã§ãã£ãŠïŒåæ¡ã®æ°ããã¹ãŠç°ãªãïŒ$3$ ã§å²ãåãããã®ã¯ããã€ãããŸããïŒ\
ããã ãïŒæé«äœã¯ $0$ ã§ã¯ãªããã®ãšããŸãïŒ |
OMC101 (for beginners) | https://onlinemathcontest.com/contests/omc101 | https://onlinemathcontest.com/contests/omc101/tasks/2242 | D | OMC101(D) | 300 | 149 | 190 | [
{
"content": "ãäžåŒã®å·ŠèŸºã $f(x)$ ãšããïŒäžè§äžçåŒãã次ãæãç«ã€ããïŒç¹ã« $|x|\\leq 100$ ã«ãã㊠$f(x)\\lt 10^{5}$ïŒ\r\n$$f(x)=\\sum_{k=-100}^{100}|x+k|\\leq\\sum_{k=-100}^{100}(|x|+|k|)=201|x|+10100$$\r\nãŸã $|x|\\gt 100$ ã«ãããŠã¯ $f(x)=201|x|$ ãæãç«ã€ïŒä»¥äžãã $S=\\dfrac{200000}{201}$ ãšãããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{200201}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc101/editorial/2242"
}
] | ã次ãã¿ããå®æ° $x$ ã¯æéåã§ããããšã蚌æã§ããã®ã§ïŒããããã¹ãŠã«å¯Ÿãã $|x|$ ã®ç·åã $S$ ãšããŸãïŒ
$$\sum_{k=-100}^{100}|x+k|=100000$$
ã$S$ ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $S=\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC101 (for beginners) | https://onlinemathcontest.com/contests/omc101 | https://onlinemathcontest.com/contests/omc101/tasks/3337 | E | OMC101(E) | 300 | 132 | 209 | [
{
"content": "ã$p=q$ ã®ãšãïŒ$p^2 \\mid 90$ ãå¿
èŠã§ããïŒ$(p, q)=(3,3)$ ã¯å®éã«æ¡ä»¶ãã¿ããïŒ\\\r\nã$p\\neq q$ ã®ãšãïŒFermatã®å°å®çãã $p^q\\equiv p \\mod q$ ãæç«ãããã $90=qy-p$ ãšè¡šãïŒããã«ããã $p$ ã®åæ°ã§ããããšãã $y=pz$ ãšããã° $90=p(qz-1)$ ãšè¡šããïŒ\r\n$$90=2\\times 45=3\\times 30=5\\times 18$$\r\nã§ããã®ã§ïŒããããã«å¯Ÿå¿ããçµãèããããšã§\r\n$$(p, q)=(2, 23), (3, 31), (5, 19)$$\r\nãåŸãïŒãããã¯ãã¹ãŠæ¡ä»¶ãã¿ããããïŒä»¥äžããæ±ããç·ç©ã¯ $\\bf{122400}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc101/editorial/3337"
}
] | ãçŽ æ°ã®çµ $(p, q)$ ã§ãã£ãŠïŒ$p^q+90$ ã $pq$ ã§å²ãåãããã®ãã¹ãŠã«ã€ããŠïŒ $p+q$ ã®**ç·ç©**ãæ±ããŠãã ããïŒ |
OMC101 (for beginners) | https://onlinemathcontest.com/contests/omc101 | https://onlinemathcontest.com/contests/omc101/tasks/3264 | F | OMC101(F) | 400 | 40 | 98 | [
{
"content": "ã$AF$ ããã³ $\\angle{FAC}$ ã®äºçåç·ãš $BC$ ã®äº€ç¹ããããã $P,Q$ ãšãïŒ$DE$ ãš $AQ$ ã®äº€ç¹ã $X$ ãšãããšïŒäžè§åœ¢ $ABC$ ãš $AED$ ã®çžäŒŒã«ãããŠïŒ$P$ ãš $X$ïŒ$Q$ ãš $F$ ããããã察å¿ããïŒãã£ãŠïŒãã $x$ ã«ãã£ãŠ\r\n$$BP=PQ=3x, \\quad QC=4x$$\r\nãšè¡šãïŒããã« $AP=3y,AC=4y$ ãšè¡šããïŒ\\\r\nããã㧠$ACP$ ã«ãããŠäžå¹³æ¹ã®å®çãã $y=\\sqrt{7}x$ ãåŸãïŒããã« $ABP$ ã«ãããŠäžå¹³æ¹ã®å®çãã\r\n$$x=\\dfrac{5 \\sqrt 2}{6}$$\r\nãåŸãïŒãããã£ãŠäžè§åœ¢ $ABC$ ã®é¢ç©ã¯ $125 \\sqrt 7 \\/6$ ã§ããïŒè§£çãã¹ãå€ã¯ $125+7+6=\\textbf{138}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc101/editorial/3264"
},
{
"content": "ãèšç®äž»äœã§è§£ã解æ³ãšãã®æèéçšã«ã€ããŠã§ãïŒãŸãïŒæ¡ä»¶ãæåã§çœ®ããŸãïŒ$$DF=2k,FE=3k,\\angle\\mathrm{DAF}=x,\\angle\\mathrm{FAE}=2x$$ ãšããïŒãšããããè§åºŠã調ã¹ãŠã¿ããš$$\\angle\\mathrm{ADF}=\\angle\\mathrm{ACB}=\\frac{Ï}{2}-2x,\\angle\\mathrm{AEF}=\\angle\\mathrm{ABC}=\\frac{Ï}{2}-x$$ çãåãããŸãïŒè§åºŠã $x$ ãçšããŠè¡šããã®ã§ïŒ$\\sin x $ ã $\\cos x$ ãåããã°ïŒ$AB=10$ ãšããæ
å ±ãã $AC$ ã®å€ãåããïŒ$\\sin \\angle\\mathrm{BAC}$ ã®å€ãåããã®ã§ïŒ$\\triangle{ABC}$ ã®é¢ç©ãæ±ããããŸãïŒããã§ïŒãŸã 䜿ã£ãŠããªã $DF,FE$ ã®æ
å ±ã«çç®ããŸãïŒæ
å ±ã¯æ¯ã§ããããšããïŒ$k$ ã®å€ãæ±ããã®ã¯é£ããããªã®ã§ïŒãããçšã㊠$\\sin x$ çã®å€ãæ±ããããªããèãããšïŒ$\\triangle{ADF}$ ãš $\\triangle{AEF}$ ã«æ£åŒŠå®çãé©çšã㊠$AF$ ã«é¢ããåŒã $2$ ã€äœããšäžæãããããã§ãïŒå®éã«ïŒ$$\\frac{DF}{\\sin \\angle\\mathrm{DAF}}=\\frac{AF}{\\sin \\angle\\mathrm{ADF}},\\frac{FE}{\\sin \\angle\\mathrm{FAE}}=\\frac{AF}{\\sin \\angle\\mathrm{AEF}}$$ ãšãªãïŒãããæŽçãããš $\\cos 2x= \\frac{3}{4}$ ãåŸããïŒ$3x \\lt Ï$ ããïŒ$$\\sin x=\\sqrt{\\frac{1}{8}}, \\cos x=\\sqrt{\\frac{7}{8}} $$ ãšãªãããïŒ $$AC=\\frac{10 \\sqrt{14}}{3},\\sin 3x=\\frac{5 \\sqrt{2}}{8}$$ $$\\triangle{ABC}=\\frac{1}{2}Ã10Ã\\frac{10 \\sqrt{14}}{3}Ã\\frac{5 \\sqrt{2}}{8}=\\frac{125 \\sqrt{7}}{6}$$ ãšãªãïŒæ±ããå€ã¯\r\n $\\bf{138}$ ãšãªããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc101/editorial/3264/182"
}
] | ã$AB=10$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒåå¿ã $H$ ãšãïŒ$C,B$ ãããããã察蟺ã«ããããåç·ã®è¶³ã $D,E$ ãšããŸãïŒãŸãçŽç· $AH$ ãš $DE$ ã®äº€ç¹ã $F$ ãšãããšïŒä»¥äžãæãç«ã¡ãŸããïŒ
$$\angle{DAF}:\angle{FAE}=1:2,\quad DF:FE=2:3$$
ãã®ãšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯æ£ã®æŽæ° $a,b,c$ ãçšã㊠$\dfrac{a\sqrt{b}}{c}$ ãšè¡šããã®ã§ïŒãã ã $a,c$ ã¯äºãã«çŽ ã§ïŒ$b$ ã¯å¹³æ¹å åããããªãïŒïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMC100 (for experts) | https://onlinemathcontest.com/contests/omc100 | https://onlinemathcontest.com/contests/omc100/tasks/2736 | A | OMC100(A) | 100 | 260 | 266 | [
{
"content": "ãå¹³åé床ãšæèŠæéã¯åæ¯äŸããïŒããããïŒ$A$ åãš $B$ åãš $C$ åã®æèŠæéã®æ¯ã¯ $4:5:6$ ã§ãããšãããïŒ\\\r\nãããªãã¡ïŒå¹³åæéã®æ¯ã¯ $15:12:10$ ã«ãªãã$A$ åã®å¹³åæé㯠$\\mathbf{15}~\\mathrm{km}$ ã«ãªã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc100/editorial/2736"
}
] | ã$A$ åãš $B$ åãš $C$ åã $3$ 人ã§é·è·é¢èµ°ããããšããïŒãã®çµæã¯ä»¥äžã®ããã«ãªããŸããïŒ
- $A$ åã $1$ äœã§ãŽãŒã«ããïŒ
- $B$ å㯠$A$ åã® $20$ å $22$ ç§åŸã« $2$ äœã§ãŽãŒã«ããïŒ
- $C$ å㯠$B$ åã® $20$ å $22$ ç§åŸã« $3$ äœã§ãŽãŒã«ããïŒ
ãã®ãšãïŒ$C$ åã®å¹³åæé㯠$10~\mathrm{km}$ ã§ïŒ$B$ åã®å¹³åæé㯠$12 ~ \mathrm{km}$ ã§ããïŒ\
ã$A$ åã®å¹³åæéã¯äœ $\mathrm{km}$ ã§ããïŒ |
OMC100 (for experts) | https://onlinemathcontest.com/contests/omc100 | https://onlinemathcontest.com/contests/omc100/tasks/2633 | B | OMC100(B) | 400 | 186 | 229 | [
{
"content": "ãçµè«ããè¿°ã¹ãã°ïŒä»¥äžãæ¡ä»¶ãã¿ããå¯äžã®æ°åã§ããïŒ\r\n$$(4,5,6,1,2,3,10,11,12,7,8,9,16,17,18,13,14,15,22,23,24,19,20,21)$$\r\nãæ¡ä»¶ã$a_i-a_j=i-j$ ãŸã㯠$a_i+a_j=i+j$ãã¯\r\n\r\n- $a_i-i=a_j-j$ ãŸã㯠$a_i-i=-(a_j-j)$\r\n\r\nãšèšãæããããïŒããªãã¡ïŒ$|a_i-i|$ ãäžå®ã§ããã°ããïŒãã®äžå®å€ã $n(\\neq 0)$ ãšããã°ïŒæ°åã¯åãã\r\n$$(n+1,n+2,\\ldots,2n,1,2,\\ldots,n,3n+1,3n+2,\\ldots,4n,2n+1,2n+2,\\ldots,3n,5n+1,\\ldots)$$\r\nãšäžæã«å®ãŸã£ãŠããïŒé·ã $2n$ ã®ãåšæãããªãå¿
èŠãããããšãã $n$ 㯠$12$ ã®çŽæ°ã§ããïŒ\r\nãã®ãã¡ $a_1=n+1$ ãåææ°ã«ãªãã®ã¯ $n=3$ ã®ãšãã®ã¿ã§ããããïŒä»¥äžããçµè«ãåŸãïŒ\r\nç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{1152}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc100/editorial/2633"
}
] | ã$(1,2,\ldots,24)$ ã®äžŠã¹æ¿ã $(a_1,a_2,\ldots,a_{24})$ ã¯ïŒ$1\leq i,j \leq24$ ãªãä»»æã®çµ $(i,j)$ ã«ã€ããŠïŒä»¥äžã® $2$ åŒã®å°ãªããšãäžæ¹ãã¿ãããŸãïŒ
$$a_i-a_j=i-j, \qquad a_i+a_j=i+j$$
ããã« $a_1$ ã¯åææ°ã§ãããšãïŒ$(a_1,a_2,\ldots,a_{24})$ ã¯äžæã«å®ãŸããŸãïŒ\
ããã®ãããªå¯äžã®äžŠã¹æ¿ãã«ã€ããŠïŒ$a_{11}\times a_{12}\times a_{13}$ ãæ±ããŠãã ããïŒ |
OMC100 (for experts) | https://onlinemathcontest.com/contests/omc100 | https://onlinemathcontest.com/contests/omc100/tasks/2628 | C | OMC100(C) | 400 | 156 | 188 | [
{
"content": "$$\\sum_{i=1}^{10^6}{\\left\\lfloor \\frac{i}{10^6+1} \\right\\rfloor}=0$$\r\nããïŒä»¥äžã®ããã«å€åœ¢ã§ããïŒ\r\n$$\\Biggl(\\sum_{i=1}^{10^6+1}\\sum_{j=1}^{10^6+1}{\\left\\lceil \\frac{i}{j} \\right\\rceil}\\Biggr)-\\Biggl(\\sum_{i=1}^{10^6}\\sum_{j=1}^{10^6}{\\left\\lfloor \\frac{i}{j} \\right\\rfloor}\\Biggr)=\\sum_{i=1}^{10^6+1}\\sum_{j=1}^{10^6+1}{\\Biggl(\\left\\lceil \\frac{i}{j} \\right\\rceil-\\left\\lfloor \\frac{i}{j} \\right\\rfloor\\Biggr)}+\\sum_{i=1}^{10^6+1}{\\left\\lfloor \\frac{10^6+1}{i} \\right\\rfloor}$$\r\nããã§ïŒ\r\n$$\\left\\lceil \\frac{i}{j} \\right\\rceil-\\left\\lfloor \\frac{i}{j} \\right\\rfloor$$\r\n㯠$i\\/j$ ãæŽæ°ã®ãšã $0$ ã«ãªãïŒãã以å€ã§ã¯ $1$ ã«ãªãïŒãã£ãŠïŒ\r\n$$\\sum_{i=1}^{10^6+1}{\\Biggl(\\left\\lceil \\frac{i}{j} \\right\\rceil-\\left\\lfloor \\frac{i}{j} \\right\\rfloor\\Biggr)}=10^6+1-\\left\\lfloor \\frac{10^6+1}{j} \\right\\rfloor$$\r\nãæãç«ã€ïŒä»¥äžããïŒ\r\n$$\\begin{aligned}\r\n\\sum_{i=1}^{10^6+1}\\sum_{j=1}^{10^6+1}{\\Biggl(\\left\\lceil \\frac{i}{j} \\right\\rceil-\\left\\lfloor \\frac{i}{j} \\right\\rfloor\\Biggr)}+\\sum_{i=1}^{10^6+1}{\\left\\lfloor \\frac{10^6+1}{i} \\right\\rfloor}&=\\sum_{j=1}^{10^6+1}{\\Biggl(10^6+1-\\left\\lfloor \\frac{10^6+1}{j} \\right\\rfloor\\Biggr)}+\\sum_{i=1}^{10^6+1}\\left\\lfloor \\frac{10^6+1}{i} \\right\\rfloor\\\\\\\\\r\n&=\\sum_{i=1}^{10^6+1}(10^6+1)\\\\\\\\\r\n&=\\mathbf{1000002000001}.\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc100/editorial/2628"
},
{
"content": "ãã€ãã«\r\n$$\\left\\lceil \\frac{i+1}{j} \\right\\rceil-\\left\\lfloor \\frac{i}{j} \\right\\rfloor=1$$\r\nãæãç«ã€ããïŒ\r\n$$\\begin{aligned}\r\n\\Biggl(\\sum_{i=1}^{10^6+1}\\sum_{j=1}^{10^6+1}{\\left\\lceil \\frac{i}{j} \\right\\rceil}\\Biggr)-\\Biggl(\\sum_{i=1}^{10^6}\\sum_{j=1}^{10^6}{\\left\\lfloor \\frac{i}{j} \\right\\rfloor}\\Biggr)\r\n&=\\sum_{i=1}^{10^6}\\sum_{j=1}^{10^6}\\Biggl(\\left\\lceil\\frac{i+1}{j} \\right\\rceil-\\left\\lfloor \\frac{i}{j}\\right\\rfloor\\Biggr)+\\sum_{j=1}^{10^6+1}{\\left\\lceil \\frac{1}{j} \\right\\rceil}+\\sum_{i=1}^{10^6}\\left\\lceil \\frac{i+1}{10^6+1} \\right\\rceil\\\\\\\\\r\n&=(10^6)^2+(10^6+1)+10^6\\\\\\\\\r\n&=\\textbf{1000002000001}.\r\n\\end{aligned}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc100/editorial/2628/74"
}
] | ã以äžã®å€ãæ±ããŠãã ããïŒ
$$\displaystyle\Biggl(\sum_{i=1}^{10^6+1}\sum_{j=1}^{10^6+1}{\left\lceil \frac{i}{j} \right\rceil}\Biggr)-\Biggl(\sum_{i=1}^{10^6}\sum_{j=1}^{10^6}{\left\lfloor \frac{i}{j} \right\rfloor}\Biggr)$$
ãã ãïŒ$\lceil X\rceil$ 㧠$X$ 以äžã®æå°ã®æŽæ°ãïŒ$\lfloor X \rfloor$ 㧠$X$ 以äžã®æ倧ã®æŽæ°ãè¡šããŸãïŒ |
OMC100 (for experts) | https://onlinemathcontest.com/contests/omc100 | https://onlinemathcontest.com/contests/omc100/tasks/2630 | D | OMC100(D) | 600 | 10 | 78 | [
{
"content": "ã以äžãã¿ããç¹ $E$ ãïŒèŸº $BC$ ã«ã€ããŠç¹ $A$ ãšåãåŽã«ãšããšïŒ$\\triangle EAB \\sim \\triangle EDC$ ããã³ $\\triangle EAD \\sim \\triangle EBC$ ãæãç«ã€ïŒ\r\n$$BE:CE=16:17,\\quad \\angle BEC=45^\\circ$$\r\nãç¹ $D$ ãçŽç· $EC$ ã«å¯ŸããŠç¹ $B$ ãšåãåŽã«ãããšãïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã¯\r\n$$(\\triangle EBC -\\triangle EAD)+ \\triangle EAB -\\triangle EDC. $$\r\näžæ¹ã§ïŒç¹ $D$ ãçŽç· $EC$ ã«å¯ŸããŠç¹ $B$ ãšå察åŽã«ãããšãïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã¯\r\n$$(\\triangle EBC -\\triangle EAD)+\\triangle EDC- \\triangle EAB.$$\r\nãŸãïŒç¹ $D$ ãçŽç· $EC$ äžã«ãããšãïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã¯\r\n$$\\triangle EBC -\\triangle EAD.$$\r\nãããã§ïŒ$\\triangle EBC $ ãš $\\triangle EAD$ ã®é¢ç©ã¯åžžã«äžå®ã§ããïŒãŸãïŒ$\\triangle EAB$ ãš $ \\triangle EDC$ ã§ã¯ $\\triangle EDC$ ã®æ¹ãé¢ç©ãåžžã«å€§ããïŒãã£ãŠïŒç¹ $D$ ãçŽç· $EC$ ã«å¯ŸããŠç¹ $B$ ãšåãåŽã«ããæã«æå°å€ããšãïŒéãåŽã«ããæã«æ倧å€ãåãïŒ\\\r\nããŸãïŒ$EA,EB,EC,ED$ ã¯äžå®ã§ããããïŒ$|\\triangle EAB -\\triangle EDC|$ ãæ倧ã«ãªãæ¡ä»¶ã¯ä»¥äžã§äžããããïŒ\r\n$$\\angle AEB=\\angle DEC = 90^\\circ$$\r\nç¹ $D$ ãã©ã¡ãåŽã§ããã®ãããªå³åœ¢ã¯ååšããïŒããã§ïŒ$ABCD$ ã¯**ããããåžã§ã¯ãªã**ããšã«æ³šæããïŒ\\\r\nããã®ãšãé¢ç©ã®å·®ã¯ä»¥äžã§äžãããïŒæ±ããå€ã¯ããã® $2$ åã§ããïŒ\r\n$$|\\triangle EAB -\\triangle EDC|=\\frac{1}{2}(ED\\times EC - EB \\times EA)$$\r\nã㟠$EB=16x,EC=17x$ ãšããã°ïŒçžäŒŒã®é¢ä¿ãã\r\n$$S-T=\\dfrac{17}{5}x\\times 17x-\\dfrac{16}{5}x\\times 16x=\\dfrac{33}{5}x^2.$$\r\nããã§äžè§åœ¢ $EBC$ ã«ãããŠäœåŒŠå®çãã\r\n$$5^2=(16x)^2+(17x)^2-\\sqrt{2}(16x)(17x) \\implies x^2=\\dfrac{25(545+272\\sqrt{2})}{149057}.$$\r\nããªãã¡ $\\displaystyle S-T=\\frac{89925+44880\\sqrt2}{149057} $ ãšãªãããïŒè§£çãã¹ãå€ã¯ $ \\mathbf {283864}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc100/editorial/2630"
}
] | ãïŒåžãšã¯éããªãïŒåè§åœ¢ $ABCD$ ã以äžã®æ¡ä»¶ãã¿ãããšãïŒãã®é¢ç©ãšããŠããåŸãæ倧å€ããã³æå°å€ãååšããã®ã§ïŒãããã $S,T$ ãšããŸãïŒ
$$AB:CD=16:17,\quad BC=5,\quad AD=1, \quad \angle B + \angle C=135^\circ$$
ããã®ãšãïŒããæ£æŽæ° $a,b,c,d$ ãååšããŠä»¥äžã®ããã«è¡šããŸãïŒãã ãïŒ$c$ ã¯å¹³æ¹å åããããïŒ$a,b,d$ ã®æ倧å
¬çŽæ°ã¯ $1$ ã§ãïŒ$a+b+c+d$ ã解çããŠãã ããïŒ
$$S-T=\displaystyle\frac{a+b\sqrt c}{d}$$ |
OMC100 (for experts) | https://onlinemathcontest.com/contests/omc100 | https://onlinemathcontest.com/contests/omc100/tasks/2632 | E | OMC100(E) | 700 | 3 | 31 | [
{
"content": "ãåžåäºè§åœ¢ $\\alpha(\\alpha_1\\alpha_2\\cdots\\alpha_{12})$ ãš $\\beta(\\beta_1\\beta_2\\cdots\\beta_{12})$ ãïŒãšãã«ãã¹ãŠã®è§ã $150^\\circ$ ã§ãããããªåäºè§åœ¢ãšããïŒããã§ïŒé ç¹çªå·ã¯ã©ã¡ããæèšåãã§ãããšãïŒ$\\bmod{12}$ ã§åäžèŠãããã®ãšããïŒãã®ãšãïŒ$i=1,2,\\ldots,12$ ã«å¯ŸããŠèŸº $\\alpha_i\\alpha_{i+1}$ ã®é·ãã $b_{2i-1}$ïŒèŸº $\\beta_i\\beta_{i+1}$ ã®é·ãã $b_{2i}$ ãšãªãããã«ã§ããïŒ\\\r\nãããŸïŒèŸº $\\alpha_i\\alpha_{i+1}$ ã蟺 $\\beta_{i-1}\\beta_{i}$ïŒèŸº $\\beta_{i}\\beta_{i+1}$ ãšãããã亀ããïŒãªãè§ããšãã« $15^ \\circ$ ãšãªãããã« $\\alpha$ ãš $\\beta$ ãéããïŒ$i=1,2,\\ldots,12$ ã«å¯ŸãïŒ$\\alpha_i\\alpha_{i+1}$ ãš $\\beta_{i-1}\\beta_{i}$ ã®äº€ç¹ã $d_{2i-1}$ ãšãïŒ$\\alpha_i\\alpha_{i+1}$ ãš$\\beta_{i}\\beta_{i+1}$ ã®äº€ç¹ã $d_{2i}$ ãšããïŒãã®ãšãïŒèŸº $\\alpha_i d_{2i-1}$ ã®é·ãã $e_{2i-1}$ïŒèŸº $\\beta_{i} d_{2i}$ ã®é·ãã $e_{2i}$ ãšãïŒæ·»åã $\\bmod{24}$ ã§åäžèŠããã°ïŒ\r\n$$e_i+2\\cos 15^\\circ e_{i+1}+e_{i+2}=b_i$$\r\nãæãç«ã€ïŒéã«ïŒé©åœãª $e_1$ ãš $e_2$ ãå®ãããããšãïŒé©åãã $\\alpha$ ãš $\\beta$ ã®éãæ¹ãååšãïŒäžåŒãã¿ãã $e_3$ 以éã¯åž°çŽçã«æ±ºãŸãããïŒä»¥äž $c$ ã $e$ ã«çœ®ãæããŠèããŠããïŒããã§ïŒ\r\n$$\\left\\lvert\\sum_{i=1}^{3000}\\bigl(e_{2i-1}^2-e_{2i}^2\\bigr)\\right\\rvert=250\\left\\lvert\\sum_{i=1}^{12}\\bigl(e_{2i-1}^2-e_{2i}^2\\bigr)\\right\\rvert$$\r\n㯠$\\alpha$ ã®é¢ç©ãš $\\beta$ ã®é¢ç©ã®å·®ã® $1000$ åã§ããããïŒ$\\alpha$ ã®é¢ç©ãš $\\beta$ ã®é¢ç©ã®å·®ãæå°åããã°ããïŒãã®è¡šçŸã«ãã£ãŠïŒå€ã¯ $\\\\{a_n\\\\}$ ã®ã¿ã«äŸåãïŒãŸã $(a_1,a_3,a_5)$ ãš $(a_2,a_4,a_6)$ ãå
¥ãæ¿ããŠãããããšããããïŒ\\\r\nãããã§ïŒäžèŸºã®é·ããé ã« $p,q,r,p,q,r,p,q,r,p,q,r$ ã§å
šãŠã®è§ã $150^\\circ$ ã§ããåäºè§åœ¢ã®é¢ç©ã¯\r\n$$(1+\\sqrt3)(pq+qr+rp)+(p^2+q^2+r^2)$$\r\nã§äžãããïŒããã¯å¯Ÿç§°åŒã§ãããã $(a_1,a_3,a_5)$ ãš $(a_2,a_4,a_6)$ ããããã®é åºãå
¥ãæ¿ãå¯èœã§ããïŒ\r\n$$P=p-10001,\\quad Q=q-10001,\\quad R=r-10001$$\r\nãšããã°ïŒäžåŒã¯\r\n$$10001^2(6+3\\sqrt{3})+10001(4+2\\sqrt3)(P+Q+R)+(1+\\sqrt3)(PQ+QR+RP)+(P^2+Q^2+R^2)$$\r\näž¡åäºè§åœ¢ã§ã®ãã®å€ã®å·®ãæå°åããã«ã¯ïŒæããã« $P+Q+R$ ã®å·®ã $1$ ã«ããããšãå¿
èŠã§ããããïŒçµå±\r\n$$\\begin{aligned}\r\n\\\\{a_n\\\\}=&(10001,10002,10004,10003,10005,10006),\\\\\\\\\r\n&(10001,10002,10003,10004,10006,10005),\\\\\\\\\r\n&(10002,10001,10003,10004,10005,10006)\r\n\\end{aligned}$$\r\nã®ã¿ãèããã°ããïŒå®éã«èšç®ããã° $(10002,10001,10003,10004,10005,10006)$ ã®ãšãå·®ã\r\n$$40018+20003\\sqrt3$$\r\nã§æå°ãšãªãïŒãã£ãŠïŒæ±ããæå°å€ã¯ $40018000+20003000\\sqrt3$ ã§ããïŒè§£çãã¹ãå€ã¯ $\\mathbf{60021003}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc100/editorial/2632"
},
{
"content": "ã$\\\\{c_i\\\\}$ ãã€ãã«æ£ã®æ¡ä»¶ã¯ç¡ããŠãïŒå®ã¯çµæã¯å€ãããªãïŒããã§ã¯ç¡èŠããïŒæçµçã«ïŒææã®æå°å€ãäžããçµã§ãã£ãŠ $\\\\{c_i\\\\}$ ãã€ãã«æ£ã§ãããã®ãå®éã«ååšããããšã確ãããããšã§ïŒãã®åž°çã¯æ£åœåãããïŒïŒ$p=2\\cos 15^\\circ$ ãšããïŒæ°å $\\{c_i\\}$ ã¯æŒžååŒ\r\n$$c_i+pc_{i+1}+c_{i+2}-c_{i+6}-pc_{i+7}-c_{i+8}=0$$\r\nãã¿ããïŒãŸã $\\zeta$ ã $1$ ã®åå§ $12$ ä¹æ ¹ãšãããšïŒ\r\n$$1+px+x^2-x^6-px^7-x^8=(1-x^6)(x+\\zeta)(x+\\overline{\\zeta})$$\r\nãšè¡šãããããïŒ$\\{c_i\\}$ 㯠$1$ ã® $6$ ä¹æ ¹ããã³ $\\zeta,\\overline{\\zeta}$ ã® $i$ ä¹ã®ç·åœ¢åã§è¡šãããïŒ\\\r\nãããŸïŒ$(c_i)^2$ ã¯å±éãããšããã€ãã®è€çŽ æ°ïŒ$i$ ã«ãããªãïŒã® $i$ ä¹åãšãªããïŒãã®ãã¡ $(-1)^i$ 以å€ã®ãã®ã¯ïŒèããã¹ãç·å\r\n$$\\sum_{i=1}^{6000}(-1)^ic_i^2$$\r\nã«ãããŠã¯çžæ®ºãããïŒ$c_i$ ã«ããã $\\zeta,\\overline{\\zeta}$ ã®é
ã¯ïŒ$(c_i)^2$ ã«ãããŠé
$(-1)^i$ ãçã¿åºãã®ã«å¯äžããªãããšããããããïŒãã㯠$\\\\{c_i\\\\}$ ãåšæ $6$ ã§ãããšããŠèããŠããããšãæå³ããïŒ\r\nãã®ãšãïŒå®çŸ©åŒãã\r\n$$(c_1+c_3+c_5)^2-(c_2+c_4+c_6)^2=\\frac{1}{4-p^2}\\Bigl((a_1+a_3+a_5)^2-(a_2+a_4+a_6)^2\\Bigr)$$\r\nããã³\r\n$$(2-p^2)(c_1^2-c_2^2+\\cdots-c_6^2)+2(c_1c_3+c_3c_5+c_5c_1-c_2c_4-c_4c_6-c_6c_2)=a_1^2-a_2^2+\\cdots-a_6^2$$\r\nãé£ç«ããããšã§ $c_1^2-c_2^2+\\cdots-c_6^2$ ã $a_1,a_2,\\dots,a_6$ ãçšããŠè¡šãããšãã§ãïŒããšã¯åæ§ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc100/editorial/2632/69"
}
] | ãããããé·ã $6,6000$ ã®æ£æŽæ°å $\\{a_n\\}\_{n=1,\ldots,6},\\{b_n\\}\_{n=1,\ldots,6000}$ïŒããã³é·ã $6000$ ã®æ£ã®å®æ°å $\\{c_n\\}\_{n=1,\ldots,6000}$ ãïŒä»¥äžã®æ¡ä»¶ãããããã¿ãããŸãïŒ
- $\\{a_n\\}$ 㯠$(10001,10002,10003,10004,10005,10006)$ ã®äžŠã³æ¿ãã§ããïŒ
- $\\{b_n\\}$ 㯠$\\{a_n\\}$ ã $1000$ åç¹°ãè¿ããŠåŸãããïŒ
- $\\{c_n\\}$ ã¯ä»»æã® $1\leq i \leq 5998$ ã«å¯Ÿã以äžãã¿ããïŒ$$c_i+\bigl(2\cos 15^\circ\bigr) c_{i+1}+c_{i+2}=b_i$$
ãã ãïŒãããªã $\\{a_n\\}$ ã«å¯ŸããŠãïŒé©ãã $\\{c_n\\}$ ã®ååšãä¿èšŒãããŸãïŒ\
ããã®ãšãïŒä»¥äžã®ãšãåŸãæå°å€ãååšãïŒæ£æŽæ° $x,y,z$ ã«ãã£ãŠ $x+y\sqrt z$ ã®åœ¢ã§è¡šããŸãïŒãã ã $z$ ã¯å¹³æ¹å åããã¡ãŸããïŒ$x+y+z$ ãæ±ããŠãã ããïŒ
$$\left\lvert\sum_{i=1}^{3000}\bigl(c_{2i-1}^2-c_{2i}^2\bigr)\right\rvert$$ |
OMC100 (for experts) | https://onlinemathcontest.com/contests/omc100 | https://onlinemathcontest.com/contests/omc100/tasks/2631 | F | OMC100(F) | 900 | 0 | 25 | [
{
"content": "ãäžå³ã®ããã«äžè§åœ¢ãéšåãã¹ç®ãšããŠæããïŒãã¹ãŠã®ãã¹ã $0$ ã®ç¶æ
ããå§ãïŒæ¬¡ã®æäœã $10000$ åç¹°ãè¿ãïŒ\r\n\r\n- 蟺äžïŒãã¹ç®ã§ã¯ãªãïŒãéã£ãŠå·Šäžããå³äžãŸã§è³ãæççµè·¯ãäžã€éžã³ïŒãã®äžåŽã«ãããã¹ãã¹ãŠã« $1$ ãå ããïŒ\r\n\r\nããããŠã§ããäžè§åœ¢ã¯å¿
ãæŽã£ãäžè§åœ¢ãšãªãïŒéã«ïŒæäžæ®µããã¹ãŠ $10000$ ã§ãããããªæŽã£ãäžè§åœ¢ $T$ ã¯ïŒå¿
ããã®æäœãé©åœã«è¡ãããšã§åŸãããïŒããã«ïŒ$T$ ãåŸãæäœã®æ¹æ³ã®ç·æ°ã¯ïŒ$T$ ã®æŽã床ã«äžèŽããããšããããïŒ\\\r\nããã£ãŠ $a_{2021,1000}=5678$ ãšãªãæäœãèããã°ããïŒæ±ããå Žåã®æ°ã¯ $n$ çªç®ã®ã«ã¿ã©ã³æ° $C_n$ ãçšããŠ\r\n$$(C_{1000}\\times C_{1022})^{4322}\\times (C_{2022}-C_{1000}\\times C_{1022})^{5678}\\times {}\\_{10000}\\mathrm{C}\\_{5678}$$\r\nã§ããããšããããïŒããã $2$ ã§å²ããããæ倧ã®åæ°ã¯ $\\bold{110261}$ ã§ããïŒ\r\n![figure 1](\\/images\\/OcMMTbLtgotbeSFCo6rhz8jpgBF1qR5EYJbw9LLZ)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc100/editorial/2631"
},
{
"content": "**çŽæ**\r\n- $n=2022,m=10000$ ãšããïŒ \r\n- æ°å㯠$0$ -indexed ãšããïŒ(è¡åã®åçªå·ã»è¡çªå·ãå«ã)\r\n- è¡å $A$ ã® $(i,j)$ æå (第 $i$ è¡ç¬¬ $j$ å) ã $A[i,j]$ ã§è¡šãïŒ \r\n\r\n___\r\nã以äžã®æ¡ä»¶ããã¹ãŠæºãã $n + 1$ 次æ£æ¹è¡å $U$ ã**æŽã£ãè¡å** ãšããïŒ\r\n- $i = 0 \\lt j$ ã®ãšãïŒ$U[i,j] = 0$ïŒ\r\n- $i = j$ ã®ãšãïŒ$U[i,j] = m$ïŒ\r\n- $i \\lt j$ ã®ãšãïŒ$U[i,j]$ 㯠$U[i+1,j],U[i,j-1]$ ã®æå°å€ãããå°ããïŒ\r\n- $i \\gt j$ ã®ãšãïŒ$U[i,j] = 0$ïŒ\r\n\r\nã**æŽã£ãè¡å** $U$ ã®**æŽã床** $f(U)$ ãïŒ\r\n$$f(U) = \\prod_{i=1}^{n-1} \\prod_{j=i}^{n-1} \\binom{U[i,j] - U[i-1,j+1]}{U[i,j] - U[i-1,j]}$$\r\nãšå®çŸ©ããïŒ \r\nã**æŽã£ãè¡å**ã¯ïŒãæäžè¡ããã¹ãŠ $m$ ã§ãããã㪠$n$ 段ã®**æŽã£ãäžè§åœ¢**ããšïŒ**æŽã床**ã®å®çŸ©ãå«ããŠç䟡ã§ïŒå¶çŽã $a_{n-1,1000} = 5678$ ãã¯ã $U[1000,1001] = 5678$ ããšçäŸ¡ïŒ \r\nãã£ãŠïŒ$S$ ã¯ïŒ$U[1000,1001] = 5678$ ãªã**æŽã£ãè¡å** $U$ ã®**æŽã床**ã®ç·åïŒ \r\n\r\nã$n + 1$ è¡ $m$ åã®ãã¹ç®ã«ïŒ$n$ 以äžã®æŽæ°ãæžã蟌ãŸãïŒãããã以äžã®æ¡ä»¶ããã¹ãŠæºãããšãïŒããã**æŽãç€**ãšããïŒ\r\n- 第 $0$ è¡ã«ã¯ïŒãã¹ãŠ $0$ ãæžãããïŒ\r\n- ååã§ïŒæžãããæ°ã¯äžããäžã«å調éæžå°ã§ããïŒ\r\n- 第 $i$ è¡ã«ã¯ïŒãã¹ãŠ $i$ 以äžã®æŽæ°ãæžãããïŒ\r\n\r\n**æŽãç€** $B$ ã**æŽã£ãè¡å** $U$ ãè¡šããšã¯ïŒä»¥äžã®æ¡ä»¶ãæºããããšãããïŒãªãïŒãã®ãã㪠$U$ ã¯äžæã«ååšããããšã蚌æã§ããïŒ\r\n- $B$ ã®ç¬¬ $i$ è¡ã«ã¯ïŒ$j$ 以äžã®æŽæ°ãã¡ããã© $U[i,j]$ åæžãããïŒ\r\n\r\nã第 $i - 1$ è¡ãŸã§ã®æžã蟌ã¿æ¹ãšïŒç¬¬ $i$ è¡ã«ããã $j$ æªæºã®æŽæ°ã®æžã蟌ã¿æ¹ãæ¢ã«æ±ºãŸã£ãŠãããšããïŒ( $i,j$ 㯠$1$ ä»¥äž $n$ 以äžã®æŽæ°) \r\nã第 $i$ è¡ã§ $j$ ãæžã蟌ãããã¹ã¯ïŒçäžã®ãã¹ã $j$ 以äžã§ãããã㪠$m - U[i-1,j+1]$ åã®ãã¹ããïŒ$j$ æªæºã®æŽæ°ã«æ¢ã«å æãããŠãã $m - U[i,j]$ åã®ãã¹ãé€ããïŒ$U[i,j] - U[i-1,j+1]$ åã®ãã¹ã§ããïŒ \r\nããã®äžãã $U[i,j] - U[i,j+1]$ åã®ãã¹ãéžã㧠$j$ ãæžã蟌ãã®ã§ããããïŒ$U$ ãè¡šã**æŽãç€** ã«ã€ããŠïŒ$i$ è¡ç®ã® $j$ ã®æžã蟌ã¿æ¹ã¯ïŒ$i$ è¡ç®ã® $j-1$ ãŸã§ã®æžã蟌ã¿æ¹ããšã« \r\n$\\dbinom{U[i,j] - U[i-1,j+1]}{U[i,j] - U[i-1,j]}$ éãååšããïŒ \r\nããã£ãŠïŒ**æŽã£ãè¡å** $U$ ã®**æŽã床**ã¯ïŒ$U$ ãè¡šã**æŽãç€**ã®åæ°ã«çããïŒ \r\n \r\nããã**æŽãç€** $B$ ãè¡šã**æŽã£ãè¡å** $U$ ã $U[1000,1001] = 5678$ ãæºããããšã¯ïŒ$B$ ã® $1000$ è¡ç®ã«ã¡ããã© $4322$ åã® $1000$ ãæžãããŠããããšãšåå€ïŒ \r\nãéè² æŽæ° $k$ ã«å¯ŸãïŒ$C_k$ ã $k$ çªç®ã®ã«ã¿ã©ã³æ° $(= \\frac{(2k)!}{k!(k+1)!})$ ãšããïŒ \r\nã**æŽãç€**ã®äžåãšããŠããããæ°å㯠$C_n$ åã§ïŒãã®ãã¡ç¬¬ $1000$ é
ã $1000$ ã§ãããã®ã¯ $C_{1000} \\cdot C_{n-1000}$ åã§ããããïŒ\r\n$1000$ è¡ç®ã«ã¡ããã© $4322$ åã® $1000$ ãæžããã**æŽãç€**ã®åæ°ã¯ïŒ\r\n$${}\\_{10000} \\mathrm{C} \\_{4322} (C_{1000} \\cdot C_{n-1000})^{4322} (C_n - C_{1000} \\cdot C_{n-1000}) ^{5678}$$\r\nã§ããïŒããã $S$ ã«çããïŒ \r\nãããã $2$ ã§å²ãåããæ倧ã®åæ°ã¯ïŒã«ãžã£ã³ãã«ã®å®çãã¯ã³ããŒã®å®çã«ããïŒ\r\n$$7 + 15 \\times 4322 + 8 \\times 5678 = \\textbf{110261}$$ ãšèšç®ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc100/editorial/2631/221"
}
] | ã以äžã®ããã«ïŒæ£äžè§åœ¢ç¶ã«éè² æŽæ°ã䞊ã¹ãé
åã**æŽã£ãäžè§åœ¢**ã§ãããšã¯ïŒæäžè¡ä»¥å€ã«äœçœ®ããä»»æã®æ°ã«ã€ããŠïŒãã®ããäžã«äœçœ®ããå·Šå³ $2$ ã€ã®æ°ã®æå°å€ä»¥äžã§ããããšãæããŸãïŒä»¥äžã¯ $4$ 段ã®**æŽã£ãäžè§åœ¢**ã®äžäŸãšãªã£ãŠããŸãïŒ
$$
\begin{aligned}
~ & & ~ & & ~ & & 0 & & ~ & & ~ & & ~ \\\\
~ & & ~ & & 1 & & ~ & & 2 & & ~ & & ~ \\\\
~ & & 1 & & ~ & & 5 & & ~ & & 2 & & ~ \\\\
2 & & ~ & & 7 & & ~ & & 6 & & ~ & & 6
\end{aligned}
$$
ããŸãïŒ$n$ 段ã®**æŽã£ãäžè§åœ¢**ã®**æŽã床**ãïŒä»¥äžã«ç€ºãäºé
ä¿æ°ã®ç·ç©ã§å®ããŸãïŒ\
ããã ãïŒäžãã $x(\geq 1)$ 段ç®ïŒå·Šãã $y(\geq 1)$ åç®ã«äœçœ®ããæ°ã $a_{x,y}$ ã§è¡šããã®ãšãïŒ$i=0,1,\ldots$ ã«å¯Ÿã $a\_{i,0}=0$ ãšããŸãïŒ
$$
\prod_{x=2}^{n}\prod_{y=1}^{x-1} \binom{a_{x,y}-a_{x-2,y-1}}{a_{x,y}-a_{x-1,y}}
$$
ã$2022$ 段ã®**æŽã£ãäžè§åœ¢**ã§ãã£ãŠïŒä»¥äžãã¿ãããã®ãã¹ãŠã«ã€ããŠïŒãããã®**æŽã床**ã®ç·åã $S$ ãšããŸãïŒ$S$ ã $2$ ã§å²ããããæ倧ã®åæ°ãæ±ããŠãã ããïŒ
$$a_{2022,i}=10000 \quad (1\leq i\leq 2022),\qquad a_{2021,1000}=5678$$ |
OMC099 (for beginners) | https://onlinemathcontest.com/contests/omc099 | https://onlinemathcontest.com/contests/omc099/tasks/3183 | A | OMC099(A) | 100 | 285 | 285 | [
{
"content": "ãæ±ãã $x$ ã«ã€ããŠïŒæ¬¡ã®åŒãæãç«ã€. \r\n$$\r\n12(x+91)=21(x+19)\r\n$$\r\nããã解ããšïŒ$x=\\mathbf{77}$ ãšæ±ãŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc099/editorial/3183"
}
] | ãããæ£æŽæ° $x$ ãããïŒ$x$ ã« $91$ ã足ããŠãã $12$ åãããšãã®å€ãšïŒ$x$ ã« $19$ ã足ããŠãã $21$ åãããšãã®å€ã¯åãã§ããïŒ$x$ ãçããŠãã ããïŒ |
OMC099 (for beginners) | https://onlinemathcontest.com/contests/omc099 | https://onlinemathcontest.com/contests/omc099/tasks/3181 | B | OMC099(B) | 100 | 275 | 280 | [
{
"content": "ã$B$ ãå£åŒ§ $AC$ äžã«ãããšãã. $\\triangle OAB, \\triangle OBC$ ã¯äºç蟺äžè§åœ¢ã§ãããã,\r\n$$\\angle{AOB}=100\\degree,\\quad \\angle{BOC}=20\\degree$$\r\nã§ãã. ãŸã, $\\triangle OCA$ ãäºç蟺äžè§åœ¢ãªã®ã§, \r\n$$\r\n\\angle{OAC}=\\frac{180\\degree - \\angle{AOB}-\\angle{BOC}}{2}=30\\degree\r\n$$\r\nã§ãã. 以äžãã, $\\angle{BAC}=\\angle{OAB}-\\angle{OAC}=\\mathbf{10}\\degree$ ã§ãã. $B$ ãå£åŒ§ $AC$ äžã«ããå Žåãåæ§ã« $10\\degree$ ã§ãã. ãªã, å®éã«ã¯ $\\angle{OAB}$ ãäžå®ã®ç¯å²ã«ããå Žå㯠$\\angle{BOC}=2\\angle{BAC}$ ãæç«ã, $\\angle{OAB}$ ã«ã¯äŸåããªã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc099/editorial/3181"
}
] | ãç¹ $O$ ãäžå¿ãšããåäžã«ç¹ $A,B,C$ ãããïŒ
$$
\angle{OAB}=40^\circ,\quad \angle{OBC}=80^\circ
$$
ãã¿ãããŠãããšãïŒ$\angle{BAC}$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ããïŒ |
OMC099 (for beginners) | https://onlinemathcontest.com/contests/omc099 | https://onlinemathcontest.com/contests/omc099/tasks/3184 | C | OMC099(C) | 200 | 280 | 282 | [
{
"content": "ãèããããç®ã®åºæ¹ãšããŠ, 以äžã®äºã€ã®å Žåãèãããã. \r\n - $10$ åã®ãã¡, $1$ å㯠$3$ ã, æ®ãã® $9$ å㯠$1$ ãåºã. \r\n - $10$ åã®ãã¡, $2$ å㯠$2$ ã, æ®ãã® $8$ å㯠$1$ ãåºã. \r\n\r\nåè
ã®å Žå㯠${}\\_{10}\\mathrm{C}\\_{1}=10$ éã, åŸè
ã®å Žå㯠${}\\_{10}\\mathrm{C}\\_{2}=45$ éãããã®ã§, çã㯠$10+45=\\mathbf{55}$ éã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc099/editorial/3184"
},
{
"content": "ã$9$ å ã® $\\circ$ ãš $2$ åã® $\\times$ ãå·Šå³ $1$ åã«äžŠã¹ãŠããïŒäžçªå·Šã« $1$ åã® $\\circ$ ãè¿œå ããããšãèãïŒå·Šãã $n$ åç® ã® $\\circ$ ã®å³é£ã«ç¶ãïŒé£ç¶ãã $\\times$ ã®åæ°${} \\ge 0$ ãïŒ$n$ åç®ã«åºãç®${} - 1$ ã«å¯Ÿå¿ãããããšã§ïŒçã㯠${}\\_{11}\\mathrm C\\_2 = \\mathbf{55}$ïŒ",
"text": "äžå¯Ÿäžå¯Ÿå¿",
"url": "https://onlinemathcontest.com/contests/omc099/editorial/3184/73"
}
] | ãåé¢ã« $1$ ãã $6$ ãŸã§ã®æ°åãæžãããäžè¬çãªå
é¢äœã®ãµã€ã³ããäžã€ãããŸã. ãã®ãµã€ã³ãã $10$ åç¶ããŠãµã£ããšã, åºãç®ã®ç·åã $12$ ã«ãªããããªç®ã®åºæ¹ã¯äœéããããŸããïŒ |
OMC099 (for beginners) | https://onlinemathcontest.com/contests/omc099 | https://onlinemathcontest.com/contests/omc099/tasks/3180 | D | OMC099(D) | 200 | 233 | 260 | [
{
"content": "ãçžå å¹³åã»çžä¹å¹³åã®é¢ä¿ãã, 以äžã®äžçåŒãæç«ãã.\r\n$$\r\n\\sqrt[3]{(xyz)^2} \\leq \\frac{xy+yz+zx}{3}=2^2 \\cdot 3^2 \\cdot 5^4\r\n$$\r\nãããã $xyz \\leq 2^3 \\cdot 3^3 \\cdot 5^6$ ã§ãã, äžããããåŒã¯ä»¥äžã®ããã«è©äŸ¡ã§ãã. \r\n$$\r\n\\frac{1}{x}+\\frac{1}{y}+\\frac{1}{z}=\\frac{2^2 \\cdot 3^3 \\cdot 5^4}{xyz} \\geq \\frac{1}{2 \\cdot 5^2}\r\n$$\r\néã« $x=y=z=2 \\cdot 3 \\cdot 5^2 $ ãšããã°çå·ãæç«ããã®ã§, 解çãã¹ãå€ã¯ $2 \\cdot 5^2=\\mathbf{50}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc099/editorial/3180"
},
{
"content": "ã$2$ å AM-GM ã®äžçåŒãçšããŠ\r\n$$ \\dfrac1x + \\dfrac1y + \\dfrac1z = 3 \\times \\frac{x^{-1} + y^{-1} + z^{-1}}3 \\ge 3 \\left(xyz\\right)^{-\\frac13} \\ge 3 \\left(\\frac{xy+yz+zx}3\\right)^{-\\frac12} = \\frac1{50} $$\r\nã§ããïŒãã㯠$x = y = z = 2 \\cdot 3 \\cdot 5^2$ ã§çå·æç«ããïŒæ±ããå€ã¯ $\\mathbf{50}$ïŒ",
"text": "AM-GM-AM-GM",
"url": "https://onlinemathcontest.com/contests/omc099/editorial/3180/72"
}
] | ãæ£ã®å®æ° $x, y, z$ ã $xy+yz+zx=2^2 \cdot 3^3 \cdot 5^4$ ãæºãããšã,
$$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$$
ã®ãšãåŸãæå°å€ã¯, æ£æŽæ° $n$ ãçšã㊠$\dfrac{1}{n}$ ãšè¡šããŸã. $n$ ã解çããŠãã ãã |
OMC099 (for beginners) | https://onlinemathcontest.com/contests/omc099 | https://onlinemathcontest.com/contests/omc099/tasks/3179 | E | OMC099(E) | 300 | 153 | 207 | [
{
"content": "**解æ³1.**ãäºè§åœ¢ $ABCDE$ ãç·å $CE$ ã§äºåã, ããããã®é¢ç©ãèšç®ãã. äžè§åœ¢ $CDE$ ã®é¢ç©ã¯åžžã« $49\\/2$ ã§ãã. åè§åœ¢ $ABCE$ ã®é¢ç©ã«ã€ããŠ, çŽç· $BC$ ãšçŽç· $EA$ ã®äº€ç¹ã $F$ ãšãããš $\\angle{EFC}=90\\degree$ ã§ãã. ããŸ,\r\n$$\\angle{FBA}=\\theta, \\quad BC=EA=x$$\r\nãšãã, äžè§åœ¢ $FCE$ ã«äžå¹³æ¹ã®å®çãé©çšããŠæŽçãããš\r\n$$\r\n(x+2\\sin\\theta)^2+(x+2\\cos\\theta)^2=98 \\implies x^2+2(\\sin{\\theta}+\\cos{\\theta})x=47\r\n$$\r\nãåŸã. ããã«ãã, åè§åœ¢ $ABCE$ ã®é¢ç© $S$ ã¯æ¬¡ã®ããã«èšç®ã§ãã.\r\n$$\r\n\\begin{aligned}\r\nS &= \\frac{1}{2} (x+2\\sin{\\theta})(x+2\\cos{\\theta}) - \\frac{1}{2} \\cdot 2\\sin{\\theta} \\cdot 2\\cos{\\theta}\\\\\\\\\r\n &= \\frac{1}{2} \\Bigl(x^2+2(\\sin{\\theta}+\\cos{\\theta})x \\Bigl)\\\\\\\\\r\n &= \\frac{47}{2}\r\n\\end{aligned}\r\n$$\r\nã以äžãã, ãã®äºè§åœ¢ã®é¢ç©ã¯åœ¢ç¶ã«ããã $48$ ã§ãã, ç¹ã«çããã¹ãå€ã¯ $48+48=\\mathbf{96}$ ã§ãã.\r\n\r\n **解æ³2.**ãæ¡ä»¶ãæºããäºãã«ååãªäºè§åœ¢ $4$ ã€ã以äžã®ããã«ã¯ãã€ãããšäžå³ã®ããã«ãªã. \\\r\nããããã, ãã®äºè§åœ¢ã®é¢ç©ã¯åœ¢ç¶ã«ããã, \r\n$$\r\n\\frac{14^2-2^2}{4}=48\r\n$$ \r\nã§ãã, ç¹ã«çããã¹ãå€ã¯ $48+48=\\mathbf{96}$ ã§ãã. \r\n\r\n![figure 1](\\/images\\/tCfrwJLYft3puAeRSeZoA4NjeNmBcmOxOuWwZOMR)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc099/editorial/3179"
}
] | ãåžäºè§åœ¢ $ABCDE$ ã¯æ¬¡ã®æ¡ä»¶ãæºãããŠããŸã.
$$\begin{aligned}
\angle{A}+ \angle{B}=270\degree , \quad \angle{D}=90\degree,\\\\
AB=2 , \quad CD=DE=7 ,\quad BC=EA
\end{aligned}$$
ãã®ãšã, $ABCDE$ ã®é¢ç©ãšããŠããåŸãæ倧å€ãšæå°å€ãæ±ã, ãã®åãçããŠãã ãã. |
OMC099 (for beginners) | https://onlinemathcontest.com/contests/omc099 | https://onlinemathcontest.com/contests/omc099/tasks/3182 | F | OMC099(F) | 400 | 59 | 129 | [
{
"content": "ã$m=n$ ã®å Žåã¯æããã«äžåŒãæºãããªã. 察称æ§ãã $m \\gt n$ ãšããŠèãã.\\\r\nã$m-n=d \\geq 1$ ãšããŠ, äžåŒã®å·ŠèŸºã«ä»£å
¥ããããšã§\r\n$$\r\n\\biggl \\lfloor \\frac{n^2}{m} \\biggl \\rfloor + \\biggl \\lfloor \\frac{m^2}{n} \\biggl \\rfloor = m+n+ \\biggl \\lfloor \\frac{d^2}{m} \\biggl \\rfloor + \\biggl \\lfloor \\frac{d^2}{n} \\biggl \\rfloor \r\n$$\r\nãåŸã. ããã $m+n+1$ ã«çããããšãã,\r\n$$ \\biggl \\lfloor \\frac{d^2}{m} \\biggl \\rfloor = 0,\\quad \\biggl \\lfloor \\frac{d^2}{n} \\biggl \\rfloor=1$$\r\nãæç«ããŠããå¿
èŠããã, ä»»æã®å®æ° $x$ ã«ã€ã㊠$\\lfloor x\\rfloor\\leq x\\lt\\lfloor x\\rfloor+1$ ãæãç«ã€ããšãçšããã°ããã¯ä»¥äžã®ããã«è¡šçŸã§ãã. \r\n$$\r\n\\frac{d^2}{2} \\lt n \\leq d^2 \\lt m = n+d\r\n$$\r\n$d^2-d$ ãš ${d^2}\\/2$ ã®å€§å°ãèæ
®ããã°, çµæãšããŠé¡æãæºããçµ $(m,n)$ ã¯ä»¥äžã®ããã«ãªã. \r\n$$\r\n(m,n)=(d^2+1, d^2-d+1), (d^2+2, d^2-d+2), \\cdots, (d^2+d, d^2) \\quad (1\\leq d \\leq 99)\r\n$$\r\nããŸ, $d$ ãåºå®ãããšãã«è¡šããæå°ã®æŽæ°ã¯ $d^2-d+1$ , æ倧ã®æŽæ°ã¯ $d^2+d$ ã§ããã,\r\n$$(d+1)^2-(d+1)+1=d^2+d+1$$\r\nã§ãããã, å
ã«çŸ
åãããçµã®äžã«ã¯ $1$ ãã $9900$ ãŸã§ã®æŽæ°ãããããäžåã ãåºçŸããŠããããšãããã.\\\r\nã$m \\lt n$ ã®å Žåãåæ§ã§ãããã, çããã¹ãå€ã¯æ¬¡ã®èšç®ã«ãã£ãŠåŸããã. \r\n$$\r\n2 \\sum\\limits_{k=1}^{9900} k=\\mathbf{98019900}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc099/editorial/3182"
}
] | ã$1$ ä»¥äž $10000$ 以äžã®æŽæ°ã®é åºä»ãã®çµ $(m,n)$ ã§ãã£ãŠ,
$$
\biggl \lfloor \frac{n^2}{m} \biggl \rfloor + \biggl \lfloor \frac{m^2}{n} \biggl \rfloor = m + n + 1
$$
ãæºãããã®ãã¹ãŠã«ã€ããŠ, $m+n$ ã®ç·åã解çããŠãã ãã.\
ããã ã, $\lfloor x \rfloor$ 㧠$x$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šããã®ãšããŸã. |
OMC098 | https://onlinemathcontest.com/contests/omc098 | https://onlinemathcontest.com/contests/omc098/tasks/2581 | A | OMC098(A) | 200 | 248 | 261 | [
{
"content": "$$(äžåŒ)=\\sum_{k=1}^{5100}\\sqrt{\\frac{\\big(\\sqrt{2k+1}-\\sqrt{2k-1}\\big)^2}{2}}=\\sum_{k=1}^{5100}\\frac{\\sqrt{2k+1}-\\sqrt{2k-1}}{\\sqrt{2}}=\\frac{\\sqrt{10201}-\\sqrt{1}}{\\sqrt{2}}=\\sqrt{\\textbf{5000}}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc098/editorial/2581"
}
] | ã以äžã®**å€ã®å¹³æ¹**ãæ±ããŠãã ããïŒ
$$\displaystyle\sqrt{\frac{\sqrt{3}-\sqrt{1}}{\sqrt{3}+\sqrt{1}}}+\sqrt{\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}}+\sqrt{\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}}+...+\sqrt{\frac{\sqrt{10201}-\sqrt{10199}}{\sqrt{10201}+\sqrt{10199}}}$$ |
OMC098 | https://onlinemathcontest.com/contests/omc098 | https://onlinemathcontest.com/contests/omc098/tasks/2580 | B | OMC098(B) | 200 | 251 | 262 | [
{
"content": "ãåãã«å³äžãå·Šäžã©ã¡ãã®æ£æ¹åœ¢ã«åãã£ãŠé²ãããš, ããããã®æ£æ¹åœ¢ã«ã€ããŠã©ã¡ãåãã« $1$ åšããããå®ãããš, ããããã«å¯ŸããŠé©ããéé ãäžæã«å¯Ÿå¿ãã. ãã£ãŠæ±ããå Žåã®æ°ã¯ $2^{18}=\\textbf{262144}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc098/editorial/2580"
}
] | ãäžå³ã®ããã«, $3$ çš®é¡ã®å€§ããã®æ£æ¹åœ¢ãçµã¿åãããå³åœ¢ããããŸãïŒããã«ãããŠ, $X$ ããåºçºã, ãã¹ãŠã®æ£æ¹åœ¢ã®èŸºãããããåŒãè¿ãããšãªãã¡ããã© $1$ åãã€éã£ãŠ $X$ ã«æ»ã£ãŠããéé ã¯äœéããããŸããïŒ\
ããã ã, ã©ã®ç¹ãè€æ°åéãããã®ãšã, ããéé ãéã«ãã©ã£ããã®ãå¥ã®éé ãšã¿ãªããŸãïŒ
![figure 1](\/images\/FR6Utl6dsuafJKk4ezXagrnOb8sBJ6mb5x4L2h1V) |
OMC098 | https://onlinemathcontest.com/contests/omc098 | https://onlinemathcontest.com/contests/omc098/tasks/2480 | C | OMC098(C) | 300 | 160 | 216 | [
{
"content": "ãäžåŒã¯ä»¥äžã®ããã«å€åœ¢ã§ããïŒ\r\n$$(x-y)(y-z)(z-x)=0,\\quad (x+1)(y+1)(z+1)=10^{99}$$\r\nã$x=y$ ã®å Žåãèãããš, 第 $2$ åŒã¯ $(x+1)^2(z+1)=10^{99}$ ãšãªããã, $x+1$ 㯠$2^{49}5^{49}$ ã® $2$ 以äžã®çŽæ°ã§ãã. éã«ãã®ããã« $x$ ãéžã¹ã°, é©ãã $z$ ãäžæã«å®ãŸããã, 以äžãã $(49+1)^2-1=2499$ éãã§ãã.\\\r\nã$y=z$ ããã³ $z=x$ ã®å Žåãåæ§ã« $2499$ éãã§ããã,\r\n$$(x,y,z)=(10^{33}-1,10^{33}-1,10^{33}-1)$$\r\nã $3$ åæ°ããããŠããããšã«æ³šæãããš, 解çãã¹ãå€ã¯ $2499\\times 3-2=\\textbf{7495}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc098/editorial/2480"
}
] | ã以äžã®çåŒããšãã«æºãã, é åºä»ããæ£ã®æŽæ°ã®çµ $(x,y,z)$ ã¯ããã€ãããŸãã.
$$\begin{aligned}
& xy^2+yz^2+zx^2=x^2y+y^2z+z^2x,\\\\
& x+y+z+xy+yz+zx+xyz = \underbrace{999\ldots99}_{99å}
\end{aligned}$$ |
OMC098 | https://onlinemathcontest.com/contests/omc098 | https://onlinemathcontest.com/contests/omc098/tasks/2576 | D | OMC098(D) | 400 | 36 | 98 | [
{
"content": "ã$\\angle BAD=\\theta$ ãšãã. $AC=6x$ ãšãããš $\\angle BAE=\\angle EAC=3\\theta$ ããã³ $BE:EC=2:1$ ãã $AB=12x$ ã§ãã.\r\nãŸã $|\\triangle ABD|=|\\triangle AED|$ ãã $AB\\sin\\theta=AE\\sin2\\theta$ ããªãã¡ $AE=6x\\/\\cos\\theta$ ã§ãã.\\\r\nãããã§, 蟺 $AC$ äžã« $AM=MN=NC$ ãªãç¹ $M,N$ ããšã, ç·å $AE$ ã®äžç¹ã $L$ ãšãããš, $3$ ç¹ $D,L,M$ ã¯åäžçŽç·äžã«ãã, ããã¯èŸº $AB$ ã«å¹³è¡ã§ãã. ãããã£ãŠ $\\angle ALM=\\angle LAM=3\\theta$ ãã $MA=MN=ML$.\\\r\nããã£ãŠ $\\angle ALN=90^{\\circ}$ ãã, $AL=AN\\cos3\\theta$ ããªãã¡\r\n$$\\begin{aligned}\r\n\\dfrac{3x}{\\cos\\theta}=4x\\cos3\\theta &\\iff 3=4\\cos3\\theta\\cos\\theta\\\\\\\\\r\n&\\iff 3=2(\\cos4\\theta+\\cos2\\theta)\\\\\\\\\r\n&\\iff 4\\cos^22\\theta+2\\cos2\\theta-5=0\r\n\\end{aligned}$$\r\nãããã£ãŠ $\\displaystyle\\cos2\\theta=\\frac{\\sqrt{21}-1}{4}$ ãåŸãã®ã§, 解çãã¹ãå€ã¯ $\\textbf{26}$ ã§ãã.\r\n![figure 1](\\/images\\/xsExGjsx0tTtLhZANQ7HXL0Ic1QG3D8QP6lLxnfx)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc098/editorial/2576"
}
] | ãäžè§åœ¢ $ABC$ ãšèŸº $BC$ äžã®ç¹ $D,E$ ã
$$BD=DE=EC,\quad \angle BAD:\angle DAE:\angle EAC=1:2:3$$
ãã¿ãããŠãããšã, $\cos\angle DAE$ ã®å€ãæ±ããŠãã ãã.
ãã ã, æ±ããå€ã¯æ£ã®æŽæ° $a,b,c$ ($a$ ã¯å¹³æ¹å åããããªã) ãçšã㊠$\dfrac{\sqrt{a}-b}{c}$ ãšè¡šãããã®ã§ $a+b+c$ ã®å€ã解çããŠãã ãã. |
OMC098 | https://onlinemathcontest.com/contests/omc098 | https://onlinemathcontest.com/contests/omc098/tasks/1908 | E | OMC098(E) | 400 | 67 | 158 | [
{
"content": "ãäžåŒã $m$ ãšãã. 座æšå¹³é¢äžã®å $C_1,C_2$ ã以äžã§å®ããïŒ\r\n$$C_1:x^2+y^2=1,\\quad C_2:(x+60)^2+(y+63)^2=4$$\r\nãŸã, ç¹ $P_1,P_2$ ã以äžã®ããã«å®ãããš, ãããã¯ãããã $C_1,C_2$ äžãåã, $m$ ã¯çŽç· $P_1P_2$ ã®åŸãã«çããïŒ\r\n$$P_1:(\\cos\\theta,\\sin\\theta),\\quad P_2:(-2\\cos\\phi-60,-2\\sin\\phi-63)$$\r\n$C_1,C_2$ ã®äœçœ®é¢ä¿ãã, $m$ ãæ倧ãŸãã¯æå°ã«ãªããšã, çŽç· $P_1P_2$ 㯠$C_1,C_2$ ã®å
±éå
æ¥ç·ã§ããããšãããã. å
±éå
æ¥ç·ã¯çžäŒŒã®äžå¿ã®äžæ¹, ããªãã¡ $(-20,-21)$ ãéãããšãã\r\n$$mx-y+20m-21=0$$\r\nãšè¡šã, ããã« åç¹ãšã®è·é¢ã $1$ ã§ããããšãã\r\n$$\\displaystyle\\frac{|20m-21|}{\\sqrt{m^2+1}}=1\\implies 399m^2-840m+440=0$$\r\næ±ããã¹ãå€ã¯ããã® $2$ 解ã®ç©ã§ãããã, 解ãšä¿æ°ã®é¢ä¿ãã $440\\/399$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{839}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc098/editorial/1908"
},
{
"content": "ãç§ã test ããŠããæã®è§£æ³ãèŒããŠãããŸãïŒ\r\n\r\n----\r\nãïŒååïŒäžåŒã®åæ¯ïŒååããã®ãŸãŸ $x$ 座æšïŒ$y$ 座æšãšããŠã解ãããšãã§ããŸãïŒ\r\n\r\n- äžåŒã¯ $xy$ 座æšå¹³é¢äžã§ $(0,0)$ ãšä»¥äžã®ç¹ãçµã¶çŽç·ã®åŸãã«çããïŒ\r\n$$(\\cos\\theta + 2\\cos \\phi + 60, \\sin\\theta + 2\\sin\\phi + 63)$$\r\nãŸãïŒãã®ç¹ã¯ä»¥äžã®ç¹ãäžå¿ãšããååŸ $1$ ã®åã®åšäžãåãïŒ\r\n$$(2\\cos\\phi + 60, 2\\sin\\phi + 63)$$\r\nããã«ãã㯠$(60,63)$ ãäžå¿ãšããååŸ $2$ ã®åã®åšäžãåãããïŒçµå±å
ã®ç¹ã®åãåŸãç¯å²ã¯ $(60,63)$ ãäžå¿ãšããååŸ $3$ ã®åããååŸ $1$ ã®åå¿åãé€ãããã®ã§ããããšãåããïŒããããïŒ$(60,63)$ ãäžå¿ãšããååŸ $3$ ã®åã® $(0,0)$ ãéãæ¥ç·ãåŒãããšãïŒæããã«äžåŒã¯æ倧å€ã»æå°å€ãåãïŒ\r\n----\r\nãïŒåŸåïŒãã®å Žåã ãšæ±ããå€ã¯äžè§é¢æ°ãçšããŠãæ±ããããŸãïŒãã 解説ã®ããã«è·é¢ãåã£ãæ¹ããããã ãšæããŸãïŒ\r\n\r\n- $(0,0)$ ãš $(60,63)$ ãçµã¶çŽç·ãš $x$ 軞ã®ãªãè§ã $\\alpha$ ãšãïŒäžèšã®æ¥ç·ãšãã®çŽç·ã®ãªãè§ã $\\beta$ ãšããã°ïŒäºæ¥ç·ã®åŸã㯠$\\tan(\\alpha+\\beta), \\tan(\\alpha-\\beta)$ ã§ããããïŒå æ³å®çããæ±ããå€ã¯\r\n$$\\begin{aligned}\r\n\\tan(\\alpha+\\beta)\\tan(\\alpha-\\beta)&= \\left(\\frac{\\tan\\alpha+\\tan\\beta}{1-\\tan\\alpha\\tan\\beta}\\right)\\left(\\frac{\\tan\\alpha-\\tan\\beta}{1+\\tan\\alpha\\tan\\beta}\\right) \\\\\\\\\r\n&= \\frac{\\tan^2 \\alpha - \\tan^2\\beta}{1-\\tan^2\\alpha\\tan^2\\beta}\r\n\\end{aligned}$$\r\nããã« $\\tan^2\\alpha=441\\/400, \\tan^2\\beta=1\\/840$ ã代å
¥ããããšã§ïŒæ±ããå€ã¯ $440\\/399$ ã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{839}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc098/editorial/1908/60"
},
{
"content": "$\\dfrac{\\sin \\theta+2\\sin \\varphi+63}{\\cos \\theta+2\\cos \\varphi+60}=a$ ãšãããšïŒ$$\\sin \\theta+2\\sin \\varphi+63=a(\\cos \\theta+2\\cos \\varphi+60)$$\r\n$$(\\sin \\theta-a\\cos \\theta)+2(\\sin \\varphi-a\\cos \\varphi)=60a-63$$\r\nããã§ïŒ$\\sin \\theta-a\\cos \\theta$ ã®æ倧å€ã¯ $\\sqrt{1+a^2}$ïŒæå°å€ã¯ $-\\sqrt{1+a^2}$ ãªã®ã§ïŒ$\\dfrac{\\sin \\theta+2\\sin \\varphi+63}{\\cos \\theta+2\\cos \\varphi+60}=a$ ãæºãã $\\theta, \\varphi$ ãååšããæ¡ä»¶ã¯\r\n$$-3\\sqrt{1+a^2}\\leq 60a-63\\leq 3\\sqrt{1+a^2}$$\r\nã§ããïŒããã«ãã㯠$(20a-21)^2\\leq 1+a^2$ïŒã€ãŸã $399a^2-840a+440\\leq 0$ ãšå€åœ¢ã§ãïŒæ倧å€ãšæå°å€ã®ç©ã¯ããã®çå·ãæºãã $2$ ã€ã®å€ã®ç©ã«çããã®ã§ïŒ$\\dfrac{440}{399}$ïŒã€ãŸã解çãã¹ãå€ã¯ $\\textbf{839}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc098/editorial/1908/172"
}
] | ã$\theta,\phi$ ãå®æ°å
šäœãåããšã, 以äžã®åŒã®ãšãåŸãæ倧å€ãšæå°å€ã®**ç©**ãæ±ããŠãã ããïŒ
$$\displaystyle\frac{\sin\theta+2\sin\phi+63}{\cos\theta+2\cos\phi+60}$$
ãã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\displaystyle\frac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC098 | https://onlinemathcontest.com/contests/omc098 | https://onlinemathcontest.com/contests/omc098/tasks/2684 | F | OMC098(F) | 600 | 15 | 55 | [
{
"content": "$$(13!)^2=(2^{10}\\cdot3^5\\cdot5^2\\cdot7\\cdot11\\cdot13)^2=2^{20}\\cdot3^{10}\\cdot5^4\\cdot7^2\\cdot11^2\\cdot13^2$$\r\nã®çŽæ°ã¯ $21\\cdot11\\cdot5\\cdot3\\cdot3\\cdot3=31185$ åããïŒ$(13!)^2=n,31185=2m-1$ ãšã, $n$ ã®çŽæ°ãå°ããé ã« $d_1,d_2,...,d_{2m-1}$ ãšããïŒãã ã, æ¬åã§ã¯ $d_m$ ã¯é€ãããšã«ãªãïŒæ±ããã¹ãã¯æ¬¡ã®å€ã§ããïŒ\r\n$$\\displaystyle\\sum_{k=1}^{m-1}\\bigg(\\bigg\\lfloor \\frac{14^2n}{n-d_k^2}\\bigg\\rfloor +\\bigg\\lfloor \\frac{14^2n}{n-d_{2m-k}^2}\\bigg\\rfloor \\bigg)$$\r\nãã㧠$d_kd_{2m-k}=n$ ãã, 次ãæãç«ã€ïŒ\r\n$$\\displaystyle\\frac{14^2n}{n-d_k^2}+\\frac{14^2n}{n-d_{2m-k}^2}=\\frac{14^2d_{2m-k}}{d_{2m-k}-d_k}+\\frac{14^2d_k}{d_k-d_{2m-k}}=14^2$$\r\nãããã£ãŠæ¬¡ãæãç«ã€ïŒ\r\n$$\\displaystyle\\bigg\\lfloor \\frac{14^2n}{n-d_k^2}\\bigg\\rfloor +\\bigg\\lfloor \\frac{14^2n}{n-d_{2m-k}^2}\\bigg\\rfloor =14^2-1\\quad \\bigg(\\frac{14^2n}{n-d_k^2}ãæŽæ°ã§ãªããšã\\bigg)$$\r\n$$\\displaystyle\\bigg\\lfloor \\frac{14^2n}{n-d_k^2}\\bigg\\rfloor +\\bigg\\lfloor \\frac{14^2n}{n-d_{2m-k}^2}\\bigg\\rfloor =14^2\\quad \\bigg(\\frac{14^2n}{n-d_k^2}ãæŽæ°ã§ãããšã\\bigg)$$\r\nã以äž, $\\displaystyle\\frac{14^2n}{n-d_k^2}$ ãæŽæ°ã§ãããã㪠$k$ ãæ°ãã. $\\gcd(d_k,d_{2m-k})=D,d_k=\\alpha D,d_{2m-k}=\\beta D$ ãšãããš,\r\n$$\\displaystyle\\frac{14^2n}{n-d_k^2}=\\frac{14^2\\beta}{\\beta-\\alpha}$$\r\nãæŽæ°ã«ãªããšã, $\\gcd(\\alpha,\\beta)=1$ ãã $\\beta-\\alpha$ 㯠$14^2$ ãå²ãåãïŒããã« $n=D^2\\alpha\\beta$ ãå¹³æ¹æ°ã§ããããšãã, $\\gcd(\\alpha,\\beta)=1$ ãšããã㊠$\\alpha,\\beta$ ã¯ããããå¹³æ¹æ°ã§ããïŒä»¥äžãã $\\alpha=a^2,\\beta=b^2\\\\ (0\\lt a\\lt b)$ ã«ã€ããŠ\r\n$$(b+a)(b-a)=7,28,49,196\\implies (a,b)=(3,4),(24,25)$$\r\nãã㧠$\\gcd(a,b)=1$ ã«æ³šæãã. ãããã£ãŠ, $\\displaystyle\\frac{14^2n}{n-d_k^2}$ ãæŽæ°ã§ãããã㪠$k$ 㯠$2$ åã§ãã, æ±ããç·åã¯\r\n$$\\displaystyle\\sum_{k=1}^{m-1}\\bigg(\\bigg\\lfloor \\frac{14^2n}{n-d_k^2}\\bigg\\rfloor +\\bigg\\lfloor \\frac{14^2n}{n-d_{2m-k}^2}\\bigg\\rfloor \\bigg)=(m-1)(14^2-1)+2=\\textbf{3040442}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc098/editorial/2684"
}
] | ã$13!$ ãé€ã $(13!)^2$ ã®æ£ã®çŽæ° $d$ ãã¹ãŠã«å¯ŸããŠ
$$\displaystyle\biggl\lfloor\frac{(14!)^2}{(13!)^2-d^2}\biggr\rfloor$$
ã足ãåãããå€ãæ±ããŠãã ããïŒãã ã, å®æ° $x$ ã«å¯Ÿã㊠$x$ ãè¶
ããªãæ倧ã®æŽæ°ã $\lfloor x\rfloor$ ã§è¡šããŸãïŒ |
OMC097 (for beginners) | https://onlinemathcontest.com/contests/omc097 | https://onlinemathcontest.com/contests/omc097/tasks/2571 | A | OMC097(A) | 100 | 302 | 314 | [
{
"content": "ã瞊暪ã®é·ãã $3\\times 5$ ã§ããé·æ¹åœ¢ã«å¯Ÿè§ç·ã $1$ æ¬åŒããå Žåã«åæ§ã®åé¡ãèãããš, å°æ£æ¹åœ¢ã®èŸºãšäº€ããåæ°ãæ°ããããšã§ $3+5-1=7$ åã§ãã. å
ã®åé¡ã®çãã¯ããã® $4$ å, ããªãã¡ $\\textbf{28}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc097/editorial/2571"
}
] | ã瞊暪ã®é·ãã $6\times 10$ ã§ããé·æ¹åœ¢ã, äžèŸº $1$ ã®å°æ£æ¹åœ¢ $60$ åã«åå²ãããŠããŸã. ãã®é·æ¹åœ¢ã«å¯Ÿè§ç· $2$ æ¬ãåŒãããšã, ããããå
éš (å€åšãé€ã) ãééããå°æ£æ¹åœ¢ã¯ããã€ãããŸããïŒ |
OMC097 (for beginners) | https://onlinemathcontest.com/contests/omc097 | https://onlinemathcontest.com/contests/omc097/tasks/2826 | B | OMC097(B) | 200 | 216 | 241 | [
{
"content": "ã$4$ ã€ã®åã¯å³ã®ç¹ $P$ ã§äº€ãã, ç¹ $P$ 以å€ã§ã¯ $3$ ã€ä»¥äžã®åãéãªãããšã¯ãªã.\r\nãã£ãŠå³ã®çè²éš, ããªãã¡ååŸ $2$, äžå¿è§ $90^\\circ$ ã®æ圢ããç蟺ã®é·ãã $2$ ã®çŽè§äºç蟺äžè§åœ¢ãé€ããå³åœ¢ã®é¢ç©ã® $8$ åãæ±ããé¢ç©ã§ãã, èšç®ããã° $8\\pi-16$. \r\nãããã解çãã¹ãå€ã¯ $\\bf{24}$ ã§ãã. \r\n![figure 1](\\/images\\/aaSSC8KBTW7aYcDi9N7GDDzYi7rp0pgWFxYohFdc)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc097/editorial/2826"
}
] | ãäžèŸºã®é·ãã $4+2\sqrt{2}$ ã®æ£æ¹åœ¢ $ABCD$ ããã, ååŸ $2$ ã® $4$ ã€ã®åããããã蟺 $AB$ ãš $BC$, $BC$ ãš $CD$, $CD$ ãš $DA$, $DA$ ãš $AB$ ã«æ¥ããŠããŸã.
ãã®ãšã $2$ ã€ä»¥äžã®åãéãªã£ãŠããéšåã®é¢ç©ã¯æ£æŽæ° $a,b$ ãçšã㊠$a\pi-b$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC097 (for beginners) | https://onlinemathcontest.com/contests/omc097 | https://onlinemathcontest.com/contests/omc097/tasks/3042 | C | OMC097(C) | 200 | 174 | 278 | [
{
"content": "ãåæåã䜿ãåæ°ã®çµã¿åãã㯠$\\lbrace 3,1,1,1 \\rbrace$ ãŸã㯠$\\lbrace 2,2,1,1 \\rbrace$ ã®ããããã§ãã. $\\lbrace 3,1,1,1 \\rbrace$ ã®ãšã, $3$ å䜿ãæåã®éžæã $4$ éã, ãã®é
眮ã $4$ éã, æ®ãã®æåã®é
眮ã $3!$ éãã§ãããã, å
šäœã§ã¯ $96$ éãã§ãã.\\\r\nã $\\lbrace 2,2,1,1 \\rbrace$ ã®ãšããèãã. åãæåãé£ãåããªãæ¡ä»¶ãç¡èŠããã°, $2$ å䜿ãæåã®éžæã ${}_4 \\mathrm{ C }\\_2$ éã, ãããã®é
眮ã ${}_6 \\mathrm{ C }\\_2\\times{}_4 \\mathrm{ C }\\_2$ éã, æ®ãã®æåã®é
眮ã $2$ éãã§ãããã, å
šäœã§ã¯ $1080$ éãã§ãã.\\\r\nãåãæåãé£ãåããã®ãé€ã. $2$ å䜿ãæåã®éžæãšæ®ãã®æåã®é
眮ãåºå®ãã. ãã®ãšã, å°ãªããšã $1$ çš®é¡ãé£ãåããã®ã¯, é£ãåãæåãåºå®ããã° $5\\times{}_4 \\mathrm{ C }\\_2$ éãã§ãã. ãŸã $2$ çš®é¡ããšãã«é£ãåããã®ã¯ $12$ éããã.\\\r\nã以äžãã, æ±ããã¹ãå Žåã®æ°ã¯ $96+1080-{}_4 \\mathrm{ C }\\_2\\times 2\\times(2\\times 5\\times {}_4 \\mathrm{ C }\\_2-12)=\\textbf{600}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc097/editorial/3042"
},
{
"content": "ãæ¯èŒçç°¡åãªå Žååãã§æžãæ¹æ³ã§ã.\r\n- $4$ æåã®äžããèªç±ã«éžã¶å Žå $4\\times3^5=972$ éã\r\n- ããåºå®ããã $3$ æåã®äžããèªç±ã«éžã¶å Žå $3\\times2^5=96$ éã\r\n- ããåºå®ããã $2$ æåã®äžããèªç±ã«éžã¶å Žå $2\\times1^5=2$ éã\r\n\r\nã䜿ãæåã®éžã³ããã¯éè€ãå
šéšç¡èŠãããšãããã ${}_4\\text{C} {}_4, {}_4\\text{C} {}_3, {}_4\\text{C} {}_2$ éãã§ããã®ã§, æ±ããã¹ãç·æ°ã¯å
é€åçãã以äžã®ããã«æ±ãŸããŸã.\r\n$$972\\times{}_4\\text{C} {}_4-96\\times{}_4\\text{C} {}_3+2\\times{}_4\\text{C} {}_2=\\mathbf{600}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc097/editorial/3042/66"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæååã¯äœçš®é¡ãããŸããïŒ
- $6$ æåãããªã, åæå㯠$A,C,G,N$ ã®ããããã§ããïŒ
- $A,C,G,N$ ã®ããããå°ãªããšãäžã€ãã€å«ãïŒ
- åãæåãå·Šå³ã«é£ãåãããšã¯ãªãïŒ |
OMC097 (for beginners) | https://onlinemathcontest.com/contests/omc097 | https://onlinemathcontest.com/contests/omc097/tasks/2053 | D | OMC097(D) | 300 | 134 | 181 | [
{
"content": "ã巊蟺㯠$0$ ä»¥äž $1$ æªæºã§ãããã $x\\gt 21$ ã§ãã. äžè¬ã« $\\\\{\\\\{x\\\\}+\\\\{y\\\\}\\\\}=\\\\{x+y\\\\}$ ãæãç«ã€ãã, æ¹çšåŒã¯\r\n$$\\left\\\\{x+\\frac{20}{x}\\right\\\\}=\\frac{21}{x}$$\r\nãšæžãæããã, ããã«æŽæ° $n$ ãçšããã°\r\n$$x+\\frac{20}{x}=\\frac{21}{x}+n$$\r\nãšè¡šãã. ããã解ã㊠$x$ ã $n$ ã§è¡šããš\r\n$$x=\\frac{n\\pm\\sqrt{n^2+4}}{2}$$\r\nè² ç¬Šå·ã¯æããã« $x\\lt 0$ ãšãªãäžé©ã§ãã. æ£ç¬Šå·ã¯ $n\\geq 21$ ã®ãšãã«æ¡ä»¶ãã¿ãã, ã〠$n$ ã«å¯ŸããŠå調å¢å ã§ãããã, æ±ããæå°å€ã¯ $x=\\dfrac{21+\\sqrt{445}}{2}$ ã§ãã, 解çãã¹ãå€ã¯ $21+445+2=\\textbf{468}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc097/editorial/2053"
}
] | ãå®æ° $x$ ã®å°æ°éšåã $\\{x\\}$ ã§è¡šããŸãïŒãã®ãšã, 以äžã®æ¹çšåŒãã¿ããå®æ° $x$ ã®æå°å€ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯æ£æŽæ° $a,b,c$ ã«ãã£ãŠ $\dfrac{a+\sqrt b}{c}$ ãšè¡šããã®ã§ïŒ$a$ ãš $c$ ã¯äºãã«çŽ ïŒïŒ$a+b+c$ ã解çããŠãã ããïŒ
$$\left\\{\\{x\\}+\left\\{\frac{20}{x}\right\\}\right\\}=\frac{21}{x}$$
ããªãïŒå®æ° $x$ ãæŽæ° $m$ ãš $0\leq r\lt1$ ãªãå®æ° $r$ ã«ãã£ãŠ $x=m+r$ ãšè¡šããããšãïŒ$r$ ã $x$ ã®**å°æ°éšå**ãšåŒã¶ãã®ãšããŸãïŒ |
OMC097 (for beginners) | https://onlinemathcontest.com/contests/omc097 | https://onlinemathcontest.com/contests/omc097/tasks/2824 | E | OMC097(E) | 300 | 122 | 207 | [
{
"content": "ã$a_1\\leq\\cdots\\leq a_5$ ã®ãšã, 䞡蟺ã $2^{a_2},2^{a_3},2^{a_4}$ ã§å²ã£ãããŸããèããã° $(a_2,a_3,a_4,a_5,a_6)$ ã¯æ¬¡ã®ããããã§ããããšããããïŒ\r\n$$(a_1,a_1,a_1,a_1+2,a_1+3),(a_1,a_1+1,a_1+2,a_1+3,a_1+4),(a_1,a_1+1,a_1+1,a_1+1,a_1+3)$$\r\nãã£ãŠ $a_1,\\dots,a_5$ ã®å
¥ãæ¿ããèæ
®ããã°, æ±ããå€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$${}\\_5 \\mathrm{C}\\_1\\times 98+\\frac{5!}{2!}\\times 97+{}\\_5 \\mathrm{C}\\_2 \\times 98=\\bf{7290}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc097/editorial/2824"
}
] | ã$2^{a_1}+2^{a_2}+2^{a_3}+2^{a_4}+2^{a_5}=2^{a_6}$ ãæºãã $100$ 以äžã®éè² æŽæ°ã®çµ $(a_1,a_2,a_3,a_4,a_5,a_6)$ ã¯ããã€ãããŸããïŒ |
OMC097 (for beginners) | https://onlinemathcontest.com/contests/omc097 | https://onlinemathcontest.com/contests/omc097/tasks/2175 | F | OMC097(F) | 400 | 42 | 81 | [
{
"content": "ãç·å $AH$ ãš $OM$ ã¯å¹³è¡ã§, é·ãã®æ¯ã $2:1$ ã§ãããã, $P$ 㯠$O$ ã«é¢ã㊠$A$ ãšå¯Ÿç§°ãªç¹ã§ãã, åè§åœ¢ $BPCH$ ã¯å¹³è¡å蟺圢ã§ãããã, æ±ããé·ãã¯åè§åœ¢ $ABPC$ ã®åšé· $L$ ã«çãã. ããã§,\r\n$$(AB+BP)^2-(PC+CA)^2=(AB+BP+PC+CA)\\times \\\\{AB+BP-(PC+CA)\\\\}=L\\times 5$$\r\näžæ¹ã§ $\\triangle ABP ,\\triangle PCA$ ããããã $PA$ ãæ蟺ãšããçŽè§äžè§åœ¢ã§ããããšã«æ³šæããã°, 巊蟺ã¯\r\n$$AB^2+BP^2-\\left(PC^2+CA^2\\right)+4\\left(\\frac{1}{2}AB\\times BP-\\frac{1}{2}PC\\times CA\\right)=4\\times 217=868$$\r\nãšãèšç®ã§ãã. ãããã£ãŠ, 解ç㯠$868+5=\\textbf{873}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc097/editorial/2175"
}
] | ã$AB\neq AC$ ã§ããäžè§åœ¢ $ABC$ ã«ãããŠïŒãã®åå¿ã $H$ïŒå€å¿ã $O$ïŒèŸº $BC$ ã®äžç¹ã $M$ ãšããŸãïŒããã«ïŒçŽç· $HM$ ãšçŽç· $AO$ ã®äº€ç¹ã $P$ ãšãããšïŒäžè§åœ¢ $ABP$ ãš $ACP$ ã«ã€ããŠïŒé¢ç©ã¯åè
ã $217$ 倧ããïŒåšé·ã¯åè
ã $5$ é·ãããšãããããŸããïŒãã®ãšãïŒåè§åœ¢ $ABHC$ ã®åšé·ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ãæ±ããŠãã ãã. |
OMC096 | https://onlinemathcontest.com/contests/omc096 | https://onlinemathcontest.com/contests/omc096/tasks/1987 | A | OMC096(A) | 100 | 265 | 271 | [
{
"content": "ãããããã® $1$ æéã®ãã¡, 次ã«çºè»ããåè»ãäžãç·ã§ããæéã¯, $0$ å ã $5$ å, $7$ å ã $25$ å, $37$ å ã $60$ åã®èš $46$ åéã§ãã. ãã£ãŠ, æ±ãã確ç㯠$\\dfrac{46}{60}=\\dfrac{23}{30}$ ãšãªã, ç¹ã«è§£çãã¹ãå€ã¯ $23+30=\\textbf{53}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc096/editorial/1987"
}
] | ãããé§
ã«ã¯äžæ¬ã®è·¯ç·ã®ã¿ãéã£ãŠããïŒäžãç·ã®åè»ã¯æ¯æ $5,25,45$ åã¡ããã©ã«ïŒäžãç·ã®é»è»ã¯æ¯æ $7,37$ åã¡ããã©ã«çºè»ããŸãïŒã©ã³ãã ãªããæå»ã«ãã®é§
ã«ãã£ãŠãããšãïŒæ¬¡ã«çºè»ããåè»ãäžãç·ã®åè»ã§ãã確çãæ±ããŠãã ããïŒ\
ããã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒãªãïŒåè»ãçºè»ããæå»ã¡ããã©ã«é§
ã«ãã£ãŠããå ŽåïŒãã®åè»ã次ã«çºè»ããåè»ã§ãããšããŸã. |
OMC096 | https://onlinemathcontest.com/contests/omc096 | https://onlinemathcontest.com/contests/omc096/tasks/2817 | B | OMC096(B) | 200 | 265 | 268 | [
{
"content": "ãã¿ã€ã«ã®å€åŽã«ã§ããæ£å
«è§åœ¢ã®äžèŸºã®é·ã㯠$1$ , ã¿ã€ã«ã®å
åŽã«ã§ããæ£å
«è§åœ¢ã®äžèŸºã®é·ã㯠$\\sqrt 2 - 1$ ã§ãããã, ããããã®é¢ç©ã¯å®æ° $x$ ãçšã㊠$x,\\ (\\sqrt 2 - 1)^2x$ ãšè¡šãã. ããã§, äºã€ã®æ£å
«è§åœ¢ã®é¢ç©ã®å·®ã¯ã¿ã€ã« $8$ æåã§ããããšãã, $x-(\\sqrt 2 - 1)^2x=4$ ãæãç«ã€. ãã£ãŠ $x=2\\sqrt 2+2$ ã§ãã, ã¿ã€ã«ã®å
åŽã«ã§ããæ£å
«è§åœ¢ã®é¢ç©ã¯ $2\\sqrt 2 - 2$ ã§ãããã, æ±ããã¹ãå€ã¯ $8+2=\\textbf{10}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc096/editorial/2817"
}
] | ãå蟺ã®é·ãã $1,1,\sqrt 2$ ã§ããçŽè§äºç蟺äžè§åœ¢ã®åœ¢ãããã¿ã€ã«ã $8$ æïŒå³ã®ããã«äžŠã¹ãããŠããŸãïŒã¿ã€ã«ã®**å
åŽ**ã«ã§ããæ£å
«è§åœ¢ã®é¢ç©ã¯æ£æŽæ° $a,b$ ãçšã㊠$\sqrt a-b$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ
![figure 1](\/images\/P2ZYBv2KgGJnDXaCvU29lcyA09YXVw7kEOAoG4Bl) |
OMC096 | https://onlinemathcontest.com/contests/omc096 | https://onlinemathcontest.com/contests/omc096/tasks/1765 | C | OMC096(C) | 300 | 161 | 199 | [
{
"content": "ã$f(x)=5x^4-30x^2$ ã® $x=t$ ã«ãããæ¥ç·ã¯ $y=f^\\prime (t)(x-t)+f(t)$ ã§ãããã,\r\n$$g(t)=15t^4-20xt^3-30t^2+60xt+y$$\r\nã«ã€ã㊠$g(t)=0$ ãå®æ°è§£ããã€æ¡ä»¶ãèããã°ãã. ãã㧠$g^\\prime (t)=60(t^2-1)(t-x)$ ãã,\r\n$$g(\\pm 1)=y\\pm 40x-15,\\quad g(x)=y-f(x)$$\r\nããå°ãªããšãäžã€ã $0$ 以äžã§ããããšãå¿
èŠååæ¡ä»¶ã§ãããã, æ±ããé¢ç©ã¯\r\n$$2\\int_{0}^{3}((40x+15)-(5x^4-30x^2))\\mathrm{d}x=-10\\int_{0}^{3}(x+1)^3(x-3)\\mathrm{d}x=\\textbf{504}$$\r\nããã¯, å€æ²ç¹ $(\\pm1,-25)$ ã«ããã $2$ æ¥ç· $y=\\mp 40x+15$ ãšå¢çã«å²ãŸããéšåãšããŠç解ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc096/editorial/1765"
}
] | ã$xy$ å¹³é¢ã«ãããŠïŒ$y\geq 5x^4-30x^2$ ã§å®ãŸãé åã $R$ ãšããŸãïŒ$R$ ã«å«ãŸãïŒã〠$R$ ã®å¢çã®æ¥ç·ãééãåŸãéšåã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC096 | https://onlinemathcontest.com/contests/omc096 | https://onlinemathcontest.com/contests/omc096/tasks/2392 | D | OMC096(D) | 400 | 65 | 123 | [
{
"content": "ã$1,2,6,24$ ããããã $1,2,3,4$ åãŸã§è²·ãããã, åæ¡ã $k!$ ã®äœã§ãããããª**éä¹é²æ°**ãèããã°, $1,2,6,24$ ãè²·ãæ°ãé©åœã«éžãã§åèšéé¡ã $0,1,\\ldots,119$ åãšããæ¹æ³ã, ã¡ããã© $1$ éããã€ååšããããšãåãã.\\\r\nãããªãã¡, $1,2,6,24$ 以å€ã®æ£æŽæ°ãå
ã«éžã³, ãã®åŸ $1,2,6,24$ ã®åæ°ã調æŽããããšãèããã°, åèšéé¡ã $10$ ã§å²ã£ãäœãããããã¯, å
šäœã§ (æ£æŽæ°ãäžã€ãè²·ããªãå Žåãå«ããŠ) åãã ãçŸãã.\\\r\nã以äžãã $M=2^{66}\\cdot 3^{56}\\cdot 5^{17}$ ã§ãã, ããã¯æ£ã®çŽæ°ã $67\\times 57\\times 18=\\textbf{68742}$ åãã€.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc096/editorial/2392"
},
{
"content": "ã$1$ ãš $12$ ã®ã¿ã«æ³šç®ã, ãããã $0$ å以äžè³Œå
¥ããããšãèãããš, ãã®è²·ãæ¹ã¯ $10$ éããã, ãã®åèšéé¡ã¯ $0, 1, 12, 13, 24, 25, 36, 37, 48, 49$ åã®ããããã§ãã.\r\n\r\nããããã, $1$ ãš $12$ 以å€ã® $79$ çš®é¡ã®æŽæ°ãã©ã®ããã«è³Œå
¥ããŠã, åèšéé¡ã $10$ ã®åæ°ã«ããããã« $1$ ãš $12$ ãè²·ãæ¹æ³ãå¿
ã $1$ éãååšããããšãããã.\r\n\r\nã以äžãã, åèšéé¡ã $10$ ã®åæ°ã«ãªããããªè²·ãæ¹ã®ç·æ° $M$ 㯠$1$ ãš $12$ 以å€ã® $79$ çš®é¡ã®æŽæ°ãèªç±ã«è²·ãæ¹æ³ã®æ°ãšçããã®ã§, $M=3^24^65^{17}6^{54}=2^{66}3^{56}5^{17}$ ã§ãã, ç¹ã« $M$ ãæã€æ£ã®çŽæ°ã®åæ°ã¯ $(66+1)(56+1)(17+1)=\\mathbf{68742}$ åã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc096/editorial/2392/65"
}
] | ããšãããåºã§ã¯ $1,2,\ldots ,81$ ã®æ£æŽæ°ã売ã£ãŠããŸãïŒæ£æŽæ° $n$ ã®å€æ®µã¯ $n$ åã§ïŒ$0$ ä»¥äž $\lceil \log_3 n\rceil +1$ 以äžã®ä»»æã®åæ°è²·ãããšãã§ããŸãïŒãã ãïŒå®æ° $x$ ã«å¯Ÿã㊠$\lceil x\rceil$ 㯠$x$ 以äžã®æå°ã®æŽæ°ãè¡šããŸãïŒ\
ãOMCåã¯ãã®ãåºã§ $0$ å以äžã®æ£æŽæ°ãè²·ãããã§ããïŒæ¯æãã楜ã«ãããã, åèšéé¡ã $10$ ã®åæ°ã«ãããã§ãïŒ
ãã®ãšã, OMCåãè²·ãæ£æŽæ°ã®çµã¿åãããšããŠèãããããã®ã¯ $M$ éãã§ãïŒ$M$ ããã€æ£ã®çŽæ°ã®åæ°ãæ±ããŠãã ããïŒ\
ããã ãïŒ ããæ£æŽæ° $n$ ãååšã㊠$n$ ãè²·ãåæ°ãç°ãªããšãïŒãŸããã®ãšãã«éãïŒè²·ãæ£æŽæ°ã®çµã¿åãããç°ãªããšã¿ãªããŸãïŒãŸãïŒ$0$ åã®æ£æŽæ°ãè²·ã£ããšãïŒãã®åèšéé¡ã¯ $0$ åã§ãããšããŸãïŒ |
OMC096 | https://onlinemathcontest.com/contests/omc096 | https://onlinemathcontest.com/contests/omc096/tasks/2998 | E | OMC096(E) | 500 | 105 | 192 | [
{
"content": "ãäžè¬ã« $2\\times n$ ã®åºç»ã®å Žåãèãã. ååºç»ãé ç¹, åå¢çç·ã蟺ãšãïŒå¢çç·ã§é£æ¥ãã $2$ åºç»ã®éã«èŸºã匵ã£ã $2n$ é ç¹ $3n-2$ 蟺ã®ã°ã©ããèãã(å³1). æ±ãããã®ã¯, ãã®ã°ã©ããã $n-1$ 蟺ãåãé€ãããšãã«ã°ã©ããæšãšãªããããªæ¹æ³ã®ç·æ°ã§ãã.\\\r\nãããã§, æ¡ä»¶ãæºããæšã®ãã¡ïŒå³ç«¯ã® $2$ é ç¹ã®éã«èŸºãååšãããã®ããã¿ãŒã³ $A$, ååšããªããã®ããã¿ãŒã³ $B$ ãšåŒã¶(å³2). ãŸãïŒãã¿ãŒã³ $A,B$ ããããã $a_n,b_n$ åãããšãã. å·ŠåŽããã°ã©ããäœã£ãŠããããšãèãã. \\\r\nã$2\\times n$ ã®ãã¿ãŒã³ $A$ ã®æšã®å³åŽã« $2$ ã€ã®é ç¹ãš $3$ ã€ã®èŸºã貌ãïŒèŸºãé€ãããšã§æ¡ä»¶ãæºãã $2\\times (n+1)$ ã®æšãäœãããšãèãã(å³3). 蟺 $1,3,4$ ãé€ãã°ãã¿ãŒã³ $A$ ã®æšãã§ãïŒèŸº $2$ ãé€ãã°ãã¿ãŒã³ $B$ ã®æšãã§ãã.\\\r\nãåæ§ã« $2\\times n$ ã®ãã¿ãŒã³ $B$ ã®æšã®å³åŽã« $2$ ã€ã®é ç¹ãš $3$ ã€ã®èŸºã貌ãïŒèŸºãé€ãããšã§æ¡ä»¶ãæºãã $2\\times (n+1)$ ã®æšãäœãããšãèãã(å³4). 蟺 $1,3$ ãé€ãã°ãã¿ãŒã³ $A$ ã®æšãã§ãïŒèŸº $2$ ãé€ãã°ãã¿ãŒã³ $B$ ã®æšãã§ãã.\\\r\nãéã«ïŒãããã§å°œããããŠããããšãããã. 以äžã®è°è«ããïŒ$a_1=1,b_1=0$ ããã³ä»¥äžã®æŒžååŒãæãç«ã€ïŒ\r\n$$ a_{n+1}=3a_n+2b_n, \\quad b_{n+1}=a_n+b_n$$\r\nãããã£ãŠïŒæ±ããçã㯠$a_5+b_5=\\bf{209}$ ã§ãã. \r\n![figure 1](\\/images\\/FGufTm5MESQP4xW3ejuzl1dWo2E0HZchcZFuI2ms)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc096/editorial/2998"
}
] | ãäžå³ã®ããã«ïŒé·æ¹åœ¢ã®ç©ºéãå¢çç·ïŒç¹ç·ïŒã§ $2\times5$ ã®åºç»ã«åºåãããŠããïŒå¢çç·ã«ãã£ãŠé£ãåãåºç»ã¯èªç±ã«è¡ãæ¥ããããšãã§ããŸãïŒããã§ïŒ$13$ æ¬ã®åºç»ã®å¢çç·ã®äžãã $4$ ã€éžãã§ïŒããã«å£ãäœããŸãïŒå£ã®ããå¢çç·ã¯è¡ãæ¥ããããšãã§ããªããªããŸãïŒãã®ãšãïŒæ¬¡ã®æ¡ä»¶ãæºãã $4$ æ¬ã®å¢çç·ã®éžã³æ¹ã¯äœéããããŸããïŒ
- çžç°ãªãä»»æã®äºã€ã®åºç»ã«å¯ŸããŠïŒäžæ¹ããä»æ¹ãžè¡ãããšãã§ããïŒ
ãã ãïŒå転ãå転ã«ãã£ãŠäžèŽãããã®ãåºå¥ããŠæ°ãããã®ãšããŸãïŒ
![figure 1](\/images\/IEuFWIl5E9oONyDnalbFKWFkAVN4HkudZGSGH3Yg) |
OMC096 | https://onlinemathcontest.com/contests/omc096 | https://onlinemathcontest.com/contests/omc096/tasks/2295 | F | OMC096(F) | 500 | 33 | 97 | [
{
"content": "ãæ±ããç·åã $S$ ãšããïŒã¢ããã¯å€é
åŒã®æçæ°æ ¹ã¯ãã¹ãŠæŽæ°å€ã§ããããšãç¥ãããŠããããïŒäžæ¹çšåŒã®è§£ãšããŠããåŸããã®ã¯ $0,\\pm1$ ã®ã¿ã§ããïŒ$p+q+r=N$ ãªãéè² æŽæ° $p,q,r$ ãçšããŠæ¬¡ã®åœ¢ã«è¡šããïŒ\r\n$$x^{N}+a_{N-1}x^{N-1}+\\cdots+a_1x+a_0=x^p(x+1)^q(x-1)^r$$\r\nãã®åŒã§ $x=1$ ãšããå€ã $1+a_0+a_1+\\cdots+a_{N-1}$ ã§ããïŒ$r\\geq 1$ ã®ãšããã㯠$0$ ã§ããããšã«æ³šæãããšïŒ$S$ ã¯æ¬¡ã®ããã«æ±ããããïŒ\r\n$$S=\\sum_{\\substack{p,q\\geq 0\\\\\\\\p+q=N}}2^q-\\sum_{\\substack{p,q,r\\geq 0\\\\\\\\p+q+r=N}}1=(2^{N+1}-1)-{N+2 \\choose 2}\\equiv 2^{N+1}-2 \\pmod{10^5}$$\r\nããšã¯ $2^{N+1}$ ã $10^5$ ã§å²ã£ãããŸããèãããïŒãã®ããã«ã¯ $2^{N-4}$ ã $5^5$ ã§å²ã£ãããŸããæ±ããã°ããïŒ\\\r\nã$M=(N-4)\\/2$ ãšããã°ïŒ$M$ ã¯å¶æ°ã〠$M\\equiv -2\\pmod{5^5}$ ã§ããããšã«æ³šæãããšïŒäºé
å®çãã\r\n$$\\begin{aligned}\r\n2^{N-4}\r\n&=(5-1)^M\\\\\\\\\r\n&\\equiv{M\\choose 4}5^4-{M\\choose 3}5^3+{M\\choose 2}5^2-{M\\choose 1}5+1\\\\\\\\\r\n&\\equiv\\dfrac{(-2)(-3)(-4)(-5)}{4!}\\times 5^4-\\dfrac{(-2)(-3)(-4)}{3!}\\times 5^3+\\dfrac{(-2)(-3)}{2!}\\times 5^2-(-2)\\times 5+1\\\\\\\\\r\n&\\equiv 586\\pmod{5^5}\r\n\\end{aligned}$$\r\nãã£ãŠ $2^{N+1}\\equiv 18752\\pmod{10^5}$ ãåŸãããããïŒè§£çãã¹ãå€ã¯ $\\bm{18750}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc096/editorial/2295"
}
] | ã$N=10^{10}$ ãšãããŸãïŒä»¥äžã® $x$ ã® $N$ 次æ¹çšåŒã®è€çŽ æ°è§£ããã¹ãŠçµ¶å¯Ÿå€ $2$ æªæºã®**æçæ°**ãšãªããããªïŒæŽæ°ã®çµ $(a_0,a_1,\dots,a_{N-1})$ ãã¹ãŠã«å¯Ÿãã $a_0+a_1+\cdots+a_{N-1}$ ã®ç·åãïŒ$10^5$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ
$$x^{N}+a_{N-1}x^{N-1}+\cdots+a_1x+a_0=0$$ |
OMC095 (for beginners) | https://onlinemathcontest.com/contests/omc095 | https://onlinemathcontest.com/contests/omc095/tasks/3842 | A | OMC095(A) | 100 | 265 | 285 | [
{
"content": "**解æ³.1**ã$n$ ã $m$ ãã©ã¡ãããåºå®ãããšãïŒããããã«ã€ã㊠$9$ åãã€ç·åã«åæ ãããïŒ \r\nããã£ãŠæ±ããçã㯠$(1+2+\\cdots+9)\\times{9}\\times{2}$ ãã $\\textbf{810}$ ãšãªãïŒ \r\n \r\n**解æ³.2**ã$n$ , $m$ ããããã«ã€ããŠå¹³åãåããš $5$ ã«ãªãããšããïŒè¶³ãã¹ã $81$ åã®å€ã®å¹³å㯠$10$ ã§ããããšããããïŒãã£ãŠæ±ããçã㯠${10}\\times{81}$ ãã $\\textbf{810}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc095/editorial/3842"
}
] | ã$\displaystyle\sum_{n=1}^{9}\sum_{m=1}^{9} (n+m)$ ãèšç®ããŠãã ããïŒ |
OMC095 (for beginners) | https://onlinemathcontest.com/contests/omc095 | https://onlinemathcontest.com/contests/omc095/tasks/1582 | B | OMC095(B) | 100 | 265 | 279 | [
{
"content": "ãæ£æŽæ° $(a,b)$ ã $a^2=b^3$ ãã¿ããããã®å¿
èŠååæ¡ä»¶ã¯, ããæ£æŽæ° $n$ ã«ãã£ãŠ $(n^3,n^2)$ ãšè¡šããããšã§ãã. ããã« $a\\leq 1000$ ãã $n\\leq 10$ ã§ãããã, æ±ããç·å㯠$1^2+2^2+\\cdots 10^2=\\textbf{385}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc095/editorial/1582"
}
] | ã$a^2=b^3$ ãªãæ£æŽæ°ã®çµ $(a,b)$ ã®ãã¡, $a\leq 1000$ ãªããã®ãã¹ãŠã«ã€ã㊠$b$ ã®ç·åãæ±ããŠãã ãã. |
OMC095 (for beginners) | https://onlinemathcontest.com/contests/omc095 | https://onlinemathcontest.com/contests/omc095/tasks/1283 | C | OMC095(C) | 200 | 258 | 267 | [
{
"content": "ã解ãšä¿æ°ã®é¢ä¿ãã, 以äžãæãç«ã€.\r\n$$a+b=4,\\ \\ ab=-1,\\ \\ c=3a+11b,\\ \\ d=2a(a+11b)$$\r\näžæ¹ã§, $a^2=4a+1$ ã§ããããšã«çæããã°, æ±ããå€ã¯\r\n$$c+d=(3a+11b)+(2(4a+1)+22ab))=11(a+b)+22ab+2=\\textbf{24}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc095/editorial/1283"
}
] | ã$x$ ã®äºæ¬¡æ¹çšåŒ $x^2-4x-1=0$ ã® $2$ 解ã $x=a,b$ (ãã ã $a\lt b$) ãšãããš, $x$ ã®äºæ¬¡æ¹çšåŒ
$$x^2-cx+d=0$$
㯠$x=2a$ ããã³ $x=a+11b$ ã $2$ 解ã«æã¡ãŸãã. $c+d$ ãæ±ããŠãã ãã. |
OMC095 (for beginners) | https://onlinemathcontest.com/contests/omc095 | https://onlinemathcontest.com/contests/omc095/tasks/1442 | D | OMC095(D) | 200 | 239 | 260 | [
{
"content": "ãæ¡ä»¶ãã $N-11$ 㯠$6,7,8,9,10$ ã§ããããå²ãåãããã, ç¹ã«ãããã®æå°å
¬åæ° $2520$ ã§å²ãåãã. ãã£ãŠ $N\\leq 9999$ ãšäœµããŠ, æ±ããæ倧å€ã¯ $3\\times 2520+11=\\textbf{7571}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc095/editorial/1442"
}
] | ã$4$ æ¡ã®æ£æŽæ° $N$ ã¯ä»¥äžã®æ¡ä»¶ããšãã«ã¿ãããŸã.
- $N$ ã $6$ ã§å²ã£ãäœã㯠$5$ ã§ãã.
- $N$ ã $7$ ã§å²ã£ãäœã㯠$4$ ã§ãã.
- $N$ ã $8$ ã§å²ã£ãäœã㯠$3$ ã§ãã.
- $N$ ã $9$ ã§å²ã£ãäœã㯠$2$ ã§ãã.
- $N$ ã $10$ ã§å²ã£ãäœã㯠$1$ ã§ãã.
ãã®ãšã, $N$ ãšããŠããåŸãæ倧å€ãæ±ããŠãã ãã. |
OMC095 (for beginners) | https://onlinemathcontest.com/contests/omc095 | https://onlinemathcontest.com/contests/omc095/tasks/272 | E | OMC095(E) | 300 | 90 | 185 | [
{
"content": "ããã¹ãŠã®é åã«å¯Ÿããã¹ã³ã¢ã®ç·å $S$ ãæ±ããã°ãã. ãã㯠$272$ 以äžã®æ£æŽæ° $i,j$ ã«å¯Ÿã㊠$|i-j|$ ã®å¯äžããããã $2\\times256\\times 270!$ åã§ããããšã«çæããã°,\r\n$$\\begin{aligned}\r\nS&=\\displaystyle 2\\times256\\times 270!\\times\\sum_{i=1}^{272}\\sum_{j=1}^{i}(i-j)\\\\\\\\\r\n&=256\\times270!\\times\\sum_{i=1}^{272}(i^2-i)\\\\\\\\\r\n&=\\dfrac{1}{3}\\times 256\\times 273!\r\n\\end{aligned}$$\r\nã以äžããæ±ããå¹³å㯠$S\\/272!=256\\times273\\/3=\\textbf{23296}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc095/editorial/272"
}
] | ã$272$ é
ãããªãæŽæ°å $\\{a_i\\}\_{i=1,\ldots,272}$ ã®**ã¹ã³ã¢**ã以äžã§å®ããŸã.
$$ \sum_{i=1}^{256} |a_i-a_{i+16}| $$
$1,2,\ldots,272$ ã䞊ã¹æ¿ããŠã§ããæŽæ°å㯠$272!$ éãèããããŸãã, ãããã®ã¹ã³ã¢ã®å¹³åå€ãæ±ããŠãã ãã.\
ããã ã, ãã®å¹³åå€ã¯æŽæ°å€ã«ãªãããšã蚌æã§ããŸã. |
OMC095 (for beginners) | https://onlinemathcontest.com/contests/omc095 | https://onlinemathcontest.com/contests/omc095/tasks/1807 | F | OMC095(F) | 400 | 76 | 150 | [
{
"content": "ã$N$ ã¯çŽè§äžè§åœ¢ $BEM$ ã®å€å¿ã§ããããïŒ$NE=NM$ ãæç«ããïŒãããã£ãŠ $DE=DM$ ãšããã㊠$DN$ 㯠$\\angle{EDM}$ ãäºçåããïŒçŽç· $BC$ ãš $DM$ ã®äº€ç¹ã $X$ ãšãããšïŒè§ã®äºçåç·å®çãã\r\n$$PX:PC=2DM:(DE+EC)=10:9$$\r\nãã£ãŠ $CX=AD+BC=11$ ãšããã㊠$CP=99\\/19$ ãåŸãããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{118}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc095/editorial/1807"
},
{
"content": "ã$F$ ãç·å $ME$ ã®äžç¹ãšããã° $AB \\parallel DF$ ã ããçŽç· $DF$ 㯠$N$ ãéãïŒãã£ãŠ $AB\\parallel DP$ ã§ããïŒãŸã $E$ ãéã $AB$ ã«å¹³è¡ãªçŽç·ãš $BC$ ã®äº€ç¹ã $G$ ãšããã°ïŒçŽç· $AB,DP,EG$ ã¯çééã ããïŒæ¡ä»¶ãšåãããŠ\r\n$$AD:BP:PG:GC=5:5:5:4$$\r\nåŸã£ãŠæ±ããå€ã¯ $11\\times \\dfrac{5+4}{5+5+5+4}=\\dfrac{99}{19}$ ã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{118}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc095/editorial/1807/63"
}
] | ã$AD\parallel BC,AD+BC=11$ ãã¿ããå°åœ¢ $ABCD$ ã«ã€ããŠ, 蟺 $AB$ ã®äžç¹ã $M$ ãšã, ãŸã $AB$ ã®åçŽäºçåç·ãšèŸº $CD$ ã亀ãã£ãã®ã§ãã®äº€ç¹ã $E$ ãšãããšãã, 以äžãæãç«ã¡ãŸããïŒ
$$DE=DM=5,\quad CE=4$$
$BE$ ã®äžç¹ã $N$ ãšã, çŽç· $BC$ ãš $DN$ ã®äº€ç¹ã $P$ ãšãããšã, $CP$ ã®é·ããæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ã«ãã£ãŠ $\displaystyle \dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC094 (for experts) | https://onlinemathcontest.com/contests/omc094 | https://onlinemathcontest.com/contests/omc094/tasks/2617 | A | OMC094(A) | 300 | 122 | 156 | [
{
"content": "ã$AB=x,AC=y,BP=PQ=QC=a$ ãšãã. ãã®ãšã, äžç·å®çãã以äžã®$2$ã€ãæç«ããïŒ\r\n$$x^2+24^2=2(a^2+18^2),\\quad y^2+18^2=2(a^2+24^2)$$\r\nããããæŽçããããšã§ $(y+x)(y-x)=756$ ãåŸã. 倧å°é¢ä¿ãå¶å¥ã«æ³šæããŠèããã°,\r\n$$(x,y)=(188,190),(60,66),(20,34),(12,30)$$\r\nãåŸã. ããã«, äžè§åœ¢ã®æç«æ¡ä»¶ã«çæããã°, $(x,y)=(20,34)$ ã®ã¿ãé©ã, æ±ããå€ã¯ $\\bf{ 680 }$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc094/editorial/2617"
}
] | ã$AB,AC$ ã®é·ãããšãã«æ£æŽæ°å€ã§ããééåãªïŒé¢ç©ãæ£ã®ïŒäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC$ ã®äžçåç¹ã $B$ ã«è¿ãæ¹ããé ã« $P,Q$ ãšãããšã, $AP=18,AQ=24$ ãæç«ããŸãã. ãã®ãšã, $AB\times AC$ ãšããŠããåŸãå€ã®ç·åãæ±ããŠãã ãã. |
OMC094 (for experts) | https://onlinemathcontest.com/contests/omc094 | https://onlinemathcontest.com/contests/omc094/tasks/3669 | B | OMC094(B) | 300 | 104 | 128 | [
{
"content": "ãäžè¬ã«, $n$ åç®ã®æäœåŸã«æžãããŠããé»æ¿ã® $2$ æ°ãå·Šãã $a_{n},b_{n}$ ãšããã°,\r\n$$a_{n+1}+b_{n+1}=a_{n}+b_{n},\\quad a_{n+1}-b_{n+1}=2(a_{n}-b_{n})$$\r\nããããïŒä»¥äžãã¿ãã $a_0,b_0$ ã«ã€ããŠïŒ$a_N,b_N$ ãæ¡ä»¶ã®éããšãªã.\r\n$$a_{0}+b_{0}=2^{3^{200}}+2,\\quad a_{0}-b_{0}=\\dfrac{3^{2^{300}}-1}{2^N}$$\r\nã㟠$a_0,b_0$ ãæŽæ°ã§ããããšã¯, $(3^{2^{300}}-1)\\/2^N$ ãå¶æ°ã§ããããšãšåå€ã§ãã. ããã§\r\n$$3^{2^{300}}-1=(3-1)(3^{2^0}+1)(3^{2^1}+1)\\cdots(3^{2^{299}}+1)$$\r\nã§ãã, å¥æ°ã®å¹³æ¹æ°ã $4$ ã§å²ã£ãäœãã $1$ ã§ããããšãããã㯠$2$ 㧠$302$ åå²ãåãã.\\\r\nã以äžãã, æ±ããç·å㯠$1+2+\\cdots+301=\\textbf{45451}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc094/editorial/3669"
}
] | ãé»æ¿ã«å·Šå³ $2$ ã€ã®æŽæ°ãæžããŠãã, ãããã«å¯Ÿã以äžã®**æäœ**ãç¹°ãè¿ãæœããŸãïŒ
- é»æ¿ã«æžããŠãã $2$ æ°ãå·Šãã $a,b$ ãšãããšã, ããããå·Šãã $\displaystyle \frac{3a-b}{2},\displaystyle \frac{-a+3b}{2}$ ã«æžãããã.
ãã®ãšã, $N$ åç®ã®æäœçµäºåŸ, é»æ¿ã«ã¯å·Šãã
$$\dfrac{2^{3^{200}}+3^{2^{300}}+1}{2},\quad \dfrac{2^{3^{200}}-3^{2^{300}}+3}{2}$$
ã® $2$ ã€ã®æ°ãæžãããŠããŸãã. $N$ ãšããŠããåŸãæ£æŽæ°ãã¹ãŠã®ç·åãæ±ããŠãã ãã. ãã ã, ææ°ã¯å³äžã«ãã $2$ æ°ããèšç®ããŸã. |
OMC094 (for experts) | https://onlinemathcontest.com/contests/omc094 | https://onlinemathcontest.com/contests/omc094/tasks/2598 | C | OMC094(C) | 300 | 144 | 164 | [
{
"content": "ã$a_{10}\\geq 1$ ãç¡èŠããã°æ°å㯠$3^9$ éãããïŒãã®ãã¡ $a_{10}=1$ ãšãªãã®ã¯ $a_{i+1}-a_i=1$ ãªã $i$ ã®åæ°ãš $a_{i+1}-a_i=-1$ ãªã $i$ ã®åæ°ãçãããšãã§ããããïŒ\r\n$$1+{}\\_9\\mathrm{C}\\_1\\times{}\\_8\\mathrm{C}\\_1+{}\\_9\\mathrm{C}\\_2\\times{}\\_7\\mathrm{C}\\_2+{}\\_9\\mathrm{C}\\_3\\times{}\\_6\\mathrm{C}\\_3+{}\\_9\\mathrm{C}\\_4\\times{}\\_5\\mathrm{C}\\_4=3139$$\r\n\r\néãããïŒãŸã察称æ§ããïŒ$a\\_{10}\\geq2$ ãªãæŽæ°åã®åæ°ãš $a_{10}\\leq0$ ãªãæŽæ°åã®åæ°ãçããããšã«çæããã°ïŒæ±ããã¹ãå Žåã®æ°ã¯ä»¥äžã§äžããããïŒ\r\n$$\\dfrac{3^9+3139}{2}=\\bf{11411}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc094/editorial/2598"
}
] | ãæŽæ°å $a_1,a_2,\ldots,a_{10}$ ã§ãã£ãŠïŒ$a_1=1,a_{10}\geq 1$ ããã³ä»¥äžãã¿ãããã®ã¯äœéããããŸããïŒ
- $1\leq{i}\leq9$ ãªãä»»æã®æ£æŽæ° $i$ ã«å¯ŸãïŒ$|a_{i+1}-a_i|\leq1$. |
OMC094 (for experts) | https://onlinemathcontest.com/contests/omc094 | https://onlinemathcontest.com/contests/omc094/tasks/3425 | D | OMC094(D) | 600 | 8 | 32 | [
{
"content": "ã$a_2=-\\dfrac{5}{24}$ ã§ããïŒãŸã $n\\geq2$ ã«å¯Ÿã $a_{n+1}-a_{n}=(4a_{n}+1)(a_{n}+1)$ ãå€åœ¢ããŠ\r\n$$4a_{n+1} +3=(4a_{n}+3)^2-2$$\r\nãåŸãïŒãããã£ãŠ $b_{n}=4a_{n}+3$ ãšããã°ïŒ$b_2=13\\/6$ ããã³ $n=2,3,\\ldots$ ã«å¯Ÿã\r\n$$b_{n+1}=b_{n}^2-2.$$\r\nããã§ïŒ$n=2,3,\\ldots$ ã«ã€ã㊠$b_{n}\\gt2$ ãåžžã«æãç«ã€ããïŒ$b_{n}=c_{n}+\\dfrac{1}{c_{n}}$ ãªã $c_{n}\\gt1$ ãäžæã«ååšãïŒ\r\n$$c_{n+1}+\\dfrac{1}{c_{n+1}}=c_{n}^2+\\dfrac{1}{c_{n}^2},$$\r\nããªãã¡ $c_{n+1}=c_{n}^2$ ãæç«ããïŒã㟠$c_{2}=\\dfrac{3}{2}$ ã§ããããšããïŒ$n=2,3,\\ldots$ ã«å¯Ÿã$$a_{n}=\\frac{1}{4}\\left\\lbrace\\left(\\frac{3}{2}\\right)^{2 ^{n-2}}+\\left(\\frac{2}{3}\\right)^{2^{n-2}}-3\\right\\rbrace$$ãæç«ãïŒç¹ã«$$a_{100}=\\frac{3^{2^{99}}+2^{2^{99}}-3Ã6^{2^{98}}}{4Ã6^{2^{98}}} $$ã§ããïŒåå㯠$2$ ã§ã $3$ ã§ãå²ãåããªãã®ã§ïŒããã¯æ¢çŽã§ããïŒ$$m= 3^{2^{99}}+2^{2^{99}}-3Ã6^{2^{98}}. $$\r\n以äžïŒ$m$ ã $37$ ã§å²ã£ããšãã®äœããš $257$ ã§å²ã£ããšãã®äœãã«åããŠèãããïŒ\\\r\nããŸã $6^4\\equiv 1\\pmod{37}$ ããã³ $2^{99} \\equiv 8 \\pmod {36}$ ã«çæããã°ïŒFermatã®å°å®çãã$$m={3^{2^{99}}+2^{2^{99}}-3Ã6^{2^{98}}} \\equiv {3^8+2^8-3Ã(6^4)^{2^{96}}} \\equiv 6 \\pmod {37}.$$\r\nãŸãïŒFermatã®å°å®çãã$$m={3^{2^{99}}+2^{2^{99}}-3Ã6^{2^{98}}} \\equiv 1+1-3\\equiv -1\\pmod{257}.$$\r\nã以äžããïŒ$37$ ãš $257$ ãäºãã«çŽ ã§ãããã $m \\equiv {\\bf{3854} }\\pmod {9509}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc094/editorial/3425"
}
] | $$a_1=\frac{-15+\sqrt{51}}{24},\quad a_{n+1}=\sum_{k=1}^{n} (4a_k+1)(a_k+1) \quad(n=1,2,\ldots)$$ã§å®ãŸãæ°å $\lbrace a_{n} \rbrace$ ã«ã€ããŠïŒ$a_{100}$ ã¯äºãã«çŽ ãªæ£æŽæ° $m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããã®ã§ïŒ$m$ ã $9509(=37\times 257)$ ã§å²ã£ãäœãã解çããŠãã ããïŒ |
OMC094 (for experts) | https://onlinemathcontest.com/contests/omc094 | https://onlinemathcontest.com/contests/omc094/tasks/3360 | E | OMC094(E) | 600 | 23 | 87 | [
{
"content": "ã$a_{ij}~(i,j\\geq2)$ 㯠$1,2,3$ ã®ããããã§ãã. 以äž, $a_{44}$ ã $1,2,3$ ããããã§ãããšãã®å Žåã®æ°ã調ã¹ã. \r\n\r\n----\r\n**è£é¡**.ã$a_{44}=3$ ãš $a_{22}=3$ ã¯åå€ã§ãã. \r\n**蚌æ**.ããŸã $a_{44}=3$ ãšãã. ã㟠$a_{33}\\leq2$ ãšãããš , $a_{43}=a_{34}=3$ ãåŸã , $a_{33}\\leq2$ ãªã®ã§ $a_{32}=a_{23}=3$ ãšãªãã, ãã㯠$a_{33}\\leq2$ ã§ããããšã«ççŸ. ãã£ãŠ $a_{33}=3$ ã§ãã. ãã®ãšã, åæ§ã«ã㊠$a_{22}=3$ ã§ãã. \r\nãéã« $a_{22}=3$ ã§ãããšã , $a_{21} , a_{12}$ ã®å°ãªããšãäžæ¹ã¯ $3$ ã®åæ°ã§ãã. $a_{21}$ ã $3$ ã®åæ°ãªãã°, $a_{32}=3$ ãšãªã, åæ§ã«é 次 $a_{33}=a_{43}=a_{44}=3$ ãåŸã. $a_{12}$ ã $3$ ã®åæ°ã®ãšããåæ§ã«ã§ãã.ïŒèšŒæçµïŒ\r\n\r\n----\r\nãè£é¡ãã $a_{44}=3$ ã¯, $3,6$ ã $\\\\{a_{11} , a_{21} , a_{12}\\\\}$ ã«å«ãŸããããšãšåå€ã ãã, $3Ã2Ã5!=720$ éãã§ãã.\r\n\r\nãç¶ã㊠$a_{44}=2$ ã®å Žåãèãã. è£é¡ãšåæ§ã« $a_{22}=2$ ã ã, éã¯å¿
ãããæãç«ã€ãšã¯éããªãããšã«æ³šæãã. ãŸã $2,4$ ã $\\\\{a_{11} , a_{21} , a_{12}\\\\}$ ã«å«ãŸãããšãã¯, å¿
ã $a_{44}=2$ ã«ãªããã, ããã¯äžãšåæ§ã« $720$ éããã.\\\r\nããã以å€ã®ãšã, ããªãã¡ $\\\\{a_{11} , a_{21} , a_{12}\\\\}$ ã«å«ãŸããå¶æ°ã $\\\\{2,6\\\\}$ ãŸã㯠$\\\\{4,6\\\\}$ ã§ããïŒã〠$3$ ãå«ãŸããªãå Žåãèãã. ãã®ãšã, $a_{44}=1$ ãšãªãã®ã¯, 以äžã®å Žåã§ãã, ãã€ãããã«éãããããšã確èªã§ãã.\r\n \r\n- $a_{21} =6$, $a_{31}=3$, $a_{12} , a_{13}$ ãå¥æ°. \r\n- $a_{12} =6$, $a_{13}=3$, $a_{21} , a_{31}$ ãå¥æ°. \r\n\r\nãã£ãŠ, ãã®å Žåã®æ°ã¯ $864-24\\times 2=816$ éããšèšç®ã§ããããšãããã. \r\n\r\nã以äžããæ±ããã¹ãå¹³åã¯$$\\frac{3Ã720+2Ã1536+1Ã2784}{5040}=\\frac{167}{105}$$ãšãªãã®ã§, ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{272}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc094/editorial/3360"
}
] | ã$4Ã4$ ã®ãã¹ç®ããã, 以äžã®èŠé ã§ããããã®ãã¹ã«äžã€ãã€æ°ãæžã蟌ã¿ãŸã. ããã§, äžãã $i$ è¡ç®, å·Šãã $j$ åç®ïŒ$i,j$ 㯠$1$ ä»¥äž $4$ 以äžã®æŽæ°ïŒã«æžã蟌ãŸããæ°ã $a_{ij}$ ã§è¡šããŸã.
- ãŸã, $1$ è¡ç®ãŸã㯠$1$ åç®ã«ãã $7$ ãã¹ã« $1$ ä»¥äž $7$ 以äžã®çžç°ãªãæŽæ°ããããã $1$ åãã€æžã蟌ã.
- ç¶ããŠãã以å€ã®ãã¹ïŒäžãã $i$ è¡ç®, å·Šãã $j$ åç®ïŒã«, 以äžãåžžã«ã¿ããããã«æ°ãæžã蟌ã.
$$a_{ij}=\max\big\\{\gcd(a_{i-1,j-1},a_{i,j-1}), ~ \gcd(a_{i-1,j-1},a_{i-1,j}), ~ \gcd(a_{i,j-1},a_{i-1,j})\big\\}$$
ããã®ãšã, æçµçãªæ°ã®æžã蟌ãŸãæ¹ã¯ $7!$ éãååšããŸãã, ããããã¹ãŠã«ã€ããŠã® $a_{44}$ ã®ïŒçžå ïŒå¹³åãæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC094 (for experts) | https://onlinemathcontest.com/contests/omc094 | https://onlinemathcontest.com/contests/omc094/tasks/3676 | F | OMC094(F) | 700 | 7 | 43 | [
{
"content": "ã$BC$ ã®äžç¹ã $M$ ãšã, $M$ ã«é¢ã㊠$H$ ãšå¯Ÿç§°ãªç¹ã $Q$ ãšãã. \r\n$4$ ç¹ $B,C,D,E$ ã¯ãã¹ãŠ $M$ ãäžå¿ãšããåäžåäžã«ããã®ã§\r\n$$\\angle DEM = \\angle EDM = \\frac{1}{2}(180^\\circ - \\angle DME) = \\frac{1}{2}(180^\\circ - 2\\angle ABD) = \\angle BAC = \\angle PCB=\\angle PBC$$ \r\nãåãã $\\triangle DEM \\sim \\triangle BCP$ ãåŸã. \r\nãŸã, åè§åœ¢ $HBQC$ ã¯å¹³è¡å蟺圢ã§ãããã\r\n$$\\angle QBC=\\angle ECB=\\angle HDE,\\quad\\angle QCB=\\angle DBC=\\angle HED$$\r\nãšãªã $\\triangle DEH \\sim \\triangle BCQ$ ã§ãã. \r\nãã£ãŠ $\\triangle DHM \\sim \\triangle BQP$ ã§ãã. \r\n$BM=CM=DM=EM=x$ ãšããã°\r\næ¡ä»¶ãã $10:x=2x:16$ ãæç«ã \r\n$x=4\\sqrt{5}$ ãåŸã. \r\nãã£ãŠ, äžå¹³æ¹ã®å®çãã \r\n$$PM = \\sqrt{16^2 - (4\\sqrt5)^2} = 4\\sqrt{11}$$\r\nãåŸã. ãŸã, äžè§åœ¢ $DHM$ ãšäžè§åœ¢ $BQP$ ã®çžäŒŒæ¯ã¯ $\\sqrt{5}:4$ ã§ãããã \r\n$HM=\\sqrt{5}y,QP=4y$ ãšããã. \r\nãã®ãšãäžç·å®çãã以äžãæç«ãã. \r\n$$(4\\sqrt{19})^2+(4y)^2=2\\bigl((\\sqrt{5}y)^2+(4\\sqrt{11})^2\\bigr)$$\r\nããã解ãããšã§ $y=2\\sqrt{2}$ ãåŸã. ãŸã, \r\n$$\\cos \\angle BAC = \\frac{AD}{AB} = \\frac{DE}{BC} = \\frac{\\sqrt{5}}{4}$$\r\nã§ãã $\\angle BHC = 180^\\circ - \\angle BAC$ ã§ãããã\r\n$\\cos \\angle BHC = -\\dfrac{\\sqrt{5}}{4}$ ã§ãã. \r\n$BH=a,CH=b$ ãšããã°äžç·å®çããã³äœåŒŠå®çãã以äžã®2åŒãåŸã. \r\n$$a^2+b^2=240,\\quad a^2 + b^2 + \\frac{\\sqrt{5}}{2}ab=320$$\r\nããããšæ¡ä»¶ $AB \\lt AC$ ã䜵ããŠè§£ãããšã§ $a^2 = 120 - 8\\sqrt{145}$ ãåŸã. \r\nç¹ã«è§£çãã¹ãå€ã¯ $\\bf{273}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc094/editorial/3676"
},
{
"content": "ãå°ããŽãªæŒã匷ãã®è§£æ³ã§ãïŒ\r\n\r\n----\r\nã$\\triangle DEH$ ãš $\\triangle CBH$ ã¯çžäŒŒã§ããïŒãã®çžäŒŒæ¯ã¯ $\\cos \\angle A:1$ ã§ãããã $BC=10\\/\\cos\\angle A$ ã§ããïŒãŸãïŒæ¥åŒŠå®çãã $\\angle A=\\angle CBP$ ã ãã $BC=32\\cos\\angle A$ ã§ããïŒããããé£ç«ããããšã§ $\\cos \\angle A=\\sqrt{5}\\/4, BC=8\\sqrt 5$ ãåŸãïŒ\\\r\nã$BC$ ã®äžç¹ã $M$ ãšãïŒ$H$ ããçŽç· $PM$ ã«äžãããåç·ã®è¶³ã $Q$ ãšããïŒãŸã $\\triangle BHC$ ã®å€å¿ã $O$ ãšããïŒãã®ãšã $O$ ã¯ç·å $PM$ äžã«ããïŒ$\\angle BOC=2\\angle A$ ãåãããã\r\n$$MO=\\frac12 BC\\times \\frac{\\sqrt{5}}{\\sqrt{11}} = \\frac{20}{\\sqrt{11}},ãHO=\\frac12 BC\\times \\frac{4}{\\sqrt{11}} = \\frac{16\\sqrt{5}}{\\sqrt{11}}$$\r\nãåŸãïŒãŸã $PM=\\dfrac{44}{\\sqrt{11}}$ ã§ãããã $PO=\\dfrac{24}{\\sqrt{11}}$ ã§ããïŒãã㧠$QO=x$ ãšããã°ïŒäžå¹³æ¹ã®å®çãã\r\n$$(4\\sqrt{19})^2-\\left(\\frac{16\\sqrt 5}{\\sqrt{11}}\\right)^2=HP^2-HO^2=QP^2-QO^2=\\left(x+\\frac{24}{\\sqrt{11}}\\right)^2-x^2$$\r\nãæç«ãïŒããã解ãããšã§ $x=\\dfrac{31}{\\sqrt{11}}$ ãåŸãïŒåæã« $HQ=\\sqrt{29}$ ãåããïŒä»¥äžããïŒçŽç· $AH$ ãš $BC$ ã®äº€ç¹ã $F$ ãšããã°\r\n$$\\begin{aligned}\r\nBH^2&=BF^2+HF^2 \\\\\\\\\r\n&= (BM-HQ)^2+(QO-MO)^2ã(\\because AB\\lt AC)\\\\\\\\\r\n&= (4\\sqrt{5}-\\sqrt{29})^2+\\sqrt{11}^2\\\\\\\\\r\n&=120-8\\sqrt{145}\r\n\\end{aligned}$$\r\nåŸã£ãŠè§£çãã¹ãå€ã¯ $120+8+145=\\textbf{273}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc094/editorial/3676/61"
},
{
"content": "ãé·ãã®æ¡ä»¶ã匱ç¹ã«ãªããã¡ãªè€çŽ èšç®ã§ããïŒä»åã¯å®å
šã«è€çŽ èšç®ã§ãŽãªæŒããŸãïŒ\\\r\nã$A$ ã®åº§æšã $a$ ãªã©ãšå¯Ÿå¿ããå°æåã§è¡šããŸãïŒ$ABC$ ã®å€æ¥åãåäœåã«èšå®ãïŒããã« $a=1$ ãšããŸãïŒ$b\\overline{b}=c\\overline{c}=1$ ã«æ³šæããŠãã ããïŒãã ãä»åã¯æ±å€åé¡ã§ïŒå®éã«ã¯ã¹ã±ãŒã«å€æã§ããªãã®ã§ïŒéã«é·ãã®æ¡ä»¶ãã¹ã±ãŒã«å€æããŠããŸããŸãïŒå
·äœçã«ã¯ $x\\gt 0$ ãå®æ°ãšã㊠$DE=10x$ ãªã©ãæ¡ä»¶ã ã£ããšããŸãïŒèŠããã«ïŒå
ã®æ¡ä»¶ã§ $1\\/x$ ãå€æ¥åã®ååŸã§ãïŒ\\\r\nãç»å Žããç¹èªäœã¯é©ãã»ã©éåšçãªãã®ã°ããã§ããïŒåº§æšããã¹ãŠåçŽã§ãïŒãããããç²åŸãã«ããã¹ãŠå
¬åŒãšããŠèŒã£ãŠããŸãïŒ\r\n$$ d=\\dfrac{1}{2}\\biggl(1+b+c-\\dfrac{c}{b}\\biggr), \\quad e=\\dfrac{1}{2}\\biggl(1+b+c-\\dfrac{b}{c}\\biggr), \\quad h=1+b+c, \\quad p=\\dfrac{2bc}{b+c} $$\r\nããããçšãããšïŒæ¡ä»¶ã¯æ¬¡ã®ããã«è¡šããŸãïŒ\r\n$$ \\begin{aligned}\r\n10x=|d-e|&=\\dfrac{|b+c||b-c|}{2|b||c|}=\\dfrac{1}{2}|b+c||b-c|, \\\\\\\\\r\n16x=|b-p|&=\\dfrac{|b||b-c|}{|b+c|}=\\dfrac{|b-c|}{|b+c|}, \\\\\\\\\r\n4\\sqrt{19}x=|p-h|&=\\dfrac{|b^2+b+c^2+c|}{|b+c|}\r\n\\end{aligned}$$\r\nãããã¯çµå±æ¬¡ã®ããã«æžãçŽããŸãïŒ\r\n$$ |b+c|=\\dfrac{\\sqrt{5}}{2},\\quad |b-c|=8\\sqrt{5}x,\\quad |b^2+b+c^2+c|=2\\sqrt{95}x $$\r\nããã§ãããã ã®æ¹çšåŒã®åé¡ã«ãªã£ãã®ã§ïŒããã§ã¯å®å
šã«å¹Ÿäœçãªæ§è³ªãå¿ããŠä»£æ°çã«è§£ãåãããšãç®æšãšããŸãïŒãããŸã§ããããšæãã°åºæ¥ããã ãšãã極端ãªäºå®ã®çŽ¹ä»ã§ïŒäžè¬ã«ã¯ããã¯æªæã§ãïŒåºæ¬çã«ã¯åçã§åºæ¥ããšãããŸã§ãŸããããŸãããïŒããã«ïŒèšŒæåé¡ãªãã°ããŠããïŒæ±å€åé¡ã§ã¯ãµã€ãã¯è€çŽ èšç®ã¯ããã»ã©ç¶ºéºã«ã¯åºãããªãïŒïŒ\\\r\nã絶察å€ãæ±ãã³ãã¯ïŒ$|z|^2=z\\overline{z}$ ã§è§£äœããããšã§ãïŒããã $|b\\pm c|$ ã§å®è¡ããŠã¿ããšïŒ\r\n$$\\dfrac{5}{4}=(b+c)\\biggl(\\dfrac{1}{b}+\\dfrac{1}{c}\\biggr)=2+\\biggl(\\dfrac{b}{c}+\\dfrac{c}{b}\\biggr), \\quad\r\n320x^2=(b-c)\\biggl(\\dfrac{1}{b}-\\dfrac{1}{c}\\biggr)=2-\\biggl(\\dfrac{b}{c}+\\dfrac{c}{b}\\biggr).$$\r\nããããæ©é $x=\\sqrt{55}\\/80$ ãåŸãããŸãïŒããã«ã¯æ¯ $b\\/c$ ããããã®ã§ïŒçè«äžã¯ $c$ äžæåã®è°è«ã«å®å
šã«åž°çã§ããã®ã§ããïŒ$b\\/c$ ã¯ç¹ã«ç¶ºéºãªå€ã§ã¯ç¡ãã®ã§åŸçã§ã¯ãªãããšã¯ããã«å¯ããã§ãããïŒäºå®ãšããŠïŒããã¯ã¡ã¿èªã¿ã§ããïŒä»åã¯ããããå¹³æ¹ãæ±ãããšã®æ瀺ã§ïŒããã $2$ 次ã®ç¡çæ°ãšããããšã¯ïŒ$c$ ã¯èããæ±ã圢ã«ãªãããšãäºæ³ãããŸãïŒãªã®ã§ïŒããããã工倫ã®ãã©ããã§ãïŒ$c$ ãçŽæ¥æ±ãã«è¡ã£ãŠã¯ãŸããã®ã§ïŒæ¬²ããå€ãçŽæ¥åºããŠããŸãããšãèãããšïŒå¹³æ¹ã®ãŸãŸã«ããŠããã®ãè¯ããšããããšã ã£ãã®ã§ïŒ\r\n$$|b-h|^2=|1+c|^2=(1+c)\\biggl(1+\\dfrac{1}{c}\\biggr)=2+c+\\dfrac{1}{c}$$\r\nããªãã¡ $\\gamma:=c+1\\/c$ ãç®æšãšãªã£ãŠããŸãïŒ\\\r\nãããŠïŒé£æµã¯ $|b^2+b+c^2+c|$ ã®æ±ãã§ãïŒããããïŒå
ã®åé¡ã®é£ããã $PH$ ãšããããããããªãç·åã®é·ãã®äžç¹ã«éçŽãããŠããïŒæ®ãã®æ¡ä»¶ã¯ã©ããšããããšã¯ãããŸããïŒçŸã«ãããŸã§åŸãããã®ã¯å
ã®åé¡ã«ç
§ããåããããšå€æ¥åã®ååŸã $BC$ ã®é·ãã§ããïŒããã¯å®éã«ã¯ã¡ãã£ãšããäžè§æ¯èšç®ãªã©ã§ããã«å®è¡ã§ããããšã§ãïŒãã€ã³ã㯠$|b|$ ã $|c|$ ã§å²ãæŸé¡ãšããããšã§ïŒ\r\n$$\\dfrac{\\sqrt{209}}{8}=|b^2+b+c^2+c|=\\dfrac{|b^2+b+c^2+c|}{|b||c|}=\\biggl|\\dfrac{b}{c}+\\dfrac{c}{b}+\\dfrac{1}{b}+\\dfrac{1}{c}\\biggr|=\\biggl|\\dfrac{1}{b}+\\dfrac{1}{c}-\\dfrac{3}{4}\\biggr|$$\r\nãšã§ããŸãïŒç¡çãã $b\\/c+c\\/b$ ãšããæ¢ç¥ã®å€ãäœãåºãã«è¡ã£ãã®ã§ãïŒããã $2$ ä¹ããã°\r\n$$\\dfrac{209}{64}=\\biggl(\\dfrac{1}{b}+\\dfrac{1}{c}-\\dfrac{3}{4}\\biggr)\\biggl(b+c-\\dfrac{3}{4}\\biggr)=\\dfrac{41}{16}+\\underbrace{\\dfrac{b}{c}+\\dfrac{c}{b}}_{-3\\/4}-\\dfrac{3}{4}\\biggl(\\underbrace{b+\\dfrac{1}{b}}\\_{\\beta}+\\underbrace{c+\\dfrac{1}{c}}\\_{\\gamma}\\biggr)$$\r\nãšç®æšã® $\\gamma$ ã姿ãçŸããŸããïŒå¯Ÿç§°çã« $\\beta:=b+1\\/b$ ãšããŠãããšïŒ$\\beta+\\gamma=-31\\/16$ ãããã£ãããšã«ãªããŸãïŒ\\\r\nãããããããã§ãããïŒããšã¯ $\\beta\\gamma=bc+1\\/bc-3\\/4$ ãæ±ããã°ããã®ã§ãïŒããã§æåŸã®å·¥å€«ãªã®ã§ããïŒ\r\n$$\\dfrac{31}{16}=|\\beta+\\gamma|=\\dfrac{|b+c||1+bc|}{|b||c|}=\\dfrac{\\sqrt{5}}{2}|1+bc|$$\r\nã§ããããšããïŒ\r\n$$\\dfrac{961}{320}=|1+bc|^2=(1+bc)\\biggl(1+\\dfrac{1}{bc}\\biggr)=2+bc+\\dfrac{1}{bc}=\\beta\\gamma+\\dfrac{11}{4}$$\r\nãšãªã£ãŠ $\\beta\\gamma=81\\/320$ ãåŸãããŸããïŒããããç¶ãã¹ã $2$ 次æ¹çšåŒã解ãã°ïŒç¢ºãã«æ£ããå€ãåŸãŸãïŒãªãïŒåœç¶ $2$ ã€ã®å€ãåºãŠããã®ã§ããïŒ$AB\\lt AC$ 㯠$\\beta=2\\mathrm{Re}~ b\\gt 2\\mathrm{Re}~c=\\gamma$ ãšåå€ã ãšããããŸãïŒ$a=1$ ã®èšå®ãå¹ããŠããããšã«æ³šæããŠãã ããïŒ",
"text": "è€çŽ æ°å¹³é¢ãçšããŠ",
"url": "https://onlinemathcontest.com/contests/omc094/editorial/3676/62"
}
] | ã$AB \lt AC$ ãªãéè§äžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšã, å€æ¥åã $\Gamma$ ãšããŸã.
çŽç· $BH$ ãš $AC$ ã®äº€ç¹ã $D$, çŽç· $CH$ ãš $AB$ ã®äº€ç¹ã $E$ ãšããŸã.
$B,C$ ã«ããã $Î$ ã®æ¥ç·ã®äº€ç¹ã $P$ ãšããŸã.
$$DE=10,\quad BP=16,\quad PH=4\sqrt{19}$$
ãæç«ãããšã, $BH$ ã®é·ãã®äºä¹ãæ±ããŠãã ãã.
ãã ã, æ±ããå€ã¯å¹³æ¹å åãæããªãæ£ã®æŽæ° $c$ ãšæ£ã®æŽæ° $a,b$ ãçšã㊠$a-b\sqrt{c}$ ãšè¡šããã®ã§, $a+b+c$ ã解çããŠãã ãã. |
OMC093 (for beginners) | https://onlinemathcontest.com/contests/omc093 | https://onlinemathcontest.com/contests/omc093/tasks/3489 | A | OMC093(A) | 100 | 258 | 281 | [
{
"content": "ãçŽ æ°ã®äžã®äœãšããŠããåŸãæ°ã¯ $1,2,3,5,7,9$ ã§ããïŒ\\\r\nãããããã $1234$ ä¹ãããšãã®äžã®äœã¯ $1,4,9,5,9,1$ ã§ããïŒæ±ããç·å㯠$1+4+5+9=\\textbf{19}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc093/editorial/3489"
}
] | ã $p$ ãçŽ æ°ãšãããšãïŒ $p^{1234}$ ã®äžã®äœãšããŠããåŸããã®ã®ç·åãæ±ããŠãã ããïŒ |
OMC093 (for beginners) | https://onlinemathcontest.com/contests/omc093 | https://onlinemathcontest.com/contests/omc093/tasks/3490 | B | OMC093(B) | 200 | 239 | 259 | [
{
"content": "$$\\frac{(n+1)n\\cdots(n-37)}{39!}=\\frac{n(n-1)\\cdots(n-39)}{40!}$$\r\nããïŒ \r\n$$40(n+1)=(n-38)(n-39)$$\r\nãã® $2$ 次æ¹çšåŒã解ããŠïŒæ±ãã $n$ 㯠$n=\\textbf{103}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc093/editorial/3490"
}
] | ã ${}\_{n+1}\mathrm{C}\_{39}={}\_n\mathrm{C}\_{40}$ ãã¿ãã $40$ 以äžã®æŽæ° $n$ ã¯äžæã«ååšããã®ã§ïŒãããæ±ããŠãã ããïŒ |
OMC093 (for beginners) | https://onlinemathcontest.com/contests/omc093 | https://onlinemathcontest.com/contests/omc093/tasks/3491 | C | OMC093(C) | 200 | 226 | 242 | [
{
"content": "ã $BC+AD=AB+CD=144$ ã§ããïŒçžå çžä¹å¹³åã®äžçåŒãã\r\n$$144=BC+AD\\geq2\\sqrt{BC\\times AD}$$\r\nãæãç«ã€ïŒãããã£ãŠïŒ$BC\\times AD$ 㯠$BC=AD=72$ ã®ãšãæå€§å€ $\\textbf{5184}$ ããšãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc093/editorial/3491"
}
] | ã åã«**å€æ¥**ããåè§åœ¢ $ABCD$ ã
$$AB=55,\quad CD=89$$
ãã¿ãããšãïŒ$BC\times AD$ ã®ãšãåŸãæ倧å€ãæ±ããŠãã ããïŒ |
OMC093 (for beginners) | https://onlinemathcontest.com/contests/omc093 | https://onlinemathcontest.com/contests/omc093/tasks/3493 | D | OMC093(D) | 300 | 146 | 202 | [
{
"content": "ãæ²ããåæ°ãå¶æ°åã§ããã®ã¯æåãšæåŸã®æäœãäžèŽããå Žåã§ããïŒæ±ããå Žåã®æ°ã¯ $(1,0)$ ãã $(7,6)$ ãŸã§ç§»åããæ¹æ³ã®ç·æ°ãš $(0,1)$ ãã $(8,5)$ ãŸã§ç§»åããæ¹æ³ã®ç·æ°ã®åã§ãããã\r\n$${}\\_{12}\\mathrm{C}\\_{6}+{}\\_{12}\\mathrm{C}\\_{4}=\\textbf{1419}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc093/editorial/3493"
}
] | ã座æšå¹³é¢äžã®ç¹ $P$ ãïŒã¯ããåç¹ $O(0,0)$ ã«ãããŸãïŒããŸïŒ$P$ ã«å¯ŸããŠä»¥äžã®æäœ $X$ ããã³æäœ $Y$ ãèš $14$ åè¡ãããšã§ïŒç¹ $A(8,6)$ ãŸã§ç§»åãããããšãèããŸãïŒ
- æäœ $X$ïŒç¹ $P$ ã $x$ æ¹åã« $1$ ã ã移åããã
- æäœ $Y$ïŒç¹ $P$ ã $y$ æ¹åã« $1$ ã ã移åããã
ããæäœ $X$ ãããçŽåŸã«æäœ $Y$ ãè¡ãããšããŸãã¯ãæäœ $Y$ ãããçŽåŸã«æäœ $X$ ãè¡ãããšãã**æ²ãã**ãšè¡šçŸãããšãïŒæ²ããåæ°ãå¶æ°åã§ãããããªæäœæ¹æ³ãäœéãããããæ±ããŠãã ããïŒ |
OMC093 (for beginners) | https://onlinemathcontest.com/contests/omc093 | https://onlinemathcontest.com/contests/omc093/tasks/3492 | E | OMC093(E) | 300 | 141 | 196 | [
{
"content": "ã $10$ é²æ³è¡šç€ºãããšãã« $9$ ãçŸããªã $4$ æ¡ã®æ°ã®ç·åã¯\r\n$$(1+\\cdots+8)\\times9^3\\times1000+(0+\\cdots+8)\\times(8\\times 9^2)\\times(100+10+1)=28833408$$\r\nã§ããããïŒæ±ããã¹ãç·å㯠$$(1000+9999)\\times9000\\div2-28833408=\\textbf{20662092}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc093/editorial/3492"
}
] | ã $3492$ ã $9999$ ã®ããã«ïŒ$10$ é²æ³è¡šç€ºãããšãã« $9$ ãçŸãããããªïŒ$1000$ ä»¥äž $9999$ 以äžã®æŽæ°ã®ç·åãæ±ããŠãã ããïŒ |
OMC093 (for beginners) | https://onlinemathcontest.com/contests/omc093 | https://onlinemathcontest.com/contests/omc093/tasks/3494 | F | OMC093(F) | 400 | 39 | 105 | [
{
"content": "ã $A$ ãäžå¿ã«ïŒãã決ããããæ¹åã«ïŒ $30^\\circ$ å転ãïŒ $\\frac{\\sqrt{3}}{2}$ åæ¡å€§ããå€æã«ãã£ãŠïŒ$D$ 㯠$K$ ã«ãã€ãïŒ$C$ 㯠$L$ ã«ãã€ãããïŒ$M$ 㯠$N$ ã«ãã€ãïŒãã£ãŠ $DM=5\\sqrt{3}$ ããã³ $AM=2MN=4$ ãæãç«ã€ïŒããã§ïŒæ£äžè§åœ¢ $ABD,ACE$ ã®äžèŸºã®é·ãããããã $p,q$ ãšãããšïŒäžè§åœ¢ $ADC$ ã§äžç·å®çããïŒ $p^2+q^2=182$ ãšãªãïŒãã£ãŠïŒ\r\n$$S^2=\\frac{3}{16}{(p^2+q^2)}^2=\\frac{24843}{4}$$\r\nãã解çãã¹ãæ°å€ã¯ $\\textbf{24847}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc093/editorial/3494"
}
] | ãäžè§åœ¢ $ABC$ ã«å¯ŸãïŒäžè§åœ¢ $ABD$ ãš $ACE$ ããšãã«äžè§åœ¢ $ABC$ ã®å€åŽã®æ£äžè§åœ¢ãšãªãããã«ç¹ $D,E$ ããšããŸãïŒãŸãïŒç·å $BD,CE,CD$ ã®äžç¹ããããã $K,L,M$ ãšãïŒç·å $KL$ ã®äžç¹ã $N$ ãšããŸãïŒ\
ã $KL=15,MN=2$ ã§ãããšãïŒæ£äžè§åœ¢ $ABD$ ãšæ£äžè§åœ¢ $ACE$ ã®é¢ç©ã®åã $S$ ãšãããšïŒ $S$ ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\sqrt{\dfrac{a}{b}}$ ãšè¡šããã®ã§ïŒ $a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC092 (for beginners) | https://onlinemathcontest.com/contests/omc092 | https://onlinemathcontest.com/contests/omc092/tasks/3483 | A | OMC092(A) | 100 | 247 | 259 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/hJPuTu8hmEI\r\n\r\nãäžåŒã« $y = 60$ ã代å
¥ãããšïŒä»»æã®å®æ° $x$ ã«å¯ŸããŠ\r\n$$ f(x) = x + f(60) - 60 = x + 1140 $$\r\nãæç«ãïŒç¢ºãã«ããã¯äžåŒãæºããããïŒ$f(1200) = 1200 + 1140 = \\mathbf{2340}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc092/editorial/3483"
}
] | ãå®æ°ã«å¯ŸããŠå®çŸ©ããå®æ°å€ããšãé¢æ° $f$ ã¯ïŒä»»æã®å®æ° $x, y$ ã«å¯ŸããŠ
$$ f(x) + y = x + f(y) $$
ãæºãããŸãïŒ$f(60) = 1200$ ã§ãããšãïŒ$f(1200)$ ãæ±ããŠãã ããïŒ |
OMC092 (for beginners) | https://onlinemathcontest.com/contests/omc092 | https://onlinemathcontest.com/contests/omc092/tasks/3485 | B | OMC092(B) | 200 | 196 | 244 | [
{
"content": "ã$1201$ ã¯çŽ æ°ã§ããããïŒ$1200$ 以äžã®ä»»æã®æ£æŽæ°ãšäºãã«çŽ ã§ããïŒ$\\phi(1201) = 1200$ ã§ããïŒ \r\nãäžæ¹ïŒ$2$ 以äžã® $n$ ã«å¯ŸããŠæããã« $\\phi(n) \\lt n$ ããïŒæ±ããæå°å€ã¯ $\\mathbf{1201}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc092/editorial/3485"
}
] | ãä»»æã®æ£æŽæ° $n$ ã«å¯ŸãïŒ$n$ ãšäºãã«çŽ 㪠$n$ 以äžã®æ£æŽæ°ã®åæ°ã $\phi(n)$ ã§è¡šããŸãïŒ$\phi(n)$ ã $1200$ ã®åæ°ã«ãªããããªæå°ã®æ£æŽæ° $n$ ãæ±ããŠãã ããïŒ |
OMC092 (for beginners) | https://onlinemathcontest.com/contests/omc092 | https://onlinemathcontest.com/contests/omc092/tasks/3484 | C | OMC092(C) | 200 | 129 | 194 | [
{
"content": "ãæ±ããç·åã¯ïŒãã¹ãŠã®é²ã¿æ¹ã«ã€ããŠéãç¹ã®åæ°ãåèšãããã®ã«çããïŒåç¹ãã $A$ ãŸã§ã® $P$ ã®é²ã¿æ¹ã¯ ${}\\_{12}\\mathrm C\\_6 = 924$ éãããïŒãã®ãã¹ãŠã«ãããŠãããã $13$ åã®ç¹ãéãããïŒçã㯠$924 \\times 13 = \\mathbf{12012}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc092/editorial/3484"
}
] | ã座æšå¹³é¢äžã«ããç¹ $P$ ã¯ïŒç¹ $(x, y)$ ã«ãããšãã« $(x + 1, y)$ ãŸã㯠$(x, y + 1)$ ã«ç¬é移åã§ããŸãïŒã¯ãã $P$ ã¯åç¹ $(0, 0)$ ã«ããïŒç¹ $A(6, 6)$ ãç®æã㊠$A$ ã«å°çãããåæ¢ããŸãïŒãã®ãšãïŒç¹ $P$ ãéãç¹ã®éåïŒåç¹ãš $A$ ãå«ãïŒãšããŠããåŸããã®ã®ãã¡ïŒããç¹ $(i, j)$ ãå«ããã®ã®åæ°ã $N(i, j)$ ãšãããšãïŒ
$$ \sum_{i=0}^6 \sum_{j=0}^6 N(i, j) $$
ãæ±ããŠãã ããïŒ |
OMC092 (for beginners) | https://onlinemathcontest.com/contests/omc092 | https://onlinemathcontest.com/contests/omc092/tasks/3487 | D | OMC092(D) | 300 | 190 | 230 | [
{
"content": "ãäžåºŠã«å
¥ããããããŒçã®åæ°ã¯ $1, 2, 7, 8$ åã®ã©ããã§ãããïŒ$7, 8$ åå
¥ããã®ã¯åèšã§é«ã
$1$ åã§ããïŒ\r\n* å¿
ã $1$ ãŸã㯠$2$ åãã€å
¥ããå ŽåïŒ \r\nã$12$ ãäžè¬ã« $n$ ãšããïŒå
¥ãæ¹ã $a_n$ éããšãããšïŒ\r\n$$a_1 = 1,\\qquad a_2 = 2,\\qquad a_{n+2} = a_{n+1} + a_n$$\r\nãæç«ããããïŒ$a_n$ ãé ã«æ±ã㊠$a_{12} = 233$ ãåŸãïŒ\r\n\r\n* $1$ åã ã $7$ ãŸã㯠$8$ åå
¥ããå ŽåïŒ \r\nãã¯ãã $7, 8$ ã $1, 2$ ãšæ±ãïŒåŸã§ $6$ ãå ããããšãèããïŒ$1, 2$ åã〠$6$ åã®ããŒçãå
¥ããå
¥ãæ¹ã¯\r\n$$(1,1,1,1,1,1),\\quad(1,1,1,1,2),\\quad(1,1,2,2),\\quad(2,2,2)$$\r\nãšãã®äžŠã³æ¿ãã§ããããïŒæ±ããå Žåã®æ°ã¯\r\n$$ 6 \\times {}\\_6\\mathrm C\\_0 + 5 \\times {}\\_5\\mathrm C\\_1 + 4 \\times {}\\_4\\mathrm C\\_2 + 3 \\times {}\\_3\\mathrm C\\_0 = 58. $$\r\n\r\nããã£ãŠçã㯠$233 + 58 = \\mathbf{291}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc092/editorial/3487"
}
] | ã**åºå¥ã®ãªã** $12$ åã®ããŒçãããïŒããããäœåãã«åã㊠$1$ ã€ã®è¢ã«å
¥ããããšãèããŸãïŒè¢ã«äžåºŠã«å
¥ããããŒçã®åæ°ãïŒåžžã« $6$ ã§å²ããš $1$ ã $2$ äœãæ£æŽæ°ã«ãªãããã«ãããšãïŒå
¥ãæ¹ã¯äœéããããŸããïŒ |
OMC092 (for beginners) | https://onlinemathcontest.com/contests/omc092 | https://onlinemathcontest.com/contests/omc092/tasks/3486 | E | OMC092(E) | 300 | 123 | 174 | [
{
"content": "ãååŸ $6$ ã®åã®äžå¿ã $A$ïŒååŸ $12$ ã®åã®äžå¿ã $B,C$ ãšãïŒ$3$ ã€ã®åãå
æ¥ããåã®äžå¿ã $O$ïŒååŸã $6x$ ãšããïŒãã®ãšã $AO = 6\\left(x - 1\\right)\\mathclose{},\\\\, BO = 6\\left(x - 2\\right)$ ã§ããïŒãŸã\r\n$$AB = AC = 6 + 12 = 18,\\quad BC = 12 + 12 = 24$$\r\nã§ããïŒçŽç· $AO$ ãç·å $BC$ ãš $BC$ ã®äžç¹ $M$ ã§äº€ããããšãã\r\n$$ AM = \\sqrt{18^2 - \\left(\\frac{24}2\\right)^2} = 6\\sqrt5,\\quad OM = \\left| 6\\sqrt5 - 6\\left(x - 1\\right) \\right| = 6\\left|\\sqrt5 + 1 - x\\right|\\mathclose{}.$$\r\nããããã£ãŠïŒäžè§åœ¢ $BOM$ ã«ãããŠäžå¹³æ¹ã®å®çãã\r\n$$ \\left(x - 2\\right)^2 = \\left(\\sqrt5 + 1 - x\\right)^2 + \\left(\\frac{12}6\\right)^2 \\implies x = 2 + \\sqrt5 $$\r\nãšãªãïŒæ±ããååŸã¯ $6\\left(2 + \\sqrt5\\right) = 12 + \\sqrt{180}$ïŒããªãã¡è§£çãã¹ãå€ã¯ $\\mathbf{192}$ ã§ããïŒ\\\r\nããªãïŒ å $A$ ãšå $O$ ã®æ¥ç¹ã«ãããŠå転ããŠãããïŒãããã®çµæã¯Descartesã®åå®çãšããŠäžè¬åããïŒ\r\n$$ \\left(\\frac16 + \\frac1{12} + \\frac1{12} - \\frac1{6x}\\right)^2 = 2 \\left(\\left(\\frac16\\right)^2 + \\left(\\frac1{12}\\right)^2 + \\left(\\frac1{12}\\right)^2 + \\left(-\\frac1{6x}\\right)^2\\right) $$\r\nãä»åã®ç¶æ³ã§ã¯æç«ããïŒ$x \\gt 0$ ãèæ
®ããã°ç¢ºãã« $x = 2 + \\sqrt5$ ãåããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc092/editorial/3486"
}
] | ãååŸ $6$ ã®åã $1$ ã€ãš ååŸ $12$ ã®åã $2$ ã€ããïŒããããäºãã«å€æ¥ããŠããŸãïŒãããã®åããã¹ãŠå
æ¥ããåã®ååŸã¯æ£æŽæ° $a, b$ ãçšã㊠$a + \sqrt b$ ãšè¡šãããã®ã§ïŒ$a + b$ ã解çããŠãã ããïŒ |
OMC092 (for beginners) | https://onlinemathcontest.com/contests/omc092 | https://onlinemathcontest.com/contests/omc092/tasks/3488 | F | OMC092(F) | 400 | 36 | 83 | [
{
"content": "ãä»»æã® $n$ ã«å¯ŸããŠ\r\n$$ \\frac{n^2 + n + 1}{n\\left(n + 1\\right)\\left(n + 1\\right)!} = \\frac{\\left(n + 1\\right)^2 - n}{n\\left(n + 1\\right)\\left(n + 1\\right)!} = \\frac1{n \\times n!} - \\frac1{\\left(n + 1\\right) \\left(n + 1\\right)!}, $$\r\n$$ \\frac{n^2 + 2n + 2}{n\\left(n + 1\\right)\\left(n + 2\\right)!} = \\frac{\\left(n + 1\\right)\\left(n + 2\\right) - n}{n\\left(n + 1\\right)\\left(n + 2\\right)!} = \\frac1{n \\left(n + 1\\right)!} - \\frac1{\\left(n + 1\\right) \\left(n + 2\\right)!} $$\r\nãæç«ãããã\r\n$$ S + T = \\left(1 - \\frac1{1201 \\times 1201!}\\right) + \\left(\\frac12 - \\frac1{1201 \\times 1202!}\\right) = \\frac{\\frac{1201\\times1202!}{2\\times401} - 1}{\\frac{1201\\times1202!}{3\\times401}}. $$ \r\næå³èŸºã®è¡šç€ºã¯æ¢çŽã§ãã\r\n$$ p + q + 1 = \\frac{5 \\times 1201 \\times 1202!}{6 \\times 401} $$\r\nãåããïŒLegendreã®å®çããïŒãã㯠$5$ 㧠$299$ åå²ãåãïŒæ±ããå€ã $\\mathbf{299}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc092/editorial/3488"
}
] | ã以äžã§å®ãŸã $S, T$ ã«ã€ããŠïŒ$S + T$ ã¯äºãã«çŽ ãªæ£æŽæ° $p, q$ ãçšã㊠$\dfrac pq$ ãšè¡šãããŸãïŒ
$$ S = \sum_{n=1}^{1200} \frac{n^2 + n + 1}{n\left(n + 1\right)\left(n + 1\right)!},\quad T = \sum_{n=1}^{1200} \frac{n^2 + 2n + 2}{n\left(n + 1\right)\left(n + 2\right)!}. $$
ãã®ãšãïŒ$p + q + 1$ ã®åé²æ³ã«ããè¡šèšã§æ«å°Ÿã«äžŠã¶ $0$ ã®åæ°ãæ±ããŠãã ããïŒ |
OMC091 | https://onlinemathcontest.com/contests/omc091 | https://onlinemathcontest.com/contests/omc091/tasks/3107 | A | OMC091(A) | 100 | 235 | 237 | [
{
"content": "ã$W,E,L,C,O,M$ ã®ç·åã $21$ , ç·ç©ã $720$ ã§ããããšã«çæãã.\\\r\nã$E=24-21=3$ ãªã®ã§, æ±ããçã㯠$720\\times3=\\textbf{2160}$ .",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc091/editorial/3107"
}
] | ã$W,E,L,C,O,M$ ã¯çžç°ãªã $1$ ä»¥äž $6$ 以äžã®æŽæ°ã§ã.
$$W+E+L+C+O+M+E=24$$
ãæºãããšã
$$W\times E\times L\times C\times O\times M\times E$$
ãæ±ããŠãã ãã. |
OMC091 | https://onlinemathcontest.com/contests/omc091 | https://onlinemathcontest.com/contests/omc091/tasks/3275 | B | OMC091(B) | 200 | 226 | 234 | [
{
"content": "ãåé¡ã¯ä»¥äžã®è¡šçŸãšç䟡ã§ããïŒ\r\n\r\n- $0,3,4$ ã®ãããããé ã« $5$ å足ãæ¹æ³ã§ãã£ãŠïŒãã®åã $5$ 以äžãšãªãã®ã¯äœéããïŒ\r\n\r\néã«ã$5$ æªæºããšãªããã®ãäœéããããèãããšïŒãã㯠$3$ ããã³ $4$ ãããããŠé«ã
$1$ åçšããããšãšåå€ã§ããããïŒ$5\\times 2+1=11$ éãã§ããïŒããããïŒå
ã®åé¡ã§æ±ããå€ã¯ $3^{5} -11=\\textbf{232}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc091/editorial/3275"
}
] | ãOMCåã¯**ããããã€ããµãŒããŒ**ããã£ãŠããïŒæ°Žã»éã»é»ã® $3$ ã€ã®ãã¿ã³ãåãä»ããããŠããŸãïŒããããã®ãã¿ã³ãæŒããšïŒããããã€ãã $3\textrm{L}$, $6\textrm{L}$, $7\textrm{L}$ åºãããŸãïŒ\
ãããã $3$ ã€ã®ãã¿ã³ãé çªã«åèš $5$ åæŒããŠïŒç©ºã®å®¹åšã«ããããã€ãã $20\textrm{L}$ **以äž**å
¥ããæ¹æ³ã¯äœéããããŸããïŒãã ãïŒãã¿ã³ãæŒãé çªãåºå¥ãããã®ãšãïŒå¿
ããããã¹ãŠã®ãã¿ã³ãæŒãå¿
èŠã¯ãããŸããïŒ |
OMC091 | https://onlinemathcontest.com/contests/omc091 | https://onlinemathcontest.com/contests/omc091/tasks/3357 | C | OMC091(C) | 300 | 178 | 206 | [
{
"content": "ã $xy$ å¹³é¢äžã§èãããš, æ¡ä»¶ã¯ $y=\\|x^{2}-14x+24\\|$ ãš $y=ax+1$ ã亀ç¹ãã¡ããã© $3$ ã€æã€, ãšèšãæããããšãã§ãã. ãããå®çŸããäœçœ®é¢ä¿ã¯, äžå³ã®ãã㪠$2$ éãã§ãã. ããã§é䞞㯠$(0,1)$ ã§ãã.\\\r\nã$-(x^{2}-14x+24)=ax+1$ ãé解ãæã€ã®ã¯ $a= 4,24$ ã®ãšãã§ããã, ãã®ãã¡ $3\\lt x \\lt 8$ ã§æ¥ç¹ãæã€ã®ã¯ $a=4$ ã®ãšãã®ã¿ã§ãã. ãŸã, $(x,y)=(12,0)$ ã§äº€ç¹ãæã€ã®ã¯ $a=-\\dfrac{1}{12}$ ã®ãšãã§ãã.\\\r\nããã£ãŠ, 解çãã¹ãå€ã¯ $47+12=\\textbf{59}$ ã§ãã.\\\r\nããªã, éäžžã®äœçœ®ã«ãã£ãŠã¯ $(2,0)$ ãéãçŽç·ãæ¡ä»¶ãã¿ããå¯èœæ§ãããã, ä»åã¯é©ããªã.\r\n\r\n![figure 1](\\/images\\/A1s1j5htfdegVXP3nJQ6Ahz65FA8KNq56zIleO4I)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc091/editorial/3357"
}
] | $$\|x^2-14x+24\| = ax+1$$
ãæºããå®æ° $x$ ãã¡ããã© $3$ ã€ååšãããããªå®æ° $a$ ã®ç·åã¯, äºãã«çŽ ãªæ£æŽæ° $s, t$ ãçšã㊠$\dfrac{s}{t}$ ãšè¡šããã®ã§, $s+t$ ã解çããŠãã ãã. |
OMC091 | https://onlinemathcontest.com/contests/omc091 | https://onlinemathcontest.com/contests/omc091/tasks/3590 | D | OMC091(D) | 400 | 82 | 171 | [
{
"content": "ãäžè¬ã« $2$ è¡ $n$ åã®å ŽåãèãïŒãã¹ç®ãåžæŸæš¡æ§ã«é»ãšçœã§å¡ãåããããšãèããïŒãã ãïŒå·Šäžãé»ã§å¡ããšããïŒãããšïŒé»ã§å¡ã£ããã¹ã®ç¢å°ã¯çœã§å¡ã£ããã¹ãæãïŒçœã§å¡ã£ããã¹ã®ç¢å°ã¯é»ã§å¡ã£ããã¹ãæãããïŒé»ã§å¡ã£ããã¹ãšçœã§å¡ã£ããã¹ã«æžã蟌ãç¢å°ã«ã€ããŠããããç¬ç«ã«èããŠããïŒ\\\r\nãããã§ïŒé»ã§å¡ã£ããã¹ã«ç¢å°ãæžã蟌ãæ¹æ³ã $a_n$ éããããšããïŒå·Šäžã®ãã¹ã« $\\downarrow$ ãæžã蟌ãã ãšãïŒæ®ãã®æžã蟌ã¿æ¹ã¯ $a_{n-1}$ éãã§ããïŒå·Šäžã®ãã¹ã« $\\rightarrow$ ãæžã蟌ãã ãšãïŒãã®å³äžã®ãã¹ã¯å¿
ã $\\leftarrow$ ãšãªãïŒæ®ãã®æžã蟌ã¿æ¹ã¯ $a_{n-2}$ éãã§ããïŒãã£ãŠïŒ$a_1=1,a_2=2$ ãšããããŠïŒ$a_{10}=89$ ãåŸãïŒ\\\r\nã以äžããïŒæ±ããå Žåã®æ°ã¯ $89^2=\\textbf{7921}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc091/editorial/3590"
}
] | ã $2$ è¡ $10$ å ã®ãã¹ç®ã®ããããã«ïŒç¢å° $\uparrow, \downarrow, \leftarrow, \rightarrow$ ã®ãããã $1$ ã€ãæžã蟌ãæ¹æ³ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãã¿ãããã®ã¯äœéããããŸããïŒ
- ã©ã®ãã¹ $M$ ã«ã€ããŠãïŒ$M$ ãšèŸºãå
±æãããã¹ã§ãã£ãŠïŒããã«æžã蟌ãŸããç¢å°ã $M$ ãæããã®ãã¡ããã© $1$ åååšããïŒ |
OMC091 | https://onlinemathcontest.com/contests/omc091 | https://onlinemathcontest.com/contests/omc091/tasks/3563 | E | OMC091(E) | 400 | 41 | 91 | [
{
"content": "ã以äž, åååŒã¯å
šãŠ $\\bmod 11$ ã§èšç®ãã. 蟺 $A_{k}A_{k+1}$ ã«å²ãåœãŠãããæŽæ°ã $L_{k}$ ãšãã. ãã ã $A_{n}$ 㯠$A_{0}$ ãæããã®ãšãã. ãã®ãšãæ¡ä»¶ã¯ $L_{k} \\equiv -L_{k-1}+k^2 $ ã§ãã, ããã挞ååŒãšèŠãªã㊠$L_{k}$ ã®äžè¬é
ãæ±ãããš\r\n$$L_{k}\\equiv (-1)^k\\times \\Bigl(L_{0}+ \\sum_{i=0}^k (-1)^i i^2 \\Bigr)\\equiv (-1)^k L_{0} + \\dfrac{k(k+1)}{2}$$\r\nãã®ãšã, $L_{0}+L_{n-1}\\equiv 0$ ãšãªããã㪠$L_{0}$ ãååšããããšãå¿
èŠååæ¡ä»¶ã§ãã. $n$ ãå¥æ°ã®å Žå, $$2L_{0}+\\dfrac{n(n-1)}{2}\\equiv 0 $$\r\nãšè¡šçŸãã, $2$ ãš $11$ ã¯äºãã«çŽ ãªã®ã§å¿
ãååšãã. $n$ ãå¶æ°ã®å Žå,\r\n$$\\dfrac{n(n-1)}{2}\\equiv 0$$\r\nãšè¡šçŸãã, ãã㯠$n\\equiv 0,1$ ã§æãç«ã€.\\\r\nã$3\\leq n\\leq 1000$ ã«ãããŠ, å¥æ°ããã³ $11$ ã§å²ã£ãŠ $0$ ãŸã㯠$1$ äœãå¶æ°ã¯ $\\textbf{589}$ åååšãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc091/editorial/3563"
}
] | ã$3$ 以äžã®æŽæ° $n$ ã«å¯ŸããŠïŒæ£ $n$ è§åœ¢ $A_{0}A_{1}\cdots A_{n-1}$ ãèãïŒãã®å蟺ã«æŽæ°ãå²ãåœãŠãŸãïŒãã®ãšãïŒ$k=0,1,\ldots,n-1$ ã«å¯Ÿãé ç¹ $A_{k}$ ã®**ã¹ã³ã¢**ãïŒé ç¹ $A_{k}$ ã«æ¥ç¶ãã $2$ 蟺ã«å²ãåœãŠãããæŽæ°ã®åãã $k^2$ ãæžãããã®ãšå®çŸ©ããŸãïŒ\
ãé©åœã«èŸºã«æŽæ°ãå²ãåœãŠãããšã§ïŒãã¹ãŠã®é ç¹ã®ã¹ã³ã¢ã $11$ ã®åæ°ã«ããããšãå¯èœãª $n$ ã¯ïŒ$3\leq n \leq 1000$ ã®ç¯å²ã«ããã€ãããæ±ããŠãã ããïŒ |
OMC091 | https://onlinemathcontest.com/contests/omc091 | https://onlinemathcontest.com/contests/omc091/tasks/3377 | F | OMC091(F) | 500 | 58 | 114 | [
{
"content": "$$\\angle BAF = \\angle DAE, \\quad \\angle AFB = 180^\\circ - \\angle BFE = 180^\\circ - \\angle BEF = \\angle AED$$\r\nããäžè§åœ¢ $ABF$ ãšäžè§åœ¢ $ADE$ ã¯çžäŒŒ. ãŸã, \r\n$$\\angle BAE = \\angle GAF, \\quad \\angle AEB = \\angle BFE = \\angle AFG$$\r\nããäžè§åœ¢ $ABE$ ãšäžè§åœ¢ $AGF$ ãçžäŒŒ. \r\nåŸã£ãŠ, $4$ ç¹ã®çµ $(A,B,D,E)$ ãš $(A,G,B,F)$ ã®äœçœ®é¢ä¿ã¯çžäŒŒã§ãããã\r\n$$BE = BD\\times\\frac{BE}{BE + DE} = BD \\times \\frac{AB}{AB + AD} = BD\\times \\frac{BG}{BG + BD} = \\frac{20}{9}.$$\r\nãŸã, äžè§åœ¢ $BCE$ ãšäžè§åœ¢ $ADE$ ã¯çžäŒŒã§ãããã, äžè§åœ¢ $BCE$ ãšäžè§åœ¢ $ABF$ ã¯çžäŒŒ. åŸã£ãŠ, \r\n$$BC = BE\\times\\frac{BC}{BE} = BE\\times\\frac{AB}{AF} = \\frac{20}{9}\\times\\frac{7}{6} = \\frac{70}{27}$$\r\nãåŸã. ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{97}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc091/editorial/3377"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ ã¯, $AB\lt AD$ ãæºãã, 察è§ç· $AC$ ã¯è§ $A$ ãäºçåããŸã. 察è§ç· $AC$ ãš $BD$ ã®äº€ç¹ã $E$ ãšãã, çŽç· $AC$ äžã« $BE=BF$ ãªã $F(\neq E)$ ããšã, çŽç· $AD$ ãš $BF$ ã®äº€ç¹ã $G$ ãšããã°, 以äžãæç«ããŸãã.
$$AB:AF=7:6,\quad BD=5,\quad BG=4$$
ãã®ãšã, $BC$ ã®é·ããæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC090 (for beginners) | https://onlinemathcontest.com/contests/omc090 | https://onlinemathcontest.com/contests/omc090/tasks/3224 | A | OMC090(A) | 100 | 270 | 277 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/TveaVcavqHE\r\n\r\n ã$n=4,5$ ã¯æ¡ä»¶ãã¿ããïŒäžæ¹ïŒ$n\\gt 5$ ã§ã¯ããé ç¹ãš $2$ ã€é¢ããé ç¹ïŒ$3$ ã€é¢ããé ç¹ãããããçµã¶å¯Ÿè§ç·ã®é·ããç°ãªãããïŒæ¡ä»¶ãã¿ããããªãïŒåŸã£ãŠæ±ããç·å㯠$\\bf{9}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc090/editorial/3224"
}
] | ãæ£ $n$ è§åœ¢ã®ãã¹ãŠã®å¯Ÿè§ç·ã®é·ããçãããããªæ£æŽæ° $n\geq 4$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC090 (for beginners) | https://onlinemathcontest.com/contests/omc090 | https://onlinemathcontest.com/contests/omc090/tasks/3226 | B | OMC090(B) | 200 | 240 | 257 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/ZvkyARzvzho\r\n\r\n ããã $3$ é ç¹ãåãè²ã§å¡ãããŠãããšãïŒå¿
ããã®ãã¡ $2$ ç¹ãçµã¶å¯Ÿè§ç·ãååšããããïŒ$n\\leq 20$ ãå¿
èŠã§ããïŒéã«ïŒåãè²ã $2$ ãæé£æ¥ãããããšã§ãã®ç¯å²ã§ããã°æ¡ä»¶ãæºããããïŒæ±ããç·å㯠$10+11+\\cdots+20=\\bf{165}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc090/editorial/3226"
}
] | ã以äžã®æ¡ä»¶ããšãã«ã¿ããããã«æ£ $n$ è§åœ¢ã®é ç¹ãå¡ãåããŸãïŒ
- é»ïŒç°ïŒè¶ïŒç·ïŒæ°ŽïŒéïŒé»ïŒæ©ïŒèµ€ïŒçŽ«ã® $10$ è²ã®ã¿ãçšãïŒãã¹ãŠã®è²ãäžå以äžçšããïŒ
- ãã¹ãŠã®å¯Ÿè§ç·ã«ã€ããŠïŒãã® $2$ ã€ã®ç«¯ç¹ã«å¡ãããè²ã¯ç°ãªãïŒ
ãã®ãããªããšãå¯èœãªãããªïŒ$10$ 以äžã®æ£æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC090 (for beginners) | https://onlinemathcontest.com/contests/omc090 | https://onlinemathcontest.com/contests/omc090/tasks/3225 | C | OMC090(C) | 200 | 222 | 250 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/wXQnpZdP8DU\r\nãå·®ã $99$ ã®åæ°ãšãªãããã«åé
ãšæ«é
ãéžã¹ã°ããïŒ$10000$ 以äžã®æ£æŽæ°ã«ã¯ïŒ$99$ ã§å²ã£ãäœãã $1$ ã§ãããã®ã $102$ åïŒãã以å€ã®äœããæã€ãã®ããããã $101$ åãã€ããããšããïŒä»¥äžã®ããã«æ±ããããïŒ\r\n$${}\\_{102}\\mathrm{C}\\_{2}+{}\\_{101}\\mathrm{C}\\_{2}\\times 98=\\bf{500051}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc090/editorial/3225"
}
] | ã$10000$ 以äžã®æ£æŽæ°ã®äžããçžç°ãªã $100$ åãéžã¶æ¹æ³ã§ãã£ãŠïŒããããå°ããé ã«äžŠã¹ãããšã§çå·®æ°åããªããã®ã¯ããã€ãããŸããïŒãã ãïŒéžã¶é çªã¯åºå¥ããŸããïŒ |
OMC090 (for beginners) | https://onlinemathcontest.com/contests/omc090 | https://onlinemathcontest.com/contests/omc090/tasks/3227 | D | OMC090(D) | 300 | 171 | 212 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/j2X-2qNCTBc\r\n\r\n ã$1-\\dfrac1x=\\dfrac{1-x}{-x}$ ã§ããïŒããŸïŒå æ°å®çããäžæ¹çšåŒã®å·ŠèŸºã¯\r\n$$(x-x_1)(x-x_2)\\cdots(x-x_{3226})$$\r\nãšè¡šããïŒããã« $x=0,1$ ã代å
¥ããããšã§\r\n$$\\prod_{k=1}^{3226} -x_k = 3227,ã\\prod_{k=1}^{3226} (1-x_k)= 1+2+\\cdots+3227$$\r\nãåããããïŒæ±ããå€ã¯ $3228\\/2=\\bf{1614}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc090/editorial/3227"
},
{
"content": "ãäžè¬ã« $3226$ ãå¶æ° $n$ ãšãã, åé¡ã®æ¹çšåŒã®å·ŠèŸºã $P(x)$ ãšãã. \r\n$$\r\n\\begin{aligned}\r\nx^{n}P\\left(\\frac{1}{x}\\right)\r\n& =x^{n}\\left(\\frac{1}{x}-x_{1}\\right)\\left(\\frac{1}{x}-x_{2}\\right)\\cdots\\left(\\frac{1}{x}-x_{n}\\right)\\\\\\\\\r\n& =\\left(x_{1}x-1\\right)\\left(x_{2}x-1\\right)\\cdots\\left(x_{n}x-1\\right)\\\\\\\\\r\n& =x_{1}x_{2}\\dots x_{n}\\left( x-\\frac{1}{x_{1}} \\right)\\left( x-\\frac{1}{x_{2}} \\right)\\cdots\\left( x-\\frac{1}{x_{n}} \\right)\\\\\\\\\r\n& =(n+1)\\left( x-\\frac{1}{x_{1}} \\right)\\left( x-\\frac{1}{x_{2}} \\right)\\cdots\\left( x-\\frac{1}{x_{n}} \\right)\r\n\\end{aligned}\r\n$$\r\nããæãç«ã€ãã, ãã®åŒã« $x=1$ ã代å
¥ããã°, \r\n$$P(1)=(n+1)\\left( 1-\\frac{1}{x_{1}} \\right)\\left( 1-\\frac{1}{x_{2}} \\right)\\cdots\\left( 1-\\frac{1}{x_{n}} \\right)$$\r\nããããã£ãŠ, 以äžã®èšç®ã«ããæ±ããå€ã¯\r\n$$\\left( 1-\\frac{1}{x_{1}} \\right)\\left( 1-\\frac{1}{x_{2}} \\right)\\cdots\\left( 1-\\frac{1}{x_{n}} \\right)=\\frac{P(1)}{n+1}=\\frac{\\frac{3227\\times 3228}{2}}{3227}=\\mathbf{1614}.$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc090/editorial/3227/59"
}
] | ã$x$ ã® $3226$ 次æ¹çšåŒ
$$x^{3226}+2x^{3225}+\cdots+3226x+3227=0$$
ã®è€çŽ æ°è§£ãïŒéè€ã蟌ããŠïŒ$x=x_1, x_2, \ldots, x_{3226}$ ãšãããšãïŒä»¥äžã®å€ãæ±ããŠãã ããïŒ
$$\biggl(1-\frac{1}{x_1}\biggr) \biggl(1-\frac{1}{x_2}\biggr) \cdots \biggl(1-\frac{1}{x_{3226}}\biggr)$$ |
OMC090 (for beginners) | https://onlinemathcontest.com/contests/omc090 | https://onlinemathcontest.com/contests/omc090/tasks/3228 | E | OMC090(E) | 300 | 142 | 171 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/zipA5CxJUO4\r\n\r\n ãåŸè
ã®ç«äœãæ£å
«è§åœ¢ãäžå¿ã«å±éããã°ïŒäžèŸº $4$ ã®æ£äžè§åœ¢ãã¡ããã© $8$ åå
¥ããããªãééããã§ããïŒãã®ééã«åè
ã®ç«äœã®æ£äžè§åœ¢ $8$ åãã¯ã蟌ãããšã§ïŒæ±ããé¢ç©ã¯äžèŸº $4$ ã®æ£å
«è§åœ¢ã®é¢ç©ã«çããããšãåããïŒãã㯠$32(1+\\sqrt{2})$ ã§ããããïŒç¹ã«è§£çãã¹ãå€ã¯ $32+2048=\\bf{2080}$ ã§ããïŒ \r\n![figure 1](\\/images\\/vJY4bQyHeIC5X5LmlQgEelV8O1h6U7EqppuFhxpo)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc090/editorial/3228"
},
{
"content": "ãè£è¶³çãªå
容ã§ãïŒ\r\n\r\n- äžèŸºã®é·ãã $a$ ã®æ£å
«è§åœ¢ã®é¢ç©ã¯ $2(1+\\sqrt{2})a^2$ ã§äžããããŸãïŒ\r\nãããæ±ããã«ã¯ïŒæ¬¡ã®å³ã®ããã«æ£æ¹åœ¢ããåé
ãåãé€ãããšãèãããªã©ããã°ããã§ãïŒ\r\n![figure 1](\\/images\\/msKc3bzPHAoj3ImEcA8TJcGOaQPudfwvK7uYOuNI)\r\n- çµã¿åãããã«è§£ãããšãã§ããŸãïŒ\r\nåè§ã®å
¬åŒã«ãã次ãæãç«ã€ããšã確èªããŠãããŸãïŒ\r\n$$\\sin 15^\\circ=\\sqrt{\\frac{1-\\cos 30^\\circ}{2}}=\\dfrac{\\sqrt{6}-\\sqrt{2}}{4},\\quad \\cos 15^\\circ=\\sqrt{\\dfrac{1+\\cos 30^\\circ}{2}}=\\dfrac{\\sqrt{6}+\\sqrt{2}}{4}$$\r\näœåŒŠå®çãã $AB^2=OA^2+OB^2-2OA\\cdot OB\\cdot\\cos 15^\\circ=8(4-\\sqrt{6}-\\sqrt{2})$ ãåŸãããã®ã§ïŒæ±ããé¢ç©ã¯æ¬¡ã®ããã«èšç®ã§ããŸãïŒ\r\n$$\\begin{aligned}\r\n&\\quad (æ£å
«é¢äœã®è¡šé¢ç©)+(æ£å
«è§åœ¢AB\\cdots Hã®é¢ç©)+8\\times(\\triangle OABã®é¢ç©)\\\\\\\\\r\n&=8\\times \\frac{\\sqrt{3}}{4}\\times 4^2+2(1+\\sqrt{2})AB^2+8\\times\\frac{1}{2}\\times OA^2\\times\\sin 15^\\circ\\\\\\\\\r\n&=32\\sqrt{3}+16(1+\\sqrt{2})(4-\\sqrt{6}-\\sqrt{2})+16(\\sqrt{6}-\\sqrt{2})\\\\\\\\\r\n&=32\\sqrt{3}+16(2-\\sqrt{6}+3\\sqrt{2}-2\\sqrt{3})+16(\\sqrt{6}-\\sqrt{2})\\\\\\\\\r\n&=32+32\\sqrt{2}\\\\\\\\\r\n\\end{aligned}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc090/editorial/3228/58"
}
] | ã以äžã®äºã€ã®ç«äœã«ã€ããŠïŒãã®**è¡šé¢ç©ã®å**ã¯æ£æŽæ° $a,b$ ã«ãã£ãŠ $a+\sqrt b$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ
- äžèŸºã®é·ãã $4$ ã®æ£å
«é¢äœ
- $OA=OB=\cdots=OH=4$ ã〠$\angle AOB=15^\circ$ ãªãæ£å
«è§é $O-ABCDEFGH$
ããã ãïŒããã§**æ£å
«è§é**ãšã¯ïŒåºé¢ãæ£å
«è§åœ¢ãšããéäœãæããŸãïŒ |
OMC090 (for beginners) | https://onlinemathcontest.com/contests/omc090 | https://onlinemathcontest.com/contests/omc090/tasks/3229 | F | OMC090(F) | 400 | 57 | 123 | [
{
"content": "ã$n$ ãçŽ å æ°å解ããæã®ææ°ã $e_1, e_2, \\ldots$ ãšããã°ïŒæ¡ä»¶ã¯\r\n$$(e_1+1)(e_2+1)\\cdots=2^{3229}$$\r\nã§ããïŒãã®ãšãïŒèããã¹ãç·åã¯ä»¥äžã®ããã«è¡šããïŒ\r\n$$(1+2+\\cdots+(e_1+1))(1+2+\\cdots+(e_2+1))\\cdots=2^{3229} \\biggl(\\frac{e_1+2}{2}\\biggr)\\biggl(\\frac{e_2+2}{2}\\biggr)\\cdots$$\r\nãããã§ïŒ$e_k+1$ 㯠$2$ 以äžã§ããïŒ$2$ 以äžã®æŽæ° $m,n$ ã«ã€ããŠ\r\n$$\\frac{mn+1}{2}- \\biggl(\\frac{m+1}{2}\\biggr) \\biggl(\\frac{n+1}{2}\\biggr)=\\frac{(m-1)(n-1)}{4}\\gt 0$$\r\nãæãç«ã€ïŒåŸã£ãŠïŒèããã¹ãå Žåã¯ä»¥äžã®ããããã§ããïŒ\r\n- $2^{3229}=2^{3225}\\times 4^2$ ãšå解ãããšãïŒ\r\n- $2^{3229}=2^{3226}\\times 8$ ãšå解ãããšãïŒ\r\n\r\nãããããã«ã€ããŠïŒèããã¹ãç·åã¯\r\n$$2^{3229} \\biggl(\\frac32\\biggr)^{3225} \\biggl(\\frac52\\biggr)^2 = 2^2\\cdot 3^{3225}\\cdot 5^2,\\quad\r\n2^{3229} \\biggl(\\frac32\\biggr)^{3226} \\biggl(\\frac92\\biggr) = 2^2\\cdot 3^{3228}$$\r\nãã®ãã¡å°ããã®ã¯åè
ã§ããããïŒæ±ããå€ã¯ $3\\times 3226 \\times 3=\\bf{29034}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc090/editorial/3229"
}
] | ãæ£ã®çŽæ°ã $2^{3229}$ åæã€æ£æŽæ° $n$ ã«ã€ããŠïŒä»¥äžãåãåŸãå€ã®ãã¡ $3$ çªç®ã«å°ãããã®ã $S$ ãšããŸãïŒ$S$ ã®æ£ã®çŽæ°ã®åæ°ãæ±ããŠãã ããïŒ
- $n$ ã®æ£ã®çŽæ° $2^{3229}$ åãã¹ãŠã«ã€ããŠïŒããããã®æ£ã®çŽæ°ã®åæ°ã®ç·åïŒ |
OMC089 | https://onlinemathcontest.com/contests/omc089 | https://onlinemathcontest.com/contests/omc089/tasks/1937 | A | OMC089(A) | 100 | 217 | 251 | [
{
"content": "ãå®éã« $X=100x+10y+z$ ãªã©ãšè¡šãã°, $X+Y+Z=111(x+y+z)$ ã§ããããšãããã. $x+y+z$ ã®ãšãåŸãå€ã¯ $3$ ä»¥äž $27$ 以äžã§ãããã, æ±ããç·å㯠$111\\times(3+4+\\cdots+27)=\\textbf{41625}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc089/editorial/1937"
}
] | ã$1$ ä»¥äž $9$ 以äžã®æ£æŽæ° $x,y,z$ ã«å¯ŸãïŒ$3$ æ¡ã®æ£æŽæ° $X,Y,Z$ ã以äžã®ããã«å®ããŸãïŒ
- $X$ 㯠$100$ ã®äœã $x$ïŒ$10$ ã®äœã $y$ïŒ$1$ ã®äœã $z$ ã§ããïŒ
- $Y$ 㯠$100$ ã®äœã $y$ïŒ$10$ ã®äœã $z$ïŒ$1$ ã®äœã $x$ ã§ããïŒ
- $Z$ 㯠$100$ ã®äœã $z$ïŒ$10$ ã®äœã $x$ïŒ$1$ ã®äœã $y$ ã§ããïŒ
ãã®ãšãïŒ$X+Y+Z$ ãšããŠããåŸãå€ããã¹ãŠæ±ãïŒãããã®ç·åã解çããŠãã ãã. |