contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC135 | https://onlinemathcontest.com/contests/omc135 | https://onlinemathcontest.com/contests/omc135/tasks/4115 | D | OMC135(D) | 400 | 74 | 129 | [
{
"content": "ãäžåŒãã¿ãã $f(x),g(x)$ ãäžã€èŠã€ããããšã§ïŒãã¹ãŠã®è§£ãè¡šçŸã§ããïŒããã¯Euclidã®äºé€æ³ã®çµæãå©çšããŠäžæ¬¡äžå®æ¹çšåŒã®è§£ãåŸãã®ãšãŸã£ããåãã§ããïŒããã§ã¯ïŒäŸãã°\r\n$$f_0(x)=2x^2-x+4,\\quad g_0(x)=-2x^3+x^2-2x-1$$\r\nãšããã°\r\n$$(x^4+x+1)f_0(x)+(x^3+x+1)g_0(x)=3$$\r\nã§ããããïŒãããçšããã°\r\n$$(x^4+x+1)(f(x)-f_0(x))+(x^3+x+1)(g(x)-g_0(x))=0.$$\r\n$x^4+x+1$ ãš $x^3+x+1$ ã¯å
±éã®æ ¹ãæããªãã®ã§ïŒå€é
åŒ $P(x)$ ã«ãã£ãŠ\r\n$$\\begin{cases}\r\nf(x)-f_0(x)=(x^3+x+1)P(x)\\\\\\\\\r\ng(x)-g_0(x)=-(x^4+x+1)P(x)\r\n\\end{cases}$$\r\nãšè¡šããïŒããã§ïŒ$f(x)$ ã¯äžæ¬¡åŒã§ãããã $P(x)$ 㯠$0$ ã§ãªãå®æ°ã§ããïŒããã $a$ ãšãããšïŒ\r\n$$\\begin{cases}\r\nf(-1)-7=-a\\\\\\\\\r\ng(-1)-4=-a\r\n\\end{cases}$$\r\nãããã $57=f(-1)+g(-1)=-2a+11$ ã§ããïŒ$a=-23$ ãåŸãïŒãããã£ãŠïŒ\r\n$$g(2)-f(2)=-30a+g_0(2)-f_0(2)=-30\\times (-23)-17-10={\\bf 663}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc135/editorial/4115"
}
] | ãå®æ°ä¿æ°å€é
åŒ $f(x),g(x)$ ãïŒ$f(-1)+g(-1)=57$ ããã³
$$(x^4+x+1)f(x)+(x^3+x+1)g(x)=3$$
ãã¿ãããŸãïŒããã« $f(x)$ ã $3$ 次åŒã®ãšãïŒ$g(2)-f(2)$ ãæ±ããŠãã ããïŒ |
OMC135 | https://onlinemathcontest.com/contests/omc135 | https://onlinemathcontest.com/contests/omc135/tasks/2098 | E | OMC135(E) | 500 | 46 | 74 | [
{
"content": "ãäžè§åœ¢ $APQ$ ã®å
æ¥åãš $AP,AQ$ ãšã®æ¥ç¹ããããã $M,N$ ãšãã,\r\n$$AM=x,\\quad PL=y,\\quad QL=z$$\r\nãšããã°,\r\n$$PQ=y+z=41,\\quad KL=y-z=1$$\r\nã§ããããïŒäžè§åœ¢ $APQ$ ã®é¢ç©ã $S$ ãšããã° $S=41\\triangle AKL=41\\times 6\\sqrt{7}$ ãåŸãïŒäžæ¹ã§Helonã®å
¬åŒãã\r\n$$S=\\sqrt{xyz(x+y+z)}=\\sqrt{420x(x+41)}.$$\r\nããã解ã㊠$x=\\dfrac{-205+41\\sqrt{85}}{10}$ ã§ããïŒãããã£ãŠïŒ$S=rx$ ãšãè¡šããããšãã\r\n$$r=\\frac{S}{x}=\\frac{41\\times 60\\sqrt{7}}{41(\\sqrt{85}-5)}=\\sqrt{7}(\\sqrt{85}+5)=\\sqrt{595}+\\sqrt{175}$$\r\nãšãªãïŒè§£çãã¹ãå€ã¯ $595+175=\\textbf{770}$ ã§ãã.\r\n\r\n![figure 1](\\/images\\/PXc4QyXPC9bMBtQpw0GL3BQg0LPg3z1sm2KbLoLy)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc135/editorial/2098"
}
] | ã$AB=AC$ ãªãäºç蟺äžè§åœ¢ $ABC$ ã«ãããŠïŒçŽç· $AB,AC$ ãšãããã $B,C$ ã§æ¥ããåã $\Gamma$ ãšããŸãïŒ$\Gamma$ ã®å£åŒ§ $BC$ äžã« $BK\lt CK$ ãªãç¹ $K$ ããšãïŒ$K$ ã«ããã $\Gamma$ ã®æ¥ç·ã $\ell$ ãšãïŒ$\ell$ ãšçŽç· $AB,AC$ ã®äº€ç¹ããããã $P,Q$ ãšããŸãïŒããã«ïŒäžè§åœ¢ $APQ$ ã®å
æ¥åãš $\ell$ ã®æ¥ç¹ã $L$ ãšããã°ïŒä»¥äžãæç«ããŸããïŒ
$$BP=20,\quad CQ=21,\quad \triangle AKL=6\sqrt{7}$$
ãã®ãšãïŒ$\Gamma$ ã®ååŸ $r$ ã¯æ£æŽæ° $a,b$ ãçšã㊠$r=\sqrt{a}+\sqrt{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒãã ãïŒ$\triangle XYZ$ ã§äžè§åœ¢ $XYZ$ ã®é¢ç©ãè¡šããã®ãšããŸãïŒ |
OMC135 | https://onlinemathcontest.com/contests/omc135 | https://onlinemathcontest.com/contests/omc135/tasks/4856 | F | OMC135(F) | 500 | 13 | 20 | [
{
"content": "ã$N = 7$ ãšããïŒ$i \\in \\\\{1, 2, 3\\\\}, j \\in \\\\{0, 1, 2\\\\}$ ã«å¯ŸãïŒ$n_i$ ã $3$ é²æ°è¡šèšãããšãã«çŸãã $j$ ã®åæ°ã $G(i, j)$ ãšè¡šããšïŒä»¥äžãæãç«ã€ïŒ\r\n- ä»»æã® $i \\in \\\\{1, 2\\\\}, j \\in \\\\{0, 1, 2\\\\}$ ã«å¯ŸãïŒ$F(i, j) = G(i + 1, j) - G(i, j) $\r\n- ä»»æã® $i \\in \\\\{1, 2, 3\\\\}$ ã«å¯ŸãïŒ$G(i, 0) + G(i, 1) + G(i, 2) = N$\r\n\r\nãããã®ããšããåé¡æã«ãã $2$ æ¡ä»¶ã¯ãããã次ã®æ¡ä»¶ãšåå€ã§ããããšãåããïŒ\r\n$$G(1, 0) + G(2, 2) + G(3, 1) = NïŒG(1, 2) + G(2, 1) + G(3, 0) \\gt N$$\r\n\r\nããããã£ãŠïŒ$n_2$ ã«å¯ŸãïŒ$3$ é²æ°è¡šèšã«ãããŠåæ¡ã $0 \\rightarrow 1 \\rightarrow 2 \\rightarrow 0$ ãšå·¡åããŠçœ®æããæ°ã $n_2^{\\prime}$ ãšãïŒ$n_3$ ã«å¯ŸãïŒ$3$ é²æ°è¡šèšã«ãããŠåæ¡ã $0 \\rightarrow 2 \\rightarrow 1 \\rightarrow 0$ ãšå·¡åããŠçœ®æããæ°ã $n_3^{\\prime}$ ãšããã°ïŒ$n_1, n_2^{\\prime}, n_3^{\\prime}$ ã® $3$ é²æ°è¡šèšã«ã¯åèšããŠã¡ããã© $N$ åã® $0$ ãçŸãïŒã〠$2$ ãçŸããåæ°ã¯ $N$ ããå€ãïŒãã®ãã㪠$n_1, n_2^{\\prime}, n_3^{\\prime}$ ã®çµãäœçµããã®ããæ±ããã°ããïŒããã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$${}\\_{3N}\\mathrm{C}\\_N ({}\\_{2N}\\mathrm{C}\\_{N+1} + \\cdots + {}\\_{2N}\\mathrm{C}\\_{2N}) = \\frac{{}\\_{3N}\\mathrm{C}\\_N(2^{2N} - {}\\_{2N}\\mathrm{C}\\_N)}{2} = \\mathbf{753029280}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc135/editorial/4856"
},
{
"content": "ãFPS ã§ã®è§£æ³ã§ãïŒå°ãçç¥ããŠããŸãïŒ\r\n\r\n---\r\n\r\nã$G(i,j)$ ãå
¬åŒè§£èª¬ãšåæ§ã«å®çŸ©ããïŒãã®ãšãæ¡ä»¶ã¯\r\n$$G(2,0)+G(2,1) = G(1,0)+G(3,1),ãG(2,0)+G(2,2) \\lt G(1,2)+G(3,0)$$\r\nã§ããïŒãã£ãŠïŒæ±ããå Žåã®æ°ã¯åœ¢åŒçåªçŽæ°\r\n$$\\left(\\frac 1a + 1 + \\frac 1b \\right)^7 (ab+a+b)^7 \\left(\\frac 1b + \\frac 1a + 1\\right)^7$$\r\nã«ãããŠïŒ$a$ ã®æ¬¡æ°ã $0$ ã〠$b$ ã®æ¬¡æ°ãè² ã§ããé
ã®ä¿æ°ã®ç·åãšããŠè¡šããïŒããªãã¡ïŒ $(ab+a+b)^{21}$ ã«ãã㊠$a$ ã®æ¬¡æ°ã $14$ ã〠$b$ ã®æ¬¡æ°ã $13$ 以äžã§ããé
ã®ä¿æ°ã®ç·åãæ±ããã°ããïŒ \r\nã$(ab+a+b)^{21}$ ã $a$ ã®é¢æ°ãšæãããšãïŒãã® $a^{14}$ ã®ä¿æ°ã¯\r\n$$\\binom{21}{14}(b+1)^{14}b^7$$\r\nã§ããããšãäºé
å®çããåããïŒããã«ïŒ$(b+1)^{14} b^7$ ã«ãã㊠$b$ ã®æ¬¡æ°ã $13$ 以äžã§ããé
ã®ä¿æ°ã®ç·åã¯\r\n$$\\binom{14}{0}+\\binom{14}{1}+\\cdots+\\binom{14}{6} = \\frac{2^{14}-\\binom{14}{7}}{2}$$\r\nã§ããïŒåŸã£ãŠæ±ããçãã¯\r\n$$\\binom{21}{14} \\times \\frac{2^{14}-\\binom{14}{7}}{2} = \\textbf{753029280} .$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc135/editorial/4856/179"
}
] | ã$0$ ä»¥äž $3^7-1$ 以äžã®æŽæ° $3$ ã€ãããªãå $(n_1, n_2, n_3)$ ãäžããããŠããŸãïŒ\
ããã®åããã³ $i \in \\{1, 2\\}, ~ j \in \\{0, 1, 2\\}$ ã«å¯ŸãïŒ$F(i, j)$ ã以äžã§å®ããŸãïŒ
- $n_{i+1}$ ã® $3$ é²æ³è¡šèšïŒ $7$ æ¡ïŒã§ $j$ ãçŸããåæ°ããïŒ$n_{i}$ ã® $3$ é²æ³è¡šèšïŒ $7$ æ¡ïŒã§ $j$ ãçŸããåæ°ãåŒããŠåŸãããå€ïŒãã ãïŒã $3$ é²æ³è¡šèšïŒ $7$ æ¡ïŒããšã¯ïŒå¿
èŠãªãã°å
é ã« $0$ ãå ããŠã¡ããã© $7$ æ¡ãšããŠè¡šèšããããšãæå³ããïŒ
<details><summary>å
·äœäŸ<\/summary>
ãããšãã°ïŒäžããããåã
$$(500, 800, 1000) = (0200112_{(3)}, 1002122_{(3)}, 1101001_{(3)})$$
ã®å ŽåïŒ$F(1, 0) = -1, F(2, 1) = 2$ ãªã©ãæãç«ã¡ãŸãïŒ
<\/details>
ãåã®äžãæ¹ã¯å
šéšã§ $3^{21}$ éããããŸããïŒãã®ãã¡
$$F(1, 0) = F(2, 1), \quad F(1, 2) \lt F(2, 0)$$
ãåæã«ã¿ãããã®ã¯ããã€ãããŸããïŒ |
OMC134 (for beginners) | https://onlinemathcontest.com/contests/omc134 | https://onlinemathcontest.com/contests/omc134/tasks/2977 | A | OMC134(A) | 100 | 255 | 262 | [
{
"content": "ãæ£äºåé¢äœã®åé¢ã¯æ£äžè§åœ¢ã§ãã.\\\r\nããããã£ãŠ, äžèŸºã®é·ãã $a$ ãšãããš, è¡šé¢ç©ã«ã€ããŠæ¬¡ã®åŒãæãç«ã€ã®ã§, $a^4=\\textbf{12}$ ã§ããïŒ\r\n$$\\displaystyle 30=\\frac{\\sqrt{3}}{4}a^2\\times20$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc134/editorial/2977"
}
] | ãè¡šé¢ç©ã $30$ ã®æ£äºåé¢äœã«ã€ããŠïŒãã®äžèŸºã®é·ãã® $4$ ä¹ãæ±ããŠãã ããïŒ |
OMC134 (for beginners) | https://onlinemathcontest.com/contests/omc134 | https://onlinemathcontest.com/contests/omc134/tasks/2979 | B | OMC134(B) | 200 | 226 | 261 | [
{
"content": "**解æ³1.**ããŸããã¹ãéžã°ããè¡ããã³åã $3$ ã€ãã€éžã¶. ãã®ãšã, åè£ãšãªã $3\\times3=9$ ã€ã®ãã¹ããå®éã« $3$ ã€ã®ãã¹ãéžã¶æ¹æ³ã¯ $3!$ éãååšãã. ãã£ãŠ, æ±ããå Žåã®æ°ã¯ ${}_5\\mathrm{C}_3\\times{}_5\\mathrm{C}_3\\times 3!=\\textbf{600}$ ã§ãã.\r\n\r\n**解æ³2.**ããŸãäžã€ç®ã®ãã¹ã $5^2$ åããèªç±ã«éžã¶. ãã®ãšã, äºã€ç®ã®ãã¹ãšããŠéžã¹ããã®ã¯ $4^2$ åã§ãã, ããã«äžã€ç®ã®ãã¹ãšããŠéžã¹ããã®ã¯ $3^2$ éãã§ãã. åããã®ã $3!$ åæ°ããŠããããšã«æ³šæããã°, åæ§ã®çµè«ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc134/editorial/2979"
}
] | ã$5\times5$ ã®ãã¹ç®ãæ§æãã $25$ åã®ãã¹ããïŒæ¬¡ã®æ¡ä»¶ãã¿ããããã«çžç°ãªã $3$ ã€ã®ãã¹ãéžã¶æ¹æ³ã¯äœéããããŸããïŒ
- éžãã ãã¹ã®ãã¡ïŒã©ã® $2$ ã€ã®ãã¹ã«ã€ããŠãåãè¡ã«ãåãåã«ããªã
ãã ãïŒå転ãå転ã«ãã£ãŠäžèŽãããã®ãåºå¥ãããã®ãšãïŒãã¹ãéžã¶é åºã¯èããŸããïŒ |
OMC134 (for beginners) | https://onlinemathcontest.com/contests/omc134 | https://onlinemathcontest.com/contests/omc134/tasks/2981 | C | OMC134(C) | 200 | 186 | 253 | [
{
"content": "ã$x=6$ ã®ãšãäžæ¹çšåŒãã¿ãã $y$ ã¯ååšããªãïŒä»¥äž, $x\\ne 6$ ãšããïŒ\\\r\nãäžæ¹çšåŒã次ã®ããã« $y$ ã«ã€ããŠè§£ãããšã§, $x-6$ 㯠$25$ ã®çŽæ°ã§ããããšããããïŒ\r\n$$\\displaystyle y=x+6+\\frac{25}{x-6}$$\r\nãããã£ãŠ $x$ ã®åè£ã¯ $x=1,5,7,11,31$ ã§ãã,ãã®ãã¡ $y\\gt 0$ ãšãªããã®ã¯ $x=1,7,11,31$ ã§ããïŒ\\\r\nããã£ãŠæ±ãã $x$ ã®ç·å㯠$\\textbf{50}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc134/editorial/2981"
}
] | ãæ£ã®æŽæ°ã®çµ $(x,y)$ ã次ã®åŒãã¿ãããšãïŒ$x$ ã®å€ãšããŠãããããã®ã®ç·åãæ±ããŠãã ããïŒ
$$x^2-xy+6y-11=0$$ |
OMC134 (for beginners) | https://onlinemathcontest.com/contests/omc134 | https://onlinemathcontest.com/contests/omc134/tasks/2980 | D | OMC134(D) | 200 | 178 | 199 | [
{
"content": "ãæ¹çšåŒ $f(x)=0$ ã®è€çŽ æ°è§£ã $x=1,5$ ã®ã¿ã§ããããšãã,æ£ã®æŽæ° $m,n$ ãçšããŠ\r\n$$f(x)=(x-1)^m(x-5)^n$$\r\nãšè¡šããïŒãã®åŒã« $x=3,9$ ã代å
¥ããŠæ¬¡ã® $2$ åŒãåŸãïŒ\r\n$$(-1)^n 2^{m+n}=2^{1000},\\quad 2^{3m+2n}=2^{2022}$$\r\nãããã£ãŠ $n\\equiv0\\pmod 2,m+n=1000,3m+2n=2022$ ãã $(m,n)=(22,978)$ ãåŸãïŒããªãã¡\r\n$$f(x)=(x-1)^{22}(x-5)^{978}$$\r\nãã,å®æ°é
$f(0)=5^{978}$ ã $5$ ã§å²ãåããåæ°ã¯ $\\textbf{978}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc134/editorial/2980"
}
] | ãæŽæ°ä¿æ°å€é
åŒ $f(x)$ ã¯æé«æ¬¡ã®ä¿æ°ã $1$ ã§ããïŒ
$$f(3)=2^{1000},\quad f(9)=2^{2022}$$
ãã¿ãããŠããŸãïŒ$x$ ã®æ¹çšåŒ $f(x)=0$ ã®è€çŽ æ°è§£ãïŒéè€åºŠã蟌ããŠïŒ $x=1,5$ ã®ã¿ã§ãããšãïŒ$f(x)$ ã®å®æ°é
ã $5$ ã§å²ãåããæ倧ã®åæ°ãæ±ããŠãã ããïŒ |
OMC134 (for beginners) | https://onlinemathcontest.com/contests/omc134 | https://onlinemathcontest.com/contests/omc134/tasks/1659 | E | OMC134(E) | 300 | 88 | 135 | [
{
"content": "ã以äžã®ããã«å
ç·ã®è»è·¡ãäžçŽç·ã«ãå±éãããã°, æ±ããã¹ãå€ã¯ $AB^{\\prime}$ ã®å¹³æ¹ã§ãã. äžå³ã®åç¹ã«ã€ããŠ,\r\n$$AB=2,\\quad AC=\\sqrt{6},\\quad AD=CD=\\sqrt{3},\\quad B^{\\prime}E=AB\\sin30^\\circ=1$$\r\nç¹ã« $DE=\\sqrt{3}+(\\sqrt{3}+1)+2+AB\\cos30^\\circ=3\\sqrt{3}+3$ ã§ãããã, äžå¹³æ¹ã®å®çãã\r\n$$AB^{\\prime}{}^2=(\\sqrt{3}-1)^2+(3\\sqrt{3}+3)^2=40+16\\sqrt{3}$$\r\n以äžãã, 解çãã¹ãå€ã¯ $40+16+3=\\textbf{59}$ ã§ãã.\r\n![figure 1](\\/images\\/BEeHjs4SrgmxhtT8fVvNnxryrlzPksCbQQiTFazi)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc134/editorial/1659"
}
] | $$\angle B=60^{\circ},\quad \angle C=45^{\circ},\quad BC=\sqrt{3}+1$$
ãªãäžè§åœ¢ $ABC$ ããããŸãïŒç¹ $A$ ãããã®äžè§åœ¢ã®å
éšã«å
ç·ãçºå°ãããšïŒå
ç·ã¯èŸº $BC,CA,AB,BC,CA$ ã®é ã«åå°ãïŒç¹ $B$ ã§åæ¢ããŸããïŒå
ç·ãé²ãã è·é¢ã®åèšã® $2$ ä¹ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯æ£æŽæ° $a,b,c$ ã«ãã£ãŠ $a+b\sqrt{c}$ ãšè¡šãããã®ã§ïŒ$c$ ã¯å¹³æ¹å åããããªãïŒïŒ$a+b+c$ ã解çããŠãã ããïŒ\
ãããã§ïŒå
ç·ã¯èŸºã§åå°ãããŸã§ã¯çŽé²ãïŒåå°ã«ã€ããŠã¯éåžžã®èŠåïŒå
¥å°è§ãšåå°è§ãçããïŒã«åããŸãïŒ |
OMC134 (for beginners) | https://onlinemathcontest.com/contests/omc134 | https://onlinemathcontest.com/contests/omc134/tasks/1798 | F | OMC134(F) | 400 | 52 | 140 | [
{
"content": "ã$5^{9999}$ ã¯æ¡ä»¶ãæºãããªãïŒ$9999$ åã®æŽæ° $5^0,5^1,\\ldots, 5^{9998}$ ã®ãã¡ïŒæé«äœã®æ°åã $k$ ã§ãããã®ã®åæ°ã $a_k$ ãšããïŒæ£æŽæ°ã« $5$ åãç¹°ãè¿ãæœããšïŒãã®æé«äœã®æ°åã¯ä»¥äžã® $2$ éãã®ãã¿ãŒã³ã蟿ãïŒ\r\n$$A:1\\to(5\\ \\mathrm{or}\\ 6\\ \\mathrm{or}\\ 7)\\to(2\\ \\mathrm{or}\\ 3)\\\\to1,\\quad B:1\\to(8\\ \\mathrm{or}\\ 9)\\to 4\\to 2\\to 1$$\r\n\r\nç¹ã«ïŒæé«äœã $1$ ã§ãªããã®ã¯ãã¹ãŠããæ¡æ°ã® $5$ ã¹ãã®äžã§æ倧å€ã§ããïŒ$a_1=9999-6989=3010$ ãåŸã. ããã«\r\n$$a_1=a_5+\\cdots +a_9=a_2+a_3,\\quad a_1+a_2+\\cdots+a_9=9999$$\r\nããïŒ$a_4=9999-3a_1=\\mathbf{969}$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc134/editorial/1798"
},
{
"content": "ãèªç¶çã«çŸããå€ãã®ããŒã¿ã«ãããŠïŒæ¬¡ãåŸãããšã **Benford ã®æ³å** ïŒ[Wikipedia](https:\\/\\/ja.wikipedia.org\\/wiki\\/%E3%83%99%E3%83%B3%E3%83%95%E3%82%A9%E3%83%BC%E3%83%89%E3%81%AE%E6%B3%95%E5%89%87)ïŒãšããŠçµéšåçã«ç¥ãããŠããŸãïŒ\r\n\r\n---\r\n\r\n**äºå®.**ãããæ°éã $b$ é²æ³è¡šèšã§æé«äœã®æ°åã $d$ ã«ãªã確çã¯ïŒ$\\log_{b}\\left(1+\\dfrac{1}{d}\\right)$ çšåºŠã§ããïŒ\r\n\r\n---\r\n\r\näžèŠãããšçŽèŠ³ã«åãããã®çŸè±¡ã§ããïŒããããæ°éã察æ°çã«ååžããŠãããšããã°ïŒããã¯å¿
ç¶ã®çµæã§ãïŒ\\\r\nãä»åã®åé¡ã§ãïŒæ°éã察æ°çã«ååžããŠããã®ã§ïŒãã®æ³åãé©çšã§ããŸãïŒããªãã¡ïŒ$5^{9999}$ ãŸã§ã® $5$ ã¹ãã®æ°ã®ãã¡ïŒæé«äœã®æ°åã $4$ ã§ãããããªãã®ã®åæ°ã¯ $10000\\log_{10}(5\\/4)=10000(1-3\\log_{10}2)\\fallingdotseq969$ çšåºŠã§ããããšãèšããŸãïŒ$\\log_{10}2\\fallingdotseq0.3010$ ãçšããŸããïŒïŒèª€çãæããªããã°ïŒãã®ååŸãç·åœããããã° CA ãåŸãããŸãïŒïŒãã®æ³å㯠maple ããã«æããŠããã ããŸããïŒïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc134/editorial/1798/167"
},
{
"content": "ã$5^t$ ã®æé«äœã®æ°åãèãã代ããã« $2^t$ ã®æé«äœã®æ°åãèããŠè§£ãããšãå¯èœã§ãïŒ$5^t$ ã®æé«äœã®æ°åã®é·ç§»ãã $2^t$ ã®æé«äœã®æ°åã®é·ç§»ã®æ¹ãèŠæãããããšæããŸãïŒ$10^{6989}\\lt 5^{9999} \\lt 2Ã10^{6989}$ ããïŒ$$5Ã10^{3009}\\lt 2^{9999} \\lt 10^{3010}$$\r\nã§ããããïŒ$2^{9999}$ 㯠$3010$ æ¡ã®æ°ã§æé«äœã®æ°å㯠$5$ 以äžïŒ$5^t=\\frac{10^t}{2^t}$ ã§ããããïŒ$5^t$ ã®æé«äœã®æ°åã $4$ ãšãªãããã«ã¯ $2^t$ ã®æé«äœã®æ°åãšãã®æ¬¡ã®æ°åãåããã $2$ æ¡ã®æŽæ°ã $20$ ä»¥äž $25$ æªæºã§ããã°ããïŒ( $k$ ãæŽæ°ãšã㊠$2Ã10^k$ ãšè¡šãããå Žåã¯äžé©ã ãïŒæããã«ããããªãã®ã§ãã®å Žåã¯èããªããŠè¯ãïŒ$25$ ã®å Žåãåæ§) 次㫠$2^t$ ã®æé«äœã®æ°åã®å€åãå
¬åŒè§£èª¬åæ§ã«èª¿ã¹ããšïŒ$$A:1â2â4â(8 \\ or \\ 9)â1$$ $$B:1â2â5â1,1â3â(6 \\ or \\ 7)â1$$ ã§ããïŒAã¯å¿
ã $1$ ã€ã ãæé«äœã®æ°åãšãã®æ¬¡ã®æ°åãåããã $2$ æ¡ã®æŽæ°ã $20$ ä»¥äž $25$ æªæº ã§ãããã®ãå«ã¿ïŒBã¯å¿
ãå«ãŸãªãïŒ$2^4$ ã® $2$ æ¡ãã $2^{9999}$ ã® $3010$ æ¡ãŸã§ã®æ¡ã®ãã¡ïŒ$2^t (t=4,5,âŠ,10000)$ ã§è¡šãããæ°ã $4$ å (Aã®ãã¿ãŒã³) å«ãæ¡ã $x$ åïŒ$3$ åã®ã¿å«ãæ¡ã $y$ åãšãããšïŒ$$x+y=3009$$ $$4x+3y=9996$$ ã§ããïŒããã解ããš $x=969,y=2040$ ã§ããããïŒè§£çãã¹ãå€ã¯ $\\bf{969}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc134/editorial/1798/181"
}
] | ã$10000$ åã®æŽæ° $5^0, 5^1, \ldots, 5^{9999}$ ã®ãã¡ïŒæé«äœã®æ°åã $4$ ã§ãããã®ã¯ããã€ãããŸããïŒãã ãïŒ$1\times 10^{6989}\lt 5^{9999}\lt 2\times 10^{6989}$ ã§ãïŒ |
OMC133 (for experts) | https://onlinemathcontest.com/contests/omc133 | https://onlinemathcontest.com/contests/omc133/tasks/2063 | A | OMC133(A) | 400 | 123 | 146 | [
{
"content": "ã$n\\leq 4$ ã¯äžé©ã§ãããã $n\\geq 5$ ãšãã. ãã®ãšã以äžã®ããã«å®ããã°, æ¡ä»¶ã¯ $g(n)=0$ ã§ããïŒ\r\n$$f(n) = \\sqrt{25n + 5\\sqrt{n}+25},\\quad g(n) = \\left[f(n+1)\\right]â\\left[f(n)\\right]$$\r\n\r\n$f$ ã¯å調å¢å ã§ãããã, 次ã®è£é¡ãã $n\\geq 5$ ã«ãã㊠$g(n)$ ã®å€ã¯ $0$ ãŸã㯠$1$ ã§ãã.\r\n\r\n----\r\n**è£é¡.**ã$n\\geq 5$ ã«ãã㊠$[f(n)+1] \\geq [f(n+1)]$.\\\r\n**蚌æ.**ã$f(n)+1\\geq f(n+1)$ ã瀺ãã°ååã§ãã. $f$ ã®å®çŸ©åãéè² ã®å®æ°ã«æ¡åŒµããŠèãããš, $f$ ã¯äžã«åžã§ãã(åŸè¿°)ãã\r\n$$h(x)=f(x)+1-f(x+1)$$\r\nã¯å調å¢å ã§ãã, $h(5)\\gt 0$ ãšäœµããŠèšŒæã¯å®äºãã.\r\n\r\n----\r\n\r\n ãªã $f$ ã®åžæ§ã«ã€ããŠã¯æçŽã«å°é¢æ°ã調ã¹ãŠãããã, ããäžè¬ã«ä»¥äžã®äºå®ããåŸãïŒ\r\n\r\n----\r\n**äºå®.**ã$f,g$ ããšãã«äžã«åžã§, $f$ ã¯å調å¢å ãããšã, $f\\circ g$ (åæåå)ãäžã«åžã§ãã.\\\r\n**蚌æ.**ãä»»æã®å®æ° $x,y$ ããã³ $0$ ä»¥äž $1$ 以äžã®å®æ° $\\lambda$ ã«å¯Ÿã次ãæãç«ã€ããšããããã.\r\n$$\r\nf(g(\\lambda x+(1-\\lambda)y))\r\n\\geq f(\\lambda g(x)+(1-\\lambda)g(y))\r\n\\geq\\lambda f(g(x))+(1-\\lambda)f(g(y))\r\n$$\r\n\r\n----\r\nã以äžãã, æ±ããå€ã¯ä»¥äžã§äžããããïŒ\r\n$$9996-(g(5) + g(6) + \\cdots + g(10000)) = 9996-\\bigl([f(10001)] â[f(5)]\\bigr) = \\textbf{9508}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc133/editorial/2063"
}
] | ã以äžã®çåŒãã¿ãã $0$ ä»¥äž $10000$ 以äžã®æŽæ° $n$ ã¯ããã€ãããŸããïŒ
$$\left[\sqrt{25n+5\sqrt{n}+25}\right]=\left[\sqrt{25n+5\sqrt{n+1}+50}\right]$$
ããã ãïŒ$\displaystyle \left[x\right]$ 㧠$x$ 以äžã®æ倧ã®æŽæ°ãè¡šããŸãïŒ |
OMC133 (for experts) | https://onlinemathcontest.com/contests/omc133 | https://onlinemathcontest.com/contests/omc133/tasks/1749 | B | OMC133(B) | 400 | 110 | 123 | [
{
"content": "ãäžè§åœ¢ã® $3$ å
è§ã®æ£æ¥ã $a,b,c$ ãšããã°ïŒäžè¬ã«å æ³å®çãã $ c = -\\dfrac{a+b}{1-ab} $ïŒããªãã¡ \r\n$$a+b+c=abc$$\r\nãæãç«ã€ïŒãããã\r\n$$ab+bc+ca=abc\\biggl(\\frac1a+\\frac1b+\\frac1c\\biggr)=(a+b+c)\\biggl(\\frac1a+\\frac1b+\\frac1c\\biggr)=-3$$\r\nããããïŒ$a,b,c$ 㯠$x$ ã®æ¹çšåŒ $x^3+x^2-3x+1=0$ ã® $3$ 解ãšãªãïŒãã£ãŠ $a=1$ïŒããªãã¡ããè§ã¯ $45^\\circ$ ãšããŠããïŒæ®ãã® $2$ è§ã«ã€ããŠã¯ $bc=-1$ ããå·®ã $90^\\circ$ïŒããªãã¡ $112.5^\\circ$ ãš $22.5^\\circ$ ã§ããïŒ\\\r\nãããã§ïŒäžå¿ã $O$ ãšããæ£å
«è§åœ¢ $ABCDEFGH$ ãèãããšïŒ$ABG$ ãèããã¹ãã®äžè§åœ¢ã®åœ¢ç¶ã«äžèŽããïŒãã®é¢ç©ã $S$ïŒå€æ¥åååŸã $R$ ãšããïŒãã®ãšã $AB\\times BG=2\\sqrt{2}S$ ã§ããïŒæ£åŒŠå®çãã $AG=\\sqrt{2}R$ ã§ããããïŒ\r\n$$2000=AB\\times AG\\times BG=4SR$$\r\n äžæ¹ïŒ$AG\\parallel BO$ ãã $S$ 㯠$OAG$ ã®é¢ç©ã«ãçããããïŒ$2S=R^2$ ã§ããïŒä»¥äžãã $S=\\textbf{50}$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc133/editorial/1749"
}
] | ãçŽè§äžè§åœ¢ã§ãªãäžè§åœ¢ $\Delta$ ãïŒä»¥äžã®æ¡ä»¶ãã¿ãããŸãïŒ
- $\Delta$ ã® $3$ ã€ã®å
è§ã®æ£æ¥ïŒ$\tan$ïŒã®å㯠$-1$ ã§ããïŒ
- $\Delta$ ã® $3$ ã€ã®å
è§ã®æ£æ¥ïŒ$\tan$ïŒã®éæ°å㯠$3$ ã§ããïŒ
- $\Delta$ ã® $3$ 蟺ã®é·ãã®ç©ã¯ $2000$ ã§ããïŒ
ãã®ãšãïŒ$\Delta$ ã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC133 (for experts) | https://onlinemathcontest.com/contests/omc133 | https://onlinemathcontest.com/contests/omc133/tasks/5092 | C | OMC133(C) | 600 | 92 | 105 | [
{
"content": "#### **ãã³ã**\r\n\r\nã$U$ ãå®ãããããšããŸã. OMCåãæé©ãªè¡åããšã£ããšãã® $U$ ã®å€åã®æ§åãèå¯ããŸããã.\r\n\r\n<details><summary>ãã³ã1<\\/summary>\r\n\r\nãæäœåã®æçæ°ã $u$ , æäœåŸã®æçæ°ã $v$ ãšããŸã. $1,u,v$ ã®å€§å°é¢ä¿ã調ã¹ãŸããã.\r\n\r\n<\\/details>\r\n<details><summary>ãã³ã2<\\/summary>\r\n\r\nã$c(u)=b(u)-a(u)$ ãšããŸã. $u$ ã«å¯ŸããŠæäœãç¹°ãè¿ããšãã® $c(u)$ ã®å€åã芳å¯ããŸããã.\r\n\r\n<\\/details>\r\n<details><summary>ãã³ã3<\\/summary>\r\n\r\nã$c(s)$ ã¯ãããã§ããããïŒ\r\n\r\n<\\/details>\r\n<details><summary>ãã³ã4<\\/summary>\r\n\r\nã$c(s)=1$ ã§ã. ãªãã§ããããïŒ\r\n\r\n<\\/details>\r\n<details><summary>ãã³ã5<\\/summary>\r\n\r\nã$u$ ã«å¯ŸããŠæäœãç¹°ãè¿ããŠåã㊠$c(u)=1$ ãšãªã£ããšã, $u$ ã¯ãããã§ããããïŒ\r\n\r\n<\\/details>\r\n\r\n#### **ç¥è§£**\r\n\r\n<details><summary>ç¥è§£<\\/summary>\r\n\r\nã$U$ ã®æ倧å€ã $m$ ãšãã. OMCåã®æé©ãªè¡åã¯, $U$ ã®èŠçŽ ããã¹ãŠä»¥äžã® $s$ ã«äžèŽãããããšã§ãã.\r\n\r\n$$s=\\dfrac{\\left\\lceil \\dfrac{m}{1-m} \\right\\rceil}{\\left\\lceil \\dfrac{1}{1-m} \\right\\rceil}$$\r\n\r\nããã $m$ ã«é¢ããŠå調å¢å ã§ããããšãã, ããªãã®æé©ãªè¡å㯠$m$ ãæ倧åããããšã§ãã. ãã㧠$m$ ã®æ倧å€ã¯ $\\dfrac{9929}{9931}$ ã§ãããã, $s_0=\\dfrac{4965}{4966}$ ã§ãã. åŸã£ãŠ, æ±ããå€ã¯ $\\bf{24656190}$ .\r\n\r\n<\\/details>\r\n\r\n#### **解説**\r\n\r\nãOMCåã®æäœã«ã€ããŠ, æäœåã®æçæ°ã $u$, $1$ åæäœããåŸã®æçæ°ã $v$ ãšãã. ã€ãŸã\r\n\r\n$$v=\\dfrac{a(u)+1}{b(u)+1}$$\r\n\r\nãã®ãšã $u\\lt 1\\implies u\\lt v\\lt 1$ ãæãç«ã€.\r\n\r\n<details><summary>蚌æ<\\/summary>\r\n\r\nã$u\\lt 1$ ã®ãšã $a(u)\\lt b(u)$ ã§ãã. \r\n\r\nã$a(u)\\lt b(u)$ ã®äž¡èŸºã« $1$ ãå ã㊠$b(u)+1$ ã§å²ããš $v\\lt 1$ ãåŸããã. \r\n\r\nã$a(u)\\lt b(u)$ ã®äž¡èŸºã« $a(u)b(u)$ ãå ã㊠$b(u)(b(u)+1)$ ã§å²ããš $u\\lt v$ ãåŸããã.\r\n\r\n<\\/details>\r\n\r\nãåŸã£ãŠåžžã« $u_i\\lt 1$ ã§ãã, æäœããããšã«å€ã¯å調ã«å¢å ãã. ããã§, $c(u)$ ã次ã®ããã«å®ãã.\r\n\r\n$$c(u)=b(u)-a(u)$$\r\n\r\nãã®ãšã $c(v)\\ |\\ c(u)$ ãæãç«ã€.\r\n\r\n<details><summary>蚌æ<\\/summary>\r\n\r\nã$g=\\gcd (a(u)+1,b(u)+1)$ ãšãã. ãã®ãšã $a(v), b(v)$ ã¯æ¬¡ã®ããã«è¡šãã.\r\n$$a(v)=\\dfrac{a(u)+1}{g},\\quad b(v)=\\dfrac{b(u)+1}{g}$$\r\nåŸã£ãŠ \r\n$$c(v)=b(v)-a(v)=\\dfrac{b(u)-a(u)}{g}=\\dfrac{c(u)}{g}$$\r\nãšè¡šã, $g$ ãæ£æŽæ°ã§ããããšãã $c(v)$ 㯠$c(u)$ ãå²ãåã, ç¹ã«å㯠$g$ ã§ããããšã瀺ããã. \r\n\r\n<\\/details>\r\n\r\nããã£ãŠ $c(u)$ ã¯æäœã«ãã£ãŠãã®çŽæ°ã«ããå€åããªã. ç¹ã« $c(u)$ ã¯å調ã«æžå°ãã.\\\r\nãããã«, æéåã®æäœã«ãã£ãŠ $c(u)=1$ ãšãªã.\r\n\r\n<details><summary>蚌æ<\\/summary>\r\n\r\nãã㟠$c(u)\\neq 1$ ãšãã. $u$ ã«å¯Ÿããæéåã®æäœã«ãã£ãŠ $c(u)$ ã®å€ãæžå°ããããšã瀺ãã°, ãããç¹°ãè¿ãé©çšããããšã§ãã¯ãæéåã®æäœã«ãã£ãŠ $c(u)=1$ ã«ãªãããšã瀺ããã. 以äž, æéåã®æäœã«ãã£ãŠ $c(u)$ ã®å€ãæžå°ããããšãèçæ³ã§ç€ºã.\r\n\r\nã$c(u)$ ãäœåºŠæäœããŠãæžå°ããªããšä»®å®ãã. ãã®ãšã $c(u)$ ã¯äžå®ãªã®ã§ããã $c$ ãšãã. ãŸã, åžžã« $\\gcd (a(u)+1,b(u)+1)=1$ ã§ãã. ãšããã, $1$ 床ã®æäœã«ã€ã $a(u),b(u)$ ã®å€ã¯ã¡ããã© $1$ ãã€å¢å ããã®ã§, $c$ åæªæºã®æäœã®åŸã«ãã㊠$a(u),b(u)$ ãå
±ã« $c$ ã®åæ°ã«ãªã, ãã㯠$\\gcd = 1$ ã«ççŸãã.\r\n\r\n<\\/details>\r\n\r\nã$U$ ã®èŠçŽ ãå
šãŠäžèŽãããªãã°å°ãªããšã $c(u)$ ã®å€ãäžèŽããªããã°ãªããªãã, ã¯ããã® $U$ ã«å¯Ÿãã $c(u_i)$ ã®å€ãã¡ã®æ倧å
¬çŽæ°ã¯ $1$ ã§ãããã, $c(s)=1$ ãåãã.\r\n\r\n<details><summary>蚌æ<\\/summary>\r\n\r\nãã¯ããã® $U$ ã«å¯Ÿãã $c(u_i)$ ãã¡ã®å€ã¯ $p_{i+615}-p_i$ ã§ãã. ãããã®æ倧å
¬çŽæ°ã $1$ ã§ãªããšããŠççŸãå°ã. æ倧å
¬çŽæ°ã $1$ ã§ãªããšã, ããçŽ æ° $p$ ãååšããŠä»»æã® $i$ ã«å¯Ÿã㊠$p_{i+615}-p_i$ ã $p$ ã®åæ°ãšãªã. ã€ãã« $p_{i+615}-p_i\\lt 10007$ ã§ãããã, $p\\lt 10007$ ã§ãã. ããããã®ãšã, $p_i,\\ p_{i+615}$ ã®ãã¡ããããäžæ¹ã®ã¿ã $p$ ãšäžèŽãããã㪠$i$ ãå¯äžååšããããççŸ.\r\n\r\n<\\/details>\r\n\r\nããã㧠$u$ ã«å¯ŸããŠæäœãç¹°ãè¿ããŠåã㊠$c(u)=1$ ãšãªã£ããšãã® $u$ ã®å€ã調ã¹ãã. ãã圢åŒçã«ã¯, 次㮠$d(u)$ ã調ã¹ãã.\r\n\r\n- $c(x)=1$ ã〠$u$ ã«å¯ŸããŠæäœãç¹°ãè¿ã㊠$x$ ãšã§ãããã㪠$x$ ã®ãã¡æå°ã®ãã®ã $d(u)$ ãšãã.\r\n\r\nã$u\\le \\dfrac{n}{n+1}$ ãšãªãæå°ã® $n$ ã $n_0$ ãšããã°\r\n\r\n$$n_0=\\left\\lceil \\dfrac{u}{1-u} \\right\\rceil$$\r\n\r\nã§ããã, $u$ ã¯æäœã«ãã£ãŠå調ã«å¢å ããããå°ãªããšã $\\dfrac{n_0}{n_0+1}\\le d(u)$ ã§ãã(*1). å®ã¯çå·ãæç«ãã(*2).\r\n\r\n<details><summary> (*1),(*2)ã®è£è¶³<\\/summary>\r\n\r\n(*1)ããã®ããšã¯ãããèªæãªäžçããªã©ãšè¡šçŸããã. è€æ°ã®æ¡ä»¶ããããšã, èãããããã®ãéžãã§ãå°ãªããšãããæãç«ã€ããšãã£ãèå¯ãæå¹ãªå Žåããã.\r\n\r\n(*2)ããã®ããšã¯ãããèªæãªäžçãéæå¯èœããªã©ãšè¡šçŸããã. å¿
èŠæ¡ä»¶ãèãããšå®ã¯ãããååæ¡ä»¶ã§ããã£ã, ãšããããšã¯ãããã. å¿
èŠæ¡ä»¶ã¯ã§ããã ã匷ãæ¡ä»¶ã«ããªããšååæ¡ä»¶ã«ãªããªããã, å¿
èŠæ¡ä»¶ã«é¢ããæ·±ãèå¯ã¯ãã°ãã°åœ¹ã«ç«ã€.\r\n\r\n<\\/details>\r\n\r\n<details><summary>蚌æ<\\/summary>\r\n\r\n$$a(u)(n+1)\\lt b(u)n\\implies a(u)(n+1)+n+1\\le b(u)n+n$$\r\n\r\nã§ãããã\r\n\r\n$$u\\lt \\dfrac{n}{n+1}\\implies v\\le \\dfrac{n}{n+1}$$\r\n\r\nãåŸããã. ãã®åŒã«ãã㊠$n=n_0$ ãšããã°æ¬¡ã®ããšãåãã.\r\n\r\n- $u$ ã $\\dfrac{n_0}{n_0+1}$ æªæºã ãšãã. äžåºŠæäœãããšåã³ $\\dfrac{n_0}{n_0+1}$ æªæºã§ããã,ãŸã㯠$\\dfrac{n_0}{n_0+1}$ ã«äžèŽãã.\r\n\r\nãåŸã£ãŠ, $u$ ã«å¯ŸããŠäœåºŠãæäœãè¡ããš $\\dfrac{n_0}{n_0+1}$ ã«äžèŽãã. ãã£ãŠ $d(u)=\\dfrac{n_0}{n_0+1}$ ã§ãã.\r\n\r\n<\\/details>\r\n\r\nã以äžã®èå¯ãã \r\n\r\n$$d(u)=\\dfrac{\\left\\lceil \\dfrac{u}{1-u} \\right\\rceil}{\\left\\lceil \\dfrac{u}{1-u} \\right\\rceil +1}=\\dfrac{\\left\\lceil \\dfrac{u}{1-u} \\right\\rceil}{\\left\\lceil \\dfrac{1}{1-u} \\right\\rceil}$$\r\n\r\nãåŸããã. åŸã£ãŠOMCåã®æé©ãªè¡åã®äžäŸã¯, ãŸãäžãããã $U$ ã®åèŠçŽ $u_i$ ã«å¯ŸããŠããããäœåºŠãæäœã㊠$d(u_i)$ ã«å€åãã, ãã®åŸ, $U$ ã®èŠçŽ ããã¹ãŠ $d(u_i)$ ã®æ倧å€ã«å€åãããããšã§ãã. ããã« $d(u)$ ã $u$ ã«é¢ããŠå調å¢å ã§ããããšã«æ³šæããã°, ã¯ããã® $U$ ã®æ倧å€ã $m$ ãšã㊠$s$ ã¯æ¬¡ã§äžããããããšãåãã.\r\n\r\n$$s=\\dfrac{\\left\\lceil \\dfrac{m}{1-m} \\right\\rceil}{\\left\\lceil \\dfrac{1}{1-m} \\right\\rceil}$$\r\n\r\nãããªãã¯ãã® $s$ ãæ倧åããã®ã§ $m$ ã®æ倧å€ãæ±ããã°è¯ã. $a(m),b(m)$ ã¯å
±ã«çŽ æ°ã§ãããã, $m$ ã®æ倧å€ã¯ $\\dfrac{9929}{9931}$ ã§ãã (*3). ãã®ãšã $s=\\dfrac{4965}{4966}$ ã§ãã, æ±ããå€ã¯ $\\bf{24656190}$ ã§ãã.\r\n\r\n<details><summary> (*3)ã®è£è¶³<\\/summary>\r\n\r\n$$m=\\dfrac{a(m)}{b(m)}=1-\\dfrac{b(m)-a(m)}{b(m)}$$\r\n\r\nãšè¡šãã°, $b(m)-a(m)$ ã®å€ãã§ããã ãå°ãã, $b(m)$ ãã§ããã ã倧ããããã°è¯ãããšãåãã. äžã€ã®çºæ³ã¯ $a(m),b(m)$ ãšããŠã§ããã ã倧ããª**ååçŽ æ°**ãéžã¶ããšã§ãã, æ¬åã®å¶çŽã§ã¯ããã§å®é $m$ ãæ倧åã§ãã.\r\n\r\n<\\/details>",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc133/editorial/5092"
}
] | ãæ£ã®æçæ° $u$ ã«å¯ŸããŠïŒ$u=\dfrac{a}{b}$ ãªãäºãã«çŽ ãªæ£æŽæ° $a,b$ ãäžæã«ååšããã®ã§ïŒãã®ãã㪠$a,b$ ããããã $a(u),b(u)$ ãšè¡šããŸãïŒ\
ãããªããšOMCåã¯ïŒæ¬¡ã§å®ãŸãã«ãŒã«ã®ã²ãŒã ãããŸã.
---
ã**ã«ãŒã«**ã[$10007$ 以äžã®çŽ æ°](https:\/\/onlinemathcontest.com\/primes)㯠$1230$ åãããŸãïŒãŸãããªãã¯ïŒæ¬¡ã®æ¡ä»¶ãã¿ããããã«ããããä»»æã« $1$ åã«äžŠã¹æ¿ãïŒ$p_1,p_2,\dots ,p_{1230}$ ãšããŸãïŒ
- $p_i\lt p_{i+615} \quad (1\le i\le 615)$
ã次ã«ïŒ$615$ åã®æ£ã®æçæ°ãããªãæ°å $U=(u_1,u_2,\dots ,u_{615})$ ãïŒä»¥äžã®ããã«å®ããŸãïŒ
- $u_i=\dfrac{p_i}{p_{i+615}}\quad (1\le i\le 615)$
ãããããŠå®ãŸã£ã $U$ ã«å¯ŸããŠïŒOMCåã¯ä»¥äžã®æäœã $0$ å以äžè¡ãããšã§ïŒ$U$ ã®èŠçŽ ããã¹ãŠåãæçæ° $s$ ã«äžèŽãããŸãïŒãã ãïŒããªãã®è¡åã«ãããïŒOMCåã¯ãã®ãããªè¡åãå¿
ãå¯èœã§ãïŒ
- $1\le i\le 615$ ãªã $i$ ãã²ãšã€éžã³ïŒ$u_i$ ã $\dfrac{a(u_i)+1}{b(u_i)+1}$ ã§çœ®ãæããïŒ
---
ãããªã㯠$s$ ãã§ããã ã倧ããïŒOMCå㯠$s$ ãã§ããã ãå°ãããããã§ãïŒäž¡è
ãæé©ã«è¡åãããšãïŒ$s$ ã¯
$s_0$ ã«ãªãã®ã§ïŒ$a(s_0)$ ãš $b(s_0)$ ã®**ç©**ãæ±ããŠãã ãã.
<details><summary>OMCåã®æäœäŸ<\/summary>
ã$\dfrac{1}{5}$ ããæäœã $2$ åãããšïŒ$\dfrac{1}{5}\longrightarrow\dfrac{1}{3}\longrightarrow\dfrac{1}{2}$ ã§ã.
<\/details> |
OMC133 (for experts) | https://onlinemathcontest.com/contests/omc133 | https://onlinemathcontest.com/contests/omc133/tasks/3723 | D | OMC133(D) | 700 | 68 | 83 | [
{
"content": "ãçè²ã $25$ åã®éè² æŽæ°ã®çµ $(c_1,c_2,\\dots ,c_{25})$ ãšåäžèŠããïŒå
·äœçã«ã¯ïŒè² $k$ ã®ã«ãŒãã®ææ°ã $c_k$ æã§ããããšãæå³ããïŒããã㯠$\\sum c_k=100$ ãã¿ããïŒãã®ãšãïŒOMCåã®è¡åã«ãããããªããå¿
ãåãŠããããªçè²ã**è¯ã**çè²ãšãã³ïŒä»¥äžã®è£é¡ã瀺ã.\r\n\r\n----\r\n**è£é¡.**ãããçè²ãè¯ãããšã¯ïŒä»»æã® $1\\leq s\\leq 25$ ã«å¯ŸããŠæ¬¡ã®æ¡ä»¶ãã¿ããããšãšåå€ã§ããïŒ\r\n- $c_1,c_2,\\dots ,c_{25}$ ã®ãã¡ã©ã® $s$ åãéžãã§ãïŒãããã®å㯠$4s-3$ 以äžã§ããïŒ\r\n\r\n**蚌æ.**ããŸãæ¡ä»¶ãä»®å®ãïŒä»»æã®OMCåã®è¡åãèããïŒãã®ãšãïŒ$25$ åã®è²ãš $25$ åã®æã«å¯Ÿå¿ããèš $50$ åã®é ç¹ããšãïŒããããã®é ç¹éåã $U,V$ ãšããïŒïŒããè²ãããæã« $d$ æå«ãŸãããªãã°ãã®éã« $d$ æ¬ã®ïŒå€éïŒèŸºã匵ãããšã§äºéšã°ã©ããæ§æããïŒãã®ãšãïŒä»»æã® $U$ ã®éšåéå $A$ ã«å¯ŸãïŒ$A$ ã®é ç¹ã«æ¥ç¶ãã蟺㯠$4|A|-3$ æ¬ä»¥äžã§ããïŒ$V$ ã®é ç¹ã¯ãã¹ãŠæ¬¡æ°ãé«ã
$4$ ã ããïŒãããã®èŸºã¯ $V$ ã® $|A|$ å以äžã®é ç¹ã«æ¥ç¶ããŠããïŒãã£ãŠïŒHallã®çµå©å®çãã $U$ ã®é ç¹ããã¹ãŠã«ããŒãããããã³ã°ãååšãïŒããã¯çè²ãè¯ãããšãæå³ããïŒ\\\r\nãéã«æ¡ä»¶ãåŠå®ãïŒåŒãç¶ãåæ§ã®ã°ã©ããèããïŒãã®ãšãïŒãã $U$ ã®éšåéå $A$ ã«å¯ŸãïŒ$A$ ã®é ç¹ã«æ¥ç¶ãã蟺ã¯é«ã
$4|A|-4$ æ¬ã§ããïŒãã£ãŠïŒOMCåã¯ïŒãããã®èŸºã $V$ ã® $|A|-1$ å以äžã®é ç¹ã«æ¥ç¶ããããã«è¡åããã°ïŒ$U$ ã®é ç¹ããã¹ãŠã«ããŒãããããã³ã°ã¯ååšãåŸãªãïŒïŒèšŒæçµïŒ\r\n----\r\n\r\nãè£é¡ããïŒããçè²ãè¯ãããšã¯ïŒ$(c_1,c_2,\\dots ,c_{25})$ ãæé ã«äžŠã¹æ¿ãã $(c^\\prime_1,c^\\prime_2,\\dots ,c^\\prime_{25})$ ã«å¯ŸããŠæ¬¡ãæãç«ã€ããšãšåå€ã§ããïŒ\r\n- ä»»æã® $1\\leq s\\leq 25$ ã«å¯ŸããŠïŒ$\\displaystyle\\sum_{k=1}^{s} c^\\prime_k\\geq 4s-3$ïŒ\r\n\r\nããã£ãŠïŒ$(c^\\prime_1,c^\\prime_2,\\dots ,c^\\prime_{25})$ ãšããŠèããããã®ã¯ïŒæ¬¡ã® $7$ çš®é¡ã§ããïŒãã ã $\\dots$ 㯠$4$ 以äžã®æŽæ°ãç¶ãããšãè¡šãïŒ\r\n$$\\begin{aligned}\r\n(1,\\dots), &&\r\n(2,\\dots), &&\r\n(2,3,\\dots), &&\r\n(3,\\dots), &&\r\n(3,3,\\dots), &&\r\n(3,3,3,\\dots), &&\r\n(\\dots)\r\n\\end{aligned}$$\r\nããããã®å Žåã«ã€ããŠäœéãããããèšç®ããŠåããšããšïŒ\r\n$$65000+7500+1380000+600+82800+4655200+1=\\textbf{6191101}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc133/editorial/3723"
}
] | ã$100$ æã®ã«ãŒããããïŒããããã®ã«ãŒãã¯è² $1,$ è² $2,$ $\ldots ,$ è² $25$ ã®çžç°ãªã $25$ è²ã®ãã¡ $1$ è²ã§çè²ãããŠããŸãïŒãã¹ãŠã®è²ã䜿ãããŠãããšã¯éããŸããïŒïŒåãè²ã§çè²ãããã«ãŒãã¯åºå¥ã§ããŸããïŒããªãã¯ãã® $100$ æã®ã«ãŒãã䜿ã£ãŠïŒOMCåãšæ¬¡ã®ãããªã²ãŒã ãããŸãïŒ
- OMCå㯠$100$ æã®ã«ãŒãã $4$ æã〠$25$ åã®æã«åããïŒ
- ããªãã¯ããããã®æããä»»æã« $1$ æãã€éžã³ïŒèš $25$ æã®ã«ãŒããæã«åãïŒ
- ãã® $25$ æã®ã«ãŒãã®è²ãçžç°ãªã£ãŠãããšãïŒããªãã®åã¡ã§ããïŒããã§ãªããšãOMCåã®åã¡ã§ããïŒ
ãOMCåã®è¡åã«ãããïŒããªããå¿
ãåãŠããããªçè²ã®ããæ¹ã¯äœéããããŸããïŒãã ãïŒ**ããè²ãååšããŠãã®è²ã§çè²ãããã«ãŒãã®ææ°ãç°ãªããšãïŒãŸããã®ãšãã«éãïŒçè²ã®ããæ¹ãç°ãªããšããŸã**ïŒ |
OMC133 (for experts) | https://onlinemathcontest.com/contests/omc133 | https://onlinemathcontest.com/contests/omc133/tasks/4881 | E | OMC133(E) | 700 | 20 | 51 | [
{
"content": "ãããã§ã¯ã²ãŒã ã®**ç¶æ
**ãé»æ¿ã«æžãããæŽæ°ã®å€ééåïŒåãå
ãããã€å«ãŸããããåãããŠèããïŒãšããïŒãŸãã¯é»æ¿ã«æžããããã®ã¯æ£æŽæ°ã§ããã°äœã§ãïŒäœåã§ããããšããŠèããïŒãã®ãšãïŒåç¶æ
$P$ ã«ã€ããŠïŒãã®Grundyæ°ã $g(P)$ ãšè¡šãïŒãŸãïŒæ£æŽæ° $x$ ã«å¯Ÿã㊠$g(\\\\{x\\\\})$ ãåã« $g(x)$ ãšè¡šãïŒ\r\n\r\n<details><summary>Grundyæ°ã«ã€ããŠ<\\/summary>\r\nã以äžã®ç¹åŸŽãæã€ã²ãŒã ã¯**äžåã²ãŒã **ãšåŒã°ããïŒæ¬åãããã«è©²åœããïŒ\r\n\r\n- äºäººã§äº€äºã«æäœãè¡ãïŒ\r\n- ã©ã¡ãããåã¡ïŒã©ã¡ãããè² ããïŒ\r\n- ããããç¶æ
ã¯æéåã§ããïŒã©ã®ãããªæäœãè¡ã£ãŠãïŒæéåã§ãã以äžæäœã§ããªãç¶æ
ã«ãªãïŒ\r\n- æäœã¯å¶ç¶æ§ã«å·Šå³ãããªãïŒ\r\n- äºäººã¯äºãã®ãã¹ãŠã®æ
å ±ãæã£ãŠããïŒ\r\n- äºäººãè¡ãããšã®ã§ããæäœã¯ïŒåãç¶æ
ã«å¯ŸããŠã¯åäžã§ããïŒ\r\n- æäœãè¡ããªããªã£ãæ¹ãè² ãã§ããïŒ\r\n\r\näžåã²ãŒã ã¯åæç¶æ
ããåæã確å®ãïŒ**Grundyæ°** ãšããæŠå¿µãçšããŠãã®ç¶æ
ã調ã¹ãããšãã§ããïŒãŸãé¢æ° $\\operatorname{mex}$ ã次ã®ããã«å®çŸ©ããïŒ\r\n\r\n- éè² æŽæ°ã®æéå€ééå $S$ ã«ã€ããŠïŒ$S$ ã®å
ã§ã¯ãªãæå°ã®éè² æŽæ°ã $\\operatorname{mex}(S)$ ãšããïŒ\\\r\nç¹ã«ç©ºéåã«ã€ããŠã¯ $\\operatorname{mex}(\\emptyset)=0$ ã§ããïŒ\r\n\r\nåã²ãŒã ã®ç¶æ
$P$ ã«ã€ããŠïŒãã®Grundyæ° $g(P)$ ã¯æ¬¡ã®ããã«ããŠå®çŸ©ãããïŒ\r\n- $P$ ãã $1$ åã®æäœã§é·ç§»ã§ããç¶æ
å
šäœã®éåã $S$ ãšã㊠$g(P)=\\operatorname{mex}(\\\\{g(Q)\\mid Q\\in S\\\\})$ ãšããïŒ\r\n\r\nãã®ãšãå®çŸ©ãã次ã容æã«ãããïŒ\r\n- ãã以äžæäœã§ããªãç¶æ
ã®Grundyæ°ã¯ $0$ïŒ\r\n- Grundyæ°ã $0$ ã®ç¶æ
ããã¯Grundyæ°ã $0$ ã®ç¶æ
ãžé·ç§»ã§ããªãïŒ\r\n- Grundyæ°ã $0$ ã§ãªãç¶æ
ããã¯Grundyæ°ã $0$ ã®ç¶æ
ãžé·ç§»ã§ããïŒ\r\n\r\nããããåãããã°ïŒã²ãŒã ãç¶æ
$P$ ããå§ãŸããšã $g(P)=0$ ãªãåŸæå¿
åïŒããã§ãªããªãå
æå¿
åãšãªãããšããããïŒ\r\n<\\/details>\r\n\r\nãæ¬åã®ã²ãŒã ã§ã¯é»æ¿ã«æžãããã©ã® $2$ ã€ã®æŽæ°ãæäœã«ãããŠç¬ç«ã§ããããïŒGrundyæ°ã®éèŠãªæ§è³ªïŒSpragueâGrundyã®å®çïŒãçšããã°ïŒæ¬¡ã®æ§è³ªããããïŒ\r\n\r\n- ç¶æ
$P,Q$ ã«å¯ŸããŠå $P+Q$ ãå€ééåã®åãšå®çŸ©ããïŒãã®ãšã次ãæãç«ã€ïŒ\r\n$$g(P+Q)=g(P) \\oplus g(Q).$$\r\nãã ãéè² æŽæ° $x,y$ ã«å¯Ÿã㊠$x\\oplus y$ 㯠$2$ é²æ°è¡šèšã§ã®æä»çè«çåãè¡šãïŒ\r\n\r\n**è£é¡**ïŒæ¬¡ãæãç«ã€ïŒ\r\n- $x$ ãå¥æ°ãŸã㯠$x=2$ ã®ãšã $g(x)=0$ïŒ\r\n- $x$ ã $4$ ã®åæ°ã®ãšã $g(x)=1$ïŒ\r\n- $x$ ã $6$ 以äžã® $4$ ã®åæ°ã§ãªãå¶æ°ã®ãšã $g(x)=2$ïŒ\r\n\r\n<details><summary>è£é¡ã®èšŒæ<\\/summary>\r\nã$x$ ã«é¢ããåž°çŽæ³ã§ç€ºãïŒ$g(1)=0, g(2)=0$ ã¯å®¹æã«ç¢ºãããããïŒ$x\\geq 3$ ãšãïŒä»»æã® $y(\\lt x)$ ã«å¯ŸããŠè£é¡ãæãç«ã€ãšä»®å®ããïŒ\r\n\r\nã(1) $x$ ãå¥æ°ã®ãšãïŒ$x$ ãçŽ æ°ãªãã°æããã« $g(x)=0$ ã§ããïŒããã§ãªããšãïŒæäœã§æžã蟌ãŸããæŽæ° $y,z(\\lt x)$ ã®å¶å¥ã¯ç°ãªãïŒãŸã $y,z$ ãäºãã«çŽ ã§ãªãããšãã $y,z$ ã¯ã©ã¡ãã $2$ ã§ãªãïŒãã£ãŠ $g(y)\\neq g(z)$ïŒããªãã¡ $g(y)\\oplus g(z)\\neq 0$ ããããããïŒ${x}$ ããé·ç§»ã§ããä»»æã®ç¶æ
ã«å¯ŸããGrundyæ°ã¯ $0$ ã§ã¯ãªãïŒãã£ãŠ $g(x)=0$ ã§ãã.\r\n\r\nã(2) $x$ ã $4$ ã®åæ°ã®ãšãïŒ$x=4$ ã®å Žå㯠$y=z=2$ ããããåŸãªãããšãã $g(4)=1$ ã§ããïŒ$x\\ge 8$ ã®ãšãïŒæäœã§æžã蟌ãŸããæŽæ° $y,z$ ãšããŠã¯æ¬¡ã® $4$ ã€ã®å ŽåãèããããïŒ\r\n- ã©ã¡ããå¥æ°ã§ãã\r\n- ã©ã¡ãã $4$ ã®åæ°ã§ããïŒ$(y,z)=(4,x-4)$ ãåžžã«èããããïŒ\r\n- ã©ã¡ãã $4$ ã®åæ°ã§ãªã $6$ 以äžã®å¶æ°ã§ãã\r\n- äžæ¹ã $2$ïŒããäžæ¹ã $4$ ã®åæ°ã§ãªã $6$ 以äžã®å¶æ°ã§ãã\r\n\r\nãã®ãã¡äž $3$ ã€ã®å Žå㯠$g(y)\\oplus g(z)=0$ïŒæåŸã®å Žå㯠$g(y)\\oplus g(z)=2$ ã§ãããã $g(x)=1$ ãåŸãããïŒ\r\n\r\nã(3) $x$ ã $6$ 以äžã® $4$ ã®åæ°ã§ãªãå¶æ°ã®ãšãïŒæäœã§æžã蟌ãŸããæŽæ° $y,z$ ãšããŠã¯æ¬¡ã® $3$ ã€ã®å ŽåãèããããïŒ\r\n- ã©ã¡ããå¥æ°ã§ããïŒ$(y,z)=(x\\/2,x\\/2)$ ãåžžã«èããããïŒ\r\n- äžæ¹ã $2$ïŒããäžæ¹ã $4$ ã®åæ°ã§ããïŒ$(y,z)=(2,x-2)$ ãåžžã«èããããïŒ\r\n- äžæ¹ã $4$ ã®åæ°ã§ãªã $6$ 以äžã®å¶æ°ïŒããäžæ¹ã $4$ ã®åæ°ã§ãã\r\n\r\n$1$ ã€ç®ã®å Žå㯠$g(y)\\oplus g(z) = 0$ïŒ$2$ ã€ç®ã®å Žå㯠$g(y)\\oplus g(z)=1$ïŒ$3$ ã€ç®ã®å Žå㯠$g(y)\\oplus g(z) = 3$ ã§ãããã $g(x)=2$ ãåŸãããïŒ\r\n\r\n以äžããè£é¡ã¯ç€ºãããïŒ\r\n<\\/details>\r\n\r\næ¬åã«ãããæåã®ç¶æ
$P_0$ 㯠$P_0=\\\\{s_1,s_2,\\dots ,s_{5000}\\\\}$ ãã\r\n$$g(P_0)=g(s_1)\\oplus g(s_2)\\oplus \\dots \\oplus g(s_{5000})$$\r\nã§ããïŒããªããåã€ã®ã¯ $g(P_0)=0$ ãšåå€ã§ããïŒ$2$ é²æ³è¡šèšã§åæ¡ããšã«ç¬ç«ã«èããããšã§æ¬¡ã®æ¡ä»¶ãåŸã.\r\n\r\n- $s_1,s_2,\\dots ,s_{5000}$ ã®ãã¡ïŒ$4$ ã®åæ°ã¯å¶æ°å ($2a$ åãšãã) ã§ããïŒ\r\n- $s_1,s_2,\\dots ,s_{5000}$ ã®ãã¡ïŒ$6$ 以äžã® $4$ ã®åæ°ã§ãªãå¶æ°ã¯å¶æ°å ($2b$ åãšãã) ã§ããïŒ\r\n\r\nã$149$ 以äžã®æ£æŽæ°ã®ãã¡ $4$ ã®åæ°ã¯ $37$ åïŒ$6$ 以äžã® $4$ ã®åæ°ã§ãªãå¶æ°ã¯ $36$ åã§ããããïŒ\r\n\r\n$$M=\\sum_{a=0}^{2500} \\sum_{b=0}^{2500-a} \\dfrac{5000!}{(2a)!(2b)!(5000-2a-2b)!}37^{2a}\\cdot 36^{2b} \\cdot 76^{5000-2a-2b}$$\r\nãšè¡šããïŒãã㯠$f(s,t)=(36s+37t+76)^{5000}$ ã«ãã㊠$s,t$ ã®æ¬¡æ°ããšãã«å¶æ°ã§ããé
ã®ä¿æ°ã®ç·åã§ããããïŒ\r\n$$\\frac{f(1,1)+f(1,-1)+f(-1,1)+f(-1,-1)}{4} =\\frac{149^{5000}+75^{5000}+77^{5000}+3^{5000}}{4}$$\r\nãšæ±ããããïŒãã® $4$ åïŒ$4M$ïŒã $4999$ ã§å²ã£ãäœãã«ã€ããŠïŒFermatã®å°å®çãã\r\n$$4M\\equiv 149^2+75^2+77^2+3^2\\equiv 3770 \\pmod{4999}$$\r\nã§ããããïŒããã $4$ ã§å²ãïŒ$=1250$ ãæããïŒããšã§æ±ããå€ã¯ $M\\equiv {\\bf{3442}} \\pmod{4999}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc133/editorial/4881"
}
] | ãç¡æ°ã«ããçœçŽã®ã«ãŒãã䜿ã£ãŠïŒããªãã¯OMCåãšæ¬¡ã®ã²ãŒã ãè¡ããŸãïŒ
---
ã**ã«ãŒã«**ããŸãïŒã²ãŒã ãã¹ã¿ãŒã次ã®äžé£ã®æäœã $5000$ åç¶ããŠè¡ãïŒ
- $1$ ä»¥äž $149$ 以äžã®æŽæ°ã®ãã¡äžã€ãä»»æã«éžã¶ïŒ\
ããã $i$ åç®ïŒ$i=1,\ldots,5000$ïŒã®æäœã®ãšãïŒéžã°ããæ°ã $s_i$ ãšããïŒ
- çœçŽã®ã«ãŒãã $1$ æãšãïŒ$s_i$ ãæžã蟌ãïŒ
ãã ãïŒã²ãŒã ãã¹ã¿ãŒã¯ã²ãŒã ã®é²è¡ã«äžç«ãªååšã§ããïŒ\
ããã®åŸïŒããªããšOMCåã¯äº€äºã«æ¬¡ã®äžé£ã®æäœãè¡ãïŒ**OMCåãå
æ»ã§ãã**ïŒ
- $2$ 以äžã®æŽæ°ãæžã蟌ãŸããã«ãŒãã $1$ æéžã³ïŒçœçŽã«æ»ãïŒ\
æžã蟌ãŸããŠããæ°ã $x$ ãšããïŒ
- 次ã®æ¡ä»¶ãã¿ããæ£æŽæ° $y,z$ ãä»»æã«éžã¶ïŒ
- $y,z$ ã¯äºãã«çŽ **ã§ã¯ãªã**ïŒã〠$x=y+z$ ãã¿ããïŒ
- çœçŽã®ã«ãŒãã $2$ æãšãïŒããããã« $y,z$ ãæžã蟌ãïŒ
ãå
ã«æäœãè¡ããªããªã£ãæ¹ãè² ãã§ããïŒããäžæ¹ãåã¡ã§ããïŒ
---
ãäž¡è
ãèªèº«ã®åã¡ã®ããã«æé©ã«è¡åããŸãïŒãã®ãšãïŒã²ãŒã ã¯æéåã®æäœã§çµäºãïŒçµ $(s_1,s_2,\dots ,s_{5000})$ ããšã«ããªããšOMCåã®ããããæçµçã«åã€ããå®ãŸããŸãïŒ$149^{5000}$ éãããçµã®ãã¡ïŒããªããæçµçã«åã€ãã®ã¯ $M$ éããããŸãïŒ\
ã$M$ ãçŽ æ° $4999$ ã§å²ã£ãããŸããæ±ããŠãã ãã. |
OMC133 (for experts) | https://onlinemathcontest.com/contests/omc133 | https://onlinemathcontest.com/contests/omc133/tasks/5400 | F | OMC133(F) | 800 | 8 | 32 | [
{
"content": "ããã®åé¡ã§ã¯æ¡ä»¶ãã $AB\\lt AC$ ããããããšã«æ³šæããïŒãŸã, äžè§åœ¢ $ABC$ ã®èŸºã®é·ãã®æ¯ãæ±ãã. ãã®ããã«, $(AB + BC) : CA$ ãš $(AB + AC ) : BC$ ãæ±ãã. \\\r\nã$(AB + BC) : CA$ ãæ±ãã. $F$ ã¯äžè§åœ¢ $ABC$ ã® $A$ ã«å¯Ÿããåæ¥åãšèŸº $BC$ ã®æ¥ç¹ã§ãã, ç·å $DE$ 㯠$\\omega$ ã®çŽåŸããªã. $I$ ã $PM$ ã®äžç¹ãšãªãããã« $P$ ããšããš, \r\n$$\\angle BIP=\\angle DIF,ãIB:IP=IB:IM=IE:IF=ID:IF$$\r\nãã, äžè§åœ¢ $IBP$ ãšäžè§åœ¢ $IDF$ ã¯çžäŒŒã§ãã. åŸã£ãŠ, $\\angle IBP=90^{ \\circ}$ ã§ãã. ããã§, äžè§åœ¢ $ABC$ ã® è§ $A$ å
ã®åå¿ã $I_{A}$ ãªã©ãšãããš, $\\angle IBI_{A}=90^{ \\circ}$ ã ãã, $3$ ç¹ $B, P, I_{A}$ ã¯å
±ç·ã§ãã. ãŸã, $M$ ã¯ç·å $I_{B}I_{C}$ ã®äžç¹ã§ãããã, Menelausã®å®çãã, $BI_{B}:BI=4:1$ ãæãç«ã€.\\\r\nãããã§, äžè§åœ¢ $ABC$ ã®å€æ¥åã®åŒ§ $CA$ ($B$ ãå«ãŸãªãæ¹)ã®äžç¹ã $N$ ãšãããš, ããã¯ç·å $II_B$ ã®äžç¹ã§ããïŒPtolemyã®å®çãã\r\n$$ (AB+BC)\\times IN = AB\\times CN + BC \\times AN = CA \\times BN$$\r\nãæãç«ã€. 以äžãã,\r\n$$(AB+BC):CA=BN:IN=5:3$$\r\nã§ãã. \\\r\nã$(AB + AC ) : BC$ ãæ±ãã. \r\n$$\\angle IBM=\\frac{1}{2}(180^\\circ - \\angle BAC) - \\angle IBC = \\angle BCI$$\r\nã§ãããã, æ¡ä»¶ãšäœµã㊠$4$ ç¹ $C, F, I, E$ ã®å
±åãããã. ãŸã, ç·å $II_A, BC$ ã®äžç¹ããããã $K, L$ ãšãããš, \r\n$$KI^2 = KB^2 = KL\\times KM$$\r\nã§ããã®ã§, äžè§åœ¢ $MIL$ ã®å€æ¥åã¯çŽç· $IK$ ã«æ¥ãã. åŸã£ãŠ, ( $\\mathrm{mod}~ 180^\\circ$ ã§ã®æåè§ã«ãã£ãŠ)\r\n$$\\begin{aligned}\r\n\\measuredangle MIB + \\measuredangle LIC\r\n&= \\measuredangle IMB + \\measuredangle MBI + \\measuredangle LIK + \\measuredangle KIC\\\\\\\\\r\n&= \\measuredangle IMB + \\measuredangle ICA + \\measuredangle KMI + (\\measuredangle IAC + \\measuredangle ACI)\\\\\\\\\r\n&= \\measuredangle KMB + \\measuredangle IAC\\\\\\\\\r\n&= 0^\\circ\r\n\\end{aligned}$$\r\nãåŸã. äžæ¹ã§, $\\angle DIF = 180^\\circ - \\angle EIF = 180^\\circ - \\angle BIM$ ã§ãããã,\r\n$$\\angle DIL = \\angle FIC$$\r\nã§ãã. ãŸã, $L$ ã¯ç·å $DF$ ã®äžç¹ã§ãããã, çŽç· $IL$ ãš $EF$ ã¯å¹³è¡ã§ãã. åŸã£ãŠ, \r\n$$\\angle ICF = \\angle IEF = \\angle DIL = \\angle FIC$$\r\nãã $CF = FI$ ã§ãã. ä», äžè§åœ¢ $IBI_A$ ãšäžè§åœ¢ $IDC$ ã¯çžäŒŒã§ãã, ãã®çžäŒŒã«ãã㊠$P$ ãš $F$ ã¯å¯Ÿå¿ãã. åŸã£ãŠ, $IP = I_AP$ ã§ãããã, $\\angle PKI = 90^\\circ$ ã§ãã. ãã£ãŠ, $\\angle MAI = 90^\\circ$ ãšåãããŠäžè§åœ¢ $AIM$ ãš $KIP$ ã¯ååãªã®ã§, \r\n$$(AB+CA):BC=AK:IK=2:1$$\r\nã§ãã. 以äžãã, $$AB:BC:CA=7:8:9$$ ã§ãã. \\\r\nã以äž, $ID$ ã®é·ããæ±ãã. \r\n$$\\angle AIM = \\angle I_AIP = \\angle CIF = \\angle LID = \\frac{1}{2}\\angle BCA$$\r\nãã, äžè§åœ¢ $AIM$ ãš $DIL$ ã¯çžäŒŒã§ãã, ãã®çžäŒŒæ¯ã¯\r\n$$AI : ID = 1 : \\sin \\frac{1}{2}\\angle CAB$$\r\nã§ãã. äœåŒŠå®çãªã©ãçšããŠ\r\n$$\\tan\\frac{1}{2}\\angle BCA = \\frac{1}{\\sqrt5},\\quad \\sin\\frac{1}{2}\\angle CAB = \\sqrt{\\frac{5}{21}}$$\r\nãšèšç®ã§ããã®ã§, æ±ããå€ã¯\r\n$$ID = \\frac{AM \\times \\sin\\frac{1}{2}\\angle CAB}{\\tan\\frac{1}{2}\\angle BCA} = \\frac{5}{\\sqrt{21}}$$\r\nã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{525}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc133/editorial/5400"
},
{
"content": "ãç·å $DE$ ã $\\omega$ ã®çŽåŸããªãããšïŒ$4$ ç¹ $C , F , I , E$ ã®å
±åã¯å
¬åŒè§£èª¬ãšåæ§ïŒ\r\n\r\nã$I(0) , E(1) , D(-1) , C(-1+ri)$ ãšãªãè€çŽ 座æšãèããïŒãã ã $r$ ã¯æ£ã®å®æ°ïŒïŒãã®ãšãæ¹ã¹ãã®å®çãã $DC\\cdot DF=DI\\cdot DE$ ã§ãããã $DF=\\dfrac{2}{r}$ ãšãªãïŒ$F$ ã®åº§æšã¯ $\\biggl( -1+\\dfrac{2}{r}i \\biggr)$ïŒãããš $BD=CF$ ãã $B\\biggl( -1-\\biggl(r-\\dfrac{2}{r}\\biggr)i \\biggr)$ ãšãªãïŒ\r\n\r\nãäžè§åœ¢ $BIM$ ãšäžè§åœ¢ $EIF$ ã¯åãåãã«çžäŒŒã§ãããïŒãããè€çŽ 座æšãçšããŠè§£éãããšïŒ\r\n$$\\dfrac{(Bã®åº§æš)-(Iã®åº§æš)}{(Mã®åº§æš)-(Iã®åº§æš)}=\\dfrac{(Eã®åº§æš)-(Iã®åº§æš)}{(Fã®åº§æš)-(Iã®åº§æš)}$$\r\nãšãªãïŒãã®åŒã«ä»åã®åº§æšã代å
¥ããŠèšç®ããããšã§ïŒ $M$ ã®åº§æšã¯\r\n$$\\biggl( -1-\\biggl(r-\\dfrac{2}{r}\\biggr)i \\biggr)\\cdot \\biggl( -1+\\dfrac{2}{r}i \\biggr)=\\biggl(3-\\dfrac{4}{r^2}\\biggr)+ \\biggl(r-\\dfrac{4}{r}\\biggr)i $$\r\nãšãªãïŒ\r\n\r\nãäžæ¹ïŒ$M$ ã®å®çŸ©ãã $BM=CM$ ã§ããããïŒ$M$ã¯ç·å $BC$ ã®åçŽäºçåç·äžã«ããïŒãããã£ãŠ $M$ ã®åº§æšã®èéšã¯ $\\dfrac{1}{r}$ ãšãªãïŒããããã $r-\\dfrac{4}{r}=\\dfrac{1}{r}$ ãšãªãïŒ $r=\\sqrt{5}$ ãšãªãïŒ\r\n\r\nãããšã¯å
šäœã« $\\sqrt{5}$ åã®çžäŒŒæ¡å€§ãè¡ã£ãŠ $BD=3 , DC=5 , ID=\\sqrt{5}$ ã®ãšãã« $AM$ ã®å€ãèšç®ããã°ããïŒããã¯ïŒæéã¯ããããïŒããŸãé£ãããªãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc133/editorial/5400/174"
},
{
"content": "ç§ãã³ã³ãã¹ãæ¬çªã«ãã解æ³ã§ã. è£å©ç¹ã¯äœ¿ã£ãŠããŸãã.\r\n\r\n---\r\n\r\nãŸãïŒæåæ§å³ããïŒ$DE$ ã¯çŽåŸ. äžè§åœ¢ $ABC$ ã®å
æ¥åãš $AB, AC$ ã®æ¥ç¹ã $X, Y$ ãšãããšïŒäžè§åœ¢ $AXY$ ãš $MCB$ïŒ$EYX$ ãš $IBC$ ã¯ããããçžäŒŒã§ããããïŒäžè§åœ¢ $YEA$ ãš $BIM$ ã¯çžäŒŒã§ããïŒãã£ãŠäžè§åœ¢ $YEA$ ãš $EIF$ ã¯çžäŒŒ. 以äžïŒç°¡åãªè§åºŠèšç®ãã $\\angle EAY=\\angle IFE=90-3x, \\angle EYA=\\angle IEF=x$ ãšããïŒ$I$ 㯠$DE$ ã®äžç¹ã§ããããšãã $\\tan x:\\tan 90-2x=1:2$ ãå°ãïŒãããã£ãŠå æ³å®çãã $\\tan x=1\\/\\sqrt 5$ ãšãªã. ããã«ïŒä»¥äžæ¹ã¹ãã®å®çãªã©ããèšç®ããããšã§ $AY=4a, IY=\\sqrt 5a, DF=2a$ ãšè¡šãã. ãã㧠Ptolemy ã®å®çãã $(AC-AB)MB=AMÃBC$ ã§ããïŒ$MB:BC=\\sqrt{21}:\\sqrt{20}$ ãªã®ã§ïŒ$2\\sqrt{21}x=\\sqrt{20}$ ã§ããïŒãã£ãŠ $x=\\sqrt{\\dfrac{5}{21}}$. ãããã£ãŠïŒ$IY^2=5x^2=\\dfrac{25}{21}$ ãšãªãïŒè§£çãã¹ãå€ã¯ $\\textbf{525}$ ã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc133/editorial/5400/176"
},
{
"content": "詳现ãªè§£èª¬ã§ã¯ãªãã§ããïŒèªåã解ããéçšãèšããŠãããŸãïŒèãæ¹ã®åèã«ãªãã°å¹žãã§ãïŒ\r\n\r\n---\r\n\r\nãŸãïŒåé¡ã«çŸããç¹ã粟æ»ããŸãïŒä»åã ãš $E$, $F$ ã¯åæ¥åã«ãŸã€ããæåãªæ§å³ã«çŸããç¹ã§ïŒãšãã« $DE$ ãå
æ¥åã®çŽåŸãšãªããŸãïŒãã®ä»ïŒæ±ãã®ã倧å€ãªç¹ã¯ãªãããã§ãïŒ\r\n\r\n次ã«ïŒäžããããŠããç¹æ®ãªæ¡ä»¶ãçºããŸãïŒä»åã ãšäžè§åœ¢ $BIM$ ãšäžè§åœ¢ $EIF$ ã®çžäŒŒãããã«èšãæãããããã€ã³ããšãªãããã§ãïŒå ã㊠$AM=1$ ãšããé·ãã®æ¡ä»¶ãæ±ãã¥ãããã«èŠããŸããïŒ\r\n\r\nã§ã¯ïŒæ¬è
°ãå
¥ããŠãã®çžäŒŒã«ã€ããŠèª¿ã¹ãŸãããïŒäžè§åœ¢ $EIF$ ã¯çŽè§äžè§åœ¢ $EDF$ ãäžç·ã§å²ã£ã圢ãšæããããšãã§ããŸãïŒ\r\näžæ¹ã§äžè§åœ¢ $BIM$ ã®æ¹ã¯ã©ãããšãããšïŒã²ãšãŸã $\\angle IBM = \\angle C\\/2$ ãšèšç®ã§ããŸãïŒãªã®ã§çžäŒŒã§ç§»ã㊠$\\angle DEF = \\angle C \\/ 2$ ã§ïŒãããš $\\angle DCI = \\angle C \\/ 2$ ãåãã㊠$2r^2 = DF \\cdot DC$ ãšããããŸãïŒ\r\n\r\nãã®æç¹ã§é·ãã«é¢ããŠäœ¿ããããªæ
å ±ãåŸãã®ã§ïŒä»¥éã¯è§åºŠãè¿œããªã©ã¯ããŸãããïŒçžäŒŒã®èšãæããšããŠé·ãã«ã€ããŠã®çåŒãåºããªããèããŠãããŸãïŒ\r\n\r\nçžäŒŒãããããæ¡ä»¶ã ãšïŒäºèŸºæ¯å€Ÿè§çžçãšèããã° $BM:BI = EF: EI$ ã§ïŒããã¯å
ã»ã©ã®è§åºŠã®æ¡ä»¶ãåããããšçžäŒŒæ¡ä»¶ãšããŠå¿
èŠååãšãªããŸãïŒãã®æ¯ã掻ããããã§ããïŒ$BI$ ã $EF$ ãæ±ããã®ã¯å€§å€ããã§ãïŒããã§ïŒå
ã»ã©ã®è§åºŠã®äžèŽãèŠãŠ $BM:BI = 2CI:CD$ ã§ããããšã«æ³šç®ããŸãïŒãããšïŒ$2BI\\cdot CI = BM\\cdot CD$ ã§ïŒ ããã¯é¢ç©ã«ã€ããŠã®æ¡ä»¶ãšããŠåŠçã§ãããã§ãïŒå®é $\\angle BIC + \\angle DCM = 180^\\circ$ ããïŒ$2\\triangle IBC = \\triangle MDC$ ãšãªããŸãïŒãã®é¢ç©ãªãäžè§åœ¢ $ABC$ ã®èŸºã®é·ããå
æ¥åã®ååŸãçšããŠè¡šãããã§ãïŒ\r\n\r\nããããã¯å®éã«èŸºã®é·ããå€æ°ã§çœ®ããŠèšç®ããŸãïŒå
æ¥åã«ãŸã€ããé·ãã ãšïŒäžè§åœ¢ã®é ç¹ $A$, $B$, $C$ ããæ¥ç¹ãŸã§ã®è·é¢ããããã $x$, $y$, $z$ ãšãããšèŠéããããããšããããŸãïŒäžã§èšãæããé·ããšé¢ç©ã®æ¡ä»¶ããããã®åŒã§è¡šããšïŒ$2r^2 = z(z-y)$, $xz = 4r^2$ ãšããçåŒãåŸãããŸãïŒããã« $r^2 = \\dfrac{xyz}{x+y+z}$ ãªã®ã§ïŒããããæŽçãããš $(x, y, z) = (4t, 3t, 5t)$ ãšè¡šããŸãïŒ\r\n\r\nã㊠$AM$ ã®é·ãã®æ¡ä»¶ãæ®ããŠããŸããïŒãã®é·ããæçŽã«æ±ãã«ãã£ãŠãããã§ããïŒå€æ¥åã®åŒ§ã®äžç¹åšãã ãšãã¬ããŒã®å®çãåºããããã§ãïŒå®é $AM$ 㯠$AB$, $BC$, $CA$ ããã³ $BM$ ã®åŒã§è¡šãããããïŒ$BM$ ã ãé 匵ã£ãŠèšç®ããã°ããïŒçµæçã« $1 = \\dfrac{21}{5}t^2$ ãšãªããŸãïŒãã㧠$t$ ãæ±ãŸãïŒ$r^2$ ã $x$, $y$, $z$ ã®åŒã§æžããŠããã®ã§ããã«èšç®ã§ããŸãïŒçµæ㯠$r^2 = 5t^2 = \\dfrac{25}{21}$ ã§ããïŒ\r\n\r\n---\r\n\r\n解ããéçšãæ¯ãè¿ããšïŒ**æ§è³ªã®è¯ãç¹ãã©ãã**ïŒ**èšç®ããããè§åºŠã»é·ããã©ãã**ïŒãšãã£ãæèãåžžã«æã£ãŠããŸããïŒããã«ãã£ãŠïŒäžå¿
èŠãªèå¯ã§è°è«ãè¿·å®®å
¥ãããããšãé²ãã§ããŸãïŒãã®æèŠã¯éåžžã«å€§åãªã®ã§ïŒå¹Ÿäœã®åé¡ãèŠæãªäººã¯ãã²æèããŠã¿ãŠãã ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc133/editorial/5400/177"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒãã®å
å¿ã $I$ïŒå
æ¥åã $Ï$ ãšããŸãïŒ$Ï$ ãšèŸº $BC$ ã®æ¥ç¹ã $D$ ãšãïŒèŸº $BC$ äžã« $BD=CF$ ãã¿ããç¹ $F$ ããšããŸãïŒçŽç· $AF$ ãš $Ï$ ã®äº€ç¹ã®ãã¡ $A$ ã«è¿ãæ¹ã $E$ ãšãïŒäžè§åœ¢ $ABC$ ã®å€æ¥åã®åŒ§ $BAC$ ã®äžç¹ã $M$ ãšãããšïŒäžè§åœ¢ $BIM$ ãšäžè§åœ¢ $EIF$ ã¯çžäŒŒïŒç¹ã¯äžŠã³é ã®éãã«å¯Ÿå¿ããïŒã§ããïŒ$AM = 1$ ã§ãããšãïŒ$Ï$ ã®ååŸã® $2$ ä¹ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ**ç©** $a\times b$ ã解çããŠãã ããïŒ |
OMC132 (for beginners) | https://onlinemathcontest.com/contests/omc132 | https://onlinemathcontest.com/contests/omc132/tasks/4892 | A | OMC132(A) | 100 | 270 | 271 | [
{
"content": "ãåºç®ããããã $A_1, A_2$ ãšãããšïŒæ¡ä»¶ãã\r\n$$2(A_1 + A_2) = A_1A_2 \\iff (A_1-2)(A_2-2)=4.$$\r\nãããã¿ããã®ã¯ $(A_1, A_2)=(3, 6),(6, 3),(4,4)$ ã® $\\textbf{3}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/4892"
}
] | ãäžè¬çãªå
é¢äœã®ãµã€ã³ã $2$ ã€ãåæã«æ¯ã£ããšãïŒç©ãåã® $2$ åã«ãªããã㪠$2$ ã€ã®åºç®ã®çµã¿åããã¯äœéããããŸããïŒãã ãïŒ$2$ ã€ã®ãµã€ã³ãã¯**åºå¥ããŠèããŸã**ïŒ |
OMC132 (for beginners) | https://onlinemathcontest.com/contests/omc132 | https://onlinemathcontest.com/contests/omc132/tasks/4795 | B | OMC132(B) | 200 | 241 | 255 | [
{
"content": "ãèããã¹ãé åã¯ïŒäžèŸº $2$ ã®æ£äžè§åœ¢ $3$ ã€ãšïŒé«ã $2$ ã®æ£äžè§åœ¢ $1$ ã€ã«çµã¿æ¿ããããããïŒæ±ããé¢ç©ã¯\r\n$$ \\sqrt{3}\\times 3 + \\frac{4}{\\sqrt{3}}\\times 1 = \\frac{13}{\\sqrt{3}} $$\r\nã§ããïŒè§£çãã¹ãå€ã¯ $169+3=\\textbf{172}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/4795"
}
] | ãé·ãã $4$ ã®ç·å $A$ ã«é¢ããŠïŒ$A$ ãé·ãæ¹ã®å¯Ÿè§ç·ã®äžã€ã«ãã€æ£å
è§åœ¢ãšïŒ$A$ ãçãæ¹ã®å¯Ÿè§ç·ã®äžã€ã«ãã€æ£å
è§åœ¢ã®å
±ééšåã®é¢ç©ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\sqrt{\dfrac{a}{b}}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC132 (for beginners) | https://onlinemathcontest.com/contests/omc132 | https://onlinemathcontest.com/contests/omc132/tasks/4844 | C | OMC132(C) | 200 | 243 | 251 | [
{
"content": "ãæ£ã®çŽæ°ã $7$ åæã€ããšããã³ç·åãå¶æ°ã§ããããšããïŒç·å㯠$64$ ã«éãããïŒé©åœãªäžçåŒè©äŸ¡ãªã©ã«ãã£ãŠïŒç·åã $64$ ã«ãªãçžç°ãªãå¥çŽ æ°ã®çµã¯ $(3,5,7,13,17,19)$ ã®ã¿ã§ããããšãåããïŒãã®ç©ã¯ $\\mathbf{440895}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/4844"
}
] | ãçžç°ãªã $6$ ã€ã®**å¥çŽ æ°** $p,q,r,s,t,u$ ã®ç·åãæ£ã®çŽæ°ãã¡ããã© $7$ åæã€ãšãïŒç© $pqrstu$ ã®å€ã¯äžæã«å®ãŸãã®ã§ïŒãã®å€ã解çããŠãã ããïŒ |
OMC132 (for beginners) | https://onlinemathcontest.com/contests/omc132 | https://onlinemathcontest.com/contests/omc132/tasks/4308 | D | OMC132(D) | 300 | 48 | 110 | [
{
"content": "ãå¥æ°åç®ã®å¡ãã€ã¶ããããã¹ã®æ°ãšïŒå¶æ°åç®ã®å¡ãã€ã¶ãããªãã£ããã¹ã®æ°ã®å㯠$290$ ã§ããïŒãããã£ãŠïŒãã¹ç®å
šäœãã $290$ ãã¹ãéžã³ïŒå¥æ°åç®ã®éžã°ãããã¹ãšå¶æ°åç®ã®éžã°ããªãã£ããã¹ãå¡ãã€ã¶ãããšãšæ¡ä»¶ã¯å矩ã§ããïŒãã£ãŠçã㯠${}\\_{600}\\mathrm{C}\\_{290}$ éãã§ããïŒè§£çãã¹ãå€ã¯ $\\mathbf{890}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/4308"
},
{
"content": "ãå¶æ°åç®ãã $k$ ãã¹éžã³ïŒå¥æ°åç®ãã $k+2$ ãã¹éžã¶æ¹æ³ã¯ ${}\\_{288}\\mathrm{C}\\_{k}\\times{}\\_{312}\\mathrm{C}\\_{k+2}$ ã§ããïŒ$k=0,1,\\ldots,288$ ã§ã®ãã®åŒã®å€ã®ç·å㯠${(1+x)}^{288}{(1+x)}^{312}$ ã® $x^{290}$ ã®ä¿æ°ã«çããããšãäºé
å®çãããããã®ã§ïŒæ±ããå Žåã®æ°ã¯ ${}\\_{600}\\mathrm{C}\\_{290}$ ã§ããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{890}$ ã§ããïŒ",
"text": "å€é
åŒã®å©çš",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/4308/168"
},
{
"content": "ããã®åé¡ã¯ä»¥äžã®ãããªåé¡ã«èšãæãããã. \r\n\r\n $ t = 0 $ ã«å¯Ÿãæäœ $ A $ ã $ 288 $ å, æäœ $ B $ ã $ 312 $ åãã®é çªã§è¡ããŸã. ãã®æ, $ t = 2 $ ãšãªããããªæäœã®æ¹æ³ã®æ°ãæ±ããŠãã ãã.\r\n\r\n- æäœ $ A : \\$ $ t $ ã $ 1 $ æžããã, äœãããªã. \r\n\r\n- æäœ $ B : \\$ $ t $ ã $ 1 $ å¢ããã, äœãããªã. \r\n\r\nãã®ãããªæäœã®æ¹æ³ã®æ°ã¯, 圢åŒçã¹ãçŽæ°ãçšããŠä»¥äžã®ããã«è¡šãã.\r\n\r\n$$\\begin{aligned}\r\n[x^2] \\ (1 + \\frac{1}{x})^{288} (1+x)^{312} &= [x^2] \\ \\frac{1}{x^{288}} (x+1)^{288} (1+x)^{312} \\\\\\\\\r\n&= [x^{290}] \\ (x+1)^{600}\r\n\\end{aligned}$$\r\n\r\nãã£ãŠ, äºé
å®çããçã㯠$ {}\\_{600}\\mathrm{C}\\_{290} $ ã§ãã, æ±ããå€ã¯ $ \\mathbf{890} $ .",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/4308/183"
}
] | ã瞊 $24$ è¡ïŒæšª $25$ åã®ãã¹ç®ã«ãããŠïŒããã€ãã®ãã¹ãéžãã§é»ãå¡ãã€ã¶ããšïŒå¥æ°åç®ã§å¡ãã€ã¶ããããã¹ã®æ°ã¯å¶æ°åç®ã§å¡ãã€ã¶ããããã¹ã®æ°ããã $2$ ãã¹å€ããªããŸããïŒãã®ãããªå¡ãã€ã¶ãæ¹ã®ç·æ°ã¯ïŒ$1$ ä»¥äž $10^5$ 以äžã§ $m\leq n\/2$ ãã¿ããæŽæ° $n,m$ ãçšã㊠${}\_{n}\mathrm{C}\_{m}$ ãšäžæã«è¡šãããã®ã§ïŒ$n+m$ ã解çããŠãã ããïŒ |
OMC132 (for beginners) | https://onlinemathcontest.com/contests/omc132 | https://onlinemathcontest.com/contests/omc132/tasks/4656 | E | OMC132(E) | 400 | 59 | 130 | [
{
"content": "ãæ¡ä»¶ã¯ $5(x+y)^2+(2x-y)^2=300$ ãšèšãæããããïŒãã®ãšãïŒçžå ã»çžä¹å¹³åã®é¢ä¿ãã\r\n$$300=5(x+y)^2+(2x-y)^2\\geq 2\\sqrt{5}\\lvert x+y\\rvert\\lvert 2x-y\\rvert=2\\sqrt{5}\\lvert 2x^2+xy-y^2 \\rvert$$\r\nã§ããïŒçå·ã¯é©åœãªå€ã§æç«ããïŒããïŒè§£çãã¹ãå€ã¯ $\\mathbf{4500}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/4656"
},
{
"content": "ã$2x^2+xy-y^2$ ãå æ°å解ã§ããã®ã§, å
¬åŒè§£èª¬ã®æ¹æ³ãæéã ãšæããŸãã, å¥è§£ã $2$ ã€æžããŸã.\r\n\r\n--- \r\n**å¥è§£** $\\bf1$ .$$3x^2+2xy+2y^2=\\frac{5}{2}x^2+2\\left(y+\\frac{1}{2}x\\right)^2=100$$ ãã, $$x=2\\sqrt{10}\\cos\\thetaïŒy=5\\sqrt2\\sin\\theta\\-\\sqrt{10}\\cos\\theta$$ ãšãããã®ã§, ããã代å
¥ã, æŽçãããš, \r\n$$2x^2+xy-y^2=50\\cos^2\\theta+40\\sqrt5\\sin\\theta\\cos\\theta-50\\sin^2\\theta=20\\sqrt5\\sin2\\theta+50\\cos2\\theta=\\sqrt{(20\\sqrt5)^2+50^2}\\sin(2\\theta+\\alpha)$$ ïŒãã ã, $\\alpha$ ã¯é©åœãªå€ïŒãšãªãã®ã§, $(2x^2+xy-y^2)^2\\leq4500$. çå·ã¯ $\\theta=\\dfrac{\\pi}{4}-\\dfrac{\\alpha}{2}$ ãªã©ã§æç«ãããã, 解çãã¹ãå€ã¯ $\\bf{4500}$ ãšãªããŸã. \r\n--- \r\n**å¥è§£** $\\bf2$.\r\n$$3x^2+2xy+2y^2=a(2x^2+xy-y^2)+(bx+cy)^2$$ ïŒãã ã $a,b,c$ ã¯å®æ°ïŒãšãã圢ã§æžããã°, $2x^2+xy-y^2$ ã®æ倧å€, æå°å€ãæ±ãŸããã, ãšããçºæ³ã§ãããããã§ã. å
·äœçã«ã¯, $$(bx+cy)^2=(3-2a)x^2+(2-a)xy+(a+2)y^2$$ ãªã®ã§, $$(2-a)^2-4(3-2a)(a+2)=0 \\iff a=\\pm\\frac{2\\sqrt5}{3}$$ ã $a$ ã®åè£ã§ãã, ããã«å¯Ÿå¿ãã $b,c$ ã®ååšãããã«ãããïŒ$3-2a\\gt0, a+2\\gt0$ ãªãOKïŒã®ã§, $$100\\geq\\frac{2\\sqrt5}{3}(2x^2+xy-y^2), 100\\geq-\\frac{2\\sqrt5}{3}(2x^2+xy-y^2) $$ ãããããæãç«ã¡, çå·ã¯ããããé©åœãª $x,y$ ã§æãç«ã€ãã, 解çãã¹ãå€ã¯ $\\bf{4500}$ ã§ãã, ãšãæ±ããããŸã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/4656/166"
},
{
"content": "$$f(x, y) = 2x^2+xy-y^2$$\r\n$$g(x, y) = 3x^2+2xy+2y^2-100$$\r\n$$L(x, y, \\lambda) = f(x, y) - \\lambda g(x, y)$$\r\nãšãã ($\\lambda$: å®æ°). $g(x, y)=0$ ã®ããšã§ $f(x, y)$ ã極å€ããšãã®ã¯, \r\n$$\\frac{\\partial L}{\\partial x}=\\frac{\\partial L}{\\partial y}=\\frac{\\partial L}{\\partial \\lambda}=0$$\r\nã®è§£ã§ãã. é£ç«ããŠè§£ãããšã§,\r\n$$(x, y) = \\pm\\left(\\frac{2}{3}\\sqrt{45+15\\sqrt{5}}, \\frac{1}{6}\\left(15-7\\sqrt{5}\\right)\\sqrt{9+3\\sqrt{5}}\\right), \\ \\pm\\left(\\frac{2}{3}\\sqrt{45-15\\sqrt{5}}, -\\frac{1}{6}\\left(15+7\\sqrt{5}\\right)\\sqrt{9-3\\sqrt{5}}\\right)$$\r\nãåŸã. åè
ã§ã¯$f(x, y) = 30\\sqrt{5}$, åŸè
ã§ã¯$f(x, y) = -30\\sqrt{5}$ ãšãªã, ãããã $f(x, y)$ ã®æ¥µå€§å€ãšæ¥µå°å€ã§ãã. ãã£ãŠ, $f(x, y)^2$ ã®æ¥µå€§å€ã¯ $\\bold{4500}$ ã§ãã, ãããæ倧å€ã§ãã.\r\n- $f(x, y)^2$ ã®æ¥µå€§å€ãæ倧å€ã§ããããš (æ倧å€ãååšããããš) 㯠å®çŸ©å $g(x, y)=0$ ãã³ã³ãã¯ã㧠$f(x, y)^2$ ãé£ç¶ã§ããããšãã瀺ããã, ã³ã³ãã¹ãã®ã«ãŒã«äžãã決ãã€ããŠè§£ããŠããŸãã°ãã.\r\n- æ¬åã§ã¯é£ç«æ¹çšåŒã解ãã®ãããç¹éã§ãã, [å
¬åŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc132\\/editorial\\/4656)ã®ãããªè§£ãæ¹ãçæ³çã§ãã. äžæ¹, Lagrange ã®æªå®ä¹æ°æ³ã¯å·§ã¿ãªå·¥å€«ãçºæ³ãªãé©çšã§ããã®ã§, 解æ³ã®åè£ãšããŠèº«ã«çããŠãããšããã ãã.\r\n- é¡é¡: [OMC112(C)](https:\\/\\/onlinemathcontest.com\\/contests\\/omc112\\/tasks\\/3393)",
"text": "Lagrange ã®æªå®ä¹æ°æ³",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/4656/169"
},
{
"content": "$x\\/y=a$ ãšãã. ãã®ãšãïŒ$100\\cdot\\dfrac{2a^2+a-1}{3a^2+2a+2}$ ã® $2$ ä¹ãšããŠããããæ倧å€ãæ±ããã°ãã.\r\n$$\\dfrac{2a^2+a-1}{3a^2+2a+2}=k$$ ãšãããšïŒ$$2a^2+a-1=k(3a^2+2a+2)$$ã€ãŸã $$(3k-2)a^2+(2k-1)a+(2k+1)=0$$ ãšå€åœ¢ã§ãïŒããã解ããã€æ¡ä»¶ã¯ $$(2k-1)^2-4(3k-2)(2k+1)\\geq 0$$ãããã£ãŠ $20k^2\\leq 9$ ã§ããïŒãã£ãŠæ±ããæ倧å€ã¯ïŒ$10000k^2=\\textbf{4500}$ ã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/4656/170"
}
] | ãå®æ° $x, y$ ã $3x^2+2xy+2y^2=100$ ãæºãããšãïŒ
$$(2x^2+xy-y^2)^2$$
ã®ãšãåŸãæ倧å€ãæ±ããŠãã ããïŒ |
OMC132 (for beginners) | https://onlinemathcontest.com/contests/omc132 | https://onlinemathcontest.com/contests/omc132/tasks/3615 | F | OMC132(F) | 400 | 24 | 57 | [
{
"content": "ãçŽç· $AE$ 㯠$\\angle{FEG}$ ã®äºçåç·ã§ãã $B$ ã¯å
å¿ $D$ ãš $A$ ã®äžç¹ãªã®ã§ $A$ ã¯äžè§åœ¢ $EFG$ ã®åå¿ã§ããïŒãã®ããïŒ$4$ ç¹ $A,F,D,G$ 㯠$B$ ãäžå¿ãšããåäžååšäžã«ããïŒãããã£ãŠïŒ$\\angle{AFD}=90^\\circ$ ã§ããïŒæ¹ã¹ãã®å®çããïŒ\r\n$$AF\\times AH=AB\\times AE=140$$\r\nã§ããïŒä»®å®ãã $AC\\times AD=140$ ã§ãããã®ã§ïŒ$4$ ç¹ $F,H,C,D$ ã¯åäžååšäžã«ããïŒãããã£ãŠïŒååšè§ã®å®çãã $\\angle{HCA}=90^\\circ$ ã§ããïŒ ãã®ããïŒäžå¹³æ¹ã®å®çãšæ¹ã¹ãã®å®çãã次ãæãç«ã€ïŒ\r\n$$FD^{2}=AD^{2}-AF^{2}=14^{2}-\\bigg(\\frac{140}{AH}\\bigg)^{2}=14^{2}-\\frac{140^{2}}{10^{2}+8^{2}}=\\frac{3136}{41}.$$\r\nç¹ã«è§£çãã¹ã㯠$\\bf{3177}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc132/editorial/3615"
}
] | ã$5$ ç¹ $A,B,C,D,E$ ã¯ãã®é ã§åäžçŽç·äžã«äžŠãã§ããïŒæ¬¡ãæºãããŸãïŒ
$$AB=7,\quad BC=3,\quad CD=4,\quad DE=6$$
ãå¹³é¢äžã«çžç°ãªã $2$ ç¹ $F,G$ ããšããšïŒ$3$ ç¹ $E, F, G$ ã¯åäžçŽç·äžã«ãªãïŒäžè§åœ¢ $EFG$ ã®å
å¿ã¯ $D$ ã«ãªãïŒäžè§åœ¢ $EFG$ ã®å€æ¥å $Ï$ 㯠$B$ ãéããŸããïŒçŽç· $AF$ ãš $Ï$ ã®äº€ç¹ã®ãã¡ $F$ ã§ãªãæ¹ã $H$ ãšããŸãïŒ$HC=8$ ã®ãšã $FD^{2}$ ãæ±ããŠäžããïŒ\
ããã ãïŒçãã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠäžããïŒ |
OMC131 (for beginners) | https://onlinemathcontest.com/contests/omc131 | https://onlinemathcontest.com/contests/omc131/tasks/4438 | A | OMC131(A) | 100 | 301 | 303 | [
{
"content": "ã$n\\leq 8$ ã§æ¡ä»¶ãã¿ãããã®ã¯ $1,2,5$ ã®ã¿ã§ããïŒãŸã $n\\geq 9$ ã®ãšãã¯ïŒ$(n+1)!$ 㯠$n!$ ã® $10$ å以äžã§ããããå¿
ãæ¡æ°ãå¢ããïŒãã£ãŠæ±ããç·å㯠$\\mathbf{8}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc131/editorial/4438"
}
] | ã$n!$ ãš $(n+1)!$ ãåé²æ³è¡šèšã§åãæ¡æ°ãšãªããããªïŒæ£æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC131 (for beginners) | https://onlinemathcontest.com/contests/omc131 | https://onlinemathcontest.com/contests/omc131/tasks/4285 | B | OMC131(B) | 200 | 254 | 296 | [
{
"content": "ãæ¡ä»¶ããå
šãŠã®é ç¹ã®è²ã¯ç°ãªãïŒ$10$ è²ã®äžãã $4$ è²éžãã æïŒãããã $2$ éãã®å¡ãæ¹ãèããããã®ã§ïŒæ±ããçã㯠${}\\_{10}\\mathrm{C}\\_{4}\\times2 = \\bf{420}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc131/editorial/4285"
}
] | ãOMCå㯠$10$ çš®é¡ã®è²ãçšæããŸããïŒæ£åé¢äœã®åé ç¹ãïŒã©ã®èŸºã«ã€ããŠããã® $2$ 端ç¹ãç°ãªãè²ã«ãªãããã«çšæããè²ã§å¡ããšãïŒè²ã®å¡ãæ¹ãšããŠãããããã®ãããã€ãããæ±ããŠãã ããïŒãã ãå転ããŠäžèŽãããã®ã¯åããã®ãšããŠæ°ããŸãïŒ |
OMC131 (for beginners) | https://onlinemathcontest.com/contests/omc131 | https://onlinemathcontest.com/contests/omc131/tasks/4042 | C | OMC131(C) | 200 | 277 | 284 | [
{
"content": "$$\\overline{USEI}\\leq 9+98+987=1094$$\r\nãã $U=1,S=0$ ã§ãã, ããã«\r\n$$10(I+O)+(K+N+K)\\leq 10\\times(9+8)+(9+8+9)=196$$\r\nãã $M=9$ ã§ããã»ããªã.\\\r\nãããã§, äžã®äœã«æ³šç®ããããšã§ $(K,I)$ 㯠$(4,5)$ ãŸã㯠$(8,3)$ ã§ãã, ããããã®å Žåãæ€èšããããšã§\r\n$$4+57+964=1025$$\r\nãå¯äžã®è§£ã§ããããšãããã. ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{4579641025}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc131/editorial/4042"
}
] | ã以äžã®èŠé¢ç®
$$\begin{array}{cccc}
& & & K \\\\
& & I & N \\\\
\+ & M & O & K \\\\ \hline
U & S & E & I
\end{array}$$
ã®è§£ã®ãã¡ïŒä»¥äžãã¿ãããã®ã¯ã¡ããã©äžéãååšããŸãïŒ
- $K,I,N,M,O,U,S,E$ ã¯ãã¹ãŠ**çžç°ãªã** $1$ æ¡ã®éè² æŽæ°ã§ããïŒ
- $N=7$ ã§ããïŒ
- $K,I,M,U$ 㯠$0$ ã§ãªãïŒ
ããã®è§£ã«ã€ããŠïŒ$K,I,N,M,O,K,U,S,E,I$ ããã®é ã«äžŠã¹ãŠåŸããã $10$ æ¡ã®æ£æŽæ° $\overline{KINMOKUSEI}$ ã解çããŠãã ããïŒ |
OMC131 (for beginners) | https://onlinemathcontest.com/contests/omc131 | https://onlinemathcontest.com/contests/omc131/tasks/3163 | D | OMC131(D) | 300 | 143 | 172 | [
{
"content": "ãäžåŒã®å€ã¯\r\n$$\\begin{aligned}\r\n1+ \\sum_{k=0}^{100}\\left(\\sum_{m=1}^{90}{}\\_{101}\\mathrm{C}\\_{k}m^k\\right)&=1+\\sum_{m=1}^{90} \\left(\\sum_{k=0}^{101}{}\\_{101}\\mathrm{C}\\_{k}m^k\\right) -\\left(1^{101}+\\cdots +90^{101}\\right) \\\\\\\\\r\n&=1+\\sum_{m=1}^{90} (m+1)^{101} -\\left(1^{101}+\\cdots +90^{101}\\right) \\\\\\\\\r\n&=91^{101}=7^{101}\\times 13^{101}\r\n\\end{aligned}$$\r\nã§ãã. ãããã£ãŠè§£ç㯠$7+101+13+101=\\bf{222}$ ãšãªã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc131/editorial/3163"
}
] | ãéè² æŽæ° $n$ ã«å¯Ÿã, $a_n$ ã以äžã§å®ããŸã.
$$a_n=1^n+2^n+\cdots +89^n+90^n$$
ãã®ãšã, 以äžã®å€ãçŽ å æ°å解ãããš $a^b\times c^d$ ãšè¡šããã®ã§, $a+b+c+d$ ã解çããŠãã ãã.
$$1+{}\_{101}\mathrm{C}\_{0}\cdot a_0+{}\_{101}\mathrm{C}\_{1}\cdot a_1+\cdots +{}\_{101}\mathrm{C}\_{99}\cdot a_{99}+{}\_{101}\mathrm{C}\_{100}\cdot a_{100}$$ |
OMC131 (for beginners) | https://onlinemathcontest.com/contests/omc131 | https://onlinemathcontest.com/contests/omc131/tasks/4071 | E | OMC131(E) | 300 | 150 | 184 | [
{
"content": "ãç°¡åãªè§åºŠèšç®ã«ããäžè§åœ¢ ${AX_1X_6}$ ãšäžè§åœ¢ ${AX_5X_2}$ ã¯çžäŒŒã§ããïŒãŸãããã¯äžè§åœ¢ ${BX_3X_2}$ ãäžè§åœ¢ ${CX_5X_4}$ ã«ãåãããšãèšããã®ã§ $AX_2=42a, AX_6 = 55a$ ãšãããšä»¥äžã®åŒãæãç«ã€ïŒ\r\n$$\\dfrac{91}{273}(55a - 42 + 91)+112=\\dfrac{48}{112}(42a - 55 + 48)+273$$\r\nããã解ãã° $a=425$ ãæ±ãŸãã®ã§ïŒããã䜿ã£ãŠèšç®ããã°çã㯠$\\bf{17898}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc131/editorial/4071"
}
] | ãäžè§åœ¢ $ABC$ 㯠$6$ ã€ã®ç¹ $X_1,X_2,X_3,X_4,X_5,X_6$ ã§å $\omega$ ã«äº€ãã£ãŠããŠä»¥äžã®ããšãåãã£ãŠããŸãïŒ
- $AB$ äžã®ç¹ $A,X_1,X_2,B$ ã¯ãã®é ã«äžŠãã§ã㊠$AX_1=55,X_2B=48$ ã§ããïŒ
- $BC$ äžã®ç¹ $B,X_3,X_4,C$ ã¯ãã®é ã«äžŠãã§ã㊠$BX_3=112,X_4C=273$ ã§ããïŒ
- $CA$ äžã®ç¹ $C,X_5,X_6,A$ ã¯ãã®é ã«äžŠãã§ã㊠$CX_5=91,X_6A=42$ ã§ããïŒ
ãã®ãšã $AB$ ãæ±ããŠãã ããïŒ |
OMC131 (for beginners) | https://onlinemathcontest.com/contests/omc131 | https://onlinemathcontest.com/contests/omc131/tasks/4472 | F | OMC131(F) | 400 | 101 | 169 | [
{
"content": "ã$\\gcd(a,b,c)=m$ ãšãããš, $\\gcd(ab,bc,ca)$ 㯠$m^2$ ã§å²ãåããã®ã§, 2ã€ç®ã®æ¡ä»¶ãã $m=1$ ã§ããããšã«æ³šæãã. ããŸ, äžè¬æ§ã倱ãã以äžã®ãããªå Žåãèããã°ãã. \r\n$$\\gcd(a,b)=p,\\quad \\gcd(b,c)=q,\\quad \\gcd(c,a)=r\\quad (2\\leq p\\leq q\\leq r)$$\r\nãã㧠$\\gcd(p,q)=n$ ãšããã°, $a,b,c$ ã¯ãããã $n$ ã®åæ°ã§ãããã, äžã®æ³šæãã $n=1$ ãå¿
èŠã§ãã. åæ§ã«ããŠ, $p,q,r$ ã¯ã©ã® $2$ ã€ãäºãã«çŽ ã§ãããã, ã©ã® $2$ ã€ãäºãã«çŽ ãªæ£æŽæ° $a^\\prime , b^\\prime , c^\\prime$ ã«ãã£ãŠ\r\n$$a=rpa^\\prime ,\\quad b=pqb^\\prime ,\\quad c=qrc^\\prime$$\r\nãšè¡šãã. ãããã, ç¹ã« $ab,bc,ca$ ã¯ãããã $pqr$ ã®åæ°ã§ããããšãããã. ãã®ãšã, 2ã€ç®ã®æ¡ä»¶ãã $pqr$ 㯠$105$ ã®çŽæ°ã§ãããã $p=3,q=5,r=7$ ãšãªãã»ããªã. ãããã£ãŠ\r\n$$a=21a^\\prime ,\\quad b=15b^\\prime ,\\quad c=35c^\\prime$$\r\nãšè¡šã, $a,b,c\\leq 100$ ãã $a^\\prime \\leq 4,\\ b^\\prime \\leq 6,\\ c^\\prime \\leq 2$ ã§ãã. ãã®ç¯å²ã§ã©ã® $2$ ã€ãäºãã«çŽ ã«ãªãããéžã¶æ¹æ³ã¯ $21$ éããã, ããããä»»æã«äžŠã¹æ¿ããããšã§å
šäœã§ã¯ $\\mathbf{126}$ éãååšãã. ãªã, ä»åã®ç¯å²ã§ã¯ $a,b,c$ ãåžžã«çžç°ãªãäºå®ã«äŸåããŠããããšã«æ³šæãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc131/editorial/4472"
}
] | ã以äžã®æ¡ä»¶ããã¹ãŠã¿ãã, $1$ ä»¥äž $100$ 以äžã®æŽæ°ã®çµ $(a,b,c)$ ã¯ããã€ãããŸããïŒ
- $a,b,c$ ããã©ã® $2$ ã€ãéžãã§ã $2$ 以äžã®å
¬çŽæ°ããã€ïŒ
- $\gcd(ab,bc,ca)=105$ïŒ |
OMC130 (for experts) | https://onlinemathcontest.com/contests/omc130 | https://onlinemathcontest.com/contests/omc130/tasks/5346 | A | OMC130(A) | 300 | 168 | 185 | [
{
"content": "ãæããã« $M_n\\equiv -1\\pmod{10}$ ã§ããïŒãŸã次ãæãç«ã€ïŒ\r\n$$\\begin{aligned}\r\nM_n\r\n&= -10^0+10^1 - \\cdots - 10^{2n-2} + 10^{2n-1}\\\\\\\\\r\n&\\equiv -(-1)^0+(-1)^1 - \\cdots - (-1)^{2n-2} + (-1)^{2n-1}\\\\\\\\\r\n&=-2n\\pmod{11}\r\n\\end{aligned}$$\r\n\r\nãã£ãŠïŒFermat ã®å°å®çããïŒ$\\bmod{11}$ ã«ãããŠ\r\n\r\n$$\r\nn \\times {M_n}^{M_n} \\equiv\r\n\\begin{cases}\r\n0 & (11 \\mid n)\\\\\\\\\r\nn \\times (-2n)^{-1} \\equiv 5 & (\\text{otherwise})\\\\\\\\\r\n\\end{cases}\r\n$$\r\n\r\nãšãªãããïŒè§£çãã¹ãå€ã¯ $\\mathbf{4550}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc130/editorial/5346"
}
] | ã$M_n = \overbrace{9090 \cdots 909}^{2n-1æ¡}$ ãšããŸãïŒ$n = 1, 2, \ldots, 1000$ ããããã«å¯Ÿã $n \times {M_n}^{M_n}$ ã $11$ ã§å²ã£ãäœããæ±ãïŒ$1000$ åã®äœãã®ç·åã解çããŠãã ããïŒ |
OMC130 (for experts) | https://onlinemathcontest.com/contests/omc130 | https://onlinemathcontest.com/contests/omc130/tasks/5345 | B | OMC130(B) | 300 | 57 | 91 | [
{
"content": "ãåæŽæ° $i = 1, 2, \\ldots, 14$ ã«å¯ŸããŠïŒäºº $i$ 㚠人 $i + 1$ ã®éã«ããããèµ€ã糞ïŒéã糞ïŒç³žãªãã®ãããããå²ãåœãŠãæ¹æ³ãèããïŒããããïŒäºº $i$ 㚠人 $j$ïŒäºº $j$ 㚠人 $k$ ã®éãããããåãè²ã®ç³žã§çµã°ããŠãããããªçµ $i\\lt j\\lt k$ ãååšããéãïŒããããåãé€ããŠäºº $i$ ãšäºº $k$ ã®éããã®è²ã®ç³žã§çµã¶ããšãç¹°ãè¿ããšïŒæçµçãªç¶æ
ã¯æäœã®æ¹æ³ã«ãããïŒãã€æ¡ä»¶ãã¿ããç¶æ
ãšã®éã«äžå¯Ÿäžã®å¯Ÿå¿ãåŸãããããšããããïŒä»¥äžããïŒæ±ããå Žåã®æ°ã¯ $3^{14} = \\mathbf{4782969}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc130/editorial/5345"
}
] | ã$15$ 人ã®äºº $1, 2, \ldots, 15$ ã«å¯ŸãïŒä»¥äžã®äžé£ã®æäœã $0$ å以äžç¹°ãè¿ããŸãïŒ
- ãããã®è²ã®ç³žã§ãçµã°ããŠããªãïŒçžç°ãªã $2$ 人ã®çµãéžã¶ïŒ
- $2$ 人ã®éã $1$ æ¬ã®èµ€ã糞ãŸã㯠$1$ æ¬ã®éã糞ã§çµã¶ïŒ
ãã®ãšãïŒæçµçãªç¶æ
ãšããŠãããããã®ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ããã¹ãŠã¿ãããã®ã®åæ°ãæ±ããŠãã ããïŒ
- ã©ã®äººã«ã€ããŠãïŒãã®äººãšèµ€ã糞ã§çµã°ããŠãããããªäººã¯é«ã
$1$ 人ã§ããïŒ
- ã©ã®äººã«ã€ããŠãïŒãã®äººãšéã糞ã§çµã°ããŠãããããªäººã¯é«ã
$1$ 人ã§ããïŒ
- $4$ æ° $a\lt b,c\lt d$ïŒãã ã $(a,b)\neq(c,d)$ïŒã«ã€ããŠïŒäºº $a$ ã人 $b$ ãšç³žã§çµã°ããŠããïŒäºº $c$ ã人 $d$ ãšç³žã§çµã°ããŠãããšãïŒ$b \leq c$ ãŸã㯠$d \leq a$ ãæç«ããïŒ |
OMC130 (for experts) | https://onlinemathcontest.com/contests/omc130 | https://onlinemathcontest.com/contests/omc130/tasks/5347 | C | OMC130(C) | 400 | 67 | 95 | [
{
"content": "ã$\\angle{I_1DI_2} = \\angle{I_1OI_2} = 90\\degree$ ããããïŒãã£ãŠïŒ$D, O$ 㯠$I_1I_2$ ãçŽåŸãšããååšäžã«ããïŒãã®çŽåŸã®é·ã㯠${\\sqrt{2}} AO = \\dfrac{\\sqrt{26}}{5}$ ã§ããïŒåŸã£ãŠïŒPtolemy ã®å®çãšäžå¹³æ¹ã®å®çããïŒãããã\r\n$$\r\n\\frac{\\sqrt{13}}{5} DI_1 + \\frac{\\sqrt{13}}{5} DI_2 \r\n= \\dfrac{\\sqrt{26}}{5} DO,\r\n\\quad {DI_1}^2 + {DI_2}^2 = \\left( \\dfrac{\\sqrt{26}}{5} \\right) ^2\r\n$$\r\nãåŸãïŒãã£ãŠïŒäžè§åœ¢ $DI_1I_2$ ã®é¢ç©ã¯åžžã« $\\dfrac{DI_1 \\cdot DI_2}{2} = \\dfrac{6}{25}$ ã§ããïŒããã§ïŒäžè§åœ¢ $DI_1I_2$ ã®é¢ç©ã¯ \r\n$$\\dfrac{1}{2}\\times DE\\times I_1I_2\\times\\sin \\angle DEI_1$$\r\nãšãè¡šããããšããïŒ$DE \\geq \\sqrt{\\dfrac{72}{325}}$ ã§ããïŒå®éã«çå·ãæç«ããå³ã¯ååšããã®ã§ïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{397}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc130/editorial/5347"
},
{
"content": "ãç¹ $\\mathrm{D}$ïŒ$\\mathrm{O}$ã¯ïŒç·å $\\mathrm{I_1} \\mathrm{I_2}$ ãçŽåŸãšããååšäžã«ååšããããããå $P$ ãšåŒã¶ããšã«ãããå $P$ ã¯ååŸ $\\dfrac{\\sqrt{26}}{10}$ ã®åã§ããïŒç·å $\\mathrm{I_1} \\mathrm{I_2}$ ãçŽåŸïŒ$\\angle\\mathrm{I_1 O I_2}=90\\degree$ïŒ$\\mathrm{OD}=1$ ãæºãããåŸã£ãŠïŒå $P$ ã®ååšäžã«ãã $4$ ç¹ã¯åºå®ãããŠãããšèŠãªããã\\\r\n ããã®ããã«èããŠïŒå察ã«ç¹ $\\mathrm{A}$ ãåç¹ã§ãããšèãããç¹ $\\mathrm{A}$ ã¯ïŒç¹ $\\mathrm{O}$ äžå¿ïŒååŸ $\\dfrac{\\sqrt{13}}{5}$($=\\mathrm{O I_1}=\\mathrm{O I_2}$) ã®ååšäžã«ååšããã$\\mathrm{DE}$ ãæå°åããã®ã¯ïŒ$\\mathrm{AD} \\perp \\mathrm{I_1 I_2}$ ã®ãšãã§ãããããšã¯ïŒäžå¹³æ¹ã®å®ççãçšã㊠$\\mathrm{DE}$ ã®é·ããæ±ããã°ããã\\\r\n ãïŒãã®ãããªå³åœ¢ãå®éã«ååšãããã¯ïŒå¥éèããå¿
èŠããããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc130/editorial/5347/162"
}
] | ã$\angle{A} = 90\degree$ ãªãäžè§åœ¢ $ABC$ ã®èŸº $BC$ äžã«ç¹ $D$ ãåãïŒäžè§åœ¢ $ABD, ACD$ ã®å
å¿ããããã $I_1, I_2$ ãšãããšïŒäžè§åœ¢ $AI_1I_2$ ã®å€å¿ $O$ ã«ã€ããŠ
$$
AO = \frac{\sqrt{13}}{5}, \quad DO = 1
$$
ãæç«ããŸããïŒ$AD$ ãš $I_1I_2$ ã®äº€ç¹ã $E$ ãšãããšãïŒ
$DE$ ã®é·ãã®ãšãããæå°å€ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšããŠ
$\sqrt{\dfrac{a}{b}}$ ãšè¡šããããïŒ$a + b$ ã®å€ã解çããŠãã ãã. |
OMC130 (for experts) | https://onlinemathcontest.com/contests/omc130 | https://onlinemathcontest.com/contests/omc130/tasks/5348 | D | OMC130(D) | 500 | 69 | 101 | [
{
"content": "$(1)$ã$a, b, c$ ãå
šãŠçãããšãïŒ\r\n\r\nãæ¡ä»¶ã¯ $a(4a^2 - da - 2) = 0$ ãšãªãïŒ$a = 0$ ã®ãšã, æ¡ä»¶ãæºãã $a, d$ ã®çµã¯ïŒ$-10 \\leq n \\leq 10$ ãªãæŽæ° $n$ ãçšã㊠$(0, n)$ ãšè¡šãããã®ã«éãããïŒ$4a^2 - da - 2 = 0$ ã®ãšã, $a \\neq 0$ ãã $d = 4a - \\dfrac{2}{a}$ ã«æ³šæããã°ïŒæ¡ä»¶ãæºãã $a, d$ ã®çµã¯ïŒ$(\\pm1, \\pm2), (\\pm2, \\pm7)$ ã«éãããïŒè€å·åé ïŒïŒ\r\n\r\n----\r\n\r\n$(2)$ã$a, b, c$ ã®ãã¡ïŒã¡ããã©äºã€ãçãããšãïŒ\r\n\r\nã$a \\neq b = c$ ãšããïŒæ¡ä»¶ã¯\r\n\r\n$$\r\n\\begin{cases}{} \r\na (a + b)^2 &=& 2b + a^2d \\\\\\\\\r\n2b^2 (a + b) &=& a + b + b^2d \\\\\\\\\r\n\\end{cases}\r\n$$\r\n\r\nãšãªãïŒèŸºã
åŒããŠå€åœ¢ãïŒ$a \\neq b$ ã«æ³šæã㊠$a-b$ ãæ¬ãåºãã°\r\n\r\n$$\r\n(a + b)(a + 2b - d) + 1 = 0\r\n$$\r\n\r\nãæç«ããïŒ$a, b, d$ ã¯æŽæ°ã§ãããã $(a, d) = (1-b, b+2), (-1-b, b-2)$ ã®ããããã®åœ¢ã§è¡šããŠïŒäžåŒãšåãããã°æ¡ä»¶ãæºãããã㪠$a, b, d$ ã®çµã¯ $(\\pm2, \\mp1, \\pm1)$ ã«éãããïŒãã㯠$c = a, a = b$ ã®å Žåãåæ§ã§ããïŒ\r\n\r\n----\r\n\r\n$(3)$ã$a, b, c$ ãå
šãŠç°ãªããšãïŒ\r\n\r\nã$x$ ã®æ¹çšåŒ\r\n\r\n$$\r\n(x + a) (x + b) (x + c) - 2(a + b + c + dx^2 - x) = 0\r\n$$\r\n\r\nã¯çžç°ãªãäžã€ã®æŽæ°è§£ $x = a, b, c$ ãæã€ããïŒãã®å·ŠèŸºã¯ $x$ ã®å€é
åŒãšã㊠$(x-a)(x-b)(x-c)$ ã«çããïŒãããïŒ$x$ ã®ä¿æ°ãæ¯èŒããããšã§äžé©ïŒ\r\n\r\n----\r\n\r\nã以äžããïŒè§£çãã¹ãå€ã¯ \r\n\r\n$$\r\n\\sum_{n = -10}^{10}|n| + 5 \\times 2 + 13 \\times 2 + 5 \\times 6 = \\mathbf{176}\r\n$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc130/editorial/5348"
},
{
"content": "ãå
¬åŒè§£èª¬ãšã¯éãå Žååããããã®ã§ïŒ\r\n\r\n---\r\n\r\nã$a+b+c=0$ ã®ãšãïŒæ¡ä»¶ã¯\r\n$$abc=a^2d-a=b^2d-b=c^2d-c$$\r\nã§ããïŒ\r\n- $d=0$ ã®ãšãïŒ$a=b=c=0$ ã§ããïŒ\r\n\r\n- $|d|\\geq 2$ ã®ãšãïŒ$t=abc$ ãšããã°ïŒ$a,b,c$ 㯠$x$ ã® 2 次æ¹çšåŒ $dx^2-x=t$ ã®è§£ã§ããïŒè§£ãšä¿æ°ã®é¢ä¿ãããã® 2 解ã®å㯠$1\\/d$ ã§ããïŒãã£ãŠ 2 解ã®ãã¡æŽæ°ã¯é«ã
1 ã€ã§ããããïŒ$a=b=c(=0)$ ãšãªãã»ããªãïŒãã®ãšãæ¡ä»¶ãæºããïŒ\r\n\r\n- $d=1$ ã®ãšãïŒ$a=b=c=0$ ã¯æ¡ä»¶ãæºããããïŒããã§ãªãå ŽåãèããïŒåæ§ã«è§£ãšä¿æ°ã®é¢ä¿ãèããããšã§ïŒæŽæ° $k$ ãçšã㊠$\\\\{a,b,c\\\\}=\\\\{k,k,1-k\\\\}$ ãšè¡šããïŒ$a+b+c=0$ ãã $k=-1$ ã§ããïŒãã®ãšãæ¡ä»¶ãæºããïŒ\r\n\r\n- $d=-1$ ã®ãšãïŒäžãšåæ§ã«ã㊠$a=b=c=0$ ããã³ $\\\\{a,b,c\\\\}=\\\\{1,1,-2\\\\}$ ãæ¡ä»¶ãæºããïŒ\r\n\r\n---\r\n\r\nã$a+b+c\\neq 0$ ã®ãšãïŒ$a=0$ ãšããã°ç¬¬ 1 åŒãã $b+c=0$ ãåŸãããççŸã§ããïŒ$b,c$ ã«ã€ããŠãèããã° $a,b,c\\neq 0$ ã§ããïŒ\\\r\nãäžæ¹ã§ïŒç¬¬ 1,2,3 åŒããé ã«\r\n$$a | b+c,ãb|c+a,ãc|a+b$$\r\nãåŸãããããïŒ\r\n$$p=\\frac{a+b+c}{a},ãq=\\frac{a+b+c}{b},ãr=\\frac{a+b+c}{c}$$\r\nã¯å
±ã«æŽæ°ã§ããïŒããã«ãã®éæ°å㯠$1$ ã§ãã ([OMC061(F)ã®è§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc061\\/editorial\\/2247) ãšåãçºæ³)ïŒããããïŒ\r\n$$(p,q,r)=(2,3,6), (2,4,4), (3,3,3), (1, n, -n)ã(n\\in \\mathbb{Z}\\_{\\setminus \\\\{0\\\\}})$$\r\nãåŸãïŒããªãã¡ïŒ\r\n$$(a,b,c)=(k,2k,3k), (k,k,2k), (k,k,k), (k,-k,nk)ã(n,k \\in \\mathbb{Z}\\_{\\setminus \\\\{0\\\\}})$$\r\nããããé©åœãªè°è«ãããã° 1,2,4 ã€ç®ã¯äžé©ã§ããïŒ3 ã€ç®ã®ãšãã«\r\n$$(a,b,c,d)=(1,1,1,2), (-1, -1, -1, -2), (2,2,2,7), (-2,-2,-2,-7)$$\r\nãçºèŠã§ããïŒ\r\n\r\n---\r\n\r\n以äžããïŒæ±ããçãã¯\r\n$$\\sum_{d=-10}^{10} (0+0+0+|d|)+3\\times (1+1+2+1) + 3\\times (1+1+2+1) + 2\\times (1+1+1+2) + 2\\times (2+2+2+7) = \\textbf{176}.$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc130/editorial/5348/165"
}
] | ãïŒé åºãåºå¥ããïŒæŽæ°ã®çµ $(a, b, c, d)$ ã§ãã£ãŠïŒ
$$
\begin{cases}
a (a + b) (a + c) = b + c + a^2d \\\\
b (b + c) (b + a) = c + a + b^2d \\\\
c (c + a) (c + b) = a + b + c^2d \\\\
\end{cases}
$$
ãã¿ãããã®ã®ãã¡ïŒ$|d| \leq 10$ ã§ãããããªãã®ãã¹ãŠã«ã€ããŠïŒçµ¶å¯Ÿå€ã®å $|a| + |b| + |c| + |d|$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC130 (for experts) | https://onlinemathcontest.com/contests/omc130 | https://onlinemathcontest.com/contests/omc130/tasks/5349 | E | OMC130(E) | 700 | 8 | 9 | [
{
"content": "ãæ°å $\\lbrace F_n \\rbrace$ ã以äžã®æŒžååŒã«ãã£ãŠå®ãã.\r\n\r\n$$\r\nF_0 = 0, \\quad F_1 = 1, \\quad F_{n + 2} = F_{n + 1} + F_{n} \\quad (n = 0, 1, 2, \\ldots)\r\n$$\r\n\r\nã$i = 1, 2, \\ldots, n$ ã«å¯Ÿã㊠$b_i = a_i - F_{2i - 1}$, $t = s - F_{2n}$ ãšããããšã§, \r\n$f(n, s)$ ã以äžã®æ¡ä»¶ãæºãã**éè² æŽæ°**ã®çµ $b_1, b_2, \\ldots, b_n$ ã®åæ°ã«çããããšãããã.\r\n\r\n- $b_1 + b_2 + \\cdots + b_n = t$ \r\n- $1$ ä»¥äž $n - 1$ 以äžã®å
šãŠã®æŽæ° $k$ ã«ã€ããŠ,\r\n$$ b_{k + 1} \\geq kb_1 + (k - 1)b_2 + \\cdots +2b_{k - 1} + b_k$$\r\n\r\nã$F_1, F_3, \\ldots, F_{2n - 1}$ ãããããéè² æŽæ°åãã€éžãã§ç·åã \r\n$t$ ãšããæ¹æ³ã®åæ°ã $g(n, t)$ ãšè¡šãããšã«ããŠ, $f(n, s) = g(n, t)$ ã瀺ã. \r\næ¡ä»¶ãæºããæŽæ°ã®çµã¯å
šãŠä»¥äžã®ããã«ããŠæ§æã§ãã.\r\n\r\n- ã¯ãã $b_1 = b_2 = \\cdots = b_n = 0$ ãšãã. $k = 1, 2, \\ldots, n$ ã®é ã«ä»¥äžã®æäœãè¡ã.\r\n - $b_k$ ã«éè² æŽæ°ãå ããŠæçµçãªå€ã«äžèŽããã.\r\n - $k \\lt n$ ã®ãšã, $k^{\\prime} = k, k + 1, \\ldots n - 1$ ã®é ã«, $b_{k^{\\prime} + 1}$ ã«éè² æŽæ°ãå ããŠ\r\n$$ k^{\\prime} b_1 + (k^{\\prime} - 1)b_2 + \\cdots + 2b_{k^{\\prime} - 1} + b_{k^{\\prime}} $$\r\nã«äžèŽããã.\r\n\r\nãèŠçŽ ã®ç·å $b_1 + b_2 + \\cdots + b_n$ ã«å¯Ÿãã $k$ åç®ã®æäœã®å¯äžãèãã.\r\näžã€ç®ã®æäœã§ $b_k$ ã«å ããéè² æŽæ°ã $d_k$ ãšãããšã, \r\näºã€ç®ã®æäœã§ã¯ $k^{\\prime} = k, k + 1, \\ldots n - 1$ ã«ã€ããŠ, \r\n$b_{k^{\\prime} + 1}$ ã« $F_{2(k^{\\prime} - k + 1)} d_k$ ãå ããããšã«ãªããã, \r\nãããããŸãšãããšç·å㯠$F_{2(n - k) + 1} d_k$ ã ãå¢å ããããšã«ãªã. \r\næŽæ°ã®çµ $b_1, b_2, \\ldots, b_n$ ãš $d_1, d_2, \\ldots, d_n$ ã¯äžå¯Ÿäžå¯Ÿå¿ãããã瀺ãã.\r\n\r\n\r\nã$F_{15} \\gt 900 - F_{14} = 523$ ãã, \r\n\r\n$$\r\ng(7, 523) = g(8, 523) = g(9, 523)\r\n$$\r\n\r\nã§ãããã, $s_1 = 523 + F_{16} = 1510$ ããã³ $s_2 = 523 + F_{18} = 3107$ ã¯ããããæ¡ä»¶ãæºãã.\r\n ããã«, $F_1$ ãçšããåæ°ã«çç®ããŠåŸããã $g$ ã®å調æ§ãªã©ãã, \r\nãããã«éãããããšã確èªã§ãã.\r\n 以äžãã, ç¹ã«è§£çãã¹ãå€ã¯ $1510 \\times 3107 = \\mathbf{ 4691570 }$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc130/editorial/5349"
}
] | ãæ£æŽæ° $n$, $s$ ãåºå®ãããšãïŒä»¥äžã®æ¡ä»¶ãã¿ãããããªæ£æŽæ°ã®çµ $(a_1, a_2, \ldots, a_n)$ ã®åæ°ã $f(n, s)$ ãšããŸãïŒ
- $a_1 + a_2 + \cdots + a_n = s $ïŒ
- $k=1,2,\ldots, n-1$ ããããã«ã€ããŠ,
$$ a_{k + 1} \geq 1 + ka_1 + (k - 1)a_2 + \cdots + 2a_{k - 1} + a_k. $$
$f(7, 900) = f(8, s_1)$ ãã¿ãããããªæ£æŽæ° $s_1$ ã®ç·åã $X$ïŒ
$f(7, 900) = f(9, s_2)$ ãã¿ãããããªæ£æŽæ° $s_2$ ã®ç·åã $Y$ ãšãããšãïŒ
ç© $XY$ ãæ±ããŠãã ããïŒãã ã, $s_1,s_2$ ãååšããããšã¯ä¿èšŒãããŸãïŒ |
OMC130 (for experts) | https://onlinemathcontest.com/contests/omc130 | https://onlinemathcontest.com/contests/omc130/tasks/5350 | F | OMC130(F) | 700 | 10 | 27 | [
{
"content": "ãç°¡åã®ããïŒããããã®é åã $\\\\{1,2,\\ldots,7\\\\}$ ã®äžã®å
šåå° $p,q,r$ ãšã¿ãªãïŒããŸïŒæ¡ä»¶ãšããŠ\r\n$$ p \\circ q = q \\circ r = r \\circ p \\tag{1}$$\r\nã®ã¿ãèããïŒ$p,q$ ãå®ãããšïŒ$r$ ã®åè£ã¯ $q^{-1} \\circ p \\circ q$ ãšããŠé«ã
äžã€ã«å®ãŸãïŒããã $(1)$ ãã¿ããã«ã¯ïŒ\r\n$$ p \\circ q = (q^{-1} \\circ p \\circ q) \\circ p \\iff p \\circ q \\circ p = q \\circ p \\circ q$$\r\nãå¿
èŠååæ¡ä»¶ãšãªãïŒããã«ïŒå
šåå° $P,Q$ ããããã $p \\circ q \\circ p$ ããã³ $p \\circ q$ ã§å®ããããšã§\r\n$$ \\begin{aligned}\r\np \\circ q \\circ p = q \\circ p \\circ q\r\n&\\iff p \\circ q \\circ p \\circ (p \\circ q \\circ p) = p \\circ q \\circ p \\circ (q \\circ p \\circ q) \\\\\\\\\r\n&\\iff P \\circ P = Q \\circ Q \\circ Q \\tag{2}\r\n\\end{aligned} $$\r\nãåŸããïŒ$(p, q)$ ãš $(P, Q)$ ã¯äžå¯Ÿäžã«å¯Ÿå¿ããããïŒä»¥äž $(2)$ ãã¿ãã $(P, Q)$ ã«ã€ããŠèããã°ããïŒãã®ãããªçµã®ãã¡ïŒããã«ä»»æã® $n$ ã«å¯Ÿã㊠$Q(n)=p(q(n))\\neq n$ ãã¿ãããã®ãæ°ãäžããã°ããïŒ\\\r\nãããã§ïŒ$\\\\{1,2,\\ldots,7\\\\}$ ã®äžã®å
šåå° $A$ ã«å¯ŸãïŒ$1,2,\\ldots,7$ ã®åæ°ãé ç¹ãšãïŒ$n$ ãã $A(n)$ ã«èŸºã匵ã£ãŠåŸãããæåã°ã©ãã $G_A$ ãšããïŒãããã¯ãã¹ãŠã®é ç¹ã®å
¥æ¬¡æ°ã»åºæ¬¡æ°ããšãã« $1$ ã§ããã°ã©ãã§ããïŒç¬ç«ãªããã€ãã®ãµã€ã¯ã«ã«ãã£ãŠæ§æãããïŒã㟠$Q(n)\\neq n$ ãã $G_Q$ ã«ã¯èªå·±ã«ãŒããååšããªãããšã«æ³šæãããšïŒ$G_Q$ ã«å«ãŸãããµã€ã¯ã«ã®é·ãã®çµãšããŠã¯ $(7), (5, 2), (4, 3), (3, 2, 2)$ ãèããããïŒ\\\r\nããã®ãã¡ïŒ$(5, 2), (4, 3)$ ãäžé©ã§ããããšã瀺ãïŒ$G_Q$ ã«é·ãã $2k$ $(k = 1, 2)$ ã®ãµã€ã¯ã«ãã¡ããã© $1$ åååšãããšä»®å®ããïŒ$G_{Q \\circ Q \\circ Q}$ ã«ãåãé·ãã§å«ãŸããé ç¹ã®éåãçãããããªãµã€ã¯ã«ãååšããããïŒããã $x_1 \\rightarrow x_2 \\rightarrow \\cdots \\rightarrow x_{2k} \\rightarrow x_1$ ãšããã°ïŒ$P \\circ P = Q \\circ Q \\circ Q$ ããïŒ$P$ ã«ã¯ $x_1 \\rightarrow y_1 \\rightarrow x_2 \\rightarrow y_2 \\rightarrow \\cdots \\rightarrow x_{2k} \\rightarrow y_{2k} \\rightarrow x_1$ ãªããŠã©ãŒã¯ãååšããïŒ$x_1, y_1, x_2, y_2 , \\cdots, x_{2k}, y_{2k}$ ã¯çžç°ãªãããšã瀺ããããïŒ$G_Q$ ã«ã¯ãŸãå¥ã®é·ã $2k$ $(k = 1, 2)$ ã®ãµã€ã¯ã« $y_1 \\rightarrow y_2 \\rightarrow \\cdots \\rightarrow y_{2k} \\rightarrow y_1$ ãååšããããšã«ãªãïŒäžé©ã§ããïŒ\\\r\nã以äžã®ããšããïŒãŸã $G_Q$ ã«ã€ããŠä»¥äžã®ãããããæç«ããïŒ\r\n\r\n- é·ã $7$ ã®ãµã€ã¯ã«ãããªãïŒ\r\n- é·ã $3, 2, 2$ ã®ãµã€ã¯ã«ãããªãïŒ\r\n\r\nãããããã«é©ãããã®ãæ°ãäžãããš $720$ éãïŒ$210$ éãã§ããããšããããïŒæ¬¡ã«ïŒå¯Ÿå¿ãã $G_P$ ã¯ãããã以äžã®éãã§ããïŒ\r\n\r\n- é·ã $7$ ã®ãµã€ã¯ã« $1$ åã«ã€ããŠã¯ $1$ éãã察å¿ããïŒ\r\n- é·ã $2$ ã®ãµã€ã¯ã« $2$ åã«ã€ããŠã¯é·ã $4$ ã®ãµã€ã¯ã« $2$ éãã察å¿ããïŒæ®ã $3$ é ç¹ãããªããµã€ã¯ã«ã®é·ã㯠$(2, 1), (1, 1, 1)$ ã®ããããã§ããïŒ$4$ éãã察å¿ããïŒ\r\n\r\nãåŸã£ãŠïŒæ±ããã¹ãåæ°ã¯ $720 \\times 1 + 210 \\times 2 \\times 4 = \\mathbf{2400}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc130/editorial/5350"
}
] | ã$\\{p_n\\}\_{n=1,\ldots,7}, \\{q_n\\}\_{n=1,\ldots,7}, \\{r_n\\}\_{n=1,\ldots,7}$ ãããããïŒçžç°ãªããšã¯éããªãïŒ$1,2,\ldots,7$ ã®é åãšããŸãïŒãã®ãšãïŒ$n=1,2,\ldots,7$ ãã¹ãŠã«ã€ããŠ
$$p_{q_n} = q_{r_n} = r_{p_n} \neq n$$
ãã¿ãããããªïŒ$\\{p_n\\},\\{q_n\\},\\{r_n\\}$ ã®çµã¿åããã¯äœéããããŸããïŒ |
OMC129 (for beginners) | https://onlinemathcontest.com/contests/omc129 | https://onlinemathcontest.com/contests/omc129/tasks/6173 | A | OMC129(A) | 100 | 286 | 286 | [
{
"content": "ã$4,5,\\ldots,12$ ã®ããããã«ã€ããŠïŒæ£ã®çŽæ°ã®ç·å㯠$7,6,12,8,15,13,18,12,28$ ã§ããïŒããããã®æ£ã®çŽæ°ã®åæ°ã¯ $2,4,6,4,4,2,6,6,6$ ã§ããããïŒ$(a,b)=(6,12)$ ãå¯äžã®è§£ã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{612}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc129/editorial/6173"
}
] | ãããªãã¯å¥œããªå¥³ã®åïŒOMCã¡ããã®èªçæ¥ãç¥ãããã§ãïŒãããïŒåœŒå¥³ã¯æå°æªãªããïŒèªçæ¥ãèããšä»¥äžã®çããè¿ã£ãŠããŸããïŒ
- èªåã®èªçæ¥ã $a$ æ $b$ æ¥ ãšãããšïŒ$a$ ã®æ£ã®çŽæ°ã®ç·å㯠$b$ ã§ããïŒ$b$ ã®æ£ã®çŽæ°ã®åæ°ã¯ $a$ ã§ããïŒ
ãããã«, OMCã¡ããã¯æ©çãŸãã§ãªãããšïŒããªãã¡ $a\geq 4$ ïŒãæããŠããããŸããïŒãã®ãšãïŒOMCã¡ããã®èªçæ¥ãåœãŠãŠïŒ$100a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC129 (for beginners) | https://onlinemathcontest.com/contests/omc129 | https://onlinemathcontest.com/contests/omc129/tasks/2590 | B | OMC129(B) | 200 | 256 | 277 | [
{
"content": "ãã·ãŒãã«èª°ã座ã£ãŠããªãå Žåãèš±ããŠïŒäžè¬ã« $k=7$ ã«ã€ããŠæ±ããå Žåã®æ°ã $P(k)$ ãšãããšïŒå³ç«¯ã®åº§åžã«äººã座ã£ãŠãããå Žååãããããšã§ $P(k)=P(k-1)+P(k-2)$ ãæç«ããïŒ\\\r\nã$P(1)=2,P(2)=3$ ããèšç®ããã°ïŒæ±ããå€ã¯ $P(7)-1=\\textbf{33}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc129/editorial/2590"
}
] | ãOMCçåœã®ããåè»ã«ã¯ $7$ ã€ã®åº§åžã䞊ãã ã·ãŒããããïŒããããã®åº§åžã«ã¯ $1$ 人ã座ãããšãåºæ¥ãŸãïŒãããïŒOMCçåœã§ã¯ææçãæµè¡ããããïŒé£æ¥ãã $2$ 座åžã«åæã«äººã座ãããšãçŠããŸããïŒããããã®äººã**åºå¥ããªã**ãšãïŒ$1$ 人以äžããã®ã·ãŒãã«åº§ãæ¹æ³ã¯äœéããããŸããïŒãã ãïŒå転ã§äžèŽãããã®ãåºå¥ããŸãïŒ |
OMC129 (for beginners) | https://onlinemathcontest.com/contests/omc129 | https://onlinemathcontest.com/contests/omc129/tasks/2597 | C | OMC129(C) | 200 | 226 | 258 | [
{
"content": "ãäžåŒã¯ä»¥äžã®ããã«å€åœ¢ã§ããããïŒæ±ããæ倧å€ã¯ $(x,y)=(±\\sqrt{13},±5\\sqrt{13})$ (è€å·åé ) ã§ã® $\\textbf{169}$ ã§ããïŒ\r\n$$-x^4+x^2+10xy-y^2=169-(x^2-13)^2-(y-5x)^2$$\r\nãã®å€åœ¢ã¯äžèŠãããšå€©äžãçã ãïŒãŸã $y$ ã§å¹³æ¹å®æããã°èªç¶ã«åŸãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc129/editorial/2597"
}
] | ãå®æ° $x,y$ ã«å¯ŸããŠïŒ$-x^4+x^2+10xy-y^2$ ã®ãšãããæ倧å€ã¯ããã€ã§ããïŒ |
OMC129 (for beginners) | https://onlinemathcontest.com/contests/omc129 | https://onlinemathcontest.com/contests/omc129/tasks/2013 | D | OMC129(D) | 300 | 200 | 245 | [
{
"content": "ãäžåŒã以äžã®ããã«å€åœ¢ãããšã$n+10$ ã $9000$ ã®çŽæ°ã«ãªãããšãæ¡ä»¶ã§ããããšããããïŒ\r\n$$\\begin{aligned}\r\n\\dfrac{n^3+10^4}{n+10}=n^2-10n+100+\\dfrac{9000}{n+10}\r\n\\end{aligned}$$ \r\n$9000=2^3\\times 3^2 \\times 5^3$ ã®æ£ã®çŽæ°ã¯ $48$åã§ïŒãã®ãã¡ $n\\gt 0$ ãšãªããªããã®ã¯\r\n$$n+10=1,2,3,4,5,6,8,9,10$$\r\nã§ããïŒããããé€ã $39$ çµå
šãŠã«å¯ŸããŠïŒ$n+10$ ã®ç·åã¯\r\n$$\\begin{aligned}\r\n(1+2+4+8)(1+3+9)(1+5+25+125)-48=30372\r\n\\end{aligned}$$\r\nããïŒæ±ããç·å㯠$30372-10\\times 39=\\bf{29982}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc129/editorial/2013"
}
] | ã$\dfrac{n^3+10^4}{n+10}$ ãæŽæ°ãšãªããããªæ£æŽæ° $n$ ã®**ç·å**ã解çããŠãã ããïŒ |
OMC129 (for beginners) | https://onlinemathcontest.com/contests/omc129 | https://onlinemathcontest.com/contests/omc129/tasks/2172 | E | OMC129(E) | 400 | 111 | 144 | [
{
"content": "$$P(x)=(x-\\alpha_1)(x-\\alpha_2)\\cdots(x-\\alpha_8),\\quad Q(x)=(x-\\alpha_1^2)(x-\\alpha_2^2)\\cdots(x-\\alpha_8^2)$$\r\nã«çæããïŒãã㧠$Q(x^2)=R(x)$ ãªãå€é
åŒ $R(x)$ ãèãããšïŒ\r\n$$\\begin{aligned}\r\nR(x)&=(x^2-\\alpha_1^2)(x^2-\\alpha_2^2)\\cdots(x^2-\\alpha_8^2)\\\\\\\\\r\n&=(x-\\alpha_1)(x-\\alpha_2)\\cdots(x-\\alpha_8)(x+\\alpha_1)(x+\\alpha_2)\\cdots(x+\\alpha_8)\r\n\\end{aligned}$$\r\nãšãªãïŒ\r\n$$\\begin{aligned}\r\n(x+\\alpha_1)(x+\\alpha_2)\\cdots(x+\\alpha_8)=(-x-\\alpha_1)(-x-\\alpha_2)\\ldots(-x-\\alpha_8)=P(-x)\\end{aligned}$$\r\nããïŒ$R(x)=P(x)P(-x)$ãæç«ããããšããããïŒæ±ããå€ã¯\r\n$R(\\sqrt{10})=P(\\sqrt{10})P(-\\sqrt{10})$ ãã\r\n$$\\begin{aligned}\r\nP(\\sqrt{10})P(-\\sqrt{10})=(9789-199\\sqrt{10})(9789+199\\sqrt{10})=\\bf{95428511}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc129/editorial/2172"
}
] | $$\begin{aligned}
P(x)=x^8-20x^3-21x^2+x-1
\end{aligned}$$
ã«å¯ŸãïŒä»¥äžã®æ¡ä»¶ãã¿ãã $x$ ã®å®æ°ä¿æ° $8$ 次å€é
åŒ $Q(x)$ ãäžæã«å®ãŸããŸãïŒ
- $Q(x)$ ã®æé«æ¬¡ã®ä¿æ°ã¯ $1$ ã§ããïŒ
- æ¹çšåŒ $P(x)=0$ ã®çžç°ãªã $8$ ã€ã®è€çŽ æ°è§£ $x=\alpha_1,\alpha_2,\ldots, \alpha_8$ ã«ã€ããŠïŒæ¹çšåŒ $Q(x)=0$ ã¯çžç°ãªã $8$ ã€ã®è€çŽ æ°è§£ $x=\alpha_1^2,\alpha_2^2,\ldots, \alpha_8^2$ ããã€ïŒ
ã$Q(10)$ ã®å€ã解çããŠãã ããïŒ |
OMC129 (for beginners) | https://onlinemathcontest.com/contests/omc129 | https://onlinemathcontest.com/contests/omc129/tasks/2607 | F | OMC129(F) | 400 | 64 | 105 | [
{
"content": "ã$ID$ 㯠$\\gamma$ ã®çŽåŸã§ããïŒç¹ã«å¯Ÿç§°æ§ãã $AE=AB=5$ ã§ããïŒãããã£ãŠïŒæ¹ã¹ãã®å®çãã\r\n$$AI\\times AD=AE\\times AC=100$$\r\nã§ãããã $ID=80\\/3$ ãæç«ããïŒããã§ïŒ$AI$ ãš $BC$ ã®äº€ç¹ã $T$ ãšããã°\r\n$$BT:TC=AB:AC=1:4,\\quad BT:TI=AB:AI=3:2$$\r\nãæç«ããããïŒæ¹ã¹ãã®å®çãã\r\n$$BT\\times TC=IT\\times TD$$ \r\nãšããã㊠$BC=20=AC$ ããããïŒä»¥äžããïŒ$EI=BI=AI=10\\/3$ ã§ããïŒ$\\angle{DEI}=90^\\circ$ ãã\r\n$$DE^2=ID^2-EI^2=\\left(\\dfrac{80}{3}\\right)^2-\\left(\\dfrac{10}{3}\\right)^2=\\textbf{700}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc129/editorial/2607"
},
{
"content": "ã$\\mathrm{AE}=5$ïŒ$\\mathrm{AI}=\\dfrac{10}{3}$ïŒ$\\mathrm{ID}=\\dfrac{80}{3}$ïŒçŽåŸïŒãŸã§ãã©ãçãã°ïŒåº§æšç³»ãçšããŠã解ãããšã¯å¯èœã§ãã\\\r\n ãäŸãã°å $\\gamma$ ã®äžå¿ïŒ$\\mathrm{ID}$ ã®äžç¹ïŒãåç¹ïŒçŽç· $\\mathrm{ID}$ ã $x$ 軞ã§ãããšããã°ïŒç¹ $\\mathrm{E}$ ã¯æ¬¡ã®äºã€ã®åã®äº€ç¹ã«ãªããŸãã\\\r\n ã$x^2+y^2=\\left( \\dfrac{40}{3} \\right) ^2$\\\r\n ã$\\left(x- \\dfrac{50}{3} \\right)^2+y^2=5^2$ïŒç¹ $\\mathrm{A}$ äžå¿ïŒååŸ $5$ ã®åïŒ\\\r\n ãããšã¯ïŒ$\\mathrm{DE}$ ã®é·ããäžå¹³æ¹ã®å®ççã§æ±ããã°OKã§ãã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc129/editorial/2607/157"
}
] | ã$AB=5,AC=20$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒãã®å
å¿ã $I$ ãšãïŒäžè§åœ¢ $BIC$ ã®å€æ¥åã $\gamma$ ãšãããŸãïŒããŸïŒçŽç· $AI$ ãš $\gamma$ ã®äº€ç¹ã®ãã¡ $I$ ã§ãªãæ¹ã $D$ ãšãããšïŒ$AD=30$ ãæç«ããŸããïŒèŸº $AC$ ãš $\gamma$ ã®äº€ç¹ã®ãã¡ $C$ ã§ãªãæ¹ã $E$ ãšãããšãïŒç·å $DE$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6669 | A | TMO2022(A) | 100 | 140 | 143 | [
{
"content": "ãçã㯠$254\\times5598=\\textbf{1421892}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6669"
}
] | ã次ã®è«é£ãç®ã解ãããšãïŒç©ïŒäžçªäžã®è¡ã®7æ¡ã®æ°ïŒã¯ããã€ã«ãªãã.
![figure 1](\/images\/GqDMd1d9nEiNAsvOO3SndJ6Y7s9BV9yz1s4HLZhz) |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6670 | B | TMO2022(B) | 100 | 119 | 135 | [
{
"content": "ã$n+1$ 人ç®ã« \"O\" ãäŒãã確çã $P_n$ ãšãããšïŒ\r\n$$\\begin{aligned}P_0&=1\\\\\\\\\r\n P_{n+1}&=\\dfrac{9}{10}P_n + \\dfrac{1}{10}(1-P_n)=\\dfrac{4}{5}P_n+\\dfrac{1}{10} \r\n\\end{aligned}$$\r\n\r\nãæãç«ã¡ïŒããã解ã㊠$P_n=\\dfrac{1}{2}\\Bigl(1+\\Bigl(\\dfrac{4}{5}\\Bigr)^n\\Bigr)$ ãåŸãïŒãã£ãŠïŒ$P_n\\leq 0.51$ ãšãªãæå°ã®æ£æŽæ° $n$ 㯠$\\textbf{18}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6670"
}
] | ã$n+1$ 人ã§äŒèšã²ãŒã ãããïŒ$n$ ã¯æ£æŽæ°ïŒïŒ
ã人ã«ã¯ãããã $1$ ãã $n+1$ ã®çªå·ãä»ããŠããïŒãŸã人 $1$ ã«ã¯ "ã" ãšããèšå·ãäŒããããïŒäºº $1$ ããã¯äºº $2$ ã« $90 \\%$ ã®ç¢ºç㧠"ã" ãšïŒ$10 \\%$ ã®ç¢ºç㧠"Ã" ãšäŒããïŒåæ§ã«äºº $i~(2\leq i \leq n)$ 㯠$90 \\%$ ã®ç¢ºçã§äºº $(i-1)$ ããäŒããããèšå·ãïŒ$10 \\%$ ã®ç¢ºçã§äºº $(i-1)$ ããäŒããããèšå·ãšã¯éã®èšå·ã人 $(i+1)$ ã«äŒããïŒãã®ãšãïŒäºº $(n+1)$ ã« "ã" ãšããèšå·ãäŒãã確çã $51 \\%$ 以äžã«ãªãæå°ã® $n$ ãæ±ããïŒ
ããã ãïŒ$0.3010\lt \log_{10}2\lt 0.3011, 0.4771\lt \log_{10} 3\lt 0.4772$ ãçšããŠãããïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6671 | C | TMO2022(C) | 100 | 104 | 112 | [
{
"content": "ã$N$ ã® $10^i ~ (0\\leq i \\leq M-1)$ ã®äœã$a_i$ãšãããšïŒ\r\n$$f(N)=\\displaystyle\\prod_{i=0}^{M-1}(1+a_i)-1$$\r\nã§ããããšã«æ³šæããïŒ$M=1$ ã®ãšããã¹ãŠã¿ããïŒ$M\\geq 2$ ã®ãšãïŒä»»æã® $i$ ã«ã€ã㊠$a_i\\leq 8$ ã§ãããšãããš $f(N)\\lt N$ ã§ããããšããããïŒããªãã¡ïŒ$a_i=9$ ãªã $i$ ãååšããããïŒ$N$ 㯠$10$ ã§å²ã£ãŠ $9$ äœãããšã«ãªãïŒããªãã¡ $a_0=9$ ã§ããïŒãããåãå»ãããšã§ $M-1$ æ¡ã®å Žåã«åž°çã§ããïŒä»¥äžããïŒæ±ãã $M$ æ¡ã®æŽæ° $n$ 㯠$x\\times10^{M-1}-1$ïŒ$x$ 㯠$2\\leq x \\leq 10$ ãªãæŽæ°ïŒãšè¡šãããã®ã§ããïŒç¹ã«çã㯠$9\\times2022=\\textbf{18198}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6671"
}
] | ã$N$ ãæ£æŽæ°ãšããïŒ$N$ ã®åæ¡ã®æ°åãã $1$ ã€ä»¥äžãéžã¶æ¹æ³ã¯ïŒ$M$ ã $N$ ã®æ¡æ°ãšã㊠$2^M-1$ éããããïŒããããã«å¯ŸããŠéžãã æ°åã®ç©ãèãïŒãããã®ç·åã $f(N)$ ãšããïŒäŸãã°
$$f(123)=1+2+3+1\times2+1\times3+2\times3+1\times2\times3=23$$
ã§ããïŒãã®ãšãïŒ$f(n)=n$ ãšãªã $10^{2022}$ 以äžã®æ£æŽæ° $n$ ã¯ããã€ãããïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6672 | D | TMO2022(D) | 100 | 54 | 71 | [
{
"content": "ã察称æ§ããïŒ $1$ äœã®å£äœãååšããçµã¿åããã®åæ°ã $4$ ã§å²ãã°ããïŒäœäºè±¡ãèããããšã§ïŒãã®ãããªçµã¿åãããæ°ãäžããïŒãŸãïŒããããçµã¿åããã¯å
šéšã§ $ {} _{100} \\mathrm{H} _4 = {} _{103} \\mathrm{C} _3=176851$ åããïŒ\\\r\nã $1$ äœã®å£äœãååšããªããšããããšã¯ïŒå
¥ããããçãæãå€ãå£äœãè€æ°ãããšããããšã§ããïŒ\r\n\r\n- $4$ å£äœããå ŽåïŒ$25$ åïŒ$1$ éã\r\n- $3$ å£äœããå ŽåïŒ$26$ åãã $33$ åïŒ$8\\times{}_4 \\mathrm{C}_1=32$ éã\r\n- $2$ å£äœããå ŽåïŒ$26$ åãã $50$ åïŒ$\\bigl((3+7+\\cdots+31)+(33+31+\\cdots+1)\\bigr)\\times{}_4 \\mathrm{C}_2=2550$ éã\r\n\r\nãã£ãŠçã㯠$\\dfrac{176851-(1+32+2550)}{4}=\\textbf{43567}$ éãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6672"
}
] | ãããåŠæ ¡ã®æåç¥ã§ã¯ïŒæ¥å Žè
ã« $1$ 人 $1$ ã€éè²ã®çãæž¡ãïŒå£äœåãæžãããç®±ã®ãã¡ã©ãã $1$ ã€ã«çãå
¥ããŠ**倧è¡è³**ã«æ祚ããŠãããïŒããã§ïŒæ¥å Žè
ã¯ããªããæ祚ãããã®ãšããïŒæãå€ãçãå
¥ããããå£äœãå¯äžååšãããšãïŒããã $1$ äœãšããïŒè€æ°ååšããå Žå㯠$1$ äœã¯ãªããšããïŒïŒ\
ãä»å¹ŽïŒæåç¥ã«ã¯ $A,B,C,D$ ã® $4$ ã€ã®å£äœãããïŒ$100$ 人ã®æ¥å Žè
ãæ¥ãïŒ$A$ ã $1$ äœãšãªã£ããšãïŒããããã®å£äœã®ç®±ã«å
¥ããããçã®åæ°ã®çµã¿åããïŒæ祚è
ã¯åºå¥ããªãïŒãšããŠèãããããã®ã¯äœéããããïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6673 | E | TMO2022(E) | 100 | 73 | 77 | [
{
"content": "ãè§åºŠè¿œè·¡ã«ãã£ãŠ $A,O,I_A$ ã¯åäžçŽç·äžã«ïŒ$A,B,C,O$ ã¯åäžååšäžã«ããããšããããïŒãã£ãŠPtolemyã®å®çãã $BC$ ã®é·ã㯠$\\dfrac{(4+5)\\times3}{8-3}=\\dfrac{27}{5}$ ãšæ±ãŸãã®ã§ïŒè§£çãã¹ãå€ã¯ $\\textbf{32}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6673"
}
] | ã$AB=4,AC=5$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒãã®è§ $A$ å
ã®åå¿ã $I_A$ ãšãïŒäžè§åœ¢ $BCI_A$ ã®å€å¿ã $O$ ãšãããšïŒ$AI_A:OI_A=8:3$ ãæãç«ã£ãïŒãã®ãšã $BC$ ã®é·ãã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6674 | F | TMO2022(F) | 100 | 36 | 56 | [
{
"content": "ã$i=1,2,\\ldots,7$ ã«å¯ŸãïŒ$i$ ãã $P_i$ ã«èŸºã匵ã£ãã°ã©ããèãããšïŒæ¡ä»¶ã¯ãµã€ã¯ã«ã®å€§ããããã¹ãŠ $2$ ã¹ãã§ããããšãå¿
èŠååæ¡ä»¶ã§ããïŒãµã€ã¯ã«ã®å€§ããã®çµã¿åããã§å Žååãããããšã«ããïŒçãã¯$630+210+105+105+21+1=\\textbf{1072}$ éããšæ±ãŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6674"
}
] | ãããé·ã $N$ ã®é å $P$ ã«å¯ŸããŠïŒ$P$ ã $i~(1\leq i \leq N)$ çªç®ã $P_{P_i}$ ã§ãããããªé åã«çœ®ãæãããšããæäœãèããïŒæ¬¡ã®æ¡ä»¶ãæºããé·ã $7$ ã®é åã®åæ°ãæ±ããªãã.
- $k$ åæäœãè¡ã£ãåŸã®é åãš $k+1$ åæäœãè¡ã£ãåŸã®é åãçãããããªæ£æŽæ° $k$ ãååšãã.
ããã ãïŒé·ã $N$ ã®é åãšã¯ïŒ$1,2,3,\ldots ,N$ ã䞊ã³å€ãããã®ã§ããïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6675 | G | TMO2022(G) | 100 | 46 | 58 | [
{
"content": "ã$f(1)=1, f(2)=4$ ã§ããïŒä»¥é $n\\geq 3$ ã®å ŽåãèããïŒ\r\n\r\nããã§ã«ããŒã®å°å®çããïŒææ°ã®è© $\\mathrm{mod}~6$ ãåããã°è¯ã.\r\n- $n \\equiv 0 \\mod 6$ ã®ãšã $f(n) \\equiv n^0 \\mod 7$\r\n- $n \\equiv 1 \\mod 6$ ã®ãšã $f(n) \\equiv n^1 \\mod 7$\r\n- $n \\equiv 2 \\mod 6$ ã®ãšã $f(n) \\equiv n^4 \\mod 7$\r\n- $n \\equiv 3 \\mod 6$ ã®ãšã $f(n) \\equiv n^3 \\mod 7$\r\n- $n \\equiv 4 \\mod 6$ ã®ãšã $f(n) \\equiv n^4 \\mod 7$\r\n- $n \\equiv 5 \\mod 6$ ã®ãšã $f(n) \\equiv n^5 \\mod 7$\r\n\r\nããã« $f(n)~ \\mathrm{mod}~ 7$ ã®å€ã¯åšæ $42$ ã§ããïŒ$\\displaystyle\\sum_{k=3}^{44}(f(k)~ \\mathrm{mod}~7)=97$ ããã³ $2022=2+42\\times48+4$ ããïŒçã㯠$1+4+97\\times48+6+4+3+1=\\textbf{4675}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6675"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸãïŒ$f(n)=n^{n^{n^{\cdot^{\cdot^{\cdot^n}}}}}$ ($n$ ã $n$ å)ãšããïŒ$a ~ \mathrm{mod} ~ b$ 㧠$a$ ã $b$ ã§å²ã£ãäœããè¡šããšãïŒ
$\displaystyle{\sum_{i=1}^{2022}(f(i)~ \mathrm{mod}~7)}$ ã®å€ãæ±ããïŒ
ããã ãææ°ã¯å³äžã«ãã $2$ æ°ããé ã«èšç®ãããã®ãšãã(äŸãã°$f(3)=3^{(3^3)}=3^{27}=7625597484987$)ïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6676 | H | TMO2022(H) | 100 | 67 | 99 | [
{
"content": "ã$i$ åå転ããŠåããŠäžŠã³æ¹ãæåãšåãã«ãªããšãïŒãã®äžŠã¹æ¹ã¯åšæã $i$ ã§ãããšåŒã¶ããšã«ãã.\r\nåšæã $12,6,4,2$ ã«ãªã䞊ã¹æ¹ããããã $a,b,c,d$ éããšãããš\r\n$$\\begin{aligned}\r\n12a+6b+4c+2d&={}_{12} \\mathrm{C}_6=924 \\\\\\\\\r\n6b+2d&={}_6 \\mathrm{C}_3=20 \\\\\\\\\r\n4c+2d&={}_4 \\mathrm{C}_2=6 \\\\\\\\\r\n2d&={}_2 \\mathrm{C}_1=2 \\\\\\\\\r\n\\end{aligned}$$\r\nãæãç«ã€ïŒããã解ããš $a=75,b=3,c=1,d=1$ ãåŸãããïŒçã㯠$75+3+1+1=\\textbf{80}$ éãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6676"
}
] | ãèµ€ãããŒã«ãšéãããŒã«ã $6$ åãã€ããïŒãããåãã㊠$12$ åã®ããŒã«ãçééã«å圢ã«äžŠã¹ããšãïŒãã®äžŠã¹æ¹ã¯äœéããïŒãã ãïŒåãè²ã®ããŒã«ã¯åºå¥ãã§ããïŒå転ããŠäžèŽãããããªäžŠã¹æ¹ã¯åã䞊ã¹æ¹ãšã¿ãªããšããïŒå転ã¯åºå¥ããïŒïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6677 | I | TMO2022(I) | 100 | 44 | 51 | [
{
"content": "ã蟺 $BC$ ã®äžç¹ã $M$ ãšããïŒç¹ $B, C$ ãã蟺 $CA, AB$ ã«äžãããåç·ã®è¶³ã $E, F$ ãšãïŒçŽç· $EF$ ãšçŽç· $BC$ ã®äº€ç¹ã $D$ ãšããïŒç¹ $X^{\\prime}$ ãç·å $DM$ ã®äžç¹ãšããïŒç¹ $N$ ãäžå¿ãšããŠç¹ $A$ ãéãåã $\\gamma$ ãšããïŒç¹ $D$ 㯠$\\gamma$ ã®ç¹ $M$ ã«é¢ãã極ç·äžã«ããããïŒç·å $DM$ ãçŽåŸãšããå㯠$\\gamma$ ãšçŽäº€ããïŒãã®ãšãïŒãããã®äºåã®äº€ç¹ã®ãã¡äžã€ã $T$ ãšãããšïŒ \r\n$${X^{\\prime}N}^2\r\n ={X^{\\prime}T}^2+{TN}^2\r\n ={X^{\\prime}M}^2+{OM}^2\r\n ={X^{\\prime}O}^2$$\r\nãã $X^{\\prime}N=X^{\\prime}O$ ãæç«ããïŒãããã£ãŠ $X^{\\prime}=X$ ã§ããïŒé·ããèšç®ãããš, \r\n$$CE:EA=3:5, \\quad AF:FB=5:4$$\r\nãšãªãïŒãããšMenelausã®å®çãã $BD:DC=4:3$ ãšãªãïŒç¹ $X$ ãç·å $DM$ ã®äžç¹ã§ããããšãã $BX=\\frac{9}{4}\\sqrt{7}$ ãšæ±ãŸãã®ã§ïŒè§£çãã¹ãå€ã¯ $567+16=\\textbf{583}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6677"
}
] | ã$AB=3,~ BC=\sqrt{7},~ CA=2\sqrt{2}$ ãªãäžè§åœ¢ $ABC$ ã«ã€ããŠïŒãã®åå¿ã $H$ïŒå€å¿ã $O$ ãšããïŒç·å $AH$ ã®äžç¹ã $N$ ãšãïŒç·å $NO$ ã®åçŽäºçåç·ãšçŽç· $BC$ ã®äº€ç¹ã $X$ ãšãããšïŒç·å $BX$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\sqrt{\dfrac{a}{b}}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6678 | J | TMO2022(J) | 100 | 36 | 43 | [
{
"content": "ã$P(x, y)$ ã§äžåŒãžã®ä»£å
¥ãè¡šãïŒ$P(0,x)$ ãã $s=(\\alpha+2)f(0)+2022$ ãšããã° \r\n$$f(f(x))=4x+s\\tag{1}$$\r\nãæç«ïŒãããš $P(0,f(x))$ ãã\r\n$$f(4x+s)=4f(x)+s\\tag{2}$$\r\nãåŸãïŒãŸã $P(s\\/\\alpha,x-s\\/\\alpha)$ ãã\r\n$$f\\left(f(x)+s\\right)=(\\alpha+2)f\\left(\\frac{s}{\\alpha}\\right)+4\\left(x-\\frac{s}{\\alpha}\\right)+2022$$\r\nã§ããïŒ$(2)$ ãçšããŠå€åœ¢ãããš\r\n$$f\\left(\\frac{1}{4}f(x)\\right)=x-\\frac{s}{\\alpha}+\\frac{1}{4}\\left((\\alpha+2)f\\left(\\frac{s}{\\alpha}\\right)+2022\\right)$$\r\nãšã§ããïŒ$t=\\frac{1}{4}\\left((\\alpha+2)f\\left(\\frac{s}{\\alpha}\\right)+2022\\right)-\\frac{s}{\\alpha}$ ãšããŠäž¡èŸºã $f$ ã§éããš\r\n$$f(x)+s=f(x+t)\\tag{3}$$\r\nãåŸãããïŒãã®äž¡èŸºãããã« $f$ ã§éãïŒ$(1)$ ãã $f$ ãå
šå°ã§ããããšãçšããã°\r\n$$f(x+s)=f(x)+4t\\tag{4}$$\r\nãåŸãããïŒ$\\alpha$ ã¯æ£æŽæ°ã§ããããšã«æ³šæãããšïŒ$(3),(4)$ ãçšã㊠$P(0,0)$ ãš $P(t,0)$ ãæ¯èŒããããšã§ $s=2t$ ãåŸãïŒãã®ãšã $(2),(4)$ 㧠$x=0$ ãšããã° $s=3f(0)$ ãåŸããïŒ$s$ ã®å®çŸ©ãšããããã° $\\alpha\\neq 1$ïŒ$f(0)=\\dfrac{2022}{1-\\alpha}$ ãåŸãïŒãã£ãŠæ¡ä»¶ãã¿ãã $f$ ãååšããããã«ã¯ $\\alpha-1$ ã $2022$ ã®çŽæ°ã§ãªããã°ãªããªãïŒéã« $\\alpha-1$ ã $2022$ ã®çŽæ°ã§ãããšã \r\n$$f(x)=2x+\\frac{2022}{1-\\alpha}$$\r\nã¯æ¡ä»¶ãã¿ããïŒåŸã£ãŠ $2022=2\\times 3\\times 337$ ããæ±ããå€ã¯\r\n$$(1+2)(1+3)(1+337)+(1+1)(1+1)(1+1)=\\bm{4064}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6678"
},
{
"content": "ãå®æ° $\\alpha$ ã«å¯ŸããŠäžåŒãã¿ããé¢æ° $f$ ãæ±ããïŒ\\\r\n$P(x,y)$ ã§äžåŒãžã®ä»£å
¥ãè¡šãïŒ$f$ \r\nã¯å
šå°ã§ããããïŒä»»æã®å®æ° $s,t$ ã«å¯Ÿã㊠$f(s^{\\prime})=s, f(t^{\\prime})=t$ ãªãå®æ° $s^{\\prime},t^{\\prime}$ ãååšããïŒ\r\n- $\\alpha \\neq 0$ ã®ãšã\r\n$$g(x)=(\\alpha +2)f\\Bigl(\\dfrac{x}{\\alpha}\\Bigr)-\\dfrac{4x}{\\alpha}+2022$$\r\nãšãããšïŒ\r\n$$P\\Bigl(\\dfrac{u}{\\alpha},s^{\\prime}-\\dfrac{u}{\\alpha}\\Bigr), P\\Bigl(\\dfrac{u}{\\alpha},t^{\\prime}-\\dfrac{u}{\\alpha}\\Bigr), P\\Bigl(\\dfrac{v}{\\alpha},s^{\\prime}-\\dfrac{v}{\\alpha}\\Bigr), P\\Bigl(\\dfrac{v}{\\alpha},t^{\\prime}-\\dfrac{v}{\\alpha}\\Bigr)$$ ãã\r\n$$f(s+u)=g(u)+4s^{\\prime}\\\\\\\\\r\nf(t+u)=g(u)+4t^{\\prime}\\\\\\\\\r\nf(s+v)=g(v)+4s^{\\prime}\\\\\\\\\r\nf(t+v)=g(v)+4t^{\\prime}$$\r\nãã£ãŠïŒ\r\n$$f(s+u)+f(t+v)=f(s+v)+f(t+u)$$\r\nãæç«ãïŒ$x+y=z+w$ ãªãã° $f(x)+f(y)=f(z)+f(w)$ ã§ããïŒç¹ã«\r\n$$f(x+y)=f(x)+f(y)-f(0)$$\r\nã§ããïŒ\r\nãŸãïŒ$P(0,y)$ ãã \r\n$$f\\bigl(f(y)\\bigr)=(\\alpha+2)f(0)+2022+4y$$\r\nãæãç«ã€ããïŒããããçšããŠäžåŒãå€åœ¢ãããš\r\n$$(\\alpha+1)f(0)+4x+f(\\alpha x)=(\\alpha+2)f(x)$$\r\nããããïŒ\r\nãã£ãŠïŒ\r\n$$f\\bigl(\\alpha f(x)\\bigr)=(\\alpha+2)f\\bigl(f(x)\\bigr)-4f(x)-(\\alpha+1)f(0)$$\r\nåŸã£ãŠ\r\n$$\\begin{aligned}\r\nf\\bigl(\\alpha f(x)\\bigr)-f\\bigl(\\alpha f(0)\\bigr)&=(\\alpha+2)\\Bigl(f\\bigl(f(x)\\bigr)-f\\bigl(f(0)\\bigr)\\Bigr)-4f(x)+4f(0)\\\\\\\\\r\n&=4(\\alpha+2)x-4f(x)+4f(0)\r\n\\end{aligned}$$\r\nãŸãïŒ\r\n$$\\begin{aligned}\r\nf\\bigl(\\alpha f(x)\\bigr)&=f\\bigl((\\alpha+1)f(0)+4x+f(\\alpha x)-2f(x)\\bigr)\\\\\\\\\r\n&=f\\bigl(\\alpha f(0)\\bigr)+4f(x)+f\\bigl(f(0)\\bigr)+f\\bigl(f(\\alpha x)\\bigr)-2f\\bigl(f(x)\\bigr)-4f(0)\\\\\\\\\r\n&=f\\bigl(\\alpha f(0)\\bigr)+4f(x)+4(\\alpha x-2x)-4f(0)\\\\\\\\\r\n&=f\\bigl(\\alpha f(0)\\bigr)-4f(0)+4f(x)+4(\\alpha-2) x\r\n\\end{aligned}$$\r\nããã«ïŒ$f(x)=2x+f(0)$ ã§ããïŒ\r\nãªãïŒä»ååºé¡ãããŠããã®ã¯ $\\alpha$ ãæ£æŽæ°ã®ãšãã®ã¿ã«ã€ããŠã§ããããïŒCauchyã®é¢æ°æ¹çšåŒã®èŠé ã§\r\n$$f(\\alpha x)=\\alpha f(x)-(\\alpha-1)f(0)$$\r\nããããïŒãããçšãããšããç°¡åã« $f(x)=2x+f(0)$ ããããïŒ\r\nãã£ãŠïŒ$f\\bigl(f(x)\\bigr)=4x+3f(0)$ ããïŒ$f(0)=\\dfrac{2022}{\\alpha-1}$ ã§ããïŒ(ãã ãïŒ$\\alpha=1$ ã®ãšãã¯ççŸïŒ)\r\nãŸãïŒ$f(x)=2x+\\dfrac{2022}{\\alpha-1}$ ã¯äžåŒãã¿ããïŒ\r\n\r\n- $\\alpha=0$ ã®ãšã\\\r\n$P(x,0)$ ãš $P(0,x)$ ãæ¯èŒã㊠$f(x)=2x+f(0)$ ãåŸãïŒäžãšåæ§ã« $f(0)=-2022$ ã§ïŒ$f(x)=2x-2022$ ã¯äžåŒãã¿ããïŒ\r\n\r\nã以äžããïŒ$\\alpha=1$ ã®ãšãã¯è§£ã¯ååšããïŒ$\\alpha\\neq1$ ã®ãšã㯠$f(x)=2x+\\dfrac{2022}{\\alpha-1}$ ã®ã¿ã解ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6678/160"
}
] | ã以äžã®æ¡ä»¶ãã¿ããå®æ°ããå®æ°ãžã®é¢æ° $f$ ãååšãããããªïŒæ£æŽæ° $\alpha$ ã®ç·åãæ±ããïŒ
- ä»»æã®å®æ° $x,y$ ã«ã€ããŠ$$f\bigl(f(x+y)+\alpha x\bigr)=(\alpha +2)f(x)+4y+2022$$ãæãç«ã¡ïŒã〠$f(0)$ ã¯æŽæ°å€ã§ããïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6679 | K | TMO2022(K) | 100 | 31 | 36 | [
{
"content": "ã次ãæãç«ã€ãã $\\displaystyle\\sum_{i=1}^{n}S_i$ ãš $\\displaystyle\\sum_{i=1}^{n}{S_i}^2$ãæ±ããã°ãã.\r\n$$\\sum_{i=1}^{n}\\sum_{j=i+1}^{n}S_iS_j=\\frac{1}{2}\\left(\\left(\\sum_{i=1}^{n}S_i\\right)^2-\\sum_{i=1}^{n}{S_i}^2\\right)$$\r\n\r\näœå¥ã«ç·åãžã®å¯äžãèããã°æ¬¡ã®ããã«èšç®ã§ãã. $0$ ã§ããäœã¯ç·åã«åœ±é¿ããªãããšã«çæãã. \r\n\r\n$$\\begin{aligned}\r\n\\sum_{i=1}^{n}S_i\r\n&=\\sum_{i=1}^{9}100i\\cdot\\frac{(10-i)(11-i)}{2}\r\n+\\sum_{i=1}^{9}10i\\cdot i(10-i)\r\n+\\sum_{i=1}^{9}i\\cdot\\frac{i(i+1)}{2}\\\\\\\\\r\n&=58905,\\\\\\\\\r\n\\sum_{i=1}^{n}S_i^2\r\n&=\\sum_{i=1}^{9}(100i)^2\\cdot\\frac{(10-i)(11-i)}{2}\r\n+\\sum_{i=1}^{9}(10i)^2\\cdot i(10-i)\r\n+\\sum_{i=1}^{9}i^2\\cdot\\frac{i(i+1)}{2}\\\\\\\\\r\n&\\quad \r\n+2\\sum_{i=1}^{9}\\sum_{j=i}^{9}100i\\cdot 10j\\cdot(10-j)\r\n+2\\sum_{i=1}^{9}\\sum_{j=i}^{9}100i\\cdot j\\cdot(j-i+1)\\\\\\\\\r\n&\\quad\r\n+2\\sum_{i=1}^{9}\\sum_{j=i}^{9}10i\\cdot j\\cdot i\\\\\\\\\r\n&=27888399\r\n\\end{aligned}$$\r\n\r\nã以äžãã解çãã¹ãå€ã¯ $\\dfrac{58905^2-27888399}{2}=\\bm{1720955313}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6679"
}
] | ã(çŸã®äœã®æ°å) $\leq$ (åã®äœã®æ°å) $\leq$ (äžã®äœã®æ°å) ãæºãã $3$ æ¡ã®æ£æŽæ°å
šäœã®éåã $S$ ãšããïŒ $S$ ã®å
ã®åæ°ã $n$ ïŒãŸã $S$ ã® $i$ çªç®ã«å°ããå
ã $S_i$ ãšãããšãïŒ $\displaystyle{\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}S_{i}S_{j}}$ ã®å€ã¯ããã€ãïŒ |
TMO2022 | https://onlinemathcontest.com/contests/tmo2022 | https://onlinemathcontest.com/contests/tmo2022/tasks/6680 | L | TMO2022(L) | 100 | 24 | 26 | [
{
"content": "ãåè§åœ¢ $ABDC$ ã¯èª¿ååè§åœ¢ã§ããããïŒ$\\triangle{ABM}\\sim \\triangle{ADC}$ ãåŸãïŒãããã $DC=\\dfrac{BM\\times AC}{AM}$ ã§ããïŒ$OD=OC$ ããïŒçŽç· $EO$ 㯠$\\angle{DEC}$ ã®å€è§ã®äºçåç·ã§ããããïŒããã¯ç·å $AD$ ã®åçŽäºçåç·ã§ãããïŒçŽç· $EO$ ãšçŽç· $AD$ ã®äº€ç¹ã $T$ ãšãïŒæåè§ã $\\measuredangle$ ã§è¡šããšïŒ\r\n$$ \\measuredangle{TKB}\r\n =\\measuredangle{ECB}\r\n =\\measuredangle{ACB}\r\n =\\measuredangle{ADB}\r\n =\\measuredangle{TDB}$$\r\nãã $T, K, B, D$ ã¯åäžååšäžã«ããïŒãããã£ãŠ $\\angle{KBD}=90^\\circ$ ãæç«ããïŒããŸ, \r\n$$AK=KD, \\quad AO=OC, \\quad \\angle{KBD}=\\angle{OMC}$$\r\nããïŒ$\\triangle{ABD}$ ãš $\\triangle{AMC}$ ããã€ãçžäŒŒå€æã«ãã㊠$K$ ãš $O$ ã察å¿ããïŒãããã£ãŠ $\\triangle{AKO}\\sim \\triangle{ABM}$ ã§ããïŒãããã $AK=\\dfrac{AB\\times AO}{AM}$ ãæãç«ã€ïŒ\\\r\nãã㟠${AK}:{DC}={DK}:{DC}=8:5$ ããïŒé·ããæŽçãããš\r\n $$ {AB}\\times{AO}:{BM}\\times{AC}=8:5$$\r\nããããïŒäžè¬ã«äžè§åœ¢ $ABC$ ã®é¢ç©ã¯ $\\dfrac{BC\\times CA\\times AB}{4\\times AO}$ ãšè¡šãããããïŒæ±ããå€ã¯ $245+16=\\textbf{261}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/tmo2022/editorial/6680"
}
] | ã$AB=7$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒãã®å€å¿ã $O$ ãšãïŒèŸº $BC$ ã®äžç¹ã $M$ ãšããïŒäžè§åœ¢ $ABC,AOM$ ããããã®å€æ¥åã®äº€ç¹ã $D ~ (\neq A)$ïŒçŽç· $AC$ ãšäžè§åœ¢ $DOC$ ã®å€æ¥åã®äº€ç¹ã $E ~ (\neq C)$ïŒçŽç· $EO$ ãšäžè§åœ¢ $BEC$ ã®å€æ¥åã®äº€ç¹ã $K ~ (\neq E)$ãšããïŒ$DK:DC=8:5$ ã§ãããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\frac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããïŒ |
OMC128 | https://onlinemathcontest.com/contests/omc128 | https://onlinemathcontest.com/contests/omc128/tasks/4733 | A | OMC128(A) | 200 | 233 | 244 | [
{
"content": "ãå¶æ°ã®æžãããé ç¹ã¯é£æ¥ã§ããªãããïŒå¶æ° $4$ ã€ãæžã蟌ãäœçœ®ã¯ïŒ$A,C,F,H$ ãš $B,D,E,G$ ã® $2$ éãã§ããïŒå¶æ°ã®äœçœ®ãåºå®ãããšãïŒ $6$ ãšäœå¯Ÿè§ç·ãå
±æããäœçœ®ã« $3$ ãæ¥ãã°ãªããïŒæ®ãã®å¥æ°ã®é
眮ã¯èªç±ã§ããïŒãã£ãŠïŒè§£çãã¹ãå€ã¯ $2\\times 4! \\times 3! = \\mathbf{288}.$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc128/editorial/4733"
}
] | ãç«æ¹äœ $ABCD-EFGH$ ããããŸãïŒä»¥äžã®æ¡ä»¶ãã¿ããããã«ïŒãã®ç«æ¹äœã®åé ç¹ã« $1$ ãã $8$ ãŸã§ã®æŽæ°ãã¡ããã©äžåºŠãã€æžã蟌ãæ¹æ³ã¯ããã€ãããŸããïŒ
- 蟺ã§çµã°ãã $2$ é ç¹ã«æžãããæŽæ°ã¯ïŒã€ãã«äºãã«çŽ ã§ããïŒ
ãã ãïŒãã¹ãŠã®é ç¹ã¯åºå¥ããïŒæŽæ°ãæžã蟌ãé çªã¯èæ
®ããŸããïŒ |
OMC128 | https://onlinemathcontest.com/contests/omc128 | https://onlinemathcontest.com/contests/omc128/tasks/3021 | B | OMC128(B) | 300 | 192 | 213 | [
{
"content": "ã$ABC$ ã®å
æ¥åãš $BC$ ã®æ¥ç¹ã $Y$ ãšãïŒè§ $A$ å
ã®åæ¥åãš $AB,BC$ ã®æ¥ç¹ããããã $X^\\prime,Y^\\prime$ ãšãããšïŒ\r\n$$XX^\\prime=BX+BY^\\prime=BY+CY=24$$\r\nãæç«ããïŒå
æ¥åãšè§ $A$ å
ã®åæ¥åã®ååŸæ¯ã¯ $AX:AX^\\prime$ ã§äžããããããïŒæ±ããå€ã¯ $\\textbf{15}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc128/editorial/3021"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒãã®å
å¿ã $I$ ãšãïŒå
æ¥åãšèŸº $AB$ ã®æ¥ç¹ã $X$ ãšãããšïŒ
$$AX=12,\quad XI=5,\quad BC=24$$
ãæç«ããŸããïŒãã®ãšãïŒè§ $A$ å
ã®åæ¥åã®ååŸãæ±ããŠãã ããïŒ |
OMC128 | https://onlinemathcontest.com/contests/omc128 | https://onlinemathcontest.com/contests/omc128/tasks/5443 | C | OMC128(C) | 300 | 154 | 213 | [
{
"content": "ãäžè¬ã« $2Ãn$ ã®ãã¹ç®ã«ã€ããŠïŒæãå³ã®åã $1$ ã®ã¿ãããªãæžã蟌ã¿æ¹ã $a_n$ éãïŒããã§ãªãæžã蟌ã¿æ¹ã $b_n$ éããšããïŒæ¡ä»¶ã¯é£ãåã $2$ ãã¹ãå¿
ã $1$ ãå«ãããšãšåå€ã§ããããšã«æ³šæããã°ïŒæŒžååŒ\r\n$$a_{n+1}=a_n+b_n, \\quad b_{n+1}=4a_n+2b_n$$\r\nãæç«ããããšããããïŒã²ãšå·¥å€«ãšããŠããããã $\\\\{b_n\\\\}$ ãæ¶å»ããã°\r\n$$a_{n+2}=3a_{n+1}+2a_n$$\r\nãæç«ããããšããããïŒ$a_1=1,b_1=4$ ããèšç®ããã° $a_6+b_6=a_7=\\textbf{2753}$ ãšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc128/editorial/5443"
}
] | ã$2Ã6$ ã®ãã¹ç®ãããïŒåãã¹ã« $1, 2, 4$ ã®ãããããæžã蟌ã¿ãŸãïŒãã®ãšãïŒèŸºã§é£ãåã£ã $2$ ãã¹ã«æžã蟌ãŸããæŽæ°ãã€ãã«äºãã«çŽ ãšãªããããªæžã蟌ã¿æ¹ã¯äœéããããŸããïŒ |
OMC128 | https://onlinemathcontest.com/contests/omc128 | https://onlinemathcontest.com/contests/omc128/tasks/4727 | D | OMC128(D) | 400 | 116 | 166 | [
{
"content": "ã$a_1\\geq a_2\\geq\\cdots\\geq a_{100}$ ãšããŠèããŠãããïŒãã®ãšãïŒäžè§äžçåŒãã次ãæãç«ã€ïŒ\r\n$$\\begin{aligned}\r\nf(x)\r\n&=\\sum_{k=1}^{50}\\big(\\left|x+a_{k}\\right|+\\left|x+a_{101-k}\\right|\\big)\\\\\\\\\r\n&\\geq\\sum_{k=1}^{50}\\big|\\left(x+a_{k}\\right)-\\left(x+a_{101-k}\\right)\\big|\\\\\\\\\r\n&\\geq\\sum_{k=1}^{50}(a_{k}-a_{101-k})\r\n\\end{aligned}$$\r\näžæ¹ã§æ¬¡ãæãç«ã€ããïŒä»¥äžãã $f(x)$ ã®æå°å€ã¯ $f(-a_{50})$ ã§ããããšããããïŒ\r\n $$f(-a_{50})=\\sum_{k=1}^{50}\\big((-a_{50}+a_{k})+(a_{50}-a_{101-k})\\big)=\\sum_{k=1}^{50}(a_{k}-a_{101-k})$$ \r\nãããŠïŒ$a_1+\\cdots+a_{100}=10000$ ãšããããã°ïŒ$f(-a_{50})=1104$ ã¯æ¬¡ãšåå€ã§ããããšããããïŒ\r\n$$a_1+\\cdots+a_{50}=5552, \\qquad a_{51}+\\cdots+a_{100}=4448$$\r\n第2åŒãã $50a_{51}\\geq 4448$ ããªãã¡ $a_{51}\\geq 89$ ã§ããããïŒ$a_1\\leq 5552-49\\times 89=1191$ ãåŸãïŒéã«\r\n$$(1191,89,\\ldots,89,88,88)$$\r\nã¯æ¡ä»¶ãã¿ããããïŒè§£çãã¹ãå€ã¯ $\\bf1191$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc128/editorial/4727"
},
{
"content": "ã(å
¬åŒè§£èª¬ãšåæ§ã«) $f(x)$ ãæå°å€ããšãã®ã¯ $x=-a_{50}$ ã§, $\\displaystyle\\sum_{k=1}^{100} |a_k-a_{50}|=1104$ ã§ãã. $a_1-a_{50}$ ãæ倧åããã(ä»ãšã®å·®å¥åãå³ãããšã§ $a_1$ ã倧ãããã). $\\displaystyle\\sum_{k=1}^{100} a_k$ ã $100$ ã®åæ°ãªã®ã§ $\\displaystyle\\sum_{k=1}^{100} a_k-a_{50}$ ã $100$ ã®åæ°ã§ããããšã«çæãã. \r\n$$(a_1-a_{50}, a_2-a_{50}, \\dots ,a_{100}-a_{50})=(1104,0,\\dots,0)$$ \r\näžã®ãšããããã®å㯠$100$ ã§å²ããš $4$ äœãã®ã§å²ãåããããã«èª¿æŽãããš\r\n$$(a_1-a_{50}, a_2-a_{50}, \\dots ,a_{100}-a_{50})=(1102,0,\\dots,-2)$$ \r\nãªã©ãèŠã€ãã. ããã $\\displaystyle\\sum_{k=1}^{100} a_k=10000$ ã«ãªãããã«èª¿æŽãããš $a_{50}=89$ ãšãªã, ãã®ãšã $a_1=1102+89=\\textbf{1191}$ .",
"text": "æèŠçãªèª¬æ",
"url": "https://onlinemathcontest.com/contests/omc128/editorial/4727/159"
}
] | ãéè² æŽæ°ã®çµ $(a_1,\dots,a_{100})$ ã以äžã® $2$ æ¡ä»¶ãã¿ãããšãïŒ$a_1$ ã®ãšãåŸãæ倧å€ãæ±ããŠãã ããïŒ
- $a_1+\cdots+a_{100}=10000$ ã§ããïŒ
- $x$ ãå®æ°å
šäœãåããšãïŒä»¥äžã§å®ãŸãé¢æ° $f(x)$ ã®æå°å€ã¯ $1104$ ã§ããïŒ
$$f(x)=\sum_{k=1}^{100}|x+a_k|$$ |
OMC128 | https://onlinemathcontest.com/contests/omc128 | https://onlinemathcontest.com/contests/omc128/tasks/4681 | E | OMC128(E) | 500 | 30 | 65 | [
{
"content": "ã$L=\\dfrac{b}{a}$ïŒ$M=\\dfrac{c}{a}$ïŒ$N=\\dfrac{d}{a}$ ãšãããš\r\n$$L+N=p^t,\\quad (M+p^t)^{b}=M^{d}$$\r\nãšãªããã $b\\lt d$ ããã³ $M$ ã¯æŽæ°ã〠$p^t$ 㯠$M$ ã®åæ°ã§ããããšããããïŒ\r\nãã£ãŠæŽæ° $s\\~(0\\leq s\\leq t)$ ã«ãã $M=p^s$ ãšãããŠïŒãã®ãšã代å
¥ãæŽçããã°æ¬¡ãåŸãïŒ\r\n$$(p^{t-s}+1)^{b}=p^{s(d-b)}$$\r\nã$s=0$ ã®ãšã $1\\lt(p^t+1)^b=1$ ãšãªãäžé©ïŒãŸã $0\\lt s\\lt t$ ã®ãšãïŒå·ŠèŸºã¯ $p$ ã®åæ°ã§ãªãã®ã«å¯ŸããŠå³èŸºã¯ $p$ ã®åæ°ã§ããããäžé©ã§ããããçµå± $t=s$ ãåŸãïŒ\r\nããã代å
¥ããã° $2^b=p^{t(d-b)}$ ãã $p=2,b=t(d-b)$ ã§ããããïŒ$L+N=p^t=2^t$ ãšåãããã°\r\n$$L=\\frac{b}{a}=\\frac{2^tt}{2t+1},\\quad N=\\frac{d}{a}=\\frac{2^t(t+1)}{2t+1}$$\r\nãåŸãããïŒ$a$ ãš $b$ ã¯äºãã«çŽ ã§ããããšã«æ³šæããã°ïŒä»¥äžãã次ãåŸãããïŒ\r\n$$a=2t+1ïŒb=2^ttïŒc=2^t(2t+1)ïŒd=2^t(t+1)ïŒp=2$$\r\néã«ãããäžããããæ¡ä»¶ãå
šãŠæºããããšã¯ç¢ºèªã§ããããïŒ$1001$ çªç®ã«å°ãã $b$ 㯠$b=2^{1001}\\times1001$ïŒ\r\nãããã£ãŠEulerã®å®çããæ±ããå€ã¯\r\n$$2^{1001}\\times1001\\equiv 2^1\\times 1001\\equiv\\bf{891}\\rm \\pmod{1111}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc128/editorial/4681"
}
] | ãæ£æŽæ° $a,b,c,d,t$ïŒ$a,b$ ã¯äºãã«çŽ ïŒããã³çŽ æ° $p$ ã¯æ¬¡ãã¿ãããŸãïŒ
$$a^d(b+c+d)^b=a^bc^d,\quad b+d=ap^t$$
$b$ ãšããŠããããå€ã®ãã¡ $1001$ çªç®ã«å°ãããã®ã«ã€ããŠïŒããã $1111$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC128 | https://onlinemathcontest.com/contests/omc128 | https://onlinemathcontest.com/contests/omc128/tasks/4944 | F | OMC128(F) | 500 | 28 | 64 | [
{
"content": "ã$A,B,C$ ãã察蟺ã«äžãããåç·ã®è¶³ã $P,Q,R$ ãšãïŒèŸº $BC, CA, AB$ ã®äžç¹ã $K, M, N$ ãšããïŒ$AH=2x, BH=2y, CH=2z$ ãšãããš, $OK = x, OM = y, ON = z$ ã§ãããã\r\n$$x+y+z=21$$\r\nãåããïŒãŸã, \r\n$$HR=\\dfrac{BH}{2}=y,\\quad HQ=\\dfrac{CH}{2}=z,\\quad HRÃHC=HAÃHP$$\r\n ãã $HP=\\dfrac{yz}{x}$ ã§ãããã \r\n$$y+z+\\dfrac{yz}{x}=18$$\r\nã§ããïŒããã«, $BC=2\\sqrt 3x$ ããäœåŒŠå®çãã\r\n$$y^2+yz+z^2=3x^2$$\r\nã§ãããã, ããããé£ç«ããŠè§£ãããšã§ $BC=2\\sqrt 3 x=\\sqrt{2271} - \\sqrt{507}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{2778}$ ã§ããïŒ \r\n\r\n----\r\n\r\n**å¥è§£.**ã$BC$ ã«ã€ã㊠$A$ ãšå察åŽã«, äžè§åœ¢ $PBC$ ãæ£äžè§åœ¢ãšãªããããªç¹ $P$ ããšã. $$AH+BH+CH=2d(O, BC)+2d(O, CA)+2d(O, AB)=2Ã18=36$$ ã§ããããšã«æ³šæãã. ãã㧠$AH$ ãš $BC$ , $BH$ ãš $AC$ , $CH$ ãš $AB$ ã®äº€ç¹ããããã $D, E, F$ ãšãããš, $\\angle BHF=\\angle BAC=60^{\\circ}$ ã§ãã, $HB=2HF, HC=2HE$ ãåŸã. $AH=2x$ ãšãããš\r\n$$HB+HC=42-2x,ãHE+HF=21-x,ãHD=x-3$$ ãšè¡šãã. ããã§$\\angle BHC+\\angle BPC=180^{\\circ}$ ãã $H, B, P, C$ ã¯å
±åã§ãã, 以äžãã $$HP=HB+HC=42-2x$$\r\nãšãªã. ããã«, äžè§åœ¢ $AEH$ ãš $BEC$ ã¯çžäŒŒã§ãã, $BC=\\sqrt 3AE$ ã§ãããã $BC=\\sqrt 3AH=2\\sqrt 3x$ ãšãªã. ãã£ãŠ, äžè§åœ¢ $HBC$ ã®é¢ç©ã¯ $HDÃBC\\/2=\\sqrt 3x(x-3)$ ãšè¡šãã.\r\näžæ¹ã§, äžè§åœ¢ $HPC$ ãš $XPB$ ãçžäŒŒãšãªããããªç¹ $X$ ã $HB$ äžã«ãšã, ãããã\r\n$$|HBC|=|HXP|-|BCP|=\\dfrac{\\sqrt 3}{4}\\\\{(42-2x)^2-12x^2\\\\}=\\sqrt 3(-2x^2-42x+441)$$\r\nãšè¡šãããšãã§ãã. $2$ åŒãæ¯èŒããããšã§, $x^2+13x-147=0$ ãã $$x=\\dfrac{\\sqrt{757}-13}{2}$$ ãå°ã, ãã£ãŠ $$BC=2\\sqrt 3x=\\sqrt{2271}-\\sqrt{507}$$ ãšãªã. ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{2778}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc128/editorial/4944"
},
{
"content": "ãäžè§é¢æ°ãçšããæ¹æ³ã§ã. èšç®ã¯å
¬åŒè§£èª¬ãã倧å€ã«ãªããŸãã, ãããã«æ±ãŸããŸã.\r\n\r\n--- \r\n\r\nãäžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã $R$ ãšã, $\\angle{A}=\\alpha, \\angle{B}=\\beta, \\angle{C}=\\gamma$ ãšããŸã. ãã®ãšã $BC=2R\\sin{\\alpha}, CA=2R\\sin{\\beta}, BC=2R\\sin{\\gamma}$ ã§ãã, èšç®ããããšã§, 以äžãããããŸã. \r\n$$2R(\\cos{\\alpha}\\cos{\\beta}+\\cos{\\beta}\\cos{\\gamma}+\\cos{\\gamma}\\cos{\\alpha})=18, R(\\cos{\\alpha}+\\cos{\\beta}+\\cos{\\gamma})=21$$\r\nããããã $7(\\cos{\\alpha}\\cos{\\beta}+\\cos{\\beta}\\cos{\\gamma}+\\cos{\\gamma}\\cos{\\alpha})=3(\\cos{\\alpha}+\\cos{\\beta}+\\cos{\\gamma}) $ ã§ãã, $\\cos\\alpha=\\dfrac{1}{2}$ ã代å
¥ã, æŽçããããšã§ä»¥äžãåŸãŸã. $$\\cos{\\beta}+\\cos{\\gamma}+14\\cos{\\beta}\\cos{\\gamma}=3$$\r\nãããŠ, äžã®åŒãã $\\gamma=120^\\circ-\\beta$ ã䜿ãã° $\\cos{\\beta}$ ã®å€ãïŒé 匵ãã°ïŒåããããã§ãã, èšãããŠããã®ã¯ $BC$ ã§ã. $$BC=2R\\sin{\\alpha}=\\sqrt{3}R=\\frac{21\\sqrt{3}}{\\frac{1}{2}+\\cos{\\beta}+{\\cos{\\gamma}}}$$ ãªã®ã§, $\\cos{\\beta}+{\\cos{\\gamma}}$ ããåããã°ããããã§ã. ãããŠããã¯, $\\beta+\\gamma=120^\\circ$ ã ããåç©ãå¹ãããã§ã. å®é, $$\\cos{\\beta}+\\cos{\\gamma}=2\\cos60^{\\circ}\\cos{\\dfrac{\\beta-\\gamma}{2}}=\\cos{\\dfrac{\\beta-\\gamma}{2}}$$ ã§ãã, ãŸã $\\cos{\\beta}\\cos{\\gamma}$ ã«ã¯ç©åã䜿ãã°, $$\\cos{\\beta}\\cos{\\gamma}=\\dfrac{1}{2}(\\cos120^{\\circ}+\\cos(\\beta-\\gamma))$$ ãšããããŸã. \r\nããããã£ãŠ $x=\\cos{\\dfrac{\\beta-\\gamma}{2}}$ ãšããã°, $2$ åè§ã®å
¬åŒãã $\\cos(\\beta-\\gamma)=2x^2-1$ ãšãªããã, äžã®åŒã¯ $$x+7\\left(2x^2-\\frac{3}{2}\\right)=3$$ ãšãªã, ããã解ãããšã§ $x=\\dfrac{-1+\\sqrt{757}}{28}$ ãåŸãŸãïŒ$x\\geq{-1}$ ããããäžæ¹ã¯äžé©ïŒ. ããªãã¡ $$BC=\\dfrac{42\\sqrt{3}}{2x+1}=\\sqrt{2271}-\\sqrt{507}$$ ãšæ±ãŸããã, 解çãã¹ãå€ã¯ $\\bf{2778}$ ãšãªããŸã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc128/editorial/4944/158"
}
] | ã$\angle A=60^{\circ}$ ãªãäžè§åœ¢ $ABC$ ã«ã€ããŠïŒãã®å€å¿ã»åå¿ããããã $O,H$ ãšããŸãïŒãŸãïŒç¹ $X$ ãšçŽç· $t$ ã®è·é¢ã $d(X, t)$ ã§è¡šããŸãïŒ
$$\begin{aligned}
d(H,BC) + d(H, CA) + d(H, AB) &= 18,\\\\
d(O, BC) + d(O, CA) + d(O, AB) &= 21
\end{aligned}$$
ã§ãããšãïŒ$BC$ ã®é·ãã¯æ£æŽæ° $a,b$ ãçšã㊠$\sqrt a - \sqrt b$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC127 (for beginners) | https://onlinemathcontest.com/contests/omc127 | https://onlinemathcontest.com/contests/omc127/tasks/4877 | A | OMC127(A) | 100 | 289 | 296 | [
{
"content": "ã $â A, â B, â C$ ãããããé è§ãšãªãå ŽåãèãããšïŒ$â A$ ã®å€§ããã¯ãããã $80^\\circ, 65^\\circ, 50^\\circ$ ãšãªãïŒãã£ãŠïŒæ±ããå€ã¯ $80+65+50=\\mathbf{195}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/4877"
}
] | ã$â B=50^\circ$ ã§ããäºç蟺äžè§åœ¢ $ABC$ ã«ãããŠïŒ$â A$ ã®å€§ãããšããŠããããå€ã®ç·åãïŒåºŠæ°æ³ã§è§£çããŠãã ããïŒ |
OMC127 (for beginners) | https://onlinemathcontest.com/contests/omc127 | https://onlinemathcontest.com/contests/omc127/tasks/2869 | B | OMC127(B) | 100 | 287 | 291 | [
{
"content": "ã æ±ããçãã $x$ ãšãããš,\r\n$$\\frac{0\\times 80+100\\times (x-80)}{x} \\geq 80$$\r\nãã®äžæ¬¡äžçåŒã解ãã°ãã, 解㯠$x \\geq 400$. ãã£ãŠçã㯠$\\textbf{400}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/2869"
}
] | ãããå¡Ÿã§ã¯æ¯å $100$ ç¹æºç¹ã®èšç®ãã¹ããè¡ã£ãŠããŸãïŒãããïŒOMCåã¯å匷ãããŒã£ãŠããããïŒç¬¬ $1$ åãã第 $80$ åã®ãã¹ãã§ãã¹ãŠ $0$ ç¹ãåã£ãŠããŸããŸããïŒåœŒããã第 $81$ åã®ãã¹ãããæ¯å $100$ ç¹ãåã£ããšãããšïŒç¬¬äœåã®ãã¹ãã§ä»ãŸã§ã®ãã¹ãã®å¹³åç¹ãã¯ãã㊠$80$ ç¹ä»¥äžã«ãªããŸããïŒ |
OMC127 (for beginners) | https://onlinemathcontest.com/contests/omc127 | https://onlinemathcontest.com/contests/omc127/tasks/4578 | C | OMC127(C) | 200 | 232 | 259 | [
{
"content": "ãäžå¹³æ¹ã®å®çãã $$PR = PQ = \\sqrt{PO^2 - QO^2} = 12$$ ã§ãã. ãŸã, äžè§åœ¢ $TRO$ ãšäžè§åœ¢ $TQP$ ã¯çžäŒŒã§ãããã, $TR = 5x$ ãšããã° $$TQ = TR\\times\\frac{PQ}{RO} = 12x$$ ã§ãã. ããã«, $\\angle PQO = \\angle PRO = 90^\\circ$ ãã $4$ ç¹ $O, P, Q, R$ ã¯åäžååšäžã«ããã®ã§, æ¹ã¹ãã®å®çãã\r\n$$TQ\\times TO = TP\\times TR \\implies 12x(12x - 5) = 5x(5x + 12)$$\r\nãåãã. ããã解ã㊠$TR = 5x = \\dfrac{600}{119}$ ãåŸã. ç¹ã«è§£çãã¹ã㯠$\\bf{719}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/4578"
},
{
"content": "ã$\\angle{\\mathrm{OPQ}}=\\theta$ ãšãããšïŒ$\\sin{\\theta}=\\dfrac{5}{13}$ïŒ\\\r\n ããã£ãŠ $2$ åè§ã®å
¬åŒããïŒ$\\cos{2\\theta}=\\dfrac{119}{169}$ïŒ\\\r\n ã$\\mathrm{PQ}=12$ ããïŒ$\\mathrm{PT}=12Ã\\dfrac{169}{119}$ïŒ\\\r\n ã$\\mathrm{RT}=12Ã\\dfrac{169}{119}-12=\\dfrac{600}{119}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/4578/150"
}
] | ã$O$ ãäžå¿ãšããååŸ $5$ ã®å $\omega$ ã«å¯ŸãïŒãã®å€éšã®ç¹ $P$ ãã $2$ æ¬ã®æ¥ç·ãåŒãïŒæ¥ç¹ããããã $Q, R$ ãšããŸãïŒãŸãïŒçŽç· $QO$ ãšçŽç· $PR$ ã®äº€ç¹ã $T$ ãšããŸãïŒ\
ã$PO=13$ ã®ãšãïŒç·å $TR$ ã®é·ãã¯äºãã«çŽ 㪠$2$ ã€ã®æ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ãæ±ããŠãã ããïŒ |
OMC127 (for beginners) | https://onlinemathcontest.com/contests/omc127 | https://onlinemathcontest.com/contests/omc127/tasks/1953 | D | OMC127(D) | 200 | 189 | 229 | [
{
"content": "ã解ãšä¿æ°ã®é¢ä¿ãã $a+b=1$ ã§ãããã, $x=a,b$ 㯠$f(x)=1-x$ ã® $2$ 解ã§ãã, ããå®æ° $k$ ã«ãã£ãŠ\r\n$$f(x)+x-1=k(x^2-x+1)$$\r\nãšè¡šãã. $f(1)=1$ ããç¹ã« $k=1$ ã§ãã, $f(1000)=\\textbf{998002}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/1953"
},
{
"content": "ã解説ã®æ¹éã¯ãšã¬ã¬ã³ãã§ããïŒå°éã«é£ç«æ¹çšåŒãäœã£ãŠã解ããã®ã§ïŒè§£èª¬ãäœã£ãŠãããŸãïŒ\\\r\n ã\\\r\n ããŸã解ãšä¿æ°ã®é¢ä¿ããïŒ$a+b=1$ïŒ$ab=1$ïŒ\\\r\n ãæ±ããã $2$ 次é¢æ°ãïŒ$f(x)=px^2+qx+r$ ãšçœ®ããšïŒæ¡ä»¶ãã以äžã® $3$ åŒãåŸãïŒ\\\r\n ã$pa^2+qa+r=b$ïŒ$pb^2+qb+r=a$ïŒ$p+q+r=1$\\\r\n ãããã§ïŒã¯ããã® $2$ æ¬ã®åŒã®åãšå·®ãèãïŒè§£ãšä¿æ°ã®é¢ä¿ãçšããïŒ\\\r\n ã$p(a^2+b^2)+q(a+b)+2r=a+b$ïŒæŽçããŠïŒ$-p+q+2r=1$ïŒ\\\r\n ã$p(a^2-b^2)+q(a-b)=b-a$ïŒæŽçããŠïŒ$p+q=-1$ïŒ$a-b \\neq 0$ãçšããïŒïŒ\\\r\n ãé£ç«æ¹çšåŒã解ãã°ïŒ$p=1$ïŒ$q=-2$ïŒ$r=2$ ãåŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/1953/151"
},
{
"content": "ã解ãšä¿æ°ã®é¢ä¿ãã $ab=1$ ã§ãããã, $x=1,a,b$ 㯠$xf(x)-1=0$ ã® $3$ 解ã§ãã, ããå®æ° $k$ ã«ãã£ãŠ\r\n$$xf(x)-1=k(x-1)(x^2-x+1)$$\r\nãšè¡šãã. å®æ°é
ã®æ¯èŒã«ãã $k=1$ ã§ãã, $f(1000)=\\mathbf{988002}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/1953/156"
}
] | ã$x$ ã®æ¹çšåŒ $x^2-x+1=0$ ã® $2$ 解 $x=a,b$ ã«ã€ããŠïŒå®æ°ä¿æ° $2$ 次å€é
åŒ $f(x)$ ã $f(a)=b, ~ f(b)=a, ~ f(1)=1$ ãã¿ãããšãïŒ$f(1000)$ ãæ±ããŠãã ããïŒ |
OMC127 (for beginners) | https://onlinemathcontest.com/contests/omc127 | https://onlinemathcontest.com/contests/omc127/tasks/2353 | E | OMC127(E) | 300 | 190 | 205 | [
{
"content": "ãäžè¬ã« $n-S(n)$ ã $9$ ã®åæ°ã§ããããšãã, æ¡ä»¶ãã $N$ 㯠$9\\times 2022=18198$ ã®åæ°ã§ããããšãããã. ãŸã $N$ ã $m$ æ¡ã®æ°ã§ãããšãããš, $10^{m-1}\\leq N=2022S(N)\\leq 18198m$ ãã $m\\leq 6$, ç¹ã« $N\\leq 18198\\times 6$ ãåŸã. ãããã£ãŠ $18198$ ã®åæ°ã $6$ ã€è©Šãã®ã¿ã§ãã, ãã®ãã¡æ¡ä»¶ãæºãããã®ã¯ $\\textbf{54594}$ ã®ã¿ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/2353"
},
{
"content": "ã仮㫠$N-S(N)$ ã $9$ ã®åæ°ã§ããããšãç¥ããªãã£ããšããŠãïŒæ¬¡ã®ããã«èããã°æ¯èŒç容æã«æ±ãŸããŸãïŒãªãïŒå³å¯æ§ã¯æ¬ ããŠããŸãïŒïŒ\\\r\n ã\\\r\n ãStep1. æ¡æ°ã«ã€ããŠã$S(N)$ ã¯ïŒã ããã $\\log_{10} N$ ã«æ¯äŸããã®ã§ïŒ$N$ ãåå倧ãããã° $N=2022S(N)$ ãšã¯ãªããªãïŒ\\\r\n ã$S(N)$ ã¯æ倧ã§æ¡æ°ã® $9$ åãªã®ã§ïŒ$99999$ ãããã§å®éšãããšïŒ$N$ ã $5$ æ¡ãè¶
ããããšã¯ç¡ãããïŒ\\\r\n ã\\\r\n ãStep2. $N$ ã®å€ãæ±ããïŒ$5$ æ¡ä»¥äžã§ããã°ïŒ$S(N)$ 㯠$45$ 以äžïŒããã§ïŒ$2022Ã45=90990$ ããé ã« $2022$ ãã€åŒãç®ãããŠãã£ãŠïŒ$N=2022S(N)$ ãåŒãåœãŠããŸã§ç¹°ãè¿ãã°ïŒãããŠæ±ããã¹ãå€ã«ãã©ãçãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/2353/149"
}
] | ãæ£æŽæ° $n$ ã®åé²æ³è¡šèšã§ã®åäœã®åã $S(n)$ ã§è¡šããšãïŒ
$$N=2022 \times S(N)$$
ãšãªãæ倧ã®æ£æŽæ° $N$ ãæ±ããŠãã ããïŒ |
OMC127 (for beginners) | https://onlinemathcontest.com/contests/omc127 | https://onlinemathcontest.com/contests/omc127/tasks/2165 | F | OMC127(F) | 400 | 76 | 123 | [
{
"content": "ãæçµçã«ã³ã€ã³ã®çœ®ãããäœçœ®ãåºå®ã, $m$ æã§ãããšãããš, æäœãéé ã«èŸ¿ãããšã§ããããé
眮ããé åºã«ã€ã㊠$2^{m-1}$ éãã§ããããšãããããã, å
šäœã§æ±ããã¹ãå Žåã®æ°ã¯,\r\n$$\r\n\\sum_{m=1}^{16} 2^{m-1} {\\_{16}\\mathrm{C}\\_m} = \\frac12\\sum_{m=0}^{16} 2^{m} {\\_{16}\\mathrm{C}\\_m} - \\frac12 = \\frac{(1+2)^{16}-1}{2}=\\mathbf{21523360}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/2165"
},
{
"content": "ã $ f(i,j) $ ã§æãå·Šã®ç³ã $ i $ , æãå³ã®ç³ã $ j $ ã§ãããããªçœ®ãæ¹ã®æ°ãšãããš, é¡æã®æ¡ä»¶ãã \r\n\r\n- $ f(i,j) = f(i+1,j+1) $ \r\n\r\n- $ f(i,j) = \\sum_{k=i}^{j-1} f(i,k) + \\sum_{k=i+1}^{j} f(k,j) \\quad (i \\neq j)$\r\n\r\n- $ f(i,j) = 1 \\quad (i=j) $\r\n\r\nããã§, $ g(k) = f(1,k) $ ãšãããš, $ g(1) = 1, g(k) = \\sum_{l=1}^{k-1} 2 g(l) $ ãã, \\\r\n $ k \\gt 1$ ã«ãã㊠$ g(k) = 2\\times 3^{k-2} $ .\r\n\r\nãã£ãŠæ±ããå€ã¯,\r\n$$\\begin{aligned} \r\n\\sum_{i=1}^{16} \\sum_{j=1}^{17-i} g(j) &= \\sum_{i=1}^{16} 3^{i-1} \\\\\\\\\r\n&= \\frac{1-3^{16}}{1-3} \\\\\\\\\r\n&= \\mathbf{21523360}\r\n\\end{aligned}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc127/editorial/2165/155"
}
] | ãæ°çŽç·äžã§ $1$ ä»¥äž $16$ 以äžã®æŽæ°ãè¡šãç¹ã«å¯ŸãïŒä»¥äžã®æäœã $1$ 以äžã®ä»»æã®åæ°ç¹°ãè¿ããŠïŒ$1$ æ以äžã®ã³ã€ã³ã眮ããŸãïŒ
- 次ã®äºã€ã®æ¡ä»¶ã®ãã¡ïŒå°ãªããšãäžã€ãã¿ãã $1$ ä»¥äž $16$ 以äžã®æŽæ° $k$ ãäžã€éžã³ïŒ$k$ ãè¡šãç¹ã«åäžã®ã³ã€ã³ã $1$ æ眮ãïŒãã ãïŒãã®ãã㪠$k$ ãååšããªãå ŽåïŒãã®æç¹ã§æäœã¯çµäºããïŒ**ååšããå Žåã«æäœãçµäºããŠããã**ïŒïŒ
- $1 \leq k^{\prime} \leq k$ ãã¿ãããã¹ãŠã®æŽæ° $k^{\prime}$ ã«ã€ããŠïŒ$k^{\prime}$ ãè¡šãç¹ã«ã³ã€ã³ã¯çœ®ãããŠããªãïŒ
- $k \leq k^{\prime} \leq 16$ ãã¿ãããã¹ãŠã®æŽæ° $k^{\prime}$ ã«ã€ããŠïŒ$k^{\prime}$ ãè¡šãç¹ã«ã³ã€ã³ã¯çœ®ãããŠããªãïŒ
ããã®ãšãïŒã³ã€ã³ã®çœ®ãæ¹ã¯äœéããããŸããïŒãªãïŒæçµçã«ã³ã€ã³ã®çœ®ãããäœçœ®ãäžèŽããå Žåã§ãïŒãããã眮ãé åºãç°ãªããã®ã¯åºå¥ããŸãïŒ |
OMC126 | https://onlinemathcontest.com/contests/omc126 | https://onlinemathcontest.com/contests/omc126/tasks/3266 | A | OMC126(A) | 100 | 205 | 233 | [
{
"content": "**解æ³1.** $\\mod{3}$ ã§èãããš $(a, b, c)$ ã®çµãšããŠããåŸããã®ã¯ $(0, 1, 2)$ ãããã¯ãã®å
¥ãæ¿ã, ãã㊠$(0, 0, 0)$, $(1, 1, 1)$, $(2, 2, 2)$ ã§ãã. ããããã®å Žåã®æ°ãåèšããããšã§ $6\\times4\\times3\\times3+4^3+3^3+3^3=\\mathbf{334}$ ãåŸã.\r\n- - - -\r\n**解æ³2.**ãçµ $(a, b, c)$ ã $3$ æ¡ä»¥äžã®éè² æŽæ° $100a+10b+c$ ãšåäžèŠããã°, æ±ããã¹ã㯠$0$ ä»¥äž $999$ 以äžã® $3$ ã®åæ°ã®åæ°ã§ããããšãããã, ãã㯠$\\mathbf{334}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc126/editorial/3266"
}
] | ã$0$ ä»¥äž $9$ 以äžã®é åºä»ããæŽæ°ã®çµ $(a, b, c)$ ã®ãã¡, $a+b+c$ ã $3$ ã®åæ°ã§ãããã®ã¯ããã€ãããŸããïŒ |
OMC126 | https://onlinemathcontest.com/contests/omc126 | https://onlinemathcontest.com/contests/omc126/tasks/3267 | B | OMC126(B) | 200 | 169 | 207 | [
{
"content": "ãäžè§åœ¢ $A_i A_j A_k~(i\\lt j\\lt k)$ ã«ã€ããŠ, ååšè§ã®å®çãã\r\n$$\\angle A_i A_j A_k=2.5(72+i-k)^\\circ, \\quad \\angle A_j A_k A_i=2.5(j-i)^\\circ, \\quad \\angle A_k A_i A_j=2.5(k-j)^\\circ$$\r\nã§ããããšã«çæããã°, ã©ã®å
è§ã®å€§ããã $10$ ã®åæ°ãšãªãããšã¯\r\n$$i\\equiv j\\equiv k\\pmod{4}$$\r\nãšåå€ã§ãã. $4$ ã§å²ã£ãäœããããããã®å Žåã«ã€ããŠæ±ããã¹ãäžè§åœ¢ã®åæ°ã¯ ${}\\_{18}\\mathrm{C}{}\\_3$ ã§ããã®ã§, 解çãã¹ãå€ã¯ ${}\\_{18}\\mathrm{C}{}\\_3\\times4=\\mathbf{3264}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc126/editorial/3267"
}
] | ãæ£ $72$ è§åœ¢ $A_1 A_2 \cdots A_{72}$ ã®çžç°ãªã $3$ é ç¹ãéžãã§ã§ããäžè§åœ¢ã®ãã¡, ã©ã®å
è§ã®å€§ããã (床æ°æ³ã§) $10$ ã®åæ°ãšãªããã®ã¯ããã€ãããŸããïŒãã ã, é ç¹ãéžã¶é åºã¯åºå¥ããŸãã. |
OMC126 | https://onlinemathcontest.com/contests/omc126 | https://onlinemathcontest.com/contests/omc126/tasks/4034 | C | OMC126(C) | 300 | 187 | 192 | [
{
"content": "ããµã€ã³ãã®ç®ã®åºæ¹ã¯ $216$ éãããã®ã§, ãã®ãã¡ $3$ åæ¯ã£ããšãã«OMCåãæ°çŽç·äžã® $0$ ã«æ»ã£ãŠãããããªç®ã®åºæ¹ã調ã¹ãã°ããã, ããã㯠$1\\leq{p}\\lt{q}\\leq6$ ãæºããæŽæ°ã®çµ $(p,q)$ ã®çµæ°ã«çããããšã瀺ãã. \r\nããŸã, $1$ åç®ã« $p$ ãåºã, $2$ åç®ã« $q$ ãåºãã° $p\\lt{q}$ ãã $p$ 㯠$q$ ã®åæ°ã«ãªãã, ãŸã $1\\leq{q-p}\\leq5$ ã§ããã®ã§, OMCåã $3$ åç®ã§ $q-p$ ãåºãã°, ãããŠãã®æã«éã $0$ ã«å°éããããšãã§ãã. ãããŠå
ã»ã©ã§ã¯ãªãã±ãŒã¹, ããªãã¡ $2$ åæ¯ãçµãããšãã« OMCåãæ°çŽç·äžã® $0$ 以äžã® $r$ ã«ãããªãã°, $3$ åç®ã§ $r$ ãåºããç¶æ
ã ãšããŠã, $r$ 㯠$r$ ã®åæ°ãªã®ã§, $0$ ã«æ»ã£ãŠããããšã¯ãªãããææã®çµè«ãåŸã. \r\nããã£ãŠ, äžãã¿ãã $(p,q)$ ã®çµæ°ã¯ $15$ çµã§ãããã, æ±ããã¹ã確ç㯠$\\dfrac{5}{72}$ ã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{77}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc126/editorial/4034"
}
] | ãOMCåã¯æå, å³åããæ£ãšããæ°çŽç·äžã® $0$ ã«ããŸã. äžè¬ã«, æ°çŽç·äžã® $m$ ã«ãããšãã«æ¬¡ã®æäœãæœããŸã.
- ã©ã®ç®ãç確çã§åºããããªäžè¬çãªå
é¢äœã®ãµã€ã³ãã $1$ ã€æ¯ã, åºãç®ã $n$ ãšãããšã, $m$ ã $n$ ã®åæ°ãªãã° $n$ ã ãå³ã«é²ã¿, ããã§ãªããªãã° $n$ ã ãå·Šã«é²ã.
ãããŠ, ãã®ãããªæäœã $3$ åè¡ã£ãæã«OMCåãæ°çŽç·äžã® $0$ ã«æ»ã£ãŠããŠãããããªç¢ºçã¯, äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC126 | https://onlinemathcontest.com/contests/omc126 | https://onlinemathcontest.com/contests/omc126/tasks/3270 | D | OMC126(D) | 400 | 62 | 87 | [
{
"content": "ã$N=100$ãšãã. $a^2=a+2{}\\_a\\mathrm{C}{}\\_2$ ãªã©ãæç«ããããšã«çæããã°, $(abc)^2$ ã¯ä»¥äžã®ããã«æžãããããã.\r\n$$abc+\r\n2(ab{}\\_c\\mathrm{C}{}\\_2+bc{}\\_a\\mathrm{C}{}\\_2+ca{}\\_b\\mathrm{C}{}\\_2)+\r\n4(a{}\\_b\\mathrm{C}{}\\_2\\cdot{}\\_c\\mathrm{C}{}\\_2+b{}\\_c\\mathrm{C}{}\\_2\\cdot{}\\_a\\mathrm{C}{}\\_2+c{}\\_a\\mathrm{C}{}\\_2\\cdot{}\\_b\\mathrm{C}{}\\_2)+\r\n8({}\\_a\\mathrm{C}{}\\_2\\cdot{}\\_b\\mathrm{C}{}\\_2\\cdot{}\\_c\\mathrm{C}{}\\_2)$$ \r\nã$N+2$ åã®çœäžžã®ãã¡ $5$ åãé»ãå¡ãã€ã¶ããããªå Žåã®æ°ãèãããš, å·Šãã $2$ åç®, $4$ åç®ã®é»äžžã®äœçœ®ãåºå®ããŠèããããšã§, ãã¹ãŠã®çµã«ã€ããŠã® $abc$ ã®ç·åãšçãããªã. \r\nåæ§ã«, $N+2$ åã®çœäžžã®ãã¡ $6$ åãé»ãå¡ãã€ã¶ãå Žåã®æ°ãå·Šãã $2$ åç®, $4$ åç®ã®é»äžžã®äœçœ®ãåºå®ããŠèããããšã§ $ab{}\\_c\\mathrm{C}{}\\_2$ ã®ç·åãåŸã. \\\r\nãæ®ãã®é
ãåæ§ã«èããããšã§ $(abc)^2$ ã®ç·åã¯ä»¥äžã®ããã«æ±ããããïŒ\r\n$$\\begin{aligned}\r\n&\\quad {}\\_{N+2}\\mathrm{C}{}\\_5+2\\times3\\times{}\\_{N+2}\\mathrm{C}{}\\_6+4\\times3\\times{}\\_{N+2}\\mathrm{C}{}\\_7+8\\times{}\\_{N+2}\\mathrm{C}{}\\_8 \\\\\\\\\r\n&={}\\_{N+2}\\mathrm{C}{}\\_5\\bigg(1+6\\times\\frac{N-3}{6}+12\\times\\frac{(N-3)(N-4)}{6\\times7}+8\\times\\frac{(N-3)(N-4)(N-5)}{6\\times7\\times8}\\bigg) \\\\\\\\\r\n&= {}\\_{N+2}\\mathrm{C}{}\\_5 \\times \\frac{N(N^2+5)}{42}\\\\\\\\\r\n&= \\bf{1984126567500}.\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc126/editorial/3270"
},
{
"content": "ãäžè¬ã«æ¡ä»¶ã $a+b+c=N(\\geq 3)$ ãšããïŒåœ¢åŒçåªçŽæ°ãšããŠæ¬¡ãæç«ããïŒ\r\n$$\\sum_{n\\geq 0}n^2x^n=\\dfrac{x+x^2}{(1-x)^3}$$\r\n\r\n<details>\r\nã次ã®ããã«å°åºã§ããïŒ\r\n$$\\begin{aligned}\r\n\\sum_{n\\geq 0}n^2x^n\r\n&=\\sum_{n\\geq 0}(n(n-1)+n)x^n\\\\\\\\\r\n&=x^2\\sum_{n\\geq 2}n(n-1)x^{n-2}+x\\sum_{n\\geq 1}nx^{n-1}\\\\\\\\\r\n&=x^2\\left(\\sum_{n\\geq 0}x^n\\right)^{\\prime\\prime}+x\\left(\\sum_{n\\geq 0}x^n\\right)^{\\prime}\\\\\\\\\r\n&=x^2\\left(\\frac{1}{1-x}\\right)^{\\prime\\prime}+x\\left(\\frac{1}{1-x}\\right)^{\\prime}\\\\\\\\\r\n&=x^2\\frac{2}{(1-x)^3}+x\\frac{1}{(1-x)^2}\\\\\\\\\r\n&=\\frac{x+x^2}{(1-x)^3}\r\n\\end{aligned}$$\r\n\r\nããããã¯ããæ©æ¢°çãªå°åºãšããŠïŒ$F(x)=\\sum_{n\\geq 0}n^2x^n$ ãšããã°\r\n$$\\begin{aligned}\r\n(1-x)F(n)&=0^2+\\sum_{n\\geq 1}(n^2-(n-1)^2)x^n=\\sum_{n\\geq 1}(2n-1)x^n,\\\\\\\\\r\n(1-x)^2F(n)&=(2\\cdot 1-1)x+\\sum_{n\\geq 2}((2n-1)-(2(n-1)-1))x^n\\\\\\\\\r\n&=x+\\sum_{n\\geq 2}2x^n=x+\\frac{2x^2}{1-x}=\\frac{x+x^2}{1-x}\r\n\\end{aligned}$$\r\nãšãªãããšããåŸãïŒ\r\n<\\/details>\r\n\r\nãåŸã£ãŠæ±ããå€ã¯ $\\left(\\dfrac{x+x^2}{(1-x)^3}\\right)^3$ ã® $x^{N}$ ã®ä¿æ°ã§ããïŒ\r\n$$(x+x^2)^3=x^3+3x^4+3x^5+x^6,\\quad\\dfrac{1}{(1-x)^9}=\\sum_{n\\geq 0}\\binom{n+8}{8}x^n$$\r\nã«æ³šæããã°ããã¯\r\n$$\r\n\\binom{N-3+8}{8}+3\\binom{N-4+8}{8}+3\\binom{N-5+8}{8}+\\binom{N-6+8}{8}\r\n=\\frac{(N^2-4)(N^2-1)N^2(N^2+5)}{7!}$$\r\nãšæ±ããããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc126/editorial/3270/152"
}
] | ã$a+b+c=100$ ãæºããé åºä»ããæ£æŽæ°ã®çµ $(a, b, c)$ ãã¹ãŠã«ã€ããŠïŒ$(abc)^2$ ã®ç·åãæ±ããŠãã ãã. |
OMC126 | https://onlinemathcontest.com/contests/omc126 | https://onlinemathcontest.com/contests/omc126/tasks/2701 | E | OMC126(E) | 500 | 26 | 51 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®å€å¿ã $O$, å€æ¥åã $\\Gamma$ ãšãã, $\\Gamma$ ã§ã® $A$ ã®å¯Ÿè¹ ç¹ã $Q$ ãšãããš, well-known factãšã㊠$3$ ç¹ $H, M, Q$ ã¯åäžçŽç·äžã«çééã«äžŠã¶. ããŸ, ç¹ $A$ ãäžå¿ãšããååŸ $\\sqrt{AF\\times AB}$ ã®åã«ããå転ãèãã. æ¹ã¹ãã®å®çãã, äžè§åœ¢ $PHD$ ã®å€æ¥åã¯å転ã«ãã£ãŠäžå€ã§ãã, $\\Gamma$ ã¯çŽç· $EF$ ã«ç§»ãããšãããã. ããªãã¡ $X$ 㯠$\\Gamma$ äžã«ãã, $\\angle MXQ=\\angle AXQ=90^\\circ$ ã§ãããã, äžè§åœ¢ $MHY$ ãš $MQX$ ã®ååãã $HY$ ãš $AM$ ã¯çŽäº€ãã.\\\r\nããããã£ãŠäžè§åœ¢ $AHY$ ãšäžè§åœ¢ $AMD$ ã¯çžäŒŒã§ãã,\r\n$$YH=\\dfrac{MD\\times AH}{AM}$$\r\nãæç«ããã®ã§, $AM, MD, AH$ ã®é·ããããããæ±ããã°ãã.\r\n\r\n- $AM$ ã«ã€ããŠ, äžç·å®çãã $2(AM^2+BM^2)=AB^2+AC^2$ ã§ãããã $AM=\\dfrac{\\sqrt{129}}{2}$ ã§ãã.\r\n- $MD$ ã«ã€ããŠ, $CD=\\dfrac{5}{7}$ ã容æã«ããããã, $MD=\\dfrac72-CD=\\dfrac{39}{14}$ ã§ãã.\r\n- $AH$ ã«ã€ããŠ, $\\angle BOM=\\angle BAC=60^\\circ$ ãã $AH=2OM=2\\times\\dfrac72\\times\\dfrac1{\\sqrt3}=\\dfrac{7\\sqrt3}{3}$ ã§ãã.\r\n\r\n以äžãã $YH=\\dfrac{13\\sqrt{43}}{43}$ ã§ãããã, æ±ããã¹ãå€ã¯ $13+43+43=\\mathbf{99}$ ã§ãã. \r\n\r\n---\r\n\r\n**泚æïŒ** $X$ ã $\\Gamma$ äžã«ããããšã¯å転ãçšããªããŠã瀺ãããïŒ$F$, $B$, $X$, $P$ ã¯æ¹ã¹ãã®å®çããåäžååšäžã«ãããã, $\\angle AXB=\\angle AFP=\\angle AFE=\\angle ACB$ ãæãç«ã€.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc126/editorial/2701"
},
{
"content": "ãäžè§åœ¢ã®åœ¢ç¶ããããããããã£ãŠããã®ã§, 座æšèšç®ã§ãŽãªæŒããŠã¿ãŸããã. \r\nãäœåŒŠå®çãã $\\angle{BAC}=60^{\\circ}$ ããããã®ã§, $A(0,0), B(4,4\\sqrt3), C(5,0)$ ãšãããŠã¿ãŸã. ä», ç°¡åãªèšç®ã«ãã $$M\\left(\\frac{9}{2}, 2\\sqrt3\\right), E(4,0), F\\left(\\frac{5}{4}, \\frac{5\\sqrt3}{4}\\right), H(4,\\dfrac{1}{\\sqrt3}), P\\left(\\frac{180}{89}, \\frac{80\\sqrt3}{89}\\right)$$ ãããããŸã. ãªã, $P$ ã«ã€ããŠã¯, $2$ çŽç·ã®äº€ç¹ãšããŠæçŽã«èšç®ããŠãåºãŸãã, çŽç· $AP$ ãäžè§åœ¢ $AEF$ ã®symmedianã§ããããšãã, $EP:FP=AE^2:AF^2=64:25$ ã§ããããšã䜿ã£ãŠãåºãŸã. \r\nãããŠ, $4$ ç¹ $D,H,P,X$ ãåäžååšäžã«ããããšãã, æ¹ã¹ãã®å®çãã $$AP\\times{AX}=AH\\times{AD}$$ ã§ãã, ãŸã$$AH\\times{AD}=AE\\times{AC}=20$$ ã ãã $AP\\times{AX}=20$ ã§ã. ä»,$$AP=\\sqrt{\\left(\\frac{180}{89}\\right)^2+\\left(\\frac{80\\sqrt3}{89}\\right)^2}=\\frac{20\\sqrt{129}}{89}$$ ã§ãããã $AX=\\dfrac{89}{\\sqrt{129}}$ ã§ãã, èšç®ããããšã«ãã£ãŠ, $X$ ã® $x$ 座æšã $\\dfrac{267}{43}$ ãšæ±ãŸããŸã. \r\nããããã£ãŠ, $Y$ ã® $x$ 座æšã¯ $$2\\times\\frac{9}{2}-\\frac{267}{43}=\\frac{120}{43}$$ ã§ãã, $Y\\left(\\dfrac{120}{43}, \\dfrac{160\\sqrt3}{129}\\right)$ ãšãªããã, ç·å $YH$ ã®é·ãã¯, $$\\sqrt{\\left(\\frac{120}{43}-4\\right)^2+\\left(\\frac{160\\sqrt3}{129}-\\frac{1}{\\sqrt3}\\right)^2}=\\frac{13\\sqrt{43}}{43}$$ ãšæ±ãŸããŸãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc126/editorial/2701/143"
}
] | $$AB=8,\quad BC=7,\quad CA=5$$
ãã¿ããäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC$ ã®äžç¹ã $M$, ç¹ $A, B, C$ ãã察蟺ã«ããããåç·ã®è¶³ããããã $D, E, F$ ãšã, åå¿ã $H$ ãšããŸã. ããã« $AM$ ãš $EF$ ã®äº€ç¹ã $P$, äžè§åœ¢ $PHD$ ã®å€æ¥åãšçŽç· $AM$ ã®äº€ç¹ã®ãã¡ $P$ ã§ãªããã®ã $X$, $M$ ãäžå¿ã« $X$ ãšå¯Ÿç§°ãªäœçœ®ã«ããç¹ã $Y$ ãšãããšã, ç·å $YH$ ã®é·ããæ±ããŠãã ãã.\
ããã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a, c$ ãšå¹³æ¹å åããããªãæ£æŽæ° $b$ ãçšã㊠$\dfrac{a\sqrt{b}}{c}$ ãšè¡šãããã®ã§ $a+b+c$ ã解çããŠãã ãã. |
OMC126 | https://onlinemathcontest.com/contests/omc126 | https://onlinemathcontest.com/contests/omc126/tasks/2445 | F | OMC126(F) | 500 | 31 | 73 | [
{
"content": "ã$a, b, c$ ã«éè€ãããå Žå, 察称æ§ãã $a=b$ ãšããŠèããŠãã, äžåŒã¯\r\n$$(a+c)(a-c)^2=256$$\r\nãšãªã. 巊蟺ã®å æ°ã¯ãã¹ãŠ $2$ ã¹ãã§ããããšã«çæãããš, 以äžããã³ãã®å·¡åãé©ãã. \r\n$$(6, 6, 10), (10, 10, 6), (31, 31, 33), (33, 33, 31)$$\r\nã以äžããã§ãªãå Žåãèãã. ããã§, $a, b, c$ ã®å¶å¥ã¯äžèŽããããšã容æã«ããã, 巊蟺ãæ次åŒã§ããããšã«çæããã°, $a, b, c$ ã¯çžç°ãªãå¥æ°ã§ãã, å³èŸºã $4, 32, 256$ ã®ããããã§ããå Žåã«åž°çããã.\\\r\nã察称æ§ãã, $a\\lt b\\lt c$ ãŸã㯠$a\\lt c\\lt b$ ã®å Žåã«ã€ããŠèããã°ãã. æ£ã®å¶æ° $d, e$ ãçšããŠåè
㯠$b=a+d, c=a+d+e$, åŸè
㯠$b=a+d+e, c=a+d$ ãšè¡šãã. ããããã®å Žåã«ã€ããŠäžåŒã®å·ŠèŸºãå±éãããš\r\n$$2ad^2+2ade+2ae^2+d^3+2d^2e+3de^2+e^3$$\r\n$$2ad^2+2ade+2ae^2+d^3+d^2e+2de^2+e^3$$\r\nãªã, $a^2(a-b)+b^2(b-c)+c^2(c-a)$ ãšæžãæããããšã§å±éã容æã«ãªã. ãã£ãŠ, ãããã®å Žåã\r\n$$256\\ge (巊蟺) \\gt 2a(d^2+de+e^2)+(d+e)(d^2+e^2)$$\r\n\r\n- $d=e=2$ ã®ãšã, å±éããåŒã«ä»£å
¥ããããšã§, $(9, 13, 11)$ ãå¯äžé©ããããšãåãã.\r\n- $\\\\{d,e\\\\}=\\\\{2,4\\\\}$ ã®ãšã, $256\\gt 56a+120$ ãã $a=1$ ãåãã, $(1, 3, 7)$ ã®ã¿ãé©ãã.\r\n- $d+e\\ge8$ ã®ãšã, $256\\gt 2a(d^2+de+e^2)+8(d^2+e^2)\\gt 8\\times32=256$ ãšãªãäžé©ã§ãã.\r\n\r\nã以äžãã, 以äžãšãã®å·¡åãé©ãã. ãã£ãŠè§£çãã¹ãå€ã¯ $3(11 + 33 + 22 + 26 + 95 + 97)=\\mathbf{852}$. \r\n$$(1, 3, 7), (9, 13, 11), (6, 6, 10), (10, 10, 6), (31, 31, 33), (33, 33, 31)$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc126/editorial/2445"
}
] | ãæ£æŽæ°ã®ïŒé åºãåºå¥ããïŒçµ $(a, b, c)$ ã§ãã£ãŠ
$$a^3+b^3+c^3-a^2b-b^2c-c^2a=256$$
ãã¿ãããã®ãã¹ãŠã«ã€ããŠ, $a+b+c$ ã®ç·åãæ±ããŠãã ãã. |
OMC125 (for beginners) | https://onlinemathcontest.com/contests/omc125 | https://onlinemathcontest.com/contests/omc125/tasks/4660 | A | OMC125(A) | 100 | 287 | 296 | [
{
"content": "ã$n\\geq 2$ ã«ãããŠ\r\n$$A_{n+1}-A_{n}=(A_1+\\cdots+A_n)-(A_1+\\cdots+A_{n-1})=A_n$$\r\nããªãã¡ $A_{n+1}=2A_n$ ã§ããïŒãã£ãŠ $A_2=1$ ãã $A_{10}=2^8A_2=\\textbf{256}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc125/editorial/4660"
}
] | ã$A_1=1$ ããã³ $n=1,2,\ldots$ ã«å¯Ÿã
$$A_{n+1}=A_1+A_2+\cdots+A_n$$
ãã¿ããæ°å $\\{A_n\\}$ ã«ã€ããŠïŒ$A_{10}$ ãæ±ããŠãã ããïŒ |
OMC125 (for beginners) | https://onlinemathcontest.com/contests/omc125 | https://onlinemathcontest.com/contests/omc125/tasks/4515 | B | OMC125(B) | 100 | 258 | 270 | [
{
"content": "ãç·å $PQ$ ã®é·ãã $x$ ãšãããšïŒ$k$ åç®ã« $2$ ç¹ãéãªããŸã§ã« $2$ ç¹ãåããè·é¢ã®åèšã¯ $(2k-1)x$ ã§ããïŒãã£ãŠïŒ$k$ åç®ã« $2$ ç¹ãéãªããŸã§ã®æèŠæé㯠$2k-1$ ã«æ¯äŸãïŒ$N=357Ã\\dfrac{17}{3}=\\textbf{2023}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc125/editorial/4515"
}
] | ãå¹³é¢äžã«ç·å $PQ$ ããããŸãïŒããŸïŒç¹ $A$ ãšç¹ $B$ ã¯ãããã $P,Q$ ããåæã«åºçºãïŒåãäžå®ã®éãã§ç·å $PQ$ ãåŸåŸ©ãç¶ããŸãïŒãã® $2$ ç¹ã $2$ åç®ã«éãªããŸã§ã« $357$ ç§ããã£ããšãïŒ$9$ åç®ã«éãªããŸã§ã«ã¯ $N$ ç§ããããŸãïŒ$N$ ã解çããŠãã ããïŒ |
OMC125 (for beginners) | https://onlinemathcontest.com/contests/omc125 | https://onlinemathcontest.com/contests/omc125/tasks/3596 | C | OMC125(C) | 200 | 206 | 274 | [
{
"content": "ã$0$ ã§ãªãæŽæ°ã®çµ $(a,b)$ ã«å¯ŸãïŒ\r\n$$\\frac{20}{a} + \\frac{22}{b} =1 \\iff 22a+20b=ab \\iff (a-20)(b-22)=440. $$\r\nã㟠$440=2^3\\times 5\\times 11$ ã¯çŽæ°ãïŒè² ã®çŽæ°ãå«ããŠïŒ $32$ åæã€ããïŒ$(0,0)$ ãé€å€ããããšã«çæããã°æ±ããåæ°ã¯ $\\textbf{31}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc125/editorial/3596"
}
] | ã$\dfrac{20}{a} + \dfrac{22}{b} =1$ ãã¿ãã $0$ ã§ãªãæŽæ°ã®çµ $(a,b)$ ã®åæ°ãæ±ããŠãã ããïŒ |
OMC125 (for beginners) | https://onlinemathcontest.com/contests/omc125 | https://onlinemathcontest.com/contests/omc125/tasks/4516 | D | OMC125(D) | 300 | 175 | 213 | [
{
"content": "ãäžåŒã§ $1$ ã€ç®ã®éåã $S$ ã«äžèŽããããšã¯ïŒ\r\n$$(A_1\\cup A_2)=(A_3\\cup A_4)=\\cdots=(A_{2021}\\cup A_{2022})=S$$\r\nãšåå€ã§ããïŒããã«ïŒ$ A_1\\cap A_2,\\cdots,A_{2021}\\cap A_{2022}$ ã®å°ãªããšãäžã€ã« $S$ ã®åå
ãå
¥ãããšããïŒããããã $S$ ã®åå
㯠$A_1,\\ldots,A_{2022}$ ã®ãã¡å°ãªããšã $1012$ å以äžã«å«ãŸããïŒéã«ïŒãã¹ãŠã®å
ãã¡ããã© $1012$ åã«å«ãŸãããããªæ§æã確ãã«ååšããïŒäŸãã°ïŒ$A_1=A_3=\\cdots=A_{2021}=S$ ãšãïŒ$A_{2i}=\\\\{2i-1,2i\\\\}$ ãšããã°ããïŒãã£ãŠïŒæ±ããæå°å€ã¯ $2022\\times 1012=\\textbf{2046264}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc125/editorial/4516"
}
] | ãéå $S=\\{1,2,\ldots,2022\\}$ ãããïŒ$A_1,A_2,\ldots,A_{2022}$ ã¯ãããã $S$ ã®ç©ºã§ãªãéšåéåã§ãïŒããŸïŒ
$$\begin{aligned}
S &= (A_1\cup A_2)\cap (A_3\cup A_4)\cap \cdots \cap (A_{2021}\cup A_{2022}) \\\\
&= (A_1\cap A_2)\cup (A_3\cap A_4)\cup \cdots \cup (A_{2021}\cap A_{2022})
\end{aligned}$$
ã§ãããšãïŒ$A_1, A_2, \ldots, A_{2022}$ ã®èŠçŽ æ°ã®ç·åãšããŠããããæå°å€ãæ±ããŠãã ããïŒ |
OMC125 (for beginners) | https://onlinemathcontest.com/contests/omc125 | https://onlinemathcontest.com/contests/omc125/tasks/4518 | E | OMC125(E) | 300 | 164 | 210 | [
{
"content": "ããŸã $\\\\{a_1,a_3,\\ldots,a_9\\\\}=\\\\{2,4,\\ldots,10\\\\}$ ãå¿
èŠã§ããããïŒããã®å¯Ÿå¿ãèãããïŒ$a_5=6$ ã®ãšãïŒæ®ãã¯ä»»æã®äžŠã¹æ¿ããé©ãããã $24$ éãã ãïŒ$a_1=6$ ãŸã㯠$a_7=6$ ã®ãšã㯠$a_5\\neq 10$ ãããã«å¿
èŠã§ãããããããã $18$ éããšãããïŒããªãã¡çµ $(a_1,a_3,\\ldots,a_9)$ ã¯å
šäœã§ã¯ $60$ éãã§ããïŒ\\\r\nã$\\\\{a_2,a_4,\\ldots,a_{10}\\\\}=\\\\{1,3,\\ldots,9\\\\}$ ã«ã€ããŠãåæ§ã ããïŒæ±ããå€ã¯ $60^2=\\mathbf{3600}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc125/editorial/4518"
},
{
"content": "ãBonus: åé¡æã® $10$ ããã¹ãŠ $14$ ã«çœ®ãæ¿ããå Žåã®çãã¯ïŒ\r\n\r\n<details><summary>解説<\\/summary>\r\nã$(1,3,5,7,9,11,13)$ ã®äžŠã³æ¿ã $p$ ã§ãã£ãŠ $\\gcd(i,p_i)=1\\ (1\\leq i\\leq 7)$ ãšãªããã®ãæ°ãäžãïŒãã®åæ°ãäºä¹ããã°ããïŒ$\\gcd(i,p_i)=1\\ (1\\leq i\\leq 7)$ ã¯ïŒ$i$ ãš $p_i$ ã®çµã¿åãããšã㊠$(3,3),(3,9),(6,3),(6,9),(5,5),(7,7)$ ãååšããªãããšãšåå€ã§ããïŒããã¯ïŒä»¥äžã®ããã«èšãæããããïŒ\r\n\r\n----\r\n\r\nã$U=\\\\{u_1,u_2,\\ldots,u_7\\\\},V=\\\\{v_1,v_2,\\ldots,v_7\\\\}$ ãé ç¹éåãšãïŒ$U$ ãš $V$ ã®ä»»æã®é ç¹éã«èŸºã匵ã£ã蟺éåã $E$ ãšããïŒ$6$ ã€ã®èŸº $(u_1,v_1),(u_1,v_2),(u_2,v_1),(u_2,v_2),(u_3,v_3),(u_4,v_4)$ ãçŠæ¢èŸºãšåŒã¶ãšãïŒäºéšå®å
šã°ã©ã $(U+V,E)$ ã®æ倧ãããã³ã°ã§ãã£ãŠïŒçŠæ¢èŸºãäžã€ãå«ãŸãªããã®ã®åæ°ãæ°ãäžããïŒ\r\n\r\n----\r\n\r\nãããã§ïŒ$a_k$ ãã$k$ åã®çŠæ¢èŸºã®éžã³æ¹ ${}\\_6\\mathrm{C}\\_{k}$ éãããããã«ã€ããŠïŒãã®çŠæ¢èŸºãå
šãŠå«ããããã³ã°ã®å Žåã®æ°ãèãããšãïŒãããã®ç·åããšå®çŸ©ãããšïŒ$a_k$ ã¯ä»¥äžã®ããã«èšç®ãããïŒ\r\n\r\n- $a_0=7!$\r\n- $a_1=6!\\times 6$\r\n- $a_2=5!\\times 11$\r\n- $a_3=4!\\times 8$\r\n- $a_4=3!\\times 2$\r\n- $a_5,a_6=0$\r\n\r\nããã£ãŠïŒå
é€åçããçŠæ¢èŸºãäžã€ãå«ãŸãªãæ倧ãããã³ã°ã®åæ°ã¯ $a_0-a_1+a_2-a_3+a_4=1860$ ã§ããïŒãããã£ãŠïŒå
ã®åé¡ã®çã㯠$1860^2=\\mathbf{3459600}$ ã§ããïŒ\r\n\r\nããã®ããã«ïŒå
é€åçãçšãããšæ©æ¢°çã«èšç®ãå¯èœã§ããïŒ\r\n\r\n<\\/details>",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc125/editorial/4518/161"
}
] | ã$1,2,\ldots,10$ ã®äžŠã³æ¿ã $a_1,a_2,\ldots,a_{10}$ ã§ãã£ãŠïŒä»»æã® $k=1,2,\ldots,10$ ã«ã€ã㊠$a_k$ ãš $k$ ãäºãã«çŽ ã§ãããã®ã¯ããã€ãããŸããïŒ |
OMC125 (for beginners) | https://onlinemathcontest.com/contests/omc125 | https://onlinemathcontest.com/contests/omc125/tasks/4344 | F | OMC125(F) | 400 | 37 | 87 | [
{
"content": "ã$AC$ ãš $BD$ ã®äº€ç¹ã $X$ ãšãããšïŒ$â ADB=â BDC$ ãªã®ã§ $AX:XC=(10+\\sqrt{11}):(10-\\sqrt{11})$ ã§ããïŒãã£ãŠ \r\n$$MX:XC=\\sqrt{11}:(10-\\sqrt{11})=MN:CD$$\r\nã§ãããã $MN$ ãš $CD$ ã¯å¹³è¡ã§ããïŒãã£ãŠïŒäžç¹é£çµå®çãã $AB$ ãš $CD$ ã®å¹³è¡ãåããã®ã§ïŒåè§åœ¢ $ABCD$ ã¯çèå°åœ¢ã§ããïŒãã£ãŠ $AB = BC = AD = 10+\\sqrt{11}$ ã§ããïŒåŸã£ãŠïŒ$D$ ãã $AB$ ã«äžãããåç·ã®è¶³ã $H$ ãšããã°ïŒ$AH = \\sqrt{11}$ ãåããã®ã§ïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã¯\r\n$$\\frac{1}{2}\\times(AB+CD)\\times DH = \\frac{1}{2}\\times(AB + CD)\\times \\sqrt{AD^2 - AH^2} = 10\\sqrt{100+20\\sqrt{11}}$$\r\nãšãããïŒ ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{44010000}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc125/editorial/4344"
},
{
"content": "ã人éãªãã° $MN \\parallel CD$ ã«æ°ä»ããŸããïŒãªããšãããŠäººéãçèå°åœ¢ã«æ°ä»ããŸã§ã®éçšãèŒããŸãïŒ\r\n\r\n---\r\n\r\nã$MN$ ãšãããè¬ã®é·ããäžããããŠããŸãïŒãŸãã¯äžç¹é£çµãçããŸãïŒããã䜿ãããšæã£ãŠã $AB\\parallel CD$ ãããããŸããïŒäžå¿ãããªã®ã§ãããã®æ®µéã§ã¯åãããªãã®ã§ïŒäœ¿ããªãããã§ãïŒæ¬¡ã«äžç·å®çãçããŸãïŒãããš\r\n$$\\begin{aligned}\r\nMN^2 & = \\frac{AN^2+CN^2}{2}-AM^2 \\\\\\\\\r\n&= \\frac12 \\left(\\frac{AD^2+AB^2}{2}-BN^2 + \\frac{CD^2+CB^2}{2}-BN^2\\right) - AM^2\\\\\\\\\r\n&= \\frac{AB^2+BC^2+CD^2+DA^2-AC^2-BD^2}{4}\r\n\\end{aligned}$$\r\nããªãã¡\r\n$$AB^2+BC^2+CD^2+DA^2-AC^2-BD^2=44$$\r\nãåŸãããŸãïŒããªã䜿ããããããªåœ¢ã«ãªããŸããïŒ\\\r\nãããã§ïŒ[pomodor ã®è£é¡ (ä»®)](https:\\/\\/twitter.com\\/Geometry_bot_\\/status\\/1581546433110429696?s=20&t=M1-lOs8gtrGzAF1_HEqFGg) ãæãåºããŸãïŒãããã\r\n$$BD^2=AB^2+(10+\\sqrt{11})(10-\\sqrt{11})=AB^2+89$$\r\nãããå
ã»ã©ã®åŒã«ä»£å
¥ããã°\r\n$$AB^2+BC^2+(10+\\sqrt{11})^2+(10-\\sqrt{11})^2-AC^2-(AB^2+89)=44$$\r\n$AB=BC$ ãªã®ã§ïŒæŽçããŠ\r\n$$AC^2=AB^2+89$$\r\nãåŸãŸãïŒããïŒãã $BD=AC$ ã§ãã...\\\r\nã以äžããïŒ$\\angle ADC \\gt 90^\\circ$ ãšåãã㊠$ABCD$ ã $AB=BC=DA$ ãªãçèå°åœ¢ã§ãããšåãããŸããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc125/editorial/4344/153"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ ãããïŒãã®å¯Ÿè§ç· $AC, BD$ ã®äžç¹ããããã $M, N$ ãšãããšïŒä»¥äžãæãç«ã¡ãŸããïŒ
$$AB = BC,\quad AD = 10+\sqrt{11},\quad CD = 10-\sqrt{11}\quad MN=\sqrt{11}$$
ããã«ïŒ$\angle ADC$ ãéè§ã§ãããšãïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã® $2$ ä¹ã¯ïŒæ£ã®æŽæ° $a,b$ ãçšã㊠$a + \sqrt b$ ãšè¡šããŸãïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC124 (for experts) | https://onlinemathcontest.com/contests/omc124 | https://onlinemathcontest.com/contests/omc124/tasks/2675 | A | OMC124(A) | 300 | 167 | 180 | [
{
"content": "ã$BC=2CN=2CH$ ãã $CN=CH$ 㯠$\\angle C = 60^{\\circ},120^\\circ$ ãšåå€ã§, ãããã $AB$ ã¯é·ã $12\\sqrt{3}$ ã§äžå®ã ãã, $A,B$ ãåšäžã«å«ãå®å $\\Gamma$ äžã $C$ ãåããšããŠè¯ã. ãã®ãšã, $OMC$ ã®é¢ç©ãæ倧åãããã®ã¯, çŽç· $AB$ ãšå¹³è¡ãª $O$ ãéãçŽç·ãš $\\Gamma$ ã®äº€ç¹ã $C$ ãšãããšãã§ãã. $OM=6$ ããæ±ããæ倧å€ã¯ $6\\times 12\\/2=\\textbf{36}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc124/editorial/2675"
}
] | ãå€å¿ã $O$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $AB,BC$ ã®äžç¹ããããã $M,N$ ãšãïŒ$B$ ããçŽç· $AC$ ã«ããããåç·ã®è¶³ã $H$ ãšããŸãïŒ
$$CN=CH, \quad CO=12$$
ãæãç«ã€ãšãïŒäžè§åœ¢ $OMC$ ã®é¢ç©ã®ãšãããæ倧å€ãæ±ããŠãã ããïŒ |
OMC124 (for experts) | https://onlinemathcontest.com/contests/omc124 | https://onlinemathcontest.com/contests/omc124/tasks/3332 | B | OMC124(B) | 300 | 117 | 154 | [
{
"content": "ãç¹ã«å¯ŸããŠæèšåãã« $1,2,\\ldots,1999$ ãšçªå·ãæ¯ãïŒæ±ããå Žåã®æ°ã¯ïŒãããã®ç¹ãèªå·±äº€å·®ã®ãªã $1$ æ¬ã®æãç·ã§ç¹ãæ¹æ³ã®ç·æ°ã§ãããšè¡šçŸã§ããïŒ\\\r\nãç¹ $1$ ãæãç·ã®äž¡ç«¯ã®ã²ãšã€ãšãªã£ãŠããå Žåãèãã. ç¹ $1$ ããäžæ¬ç®ã®ç·åã䌞ã°ããšã, èªå·±äº€å·®ããããªãããã«ããã«ã¯ç¹ $2$ ãŸãã¯ç¹ $1999$ ãéžã¶ãããªã. $2$ æ¬ç®ä»¥éãåæ§ã«ãå³ãããå·Šããéžãã§ããã®ã§, æåŸã® $1998$ æ¬ç®ãé€ããããã $2$ éããã€ã§ãã. ãã£ãŠ, ç¹ $1$ ããæãç·ã䌞ã°ãæ¹æ³ã¯ $2^{1997}$ éãã§ãã.\\\r\nãããããã®ç¹ãã䌞ã°ãããšãèããã°, åããã®ã $2$ éããã€éè€ããŠæ°ããŠããã®ã§,\r\n$$M = 2^{1997} \\times 1999 \\times \\frac{1}{2} = 1999 \\times 2^{1996}$$\r\nãããã $1999^2$ ã§å²ã£ãäœãã¯, $2^{1996}$ ã $1999$ ã§å²ã£ãäœãã« $1999$ ãæãããã®ã§ãã. Fermatã®å°å®çãã $1999$ ãæ³ãšã㊠$2^{1998} \\equiv 1$ ã ãã, $2^{1996} \\equiv 4^{-1} \\equiv 500$. ãã£ãŠè§£çãã¹ãå€ã¯ $1999 \\times 500 = \\textbf{999500}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc124/editorial/3332"
}
] | ãååšäžã« $1999$ åã®ç¹ããããŸãïŒ\
ããããã次ã®æ¡ä»¶ãæºããããã« $1998$ æ¬ã®ç·åã§çµã¶æ¹æ³ã¯ $M$ éããããŸãïŒ
- ã©ã®ç·åãçžç°ãªã $2$ ç¹ãçµã¶ïŒ
- ã©ã® $2$ ç¹ã«ã€ããŠãïŒããããçµã¶ç·åã¯é«ã
$1$ æ¬ã§ããïŒ
- ã©ã® $2$ ç¹ã«ã€ããŠãïŒ$1$ æ¬ä»¥äžã®ç·åã蟿ãããšã§è¡ãæ¥ã§ããïŒ
- ã©ã® $2$ æ¬ã端ç¹ãé€ããŠå
±æç¹ããããªãïŒ
- ã©ã®ç¹ã«ã€ããŠãïŒããã端ç¹ãšããç·åã¯é«ã
$2$ æ¬ã§ããïŒ
ãã®ãšãïŒ$M$ ã $1999^2$ ã§å²ã£ãäœããæ±ããŠäžããïŒãã ãïŒè£è¿ãããå転ãããããŠäžèŽãããã®ãç°ãªããã®ãšããŠæ°ããŸãïŒãŸãïŒ$1999$ ã¯çŽ æ°ã§ãïŒ |
OMC124 (for experts) | https://onlinemathcontest.com/contests/omc124 | https://onlinemathcontest.com/contests/omc124/tasks/2253 | C | OMC124(C) | 400 | 115 | 136 | [
{
"content": "ãäžåŒã¯æ¬¡ã®ããã«æžãæããããïŒ\r\n$$N=\\prod_{n=1}^{2021}\\dfrac{((n+1)^3-1)^2+n^2}{n^2(n^4+4)}$$\r\nããã§æ£æŽæ° $n$ ã«å¯Ÿã次ãæãç«ã€ïŒ\r\n$$\\dfrac{((n+1)^3-1)^2+n^2}{n^2(n^4+4)}\r\n=\\dfrac{n^2(n^2+2n+2)(n^2+4n+5)}{n^2(n^2+2n+2)(n^2-2n+2)}\r\n=\\dfrac{(n+2)^2+1}{(n-1)^2+1}$$\r\nãããçšãããšæ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$N=\\dfrac{(2021^2+1)(2022^2+1)(2023^2+1)}{(0^2+1)(1^2+1)(2^2+1)}=\\dfrac{1}{10}(2021^2+1)(2022^2+1)(2023^2+1)$$\r\nãã£ãŠ $10N$ ã $2021^2$ ã§å²ã£ãããŸãã¯æ¬¡ã®ããã«æ±ããããïŒ\r\n$$\\begin{aligned}\r\n10N\r\n&=(2021^2+1)(2022^2+1)(2023^2+1)\\\\\\\\\r\n&=(2021^2+1)(2021^2+2\\times 2021+2)(2021^2+4\\times 2021+5)\\\\\\\\\r\n&\\equiv 18\\times 2021+10={\\bf 36388}\\pmod{2021^2}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc124/editorial/2253"
},
{
"content": "ãå æ°å解ããŒãã®è£è¶³ã§ãïŒ$i$ ãèæ°åäœãšããŠïŒååã® $n$ ã $1$ ãããã $(n^3-1)^2+(n-1)^2$ ã¯æ¬¡ã®ããã«å€åœ¢ã§ããŸãïŒ\r\n$$\\begin{aligned}\r\n(n^3-1)^2+(n-1)^2\r\n&=(n-1)^2((n^2+n+1)^2+1)^2\\\\\\\\\r\n&=(n-1)^2(n^2+n+1+i)(n^2+n+1-i)\\\\\\\\\r\n&=(n-1)^2(n+i)(n+1-i)(n-i)(n+1+i)\\\\\\\\\r\n&=(n-1)^2\\underbrace{(n^2+1)}\\_{(n+i)(n-i)}\\underbrace{((n+1)^2+1)}\\_{(n+1-i)(n+1+i)}\r\n\\end{aligned}$$\r\n$n$ ã $n+1$ ã«ããã° $((n+1)^3-1)^2+n^2=n^2((n+1)^2+1)((n+2)^2+1)$ ãåŸãŸãïŒ\\\r\nãåæ§ã«ããŠåæ¯ã次ã®ããã«å€åœ¢ã§ããŸãïŒ$(1+i)^2=2i$ ãªã©ãçšããŠããŸãïŒ\r\n$$\\begin{aligned}\r\nn^2(n^4+4)\r\n&=n^2(n^2+2i)(n^2-2i)\\\\\\\\\r\n&=n^2(n+1-i)(n-1+i)(n+1+i)(n-1-i)\\\\\\\\\r\n&=n^2\\underbrace{((n+1)^2+1)}\\_{(n+1-i)(n+1+i)}\\underbrace{((n-1)^2+1)}\\_{(n-1+i)(n-1-i)}\r\n\\end{aligned}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc124/editorial/2253/148"
}
] | ã以äžã§å®çŸ©ããã $N$ ã¯æŽæ°å€ãšãªããŸãïŒ\
ã$10N$ ã $2021^2$ ã§å²ã£ãããŸããæ±ããŠãã ããïŒ
$$N=\dfrac{\left((2^3-1)^2+1^2\right)\left((3^3-1)^2+2^2\right)\cdots\left((2022^3-1)^2+2021^2\right)}{(2021!)^2(1^4+4)(2^4+4)\cdots(2021^4+4)}$$ |
OMC124 (for experts) | https://onlinemathcontest.com/contests/omc124 | https://onlinemathcontest.com/contests/omc124/tasks/6070 | D | OMC124(D) | 600 | 23 | 39 | [
{
"content": "ã$3^k \\cdot n^k \\equiv 1 \\pmod{3n-1}$ ãã, \r\n$$3^{100} \\left( \\sum_{k \\in S} n^{k} + \\sum_{k \\in T} n^k \\right) \\equiv \\sum_{k \\in S} 3^{100-k} + \\sum_{k \\in T} 3^{100-k} \\equiv 0 \\pmod{3n-1}$$\r\nããã§, $3n-1$ 㯠$3$ ãçŽ å æ°ã«æããªãã®ã§, \r\n$$3n - 1 \\mid \\sum_{k\\in S} n^k + \\sum_{k\\in T} n^k \\iff 3n - 1 \\mid \\sum_{k\\in S} 3^{100-k} + \\sum_{k\\in T} 3^{100-k}$$ \r\nã§ãã. $N= \\sum_{k\\in S} 3^{100-k} + \\sum_{k\\in T} 3^{100-k} $ ãšãã. éšåéå $S,T$ ãšæŽæ° $n$ ãåé¡æã®æ¡ä»¶ãæºãããŠãããã®ãšããã°, $3$ ã§å²ã£ãäœãã $2$ ã®æ倧㮠$N$ ã®çŽæ°ã $3\\cdot 444 - 1 = 11^{3}$ ã§ãããããªæŽæ° $N$ ãèããã°ãã. ãã®ãã㪠$N$ ã®ãã¡ $3$ ã§å²ãåããªããã®ã¯, $3$ ã§å²ã£ãŠ $1$ äœãçŽ å æ°ãæãã $3$ ã§å²ã£ãŠ $2$ äœãçŽ å æ°ã $5$ åæªæºã〠$11$ ãã倧ããçŽ å æ°ãååšããªãããšãèžãŸããã°, $N = 11^3, 2 \\cdot 11^3, 5 \\cdot 11^3, 11^4$ ã«éããã. $N$ ãåºå®ãããšã, $N$ ã $3$ é²æ³ã§è¡šãããšãã® $1$ ã®åæ°ã $x$ åãªãã°éšåéå $S,T$ ã®åãæ¹ã¯ $2^{x}$ åã§ãã. ãããã£ãŠ, æ¡ä»¶ãã¿ãã $N$ ã¯çŽ å æ° $3$ ã®æ°ã«äŸåããªãããšãš, $N\\lt 3^{101}$ ã䜵ããŠ, æ±ããçãã¯ä»¥äžã®ããã«èšç®ã§ãã. \r\n$$2^3 \\cdot 95 + 2^4 \\cdot 94 + 2^5 \\cdot 93 + 2^1 \\cdot 93 = \\mathbf{5426}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc124/editorial/6070"
}
] | ã$\\{0, 1,2,3,\ldots, 100\\}$ ã® $2$ ã€ã®ïŒçžç°ãªããšã¯éããªãïŒéšåéåã®ïŒé åºãåºå¥ããïŒçµ $(S,T)$ ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãã¿ãããã®ã®åæ°ãæ±ããŠãã ãã.
- æŽæ° $n$ ã§ãã£ãŠïŒ$3n - 1$ ã $\sum_{k\in S} n^k + \sum_{k\in T} n^k $ ãå²ãåããããªãã®ãååšãïŒããããã®ãã㪠$n$ ã®æ倧å€ãååšããŠãã㯠$444$ ã§ããïŒ
ããã ãïŒ$S,T$ ã¯ç©ºéåã§ãããïŒç©ºéå $\emptyset$ ã«å¯Ÿã㊠$\sum_{k\in\emptyset} n^k=0$ ãšããŸãïŒ |
OMC124 (for experts) | https://onlinemathcontest.com/contests/omc124 | https://onlinemathcontest.com/contests/omc124/tasks/2662 | E | OMC124(E) | 700 | 14 | 54 | [
{
"content": "ãäžè¬ã«ã«ãŒãã®ææ°ã $2^{n}$ ã§ããå Žåãèã, æ±ããå Žåã®æ°ã $T_{n}$ ãšãã. $T_{n}$ ãçšã㊠$T_{n+1}$ ãè¡šãã. ã«ãŒãã«æžãããæŽæ°ãå·Šãã\r\n$$P_1,P_2,\\ldots,P_{2^n},Q_1,Q_2,\\ldots,Q_{2^n}$$\r\nã§ãããšã, $P$ ã®ã¿, $Q$ ã®ã¿ããããã $2^n-1$ åæäœãããšã, æåŸã®äžŠã³ããããã\r\n$$P^{\\prime}\\_1,P^{\\prime}\\_2,\\ldots,P^{\\prime}\\_{2^n}\\quad Q^{\\prime}\\_1,Q^{\\prime}\\_2,\\ldots,Q^{\\prime}\\_{2^n}$$\r\nã§ãããšãã. ãã®ãšã, $2^{n+1}$ æã®ã«ãŒãã«å¯Ÿã㊠$2^{n+1}-1$ åæäœãããšã, æåŸã®äžŠã³ã¯\r\n$$\\begin{aligned}\r\n&P^{\\prime}\\_{1},P^{\\prime}\\_{2},\\ldots,P^{\\prime}\\_{2^{n}-2^{n-1}},\\\\\\\\\r\n&Q^{\\prime}\\_{1}, Q^{\\prime}\\_{2},\\ldots Q^{\\prime}\\_{2^{n}-2^{n-1}}, \\\\\\\\\r\n&P^{\\prime}\\_{2^{n}-2^{n-1}+1}, \\ldots, P^{\\prime}\\_{2^{n}-2^{n-2}}, \\\\\\\\\r\n&Q^{\\prime}\\_{2^{n}-2^{n-1}+1}, \\ldots, Q^{\\prime}\\_{2^{n}-2^{n-2}}, \\ldots \\\\\\\\\r\n&P^{\\prime}\\_{2^{n}-1}, Q^{\\prime}\\_{2^{n}-1}, \\min\\\\{P^{\\prime}\\_{2^{n}}, Q^{\\prime}\\_{2^{n}}\\\\}, \\max\\\\{P^{\\prime}\\_{2^{n}}, Q^{\\prime}\\_{2^{n}} \\\\}\r\n\\end{aligned}$$\r\nãšãªã. å³ç«¯ã®ã«ãŒãã«æžãããæŽæ°ã¯åžžã« $2^{n+1}$ ã§ããããšã«çæãã. $2^{n+1}$ æã®ã«ãŒããé åºãèããã«çµ $P$ ãšçµ $Q$ ã«æ¯ãåããæ¹æ³ã¯ ${}\\_{2^{n+1}} \\mathrm{ C }\\_{2^n}$ éãã§ãã. ãã®ãã¡ $2^{n+1}-1$ ãš $2^{n+1}$ ã®æžãããã«ãŒããåãããå Žåã«éã, ããããå
¥ãæ¿ããŠãæçµçµæã¯äžèŽãããã,\r\n$$T\\_{n+1} =( {}\\_{2^{n+1}}\\mathrm{ C }\\_{2^{n}} - {}\\_{2^{n+1}-2}\\mathrm{ C }\\_{2^{n}-1})\\times{T_n}^2={}\\_{2^{n+1}-2}\\mathrm{ C }\\_{2^{n}-1}\\times\\dfrac{3\\times 2^{n-1}-1}{2^{n-1}}\\times{T_n}^2.$$\r\nãããŠ, ãã®ä¿æ°ãæã€çŽ å æ° $2$ ã®åæ°ã¯, $n=1$ 㧠$2$ å, $n \\geq 2$ 㧠$1$ åã§ããããšãããããã, $X=191$ ã§ãã. åæ§ã« $61$ ã«ã€ã㊠$n=5$ 㧠$1$ åããã®ã¿ã§, $Y=4$ ã§ãã. ãã£ãŠæ±ããã¹ãå€ã¯, $XY=\\textbf{764}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc124/editorial/2662"
}
] | ã$1$ ä»¥äž $256$ 以äžã®æŽæ°ã®ãã¡ $1$ ã€ããããã $1$ åãã€æžãããïŒèš $256$ æã®ã«ãŒãããããŸãïŒãããã®ã«ãŒããæ··ãïŒé©åœãªé åºã§æšªäžåã«äžŠã¹ãŸãïŒãããžïŒä»¥äžã®æäœã $i=1,2,\ldots,255$ ã®é ã«èš $255$ åç¹°ãè¿ããŸãïŒ
- å·Šãã $i$ æç®ã®ã«ãŒããš $i+1$ æç®ã®ã«ãŒãã®ãã¡ïŒæžãããæŽæ°ã倧ããæ¹ã**å³ç«¯**ã«åããïŒ
ãæçµçã«äžŠãã§ããã«ãŒãã®é åºãšããŠããåŸããã®ã¯ $M$ éããããŸãïŒ$M$ ã $2,61$ã§å²ãåããæ倧ã®åæ°ããããã $X,Y$ ãšãããšãïŒ$XY$ ãæ±ããŠãã ãã. |
OMC124 (for experts) | https://onlinemathcontest.com/contests/omc124 | https://onlinemathcontest.com/contests/omc124/tasks/1680 | F | OMC124(F) | 700 | 13 | 35 | [
{
"content": "ãåçŽç· $DF$ ãš $\\Gamma$ ã®äº€ç¹ã $H$, $AF$ ãš $\\Gamma$ ã®äº€ç¹ã $I(\\neq A)$ ãšãã. $OD=OE$ ã«çæããã°\r\n$$\\measuredangle OFA=\\measuredangle OFE=\\measuredangle ODE=\\measuredangle DEO=\\measuredangle GFO$$\r\nã§ãããã, $OA=OG$ ãšäœµã㊠$A$ ãš $G$ 㯠$OF$ ã«ã€ããŠå¯Ÿç§°ã§ããããšãããã, ãããã\r\n$$\\angle OGD=\\angle OAF=\\angle OAI=\\angle OIE.$$\r\nãããš $\\angle ODG=\\angle OEI$ ããã³ $OG=OI$ ã䜵ããŠ, äžè§åœ¢ $ODG$ ãš $OEI$ ã¯ååã§, ç¹ã« $EI=DG=16$ ã§ããã»ã, 以äžã®çåŒãæç«ãããã, $I$ 㯠$\\Gamma$ ã«ãããŠåŒ§ $CG$ ãäºçåãã.\r\n$$\\angle{GOI}=\\angle{DOE}=\\angle{DFE}=2\\angle{CAI}=\\angle COI$$\r\nãããã£ãŠ, 以äžããåè§åœ¢ $BFEG$ ã¯åã«å
æ¥ã, $DE:DF=DG:DB=16:21$ ã§ãã.\r\n$$\\angle GBE=\\angle{GBC}=2\\angle{CAI}=\\angle DFE=\\angle{GFE}$$\r\näžæ¹ã§ $\\angle{DFE}=\\angle{DBG}=\\angle{DHC}$ ãã $EF \\parallel CH$ ã§ãã, 以äžãã $FH=\\dfrac{441}{16}$ ãåŸã. \r\n$$CE:FH=DE:DF=16:21$$\r\nããã«å¯Ÿç§°æ§ãã $FH=FI$ ãæãç«ã€ãã, $EF=FI-EI=\\dfrac{185}{16}$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{201}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc124/editorial/1680"
}
] | ãå€å¿ã $O$ïŒå€æ¥åã $\Gamma$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $BC$ äžã« $B,D,E,C$ ã®é ã«äžŠã¶ç¹ $D,E$ ã $BD=CE=21$ ãã¿ãããŸãïŒç·å $AE$ ãšäžè§åœ¢ $ODE$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ $E$ ã§ãªãæ¹ã $F$ ãšãïŒåçŽç· $FD$ ãš $\Gamma$ ã®äº€ç¹ã $G$ ãšãããšïŒ
$$\angle DFE=2\angle CAE, \quad OF=26, \quad DG=16$$
ãæãç«ã¡ãŸããïŒãã®ãšãïŒ$EF$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC123 (for beginners) | https://onlinemathcontest.com/contests/omc123 | https://onlinemathcontest.com/contests/omc123/tasks/4290 | A | OMC123(A) | 100 | 266 | 274 | [
{
"content": "ã $5$ ã®é£ã«ãªãæ°ãšããŠé©åãªãã®ã¯ $1$ ã®ã¿ã§ããïŒåŸã£ãŠ $5$ ã¯äž¡ç«¯ã®ã©ã¡ããã«ãã. $4,3$ ã«ã€ããŠã¯ $1$ 以å€ã«é©åãªæ°ã¯ãããã $2,6$ ã®ã¿ãªã®ã§ïŒ$5$ ã®å察åŽã®ç«¯ã¯ $3$ ã $4$ ã§ããïŒä»¥äžãèžãŸããŠæ°ãäžããããšã§ïŒæ¡ä»¶ãæºãã䞊ã¹æ¹ã¯\r\n$$362415,\\quad426315,\\quad513624,\\quad514263$$\r\nã® $\\bf{4}$ éãã§ãããšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc123/editorial/4290"
}
] | ã $1$ ä»¥äž $6$ 以äžã®æŽæ°ããããã $1$ åãã€äœ¿ãïŒä»¥äžã®æ¡ä»¶ã«åŸã£ãŠäžåã«äžŠã¹ãæ¹æ³ã¯äœéããããŸããïŒ
- ã©ã®é£ãåã $2$ ã€ã«ã€ããŠãïŒãããããããäžæ¹ã®åæ°ã§ããïŒ |
OMC123 (for beginners) | https://onlinemathcontest.com/contests/omc123 | https://onlinemathcontest.com/contests/omc123/tasks/3311 | B | OMC123(B) | 100 | 275 | 280 | [
{
"content": "ã$D$ ã¯ç·å $AC$ ã®åçŽäºçåç·äžã«ããïŒæ¡ä»¶ãã $B$ ãåç·äžã«ããïŒãããã£ãŠ $AC=AB=BC$ ããäžè§åœ¢ $ABC$ ã¯æ£äžè§åœ¢ã§ããããïŒ$\\angle{BAC}=\\textbf{60}\\degree$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc123/editorial/3311"
}
] | ã察è§ç· $AC$ ãš $BD$ ãåçŽã«äº€ããåžåè§åœ¢ $ABCD$ ã«ãããŠ
$$AB=AC , \quad AD=CD$$
ãæãç«ã€ãšãïŒ$\angle{BAC}$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ããïŒ |
OMC123 (for beginners) | https://onlinemathcontest.com/contests/omc123 | https://onlinemathcontest.com/contests/omc123/tasks/3201 | C | OMC123(C) | 200 | 249 | 267 | [
{
"content": "$$\\frac{T(n)}{S(n)}=n!\\times \\frac{2}{n(n+1)}=\\frac{2(n-1)!}{n+1}$$\r\nãæŽæ°ãšãªãããšãæ¡ä»¶ã§ããïŒ$n=1,3$ ã¯é©ããïŒ$n+1$ ãå¥çŽ æ°ã§ãããšãæããã«äžé©ã§ããïŒ\\\r\nã$n+1$ ã $6$ 以äžã®åææ°ã§ãããšãé©ããããšã瀺ãïŒããå¥çŽ æ° $p$ ã«ãã£ãŠ $n+1=p^2$ ãšè¡šãããšãïŒ\r\n$$\\frac{n-1}{p}=p-\\frac{2}{p}\\geq 2$$\r\nãã $(n-1)!$ 㯠$p$ 㧠$2$ å以äžå²ãåããïŒãã以å€ã®ãšãïŒ$n+1$ 㯠$n-1$ 以äžã®çžç°ãªãæ£æŽæ° $2$ ã€ã®ç©ãšããŠè¡šããããïŒ$(n-1)!$ ãå²ãåãïŒ\\\r\nã以äžããïŒ$n+1$ ãå¥çŽ æ°ã§ãªã $n$ ãæ°ããã°ããïŒãã㯠$\\textbf{36}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc123/editorial/3201"
}
] | ã $50$ 以äžã®æ£æŽæ° $n$ ã«ã€ããŠïŒ$1$ ä»¥äž $n$ 以äžã®æŽæ°ã®ç·åã $S(n)$ïŒç·ç©ã $T(n)$ ãšãããšãïŒ$T(n)$ ã $S(n)$ ã§å²ãåãããã㪠$n$ ã¯ããã€ãããŸããïŒ |
OMC123 (for beginners) | https://onlinemathcontest.com/contests/omc123 | https://onlinemathcontest.com/contests/omc123/tasks/2316 | D | OMC123(D) | 300 | 166 | 199 | [
{
"content": "ã äžè¬ã« $\\triangle XYZ$ ãšãã®å
å¿ $I$ ã«ã€ããŠç°¡åãªè§åºŠèšç®ã«ãã $\\angle YIZ=90^\\circ +\\frac{1}{2} \\angle YXZ$ ãæãç«ã€ããšã確ããããã. ãããã£ãŠ, ååšè§ã®å®çãã $\\angle APB =60^\\circ$ ã§ãããã, $\\angle AQB=120^\\circ, \\angle ARB=150^\\circ$ ãããã.\\\r\nã$\\angle ARB$ ãäžå®ãªã®ã§ $R$ 㯠$A,B$ ãéãå匧äžã $A$ ãã $B$ ãŸã§åã.ãã®åã®äžå¿ã $O^\\prime$ ãšãããšç°¡åãªè§åºŠèšç®ã«ãã $\\angle AO^\\prime B=60^\\circ$ ãåŸã. $\\triangle AO^\\prime B$ ã¯æ£äžè§åœ¢ã ãšãããã®ã§ $O^\\prime A=AB=AB=24\\sqrt 3$ ã§ãã.\\\r\nã以äžãã $R$ ã¯ååŸ $24\\sqrt 3,$ äžå¿è§ $60^\\circ$ ã®å匧äžãåã. ãã£ãŠ $R$ ã®è»è·¡ã®é·ã㯠$8\\sqrt 3 \\pi=\\sqrt{\\textbf{192}}\\pi$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc123/editorial/2316"
}
] | ãäžå¿ã $O$ ãšããååŸ $24$ ã®å®åãããïŒãã®åšäžã« $2$ å®ç¹ $A,B$ ã $\angle AOB =120^\circ$ ãã¿ãããŸãïŒç¹ $P$ ãåªåŒ§ $AB$ïŒåŒ§ $AB$ ã®ãã¡é·ãæ¹ïŒäžã $A$ ãã $B$ ãŸã§åããšãïŒäžè§åœ¢ $ABP,ABQ$ ã®å
å¿ããããã $Q,R$ ãšããŸãïŒãã®ãšãïŒç¹ $R$ ã®è»è·¡ã®é·ãã¯æ£æŽæ° $a$ ãçšã㊠$\sqrt{a}\pi$ ãšè¡šããã®ã§ïŒ$a$ ãæ±ããŠãã ããïŒ\
ããã ã $P=A$ ã®ãšã $Q,R$ 㯠$A$ïŒ$P=B$ ã®ãšã $Q,R$ 㯠$B$ ã§ãããšããŸãïŒ |
OMC123 (for beginners) | https://onlinemathcontest.com/contests/omc123 | https://onlinemathcontest.com/contests/omc123/tasks/3136 | E | OMC123(E) | 300 | 83 | 159 | [
{
"content": "ãçãåãåºããé ã«å·Šãã暪äžåã«äžŠã¹ããšïŒå³ç«¯ã¯éçã§ããïŒæ®ãã® $410$ åã«ã€ããŠéçã®äœçœ®ã¯ ${}\\_{410}{\\rm C}\\_{137}$ éãããïŒæ®ãã®èµ€çãšç·çã®èš $273$ åãåãåºããŠèãããšïŒå³ç«¯ã¯ç·çã«ãªãããšã«æ³šæããã°ïŒèµ€çãšç·çã®äžŠã¹æ¹ã¯ ${}\\_{272}{\\rm C}\\_{136}$ éãã§ããïŒäžæ¹ã§ïŒèµ€ç $136$ åïŒç·ç $137$ åïŒéç $138$ åãäžåã«äžŠã¹ãæ¹æ³ã¯\r\n$$\\dfrac{411!}{136!\\times 137!\\times 138!}$$\r\néãã§ããããïŒæ±ãã確çã¯\r\n$$\\biggl(\\frac{410!}{137!\\times 273!}\\times\\frac{272!}{136!\\times 136!}\\biggr)\\div \\frac{411!}{136!\\times137!\\times 138!}=\\frac{137\\times138}{273\\times 411}=\\frac{46}{273}$$\r\nã§ããïŒç¹ã«æ±ããã¹ãå€ã¯ $\\textbf{319}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc123/editorial/3136"
},
{
"content": "ãéè²ãæåŸã«å°œãã確ç㯠$\\dfrac{138}{136+137+138}$*ïŒããããéè²ãåãå»ããšç·è²ãæåŸã«å°œãã確ç㯠$\\dfrac{137}{136+137}$ ã§ããããïŒæ±ãã確çã¯\r\n$$ \\dfrac{138}{136+137+138} \\times \\dfrac{137}{136+137} = \\dfrac{46}{273} $$\r\nã§ããïŒè§£çãã¹ãå€ã¯ $\\bm{319}$ïŒ\r\n\r\n---\r\n\r\n*ãåºãçãæèšåãã«é çªã«åç¶ã«äžŠã¹ãŠïŒå転ã§äžèŽãããã®ïŒè£è¿ãã¯ãªãïŒãåãè²ã®çµã¿åãããšèããããšã«ãããšïŒåãè²ã®çµã¿åããã®ãã¡éãæåŸã«å°œãããããªãã®ã¯ $\\dfrac{138}{136+137+138}$ ã ããã",
"text": "FU (First User 解説)",
"url": "https://onlinemathcontest.com/contests/omc123/editorial/3136/144"
},
{
"content": "ã(å
¬åŒè§£çãšæ¬è³ªçã«å€§ããªéãã¯ãããŸãããïŒå Žåã®æ°ã®äžçã§èããã«ç¢ºçã®äžçã®ãŸãŸã§èãããšä»¥äžã®ããèŠéãããããªããŸãïŒ)\\\r\n çãåãåºããé ã«å·Šããäžåã«äžŠã¹ããšãïŒéçãæãå³ã«ãã確ç㯠$\\dfrac{138}{411}$ ã§ããïŒèµ€çãšç·çã®èš $273$ åã®ãã¡æãå³ã«ããçãç·ã§ãã確ç㯠$\\dfrac{137}{273}$ ã§ããïŒ\\\r\n ãã£ãŠïŒæ±ãã確ç㯠$\\dfrac{138}{411}\\times\\dfrac{137}{273}=\\dfrac{46}{273}$ ã§ããïŒè§£çãã¹ãæ°å€ã¯ $46+273=\\textbf{319}$ ãšãªãïŒ",
"text": "SU (Second User 解説)",
"url": "https://onlinemathcontest.com/contests/omc123/editorial/3136/145"
},
{
"content": "èšç®ã楜(å€å)ãªè§£æ³ã§ãã\\\r\näžè¬ã«ããè²Aã®çã$m$åãè²Bã®çã$n$åè¢ã«å
¥ã£ãŠããŠã©ã³ãã ã«çãåãåºãæãæåŸã«è²Aã®çãåãåºããã確çã¯$\\frac{m}{m+n}$ã§ããããšããäºå®ãæãç«ã¡ãŸã(èšç®ã§ç°¡åã«ç€ºããŸãããçŽæçã«ãæããã§ã)ã\\\r\nãç®±ã®äžã®çãèµ€è²ãç·è²ãéè²ã®é ã«å°œããããšããæ¡ä»¶ã¯ããæåŸã«éè²ã®çãåãåºãããããã€éè²ä»¥å€ã®çã§æåŸã«åãåºãããã®ã¯ç·è²ã®çã§ããããšããæ¡ä»¶ã«èšãæããããŸãã\\\r\nãŸããè²Aãéè²ãè²Bãèµ€è²ãšç·è²ãšããŠäžã®äºå®ãé©çšãããšãéè²ã®çãæåŸã«åãåºããã確çã¯$\\frac{138}{136+137+138}=\\frac{138}{411}$ã§ãã\\\r\nãããŠãéè²ãç¡èŠããŠãè²Aãç·è²ãè²Bãèµ€è²ãšããŠäžã®äºå®ãé©çšãããšãç·è²ã®çãæåŸã«åãåºããã確çã¯$\\frac{137}{136+137}=\\frac{137}{273}$ã§ãã\r\n以äžãããæ¡ä»¶ãæºãã確çã¯$\\frac{138}{411}\\times\\frac{137}{273}=\\frac{46}{273}$ã§ãçããå€ã¯$46+273=\\textbf{319}$ã§ãã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc123/editorial/3136/146"
}
] | ãç®±ã®äžã«èµ€è²ã®çã $136$ åïŒç·è²ã®çã $137$ åïŒéè²ã®çã $138$ åå
¥ã£ãŠããŸãïŒç®±ã®äžããç¡äœçºã«çã $1$ ã€éžãã§æšãŠãæäœãïŒç®±ã®äžèº«ã空ã«ãªããŸã§è¡ããŸãïŒç®±ã®äžã®çãèµ€è²ïŒç·è²ïŒéè²ã®é ã«å°œãã確çã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC123 (for beginners) | https://onlinemathcontest.com/contests/omc123 | https://onlinemathcontest.com/contests/omc123/tasks/3131 | F | OMC123(F) | 400 | 73 | 131 | [
{
"content": "ã$n^{13\\times 8}-1$ 㯠$n^8-1$ ã®åæ°ãªã®ã§ïŒ\r\n$$a_n = \\gcd(n^8-1,n^{13}-2) \\leq \\gcd(n^{13\\times8}-1,n^{13}-2)$$\r\nãæç«ããïŒããã§ïŒ \r\n$$n^{13\\times8}-1 = (n^{13}-2)(n^{13\\times7}+2^1n^{13\\times6}+2^2n^{13\\times5}+\\cdots+2^7)+(2^8-1)$$\r\nãšå€åœ¢ã§ããã®ã§ïŒ$a_n \\leq 2^8-1 = 255$ ã§ããïŒ\\\r\nãä»¥äž $a_n = 255$ ãšãªã $n$ ãèããïŒ\r\n$n^8-1 \\equiv 0 \\pmod{255}$ ã〠$n^{13}-2 \\equiv 0 \\pmod{255}$ ã§ããããšã¯ïŒ$n \\equiv 32 \\pmod{255}$ ã§ããããšãšåå€ã§ããïŒãã㯠$255 = 3\\times5\\times17$ ããäžåœå°äœå®çãçšããã°çŽ æ©ãå°ããïŒ ãã£ãŠïŒ$n \\equiv 32 \\pmod{255}$ ã§ãããšããã€ãã®ãšãã«éãïŒ$a_n = 255$ ãšãªãããšãåããïŒ\\\r\nã$255m+32 \\leq 10000$ ãªãæŽæ° $m$ ã®æ倧å€ã¯ $39$ ãªã®ã§ïŒ\r\næ±ããå€ã¯ $$\\sum_{m = 0}^{39}(255m+32) = \\textbf{200180}$$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc123/editorial/3131"
},
{
"content": "ããŠãŒã¯ãªããã®äºé€æ³ã§æ¬¡æ°ãäžããŠããæ¹æ³ã§ãïŒ\r\n***\r\nãäžè¬ã«ïŒèªç¶æ° $a,b,p$ ã«å¯ŸããŠ\r\n$$\\gcd(a,b) = \\gcd(b,a - pb) \\tag{1}$$ \r\nãåŸãïŒ$(1)$ ãç¹°ãè¿ãçšããŠ\r\n$$\\gcd(n^{13} - 2,n^8 -1) = \\gcd(n^8 -1,n^5 - 2)=\\gcd(n^5 - 2,2n^3 - 1)$$\r\nãããã§ïŒ$2n^3 - 1$ ã¯å¥æ°ãªã®ã§\r\n$$\\gcd(n^5 - 2,2n^3 - 1) = \\gcd(2n^5 - 4,2n^3 - 1)$$\r\nãæç«ããïŒå床 $(1)$ ãç¹°ãè¿ãçšããŠ\r\n$$\\gcd(2n^5 - 4,2n^3 - 1) = \\gcd(2n^3 - 1,n^2 - 4) = \\gcd(n^2 - 4,8n - 1)$$\r\nãããã§ïŒ$8n - 1$ ã¯å¥æ°ãªã®ã§\r\n$$\\gcd(n^2 - 4,8n - 1) = \\gcd(8n^2 - 32,8n - 1)$$\r\nãæç«ããïŒå床 $(1)$ ãç¹°ãè¿ãçšããŠ\r\n$$\\gcd(8n^2 - 32,8n - 1) = \\gcd(8n - 1,n - 32) = \\gcd(n - 32,255)$$\r\nã以äžãã $a_n = \\gcd(n - 32,255)$ ãšè¡šããã®ã§ïŒ$n \\equiv 32 \\pmod {255}$ ã®ãšãã« $a_n$ ã¯æå€§å€ $255$ ããšãïŒ\\\r\nãããšã¯å
¬åŒè§£èª¬ãšåæ§ã«èšç®ããããšã§ïŒæ±ããå€ã¯ $\\mathbf{200180}$ ãšãªãïŒ",
"text": "ãŠãŒã¯ãªããã®äºé€æ³ãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc123/editorial/3131/138"
}
] | ãæ£ã®æŽæ° $a,b$ ã«å¯ŸããŠïŒãã®æ倧å
¬çŽæ°ã $\gcd(a,b)$ ãšè¡šããŸãïŒ\
ã$2$ 以äžã®æŽæ° $n$ ã«å¯ŸããŠïŒæ£ã®æŽæ° $a_n$ ã
$$a_n = \gcd(n^8-1,n^{13}-2)$$
ã§å®ããŸãïŒ$n$ ãåããããšã $a_n$ ã«ã¯æ倧å€ãååšããã®ã§ïŒãã®å€ã $M$ ãšãããŸãïŒ$a_n = M$ ãã¿ãã $2$ ä»¥äž $10000$ 以äžã®æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC122 | https://onlinemathcontest.com/contests/omc122 | https://onlinemathcontest.com/contests/omc122/tasks/2173 | A | OMC122(A) | 200 | 244 | 263 | [
{
"content": "ã$10000-n=m$ ãšãããš, $m$ ãçŽ æ°ã®ãšã $n$ ã¯æ¡ä»¶ãã¿ãã. äžæ¹ã§ $m$ ãçŽ æ°ã§ãªããšã, $m$ 㯠$\\sqrt{m}$ 以äžã® $m$ ã§ãªãçŽæ°ããã¡, $n\\leq 99$ ã®ãšã $\\sqrt{m} \\gt n$ ããäžé©ã§ãã. $n=100$ ãæ¡ä»¶ãã¿ãããªããã, çµå± $m$ ãçŽ æ°ã«ãªããã㪠$n$ ãèããã°ãã, æ±ããç·åã¯\r\n$$27+33+51+59+69+71+77+93+99=\\bf{579}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/2173"
}
] | ã$10000$ ã $\alpha$ ã§å²ã£ãããŸãã $n$ ã«ãªãæ£æŽæ° $\alpha$ ãã¡ããã©äžã€ååšãããããªïŒ$100$ 以äžã®æ£æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC122 | https://onlinemathcontest.com/contests/omc122 | https://onlinemathcontest.com/contests/omc122/tasks/3002 | B | OMC122(B) | 200 | 214 | 261 | [
{
"content": "ã $S$ ã®åå
$i~(i=1,\\ldots,5)$ ã«å¯ŸããŠïŒ$i$ ã $A,B,C$ ã®å°ãªããšã $1$ ã€ã«å±ãããã« $i$ ãå±ããéšåéåãéžã¶æ¹æ³ã¯ $2^3-1=7$ éãããïŒãã£ãŠïŒæ±ããå Žåã®æ°ã¯ $ 7^{5}=\\mathbf{16807}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/3002"
}
] | ã$S=\\{ 1,2,3,4,5 \\} $ ãšããŸãïŒ\
ã$S$ ã®éšåéåã®ïŒé åºä»ããïŒçµ $(A,B,C)$ ã§ãã£ãŠïŒ$A\cup{B\cup{C}}=S$ ãã¿ãããã®ã¯äœéããããŸããïŒãã ãïŒ$A,B,C$ ã¯ç©ºã§ããããã®ãšããŸãïŒ |
OMC122 | https://onlinemathcontest.com/contests/omc122 | https://onlinemathcontest.com/contests/omc122/tasks/2488 | C | OMC122(C) | 300 | 211 | 261 | [
{
"content": "ãããããã®ç«æ¹äœã®äžå¿ãéãå¹³é¢ãèããã°ãã, ãã¹ãŠã®æé¢ãäžèŸº $\\sqrt{2}$ ã®æ£å
è§åœ¢ã«ãªãããšãããã. ããããã®æ£å
è§åœ¢ã®é¢ç©ã¯ $3\\sqrt{3}$ ã§ãããã, æ±ããæé¢ç©ã®åèšã¯ $3\\sqrt{3}\\times 3=\\sqrt{\\bf{243}}$ ã§ãã. \r\n![figure 1](\\/images\\/d6QtifKPUOvkxgMKUPMXiPnSpF9Wotf5bSvz8PeA)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/2488"
}
] | ãäžèŸºã $2$ ã§ããç«æ¹äœã $3$ ã€ãããŸãïŒã©ã® $2$ ã€ã®çµã¿åããã«ã€ããŠãããäžèŸºã®ã¿ãå
±æãïŒã〠$3$ ã€ãã¹ãŠãããäžé ç¹ã®ã¿ãå
±æããŠããŸãïŒ\
ããã®å³åœ¢ãããå¹³é¢ã§åæãïŒã©ã®ç«æ¹äœãããããã®äœç©ãäºçåãããããã«ãããšãïŒããããã®ç«æ¹äœã®æé¢ç©ã®åã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC122 | https://onlinemathcontest.com/contests/omc122 | https://onlinemathcontest.com/contests/omc122/tasks/2810 | D | OMC122(D) | 400 | 109 | 173 | [
{
"content": "ãäžè¬ã« $2022$ ã $2N$ ãšãã. $xyz$ 空éäžã§ $(x,y,z)$ ã®åãåŸãé åãèããã°, ããã¯\r\n$$(0,0,0), (N,N,0), (N,0,N), (0,N,N)$$\r\nãé ç¹ãšããæ£åé¢äœã®è¡šé¢ãå«ãŸãªãå
éšã§ãã.$\\\\\\\\$\r\nã$z=1,2,\\cdots,N-1$ ã«ãããããã®æé¢ã«ã€ããŠ, ããããPickã®å®çãçšããã°, æ±ããåæ°ã¯\r\n$$\\begin{aligned}\r\n\\sum_{z=1}^{N-1} \\\\{2z(N-z)-N+1\\\\} &= - \\frac{N(N-1)(2N-1)}{3} +N^2(N-1)-(N-1)^2 \\\\\\\\\r\n&= \\frac{(N-1)(N^2-2N+3)}{3}\r\n\\end{aligned}$$\r\nã§ãã, ç¹ã« $N=1011$ ã®ãšã $\\bf{343434340}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/2810"
},
{
"content": "ãç«äœã®ãŸãŸèãã解æ³ã§ã\r\n\r\n----\r\n\r\nã$(0,0,0),(N,N,0),(N,0,N),(0,N,N)$ ãé ç¹ãšããæ£åé¢äœ $P$ ã®å
éšã®æ Œåç¹ã®åæ°ã¯ïŒæ¬¡ã® $A,B,C,D$ ãçšã㊠$A-4B+C+D$ ã§åŸãããïŒ\r\n- $(0,0,0),(N,0,0),(0,N,0),(0,0,N)$ ãé ç¹éåã«å«ãç«æ¹äœã®è¡šé¢ããã³å
éšã®æ Œåç¹ã®åæ° $A$ïŒ\r\n- $(0,0,0),(N,0,0),(0,N,0),(0,0,N)$ ãé ç¹ãšããåé¢äœã®è¡šé¢ããã³å
éšã®æ Œåç¹ã®åæ° $B$ïŒ\r\n- $P$ ã®èŸºäžã®æ Œåç¹ã®åæ° $C$ïŒ\r\n- $P$ ã®é ç¹ã®åæ° $D$ïŒ\r\n\r\n$A,B,C,D$ ã¯ããããç°¡åãªè°è«ã«ãã£ãŠ\r\n$$A=(N+1)^3,\\quad B=\\dfrac{(N+1)(N+2)(N+3)}{6},\\quad C=6N-2,\\quad D=4$$\r\n\r\nãšæ±ããããããïŒæ±ããå€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n\r\n$$(N+1)^3-4\\times\\frac{(N+1)(N+2)(N+3)}{6}+6N-2+4=\\frac{N^3-3N^2+5N-3}{3}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/2810/134"
},
{
"content": "ãããèŠããåå 3 ã€ã®æ¡ä»¶ã£ãŠäžè§åœ¢ã®æç«æ¡ä»¶ãã®ãŸããŸã§ããïŒ[OMC055(D) ã®ãŠãŒã¶ãŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc055\\/editorial\\/258\\/34)ãæãåºããŠè§£ããŠã¿ãŸãïŒ\\\r\nããã£ã¡ã®æ¹ãæ¬è§£èª¬ããã綺éºãããããŸããïŒããããªããïŒ\r\n\r\n---\r\n\r\nãåå 2 åŒã足ãåãããããšã§ $z\\gt 0$ ãåŸãïŒåæ§ã« $x,y\\gt 0$ ã§ããïŒ$x+y+z$ ã®å€ã«ãã£ãŠå ŽååãããŠæ±ãããïŒ\r\n\r\n- $x+y+z$ ãå¶æ°ã®ãšã\\\r\nã$x+y+z=2n$ ãšããïŒæ¡ä»¶ãã $x,y,z \\leq n-1$ ã§ããïŒ$x^\\prime=(n-1)-x$ ã®ããã«ããã° $x^\\prime + y^\\prime + z^\\prime =n-3$ ãªãéè² æŽæ° $x^\\prime, y^\\prime, z^\\prime$ ã®çµã®ç·æ°ãæ±ããããšã«åž°çãããããïŒãã®å Žåã®ç·æ°ã¯ ${}\\_{3} \\mathrm{H}\\_{n-3}={}\\_{n-1} \\mathrm{C}\\_{2}$ ã§ããïŒ\r\n\r\n- $x+y+z$ ãå¥æ°ã®ãšã\\\r\nã$x+y+z=2n+1$ ãšããïŒæ¡ä»¶ãã $x,y,z \\leq n$ ã§ããïŒäžãšåæ§ã«ããŠãã®å Žåã®ç·æ°ã¯ ${}\\_{3} \\mathrm{H}\\_{n-1}={}\\_{n+1} \\mathrm{C}\\_{2}$ ã§ããïŒ\r\n\r\nç¹ã« 4 ã€ç®ã®æ¡ä»¶ã $x+y+z \\lt 2N$ ã§ããå ŽåïŒæ±ããç·æ°ã¯\r\n$$\\binom{2}{2}+\\binom{3}{2}+\\cdots+\\binom{N}{2}+\\binom{2}{2}+\\binom{3}{2}+\\cdots+\\binom{N-2}{2}=\\binom{N+1}{3}+\\binom{N-1}{3}$$\r\nãšãªãïŒ$N=1011$ ã®ãšããã®å€ã¯ $\\textbf{343434340}$ ã§ããïŒ\r\n\r\n---\r\n\r\nãçãã綺éºã§ããïŒå¶ç¶ã§ãïŒãçã綺éºã·ãªãŒãºã« [OMC104(E)](https:\\/\\/onlinemathcontest.com\\/contests\\/omc104\\/tasks\\/2562) ãããã®ã§è§£ããŠã¿ãŠãã ãããã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/2810/136"
}
] | ã以äžã®æ¡ä»¶ããã¹ãŠã¿ããæŽæ°ã®çµ $(x,y,z)$ ã¯ããã€ãããŸããïŒ
$$ x \lt y+z,\quad y \lt x+z,\quad z \lt x+y,\quad x+y+z \lt 2022$$ |
OMC122 | https://onlinemathcontest.com/contests/omc122 | https://onlinemathcontest.com/contests/omc122/tasks/2938 | E | OMC122(E) | 400 | 84 | 124 | [
{
"content": "ã$N=2^{30}-1$ ãšãã. 解ã $x=-a, -a-1, \\cdots, -a-N+1$ ãšããã°, å æ°å®çãã\r\n$$P(2022)=(2022+a)(2022+a+1)\\cdots(2022+a+N-1)=\\frac{(2022+a+N-1)!}{(2022+a-1)!}$$\r\n$n$ ã $2$ é²æ°è¡šèšããæã®åäœã®åã $\\mathrm{popcount}(n)$ ãšããã°, ããã $2$ ã§å²ããæ倧ã®åæ°ã¯\r\n$$N+\\mathrm{popcount}(2022+a-1)-\\mathrm{popcount}(2022+a+N-1)$$\r\nã§ãã, $2022+a-1=m$ ãšããçŽãã°, çµå±\r\n$$\\mathrm{popcount}(m)-\\mathrm{popcount}(m+N)$$\r\nãæå°åããã°ãã. ããã¯æããã« $m$ ã $2^{30}$ ã®åæ°ãšãªããšãã§ãã, $m$ ãš $P(x)$ ã¯äžå¯Ÿäžã«å¯Ÿå¿ãããã,\r\n$$2022 \\leq m \\leq 2022+2^{40}-N$$\r\nã«çæããã°, æ±ããåæ°ã¯ $\\bf{1023}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/2938"
}
] | ã以äžãã¿ããæŽæ°ä¿æ° $2^{30}-1$ 次å€é
åŒ $P(x)$ ã®ãã¡ïŒ$P(2022)$ ã $2$ ã§å²ããæ倧ã®åæ°ãæå°å€ãåããã®ã¯ããã€ãããŸããïŒãã ãïŒãããããã®ã¯æéåã§ãïŒ
- æé«æ¬¡ã®ä¿æ°ã¯ $1$ ã§ãã.
- $P(x)=0$ ã®è€çŽ æ°è§£ã¯ïŒãã¹ãŠ $-2^{40}$ 以äžã®å®æ°ã§ããïŒã〠$2^{30}-1$ åã®é£ç¶ããè² ã®æŽæ°ã§ããïŒ |
OMC122 | https://onlinemathcontest.com/contests/omc122 | https://onlinemathcontest.com/contests/omc122/tasks/1682 | F | OMC122(F) | 500 | 56 | 121 | [
{
"content": "ãçŽç· $BC$ ãš $DP$ ã®äº€ç¹ã $Q$ ãšããã°, $P$ ã¯äžè§åœ¢ $ABQ$ ã®å€å¿ãšãªã. ãŸã $AQ$ ãš $CD$ ã®äº€ç¹ã $M$ ãšããã°, äžç¹é£çµå®çãããã㯠$AQ$ ã®äžç¹ã§, $\\angle PCQ=\\angle PMQ=90^\\circ$ ãã $C,M,P,Q$ ã¯å
±åã§ãã. ãããã£ãŠ, $CM=AB\\/2=7$ ã«çæããã°æ¹ã¹ãã®å®çãã $PQ=8$ ãããã, æ±ããé¢ç©ã¯ $7\\sqrt{15}=\\sqrt{\\textbf{735}}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/1682"
},
{
"content": "ã解æ³ãšããŠã¯ã»ãŒå
¬åŒè§£èª¬ãšå€ãããŸãããïŒæèåè·¯ãšããäžç·ã«æžããŠã¿ãŸããïŒåèã«ãªããã¯åãããŸããïŒïŒ\r\n\r\n---\r\n\r\nãåçŽãšçè§ã®æ¡ä»¶ãèŠããšïŒ$PD$ ãš $BC$ ã延é·ããŠäºç蟺äžè§åœ¢ãäœããããªããŸãïŒäº€ç¹ã $E$ ãšããŸãïŒïŒãããš $P$ 㯠$ABE$ ã®å€å¿ãšãªãïŒãã¶ããã®æ¹åæ§ã§åã£ãŠããã ãããšèªä¿¡ãæãŠãŸãïŒ\r\n\r\nã$\\triangle ABE$ ãäžå¿ã«èããŠãããšïŒ$D$ ã®åãæ¹ïŒ$DP,CD$ ã®é·ãã®æ¡ä»¶ãå²ãšæ°æã¡æªããªãšæããŸãïŒããã§ïŒã©ãã«ãã㊠$\\triangle DPC$ ãšçžäŒŒãªäžè§åœ¢ãäœãããããªãã ãããïŒãšèããŸãïŒ$\\angle DPC = \\angle EAC$ ãªã®ã§ããããžãã§äœãããã§ãïŒãã®åŸããããè§åºŠãè¿œã£ãŠãããšïŒ$EP$ ãš $AB$ ã®äº€ç¹ã $F$ ãšããããšã§ïŒ$\\triangle FAE$ ãš $\\triangle DPC$ ã®çžäŒŒãèŠã€ãããŸãïŒ\r\n\r\nããããšïŒãªããšäžç¹é£çµå®çã䜿ããŠïŒ$FB=6$ ã§ãïŒããªãã¡ $AF=8$ ã§ããïŒããã«ãªããšçžäŒŒãã $EF=12$ ãšãªããŸãïŒïŒããŸãè¡ãããã«ä»åã㊠$F$ ãåã£ãããã§ã¯ãªãã®ã§ïŒããã«æ°ä»ãããšãã¯åã¯ã³ã£ããããŸããïŒïŒ\r\n\r\nãããšã¯ã©ããšã§ã解ããŸããïŒåã¯å€æ¥åã®ååŸã $r$ ãšãããŠïŒ$FP=\\sqrt{r^2-48}$ ãšãªãããšãã $r+\\sqrt{r^2-48}=12$ ã解ããŸããïŒãã®åŸã«æ¹ã¹ãã®å®çã«æ°ä»ããŸããïŒïŒãããã $r=8$ ãåŸããïŒäžå¹³æ¹ã®å®çãªã©ããæ±ããå€ã¯ $7\\sqrt{15}=\\sqrt{\\textbf{735}}$ ã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/1682/135"
},
{
"content": "äžè§é¢æ°ã§ãŽãªæŒãæ¹æ³ã§ãã\\\r\n$AP=BP$ããã$AB$ã®äžç¹ã$M$ãšãããš$\\angle PMB= 90^{\\circ}$ãšãªã.\\\r\n$\\angle BPC=x,\\angle MBC=y$ãšãããšã$PB=\\frac{7}{\\sin(x+y)},PC=\\frac{7\\cos{x}}{\\sin(x+y)}$ãããããæ£åŒŠå®çãã$DC=\\frac{7\\cos{x}\\cos{y}}{\\sin(x+y)\\cos(y-x)}=3$ãªã®ã§ã$7\\cos{x}\\sin{x}=3\\sin(x+y)\\cos(y-x)$ãšå€åœ¢ã§ããã\\\r\nããã«ãåè§å
¬åŒãšç©åå€æã䜿ãããšã§ã$2\\sin{2x}=\\frac{3}{2}\\sin{2y}$ãšå€åœ¢ã§ããã\\\r\nãã£ãŠ$\\sin{2x}:\\sin{2y}=3:4$ã§ãæ£åŒŠå®çãã$\\sin{x}:\\cos{y}=3:2$ãªã®ã§$\\cos{x}:\\sin{y}=1:2$ã§ããã\\\r\nãããŸã§ããã°$\\sin{x},\\cos{x},\\sin{y},\\cos{y}$ãæ±ãŸãã®ã§$\\tan$ã®å æ³å®çã䜿ãã°$MP=\\sqrt{15}$ãšãããã\\\r\nãã£ãŠ$\\triangle ABP$ã®é¢ç©ã¯$14\\times \\sqrt{15} \\times \\frac{1}{2}=7\\sqrt{15}$ãªã®ã§ãæ±ããå€ã¯$\\textbf{735}$ã§ããã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/1682/140"
},
{
"content": "ãå
¬åŒè§£èª¬ãšã¯ç°ãªãç¹ãåãæ¹æ³ã§ã. \r\nãç¹ $Q$ ãç·å $BP$ äžã«, $PQ=2$ ãšãªãããã«åã£ãŠã¿ããš, äžè§åœ¢ $CPD$ ãšäžè§åœ¢ $CPQ$ ã¯ååãªã®ã§ $CQ=3$ ã§ã. ãŸã, 容æãªè§åºŠèšç®ã«ãã $\\angle{ABC}=\\angle{BCQ}$ ãããããŸã. \r\nãããŠ, $AB$ ã®äžç¹ã $M$ ãšããã° $4$ ç¹ $B,C,P,M$ ã¯åäžååšäžã«ãããŸã. ãã® $4$ ç¹ãéãåãš $CQ$ ãšã®äº€ç¹ã®ãã¡, $C$ ã§ãªãæ¹ã $R$ ãšããã°, $\\angle{ABC}=\\angle{BCQ}$ ããåè§åœ¢ $BCRM$ ã¯çèå°åœ¢ã§ãã, $CR=AB\\/2=7$ ã§ã. ããšã¯ãã®åã«æ¹ã¹ãã®å®çãé©çšããããšã§ $BQ=6$ ããããã®ã§ $PM=\\sqrt{15}$ ãšãªã, 解çãã¹ãå€ã¯ $$(7\\sqrt{15})^2=\\bf{735}$$ ãšãªããŸã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc122/editorial/1682/141"
}
] | $$AB=14, \quad CD=3, \quad AB\parallel CD$$
ãªãåžåè§åœ¢ $ABCD$ ã«ãããŠïŒãã®å
éšã®ç¹ $P$ ã以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$AP=BP,\quad \angle BCP=90^{\circ}, \quad \angle BPC= \angle CPD,\quad DP=2$$
ãã®ãšãïŒäžè§åœ¢ $ABP$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC121 (for beginners) | https://onlinemathcontest.com/contests/omc121 | https://onlinemathcontest.com/contests/omc121/tasks/3245 | A | OMC121(A) | 100 | 320 | 322 | [
{
"content": "ã$3245$ ãçŽ å æ°å解ãããš $5\\times 11\\times 59$ ã§ãããã, $\\textbf{59}$ ã解çããã¹ããã®ã§ãã.\\\r\nããªã, $3245=57^2-2^2=(57+2)(57-2)=59 \\times 55$ ãšå€åœ¢ããããšãå¯èœã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc121/editorial/3245"
}
] | ã$3245$ ãå²ãåãæ倧ã®çŽ æ°ã解çããŠãã ããïŒ |
OMC121 (for beginners) | https://onlinemathcontest.com/contests/omc121 | https://onlinemathcontest.com/contests/omc121/tasks/3247 | B | OMC121(B) | 100 | 295 | 315 | [
{
"content": "ãäžåŒãã\r\n$$x=\\dfrac{-9\\pm \\sqrt{77}}{2}$$\r\nã§ãã. äžåŒããäžåŒãåŒããš $a=2x+1$ ã§ãããã代å
¥ãããš\r\n$$a=\\pm \\sqrt{77}-8$$\r\nãšãªã, ãã®ãã¡ $a$ ãæ£ã§ãããã®ã¯ $a=\\sqrt{77}-8$ ãªã®ã§, 解çãã¹ãå€ã¯ $\\textbf{85}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc121/editorial/3247"
}
] | ãå®æ° $x$ ãšæ£ã®å®æ° $a$ ã«ã€ããŠïŒä»¥äžã® $2$ ã€ã®åŒãæãç«ã£ãŠããŸãïŒãã®ãšãïŒæ£æŽæ° $p,q$ ãçšã㊠$a=\sqrt{p}-q$ ãšè¡šããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ
$$\begin{cases}
x^2+9x+1=0 \\\\
x^2+7x+a=0 \\\\
\end{cases}$$ |
OMC121 (for beginners) | https://onlinemathcontest.com/contests/omc121 | https://onlinemathcontest.com/contests/omc121/tasks/3246 | C | OMC121(C) | 200 | 282 | 293 | [
{
"content": "ã$AD:DB=AE:EC=2:3$ ããåè§åœ¢ $BDEC$ ã®é¢ç©ã¯ $\\triangle{ABC}$ ã®é¢ç©ã® $\\dfrac{21}{25}$ åã§ãã.\\\r\nã$\\triangle{ABC}$ ã®é¢ç©ã¯ $\\angle{BAC}=90^\\circ$ ã®æã«æå€§å€ $25$ ãåãã®ã§, 解çãã¹ãå€ã¯ $\\textbf{21}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc121/editorial/3246"
}
] | ãäžè§åœ¢ $ABC$ ã®ãããã蟺 $AB,AC$ äžã®ç¹ $D,E$ ã«ã€ããŠïŒä»¥äžãæãç«ã¡ãŸãïŒ
$$AD=2,\quad DB=3,\quad AE=4, \quad EC=6$$
ãã®ãšãïŒåè§åœ¢ $BDEC$ ã®é¢ç©ã®ãšãããæ倧å€ãæ±ããŠãã ããïŒ |
OMC121 (for beginners) | https://onlinemathcontest.com/contests/omc121 | https://onlinemathcontest.com/contests/omc121/tasks/3248 | D | OMC121(D) | 300 | 164 | 231 | [
{
"content": "ãåé¡æäžã®æ¡ä»¶ãäžãã, æ¡ä»¶ $1$, æ¡ä»¶ $2$, æ¡ä»¶ $3$ ãšãã.\\\r\n ã$p$ ãçŽ æ°, $k$ ãæ£æŽæ°ãšããŠ, æ¡ä»¶ $1$ ã« $(m,n)=(p,p^k)$ ã代å
¥ããããšã§, $f(p^{k+1})=f(p^k)$ ãä»»æã®æ£æŽæ° $k$ ã§æãç«ã€ããšãããã, ããããä»»æã®æ£æŽæ° $k$ ã«å¯Ÿã㊠$f(p^k)=f(p)$ ã瀺ããã. åã³æ¡ä»¶ $1$ ã«ãã,\r\n$$f(3248)=f(2^4)f(7)f(29)=f(2)f(7)f(29)$$\r\nã§, ããã¯æ¡ä»¶ $3$ ã«ãã $3\\times 2\\times 2=12$ 以äžã®å€ãåã. äžæ¹ã§, $f$ ã®çŽ æ°ã§ã®æåã«ã€ããŠ, 以äžã®ããã«å®ãããšãã¹ãŠã®æ¡ä»¶ãæºããããšããããã®ã§, çã㯠$\\textbf{12}$ ã§ãã. ãã ã $p_n$ 㯠$n$ çªç®ã®çŽ æ°ãè¡šã.\\\r\n$$f(p_n)=\r\n\\begin{cases}\r\n3 & (p_n=2) \\\\\\\\\r\n2 & (p_n=7,29) \\\\\\\\\r\np_{n+9} & (\\text{otherwise}) \r\n\\end{cases}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc121/editorial/3248"
}
] | ãæ£æŽæ°ã«å¯ŸããŠå®çŸ©ããïŒæ£æŽæ°å€ããšãé¢æ° $f$ ãïŒä»¥äžã®æ¡ä»¶ããã¹ãŠã¿ãããŸã.
- ä»»æã®æ£æŽæ° $m$, $n$ ã«å¯ŸããŠïŒ$f(mn)f(\gcd(m, n))=f(m)f(n)$ ãã¿ããïŒ
- $f(n)=1$ 㯠$n=1$ ãšåå€ã§ããïŒ
- ä»»æã® $2$ 以äžã®æ£æŽæ° $n$ ã«å¯ŸããŠïŒ$f(n)$ 㯠$n$ ã§å²ããããªãïŒ
ãã®ãšãïŒ$f(3248)=f(2^4\times 7\times 29)$ ã®ãšãããæå°å€ãæ±ããŠãã ããïŒ\
ããã ãïŒ$\gcd(m, n)$ ã§ïŒ$m$ ãš $n$ ã®æ倧å
¬çŽæ°ãè¡šããã®ãšããŸãïŒ |
OMC121 (for beginners) | https://onlinemathcontest.com/contests/omc121 | https://onlinemathcontest.com/contests/omc121/tasks/3250 | E | OMC121(E) | 300 | 61 | 126 | [
{
"content": "ã以äž, ç°¡åã®ããã« $m=OA$ ãšãã. äžè¬æ§ã倱ãã匧 $AP$ ã®é·ãã匧 $PB$ ã®é·ããããçããšããã°,\r\n$$AP=\\sqrt{2m},\\quad BP=57\\sqrt{2m}$$\r\n\r\n**解æ³1.**ã$x=\\angle{POA}$, $y= \\angle{POQ}$ ãšãããš, äœåŒŠå®çã $\\triangle{OGQ}$ ã«çšããããšã§\r\n$$\\cos {y}=\\dfrac{7}{25},\\quad \\sin{y}=\\dfrac{24}{25}$$\r\nãåŸã. ãŸã\r\n$$\\sin{x}=\\dfrac{57}{m},\\quad \\cos{x}=\\dfrac{m-1}{m}$$\r\nãã, æ±ããå€ã¯\r\n$$\\begin{aligned} \r\nm \\sin{(x+y)} =&m\\sin{x}\\cos{y}+m\\cos{x}\\sin{y} \\\\\\\\\r\n=& 57 \\cdot \\frac{7}{25}+(m-1)\\cdot \\frac{24}{25} \\\\\\\\\r\n=& \\textbf{1575}\r\n\\end{aligned}$$ \r\n\r\n**解æ³2.**ã$\\triangle{ABQ}$ ã®éå¿ã $G^\\prime$ ãšãããš, åè§åœ¢ $PGG^\\prime Q$ ã¯çèå°åœ¢ã§ããããåã«å
æ¥ã, Ptolemyã®å®çãã\r\n$$\\frac13PQ^2+\\frac49m^2=\\frac{208}{225}m^2 \\implies PQ=\\dfrac{6}{5}m=1950$$\r\näžæ¹ã§åè§åœ¢ $APQB$ ã«ãPtolemyã®å®çãé©çšããŠæŽçããããšã§\r\n$$2m PQ+\\sqrt{2m}BQ=57\\sqrt{2m}AQ \\implies BQ=57AQ-1950\\sqrt{2m}$$\r\nãšãªã, ãããš $AQ^2+BQ^2=AB^2=3250\\times2m$ ãåãããããšã§, $AQ$ ãšããŠããããå€ãšããŠ\r\n$$35\\sqrt{2m}=175\\sqrt{130},\\quad \\dfrac{167}{5}\\sqrt{2m}=167\\sqrt{130}$$\r\nã® $2$ ã€ãåŸããã. äœçœ®é¢ä¿ãèããããšã§ $AQ=35\\sqrt{2m}$ ãšç¢ºå®ã§ã, $BQ=45\\sqrt{2m}$ ãåŸã.\\\r\nããããã, $Q$ ããç·å $AB$ ã«äžãããåç·ã®è¶³ã $H$ ãšãããš,\r\n$$AH : HB=AQ^2:QB^2=49 : 81$$\r\nãšãªã, æ±ããå€ã¯ $QH=\\textbf{1575}$ ãšèšç®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc121/editorial/3250"
}
] | ãè·é¢ $3250~(=57^2+1)$ ã® $2$ ç¹ $A,B$ ã䞡端ç¹ãšããååã®åŒ§ $C$ ãããïŒãã®äžå¿ïŒ$AB$ ã®äžç¹ïŒã $O$ ãšããŸãïŒ$C$ äžã«çŽç· $AB$ ãšã®è·é¢ã $57$ ã§ãããããªç¹ $P$ ããšãïŒäžè§åœ¢ $ABP$ ã®éå¿ã $G$ ãšãããšãïŒ$C$ äžã®ç¹ $Q$ ã§ãã£ãŠïŒ
$$GQ=\dfrac {4\sqrt {13}}{15}AO$$
ãã¿ãããã®ãäžæã«ååšããŸãïŒç¹ $Q$ ãšçŽç· $AB$ ãšã®è·é¢ãæ±ããŠãã ããïŒ |
OMC121 (for beginners) | https://onlinemathcontest.com/contests/omc121 | https://onlinemathcontest.com/contests/omc121/tasks/3249 | F | OMC121(F) | 400 | 95 | 190 | [
{
"content": "ã$3\\times 3$ ã®ã¿ã€ã«ãš $3\\times 19$ ã®ã¿ã€ã«ããããã**ã¿ã€ã«** $A$, **ã¿ã€ã«** $B$ ãšãã.\\\r\nãããè¡ãªããåã«ãããŠã¿ã€ã« $B$ ã眮ã㊠$19$ ãã¹ãåããå Žå, ãã®è¡ãåã«ã¯ã¿ã€ã« $B$ ã $3$ æ㧠$57$ ãã¹ãåãã以å€ã«åãæ¹ã¯ååšããªã. éã«, ããè¡ãåãã¿ã€ã« $A$, $B$ 㧠$3$ ãã¹ãåãããšãã«ã¯ãã®è¡ãå㯠$19$ æã®ã¿ã€ã«ã§åãããããªã. ãããèžãŸãããš, ã¿ã€ã« $B$ ã¯å¿
ã $3\\times 57$ ã®å¡ãšããŠçšãããã.\\\r\nããã¹ãŠã暪é·ã«é
眮ãããã®ãèããã. ãã®ãšã, å
šäœã $3\\times 57$ ã®éšåãã¹ç® $19$ åã«åå²ããŠãã®ãã¡äžã€ã«çç®ãããšã, ãã®äžã§äœ¿ãããã¿ã€ã«ã®ææ°ã®ç·å㯠$2^{18}(3+19)$ ãšèšç®ã§ãã.\\\r\nããããã£ãŠ, ã¿ã€ã« $A$ ã®ã¿ãçšããå Žåã®éè€ã«æ³šæããã°, å
šäœã§æ±ããç·åã¯\r\n$$2\\times 19\\times 2^{18}(3+19)-19^2=\\textbf{219152023}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc121/editorial/3249"
}
] | ã$57\times 57$ ã®ãã¹ç®ãïŒ$3\times 3$ ãš $3\times 19$ ã® $2$ çš®é¡ã®ã¿ã€ã«ã§éãªããªãæ·ãè©°ãããšãïŒãã¹ãŠã®æ·ãè©°ãæ¹ã«ã€ããŠäœ¿ãããã¿ã€ã«ã®ææ°ã®ç·åãæ±ããŠãã ããïŒ\
ããã ãïŒã¿ã€ã«ã¯ $90^\circ$ å転ããŠçšããŠãããïŒäžæ¹ã®ã¿ã€ã«ããçšããªããŠãè¯ããã®ãšããŸãïŒãŸãïŒå転ãè£è¿ãã§äžèŽãããããªçœ®ãæ¹ãåºå¥ããŠèããŸãïŒ |
MathPoweræ¯2022 | https://onlinemathcontest.com/contests/mathpower2022 | https://onlinemathcontest.com/contests/mathpower2022/tasks/5877 | A | MathPoweræ¯2022(A) | 100 | 321 | 321 | [
{
"content": "ã$12$ åããçµæ㯠$4$ ã®åæ°ã§ããããšããïŒäž $2$ æ¡ã¯ $00$ ã§ãªããã°ãªããªãïŒããã«ïŒ$3$ ã®åæ°ã§ããããšããïŒæ¡åã $3$ ã®åæ°ã§ãªããã°ãªããªãããïŒä»¥äžããæ±ããæå°å€ã¯ $11100\\div 12=\\mathbf{925}$ ãšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/mathpower2022/editorial/5877"
}
] | ã以äžã®æ¡ä»¶ãã¿ãããããªïŒæå°ã®æ£æŽæ°ãæ±ããŠãã ããïŒ
- $12$ åãããšïŒåé²æ³è¡šèšã§ãã¹ãŠã®æ¡ã $0$ ãŸã㯠$1$ ã«ãªãïŒ |