contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
MathPoweræ¯2022 | https://onlinemathcontest.com/contests/mathpower2022 | https://onlinemathcontest.com/contests/mathpower2022/tasks/201 | B | MathPoweræ¯2022(B) | 200 | 252 | 272 | [
{
"content": "ãåæé¢ã¯ $AF,FH,HA$ ã®äžç¹ãéãå, ããªãã¡æ£äžè§åœ¢ $AFH$ ã®å
æ¥åã§ãã.\\\r\nããã£ãŠ, ãã®ååŸã¯ $100\\sqrt{2\\/3}$ ã§ãããã, 解çãã¹ãå€ã¯ $20000+3=\\textbf{20003}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/mathpower2022/editorial/201"
}
] | ãäžèŸº $200$ ã®ç«æ¹äœ $ABCD-EFGH$ ã«ïŒååŸ $100$ ã®ç $\Omega$ ãå
æ¥ããŸãïŒ$3$ ç¹ $A,F,H$ ãéãå¹³é¢ã§ $\Omega$ ãåæãããšãïŒæé¢ç©ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ãçšã㊠$\dfrac{p}{q}\pi$ ãšè¡šããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ
<details><summary>ç«æ¹äœ $ABCD-EFGH$ ãšã¯ïŒ<\/summary>
ãæ£æ¹åœ¢ $ABCD$ ããã³ $EFGH$ ãåããåãé¢ãšããŠãã¡ïŒ$AE,BF,CG,DH$ ãããããšåçŽãªèŸºãšããŠååšãããããªç«æ¹äœããããŸãïŒ
<\/details> |
MathPoweræ¯2022 | https://onlinemathcontest.com/contests/mathpower2022 | https://onlinemathcontest.com/contests/mathpower2022/tasks/1517 | C | MathPoweræ¯2022(C) | 200 | 238 | 272 | [
{
"content": "ããŸã, æ人 $x$ ãæ£çŽè
ã§ããã°æ人 $x+3$ ãæ£çŽè
ã§ããããšãããã. ãã®ããšãã, æ人ãçªå·é ã«äžŠã¹, æ£çŽè
ã O, åã€ãã X ãšèšãããšã§ OX ã®åã§è¡šãã° XXXXXX..., OXXOXX..., OOXOOX..., OOOOOO... ã®ããããã§, ãã®ãã¡äžçªç®ãšäžçªç®ã®ã¿ãé©ãã. ç¹ã«äžçªç®ã¯ $3$ éãèãããããã, 解ç㯠$2022+3\\times(2022\\/3)=\\textbf{4044}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/mathpower2022/editorial/1517"
}
] | ãããæã«ã¯æ人ã $2022$ 人ããïŒããããã« $1, 2, \ldots ,2022$ ã®çªå·ãä»ããŠããŸãïŒãã¹ãŠã®æ人ã¯**æ£çŽè
**ã**åã€ã**ã®ããããã§ããïŒæ£çŽè
ã¯å¿
ãçå®ãèšãïŒåã€ãã¯å¿
ãåãã€ããŸãïŒççŸãèµ·ãããããªå
容ã¯èããŸããïŒïŒ\
ãããŸïŒ$i=1,2,\ldots,2022$ ããããã«ã€ããŠïŒæ人 $i$ ã次ã®ããã«èšããŸããïŒ
- æ人 $i+1$ ãšæ人 $i+2$ ã¯ïŒäžæ¹ãæ£çŽè
ã§ïŒããäžæ¹ãåã€ãã§ããïŒ
ãããããšã«ïŒãããããã®æ人ãæ£çŽè
ã§ãããåã€ãã§ãããã®çµã¿åããããšããŠãããããã®ãã¹ãŠã«ã€ããŠïŒ**åã€ã**ã®äººæ°ã®ç·åã解çããŠãã ããïŒ\
ããã ãïŒæ人 $2023$ ã¯æ人 $1$ ãšïŒæ人 $2024$ ã¯æ人 $2$ ãšåäžèŠããŸãïŒ |
MathPoweræ¯2022 | https://onlinemathcontest.com/contests/mathpower2022 | https://onlinemathcontest.com/contests/mathpower2022/tasks/5848 | D | MathPoweræ¯2022(D) | 300 | 134 | 157 | [
{
"content": "ãä»»æã®å®æ° $t,x,y$ ã«ã€ã㊠$t^6P(x,y)=P(tx,ty)$ ãæç«ããããšã«çæããã°, \r\n$$P(1,1)=P(2,1)=\\cdots=P(6,1)=0$$\r\nãåãã. $P(x,1)$ 㯠$x$ ã«é¢ããã¢ããã¯ãª $6$ 次å€é
åŒãªã®ã§, \r\n$$P(x,1)=(x-1)(x-2)\\cdots(x-6)$$\r\nãšãªã. 以äžãã\r\n$$P\\bigg(\\sqrt7, \\frac{1}{\\sqrt7}\\bigg)=\\frac{1}{7^3}P(7,1)=\\frac{6!}{7^3}=\\frac{720}{343}$$\r\nã§ãã. ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{1063}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/mathpower2022/editorial/5848"
}
] | ãå®æ° $a_1, a_2, a_3, a_4, a_5,a_6$ ã«å¯ŸãïŒ
$$P(x,y) = x^6+a_1x^5y+a_2x^4y^2+a_3x^3y^3+a_4x^2y^4+a_5xy^5+a_6y^6$$
ã§å®ãŸã $2$ å€æ°å€é
åŒ $P(x,y)$ ã
$$P\bigg(\sqrt1, \frac{1}{\sqrt1}\bigg)=
P\bigg(\sqrt2, \frac{1}{\sqrt2}\bigg)=
\cdots=
P\bigg(\sqrt6, \frac{1}{\sqrt6}\bigg)=0$$
ãã¿ãããšãïŒ$P\bigg(\sqrt7, \dfrac{1}{\sqrt7}\bigg)$ ã®å€ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
MathPoweræ¯2022 | https://onlinemathcontest.com/contests/mathpower2022 | https://onlinemathcontest.com/contests/mathpower2022/tasks/3347 | E | MathPoweræ¯2022(E) | 300 | 91 | 127 | [
{
"content": "**è£é¡.**ã$AC = AD\\/2$ïŒ\\\r\n**蚌æ.**ã$\\angle BAM = x, \\angle CAM = 2x$ ãšããïŒ$AD$ äžã«ç¹ $P$ ã $AM = MP$ ãæºããããã«åãïŒ$BM = MC$ ã§ããããïŒåè§åœ¢ $ABPC$ ã¯å¹³è¡å蟺圢ã§ããïŒãã£ãŠïŒ$BP = AC$ïŒäžè§åœ¢ $ABD$ ã¯çŽè§äžè§åœ¢ã§ããããïŒ$AD$ ã®äžç¹ã $T$ ãšãããšïŒ$AT = BT = AD\\/2$ ãåŸãïŒããã« $\\angle BTP = \\angle BPT = 2x$ ãã $BT = BP$ ãšãªãïŒä»¥äžããïŒ$AC = BP = BT = AD\\/2$ ãšãªã䞻匵ãåŸãïŒ \r\n----\r\nãããããïŒ$AC$ ã®é·ã㯠$\\dfrac{1}{2} \\sqrt{20^{2}+22^{2}} = \\sqrt{\\mathbf{221}}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/mathpower2022/editorial/3347"
},
{
"content": "ãæ£åŒŠå®çãäœåŒŠå®çããå§ããŠãæ¯èŒçããã«è§£ãããšãã§ããŸãïŒ\r\n\r\n----\r\n\r\n**解æ³1ïŒæ£åŒŠå®çïŒ** æ£åŒŠå®çãã次ãæãç«ã¡ãŸãïŒ\r\n$$\\frac{AB}{\\sin\\angle AMB}=\\frac{BM}{\\sin\\angle BAM},\\quad\\frac{AC}{\\sin\\angle AMC}=\\frac{CM}{\\sin\\angle CAM}$$\r\n$\\sin\\angle AMB=\\sin\\angle AMC,BM=CM$ ãçšãæŽçããã°\r\n$$AC=\\frac{\\sin\\angle BAM}{\\sin\\angle CAM}\\cdot AB=\\frac{\\sin\\angle BAM}{\\sin(2\\angle BAM)}\\cdot AB=\\frac{AB}{2\\cos\\angle BAM}$$\r\nãšãªãïŒ$\\angle BAM=\\angle BAD$ ããã³ $\\angle DBA=90^\\circ$ ã«æ³šæããã° $AC=AD\\/2=\\sqrt{\\bf 221}$ ãšããããŸããïŒ\r\n\r\n----\r\n\r\n**解æ³2ïŒäœåŒŠå®çïŒ** $AB=x,AC=y,AM=z,BM=w,\\angle BAM=\\theta$ ãšãããŸãïŒäœåŒŠå®çãã次ãæãç«ã¡ãŸãïŒ\r\n$$2xz\\cos\\theta=x^2+z^2-w^2,\\quad 2yz\\cos2\\theta=y^2+z^2-w^2$$\r\nãããã¯äžç·å®ç $x^2+y^2=2(z^2+w^2)$ ãçšããã°æ¬¡ã®ããã«å€åœ¢ã§ããŸãïŒ\r\n$$x\\cos\\theta+y\\cos2\\theta=2z,\\quad 2z(x\\cos\\theta-y\\cos2\\theta)=x^2-y^2$$\r\n$z$ ãæ¶å»ãããš\r\n$$x^2\\cos^2\\theta-y^2\\cos^22\\theta=x^2-y^2$$\r\nãšãªãïŒäžè§é¢æ°ã®åºæ¬çãªå
¬åŒãçšããŠèšç®ããã° $y=\\dfrac{x}{2\\cos\\theta}$ ãåŸãããŸãïŒåŸã¯äžã®è§£æ³ãšåæ§ã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/mathpower2022/editorial/3347/132"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $BC$ ã®äžç¹ã $M$ ãšãïŒçŽç· $AM$ äžã« $\angle ABD = 90^{\circ}$ ãã¿ããç¹ $D$ ããšããšïŒä»¥äžã®æ¡ä»¶ãæç«ããŸããïŒ
$$AB=20,\quad BD=22,\quad \angle BAM : \angle CAM = 1 : 2$$
ãã®ãšãïŒ$AC$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
MathPoweræ¯2022 | https://onlinemathcontest.com/contests/mathpower2022 | https://onlinemathcontest.com/contests/mathpower2022/tasks/4127 | F | MathPoweræ¯2022(F) | 400 | 85 | 166 | [
{
"content": "ã$a_{a_1}=1$ ãšãªãå Žåãèã㊠$7$ åããã°ããïŒ$a_1=x$ ãšãããšïŒ\r\n$$x=a_1=a_{a_{a_1}}=a_{a_x}=1.$$\r\nããã®ãšãïŒå $i=2,3,\\ldots,7$ ã«å¯ŸããŠïŒé ç¹ $i$ ããé ç¹ $a_i$ ã«æå蟺ã貌ã£ããã㪠$7$ é ç¹ $6$ 蟺ã®ã°ã©ããèãããšïŒãã¹ãŠã®é ç¹ã¯é ç¹ $1$ ãšé£çµã§ããå¿
èŠãããããïŒç¡åã°ã©ããšããŠã¯ $1$ ãæ ¹ãšããæšãšããŠè§£éã§ãïŒãã¹ãŠã®èŸºã¯æ ¹ã®æ¹åãžåããïŒããã« $a_{a_i}=1$ ã¯é«ã㯠$2$ 以äžã§ãããšè¡šçŸã§ããïŒ\\\r\nãããªãã¡ïŒé«ãã $2$ 以äžã§ãããããªé ç¹æ° $7$ ã®æ ¹ä»ãæšã§ãã£ãŠïŒæ ¹ä»¥å€ã®é ç¹ãã©ããªã³ã°ãããŠãããã®ãæ°ãäžããã°ããïŒæ·±ãã $1$ ã§ãããããªé ç¹ã $i$ åãããšãããšïŒãã®çµã¿åããã ${}\\_6\\mathrm{C}\\_{i}$ éãïŒæ·±ãã $2$ ã§ããåé ç¹ã®èŠªã®æ±ºãæ¹ã $i^{6-i}$ éãååšããããïŒä»¥äžãã $a_{a_1}=1$ ãšãªãæ°åã®åæ°ã¯ \r\n$$\\displaystyle \\sum_{i=1}^6 \\Big({}\\_6\\mathrm{C}\\_{i}\\cdot i^{6-i}\\Big)=1057$$ \r\nã§ããïŒ$a_{a_1}\\neq1$ ã®å Žåãåæ§ã«èããã°ïŒæ±ããçã㯠$1057\\cdot7=\\mathbf{7399}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/mathpower2022/editorial/4127"
}
] | ã以äžã®æ¡ä»¶ãã¿ããïŒé·ã $7$ ã®æ°å $a_1, a_2, \ldots, a_7$ ã¯ããã€ãããŸããïŒ
- $a_1, a_2, \ldots, a_7$ ã¯ãã¹ãŠ $1$ ä»¥äž $7$ 以äžã®æŽæ°ã§ããïŒ
- $a_{a_1}=a_{a_2}=a_{a_3}=a_{a_4}=a_{a_5}=a_{a_6}=a_{a_7}$ïŒ |
MathPoweræ¯2022 | https://onlinemathcontest.com/contests/mathpower2022 | https://onlinemathcontest.com/contests/mathpower2022/tasks/2255 | G | MathPoweræ¯2022(G) | 400 | 15 | 38 | [
{
"content": "ãçŽ æ° $p$ ãåºå®ãïŒæ£æŽæ° $a\\lt b$ ã«å¯Ÿããæ¹çšåŒ\r\n$$\\dfrac{ab}{a+2b}=p$$\r\nãèããïŒ$(a-2p)(b-p)=2p^2$ ãšå€åœ¢ã§ããããïŒ$a\\lt b$ ã«æ³šæãããšè§£ã¯ä»¥äžã§äžããããïŒ\r\n- $p=2$ ã®ãšã $(a,b)=(5,10)$\r\n- $p\\geq 3$ ã®ãšã $(a,b)=(2p+1,2p^2+p),(2p+2,p^2+p)$\r\n\r\nãã£ãŠïŒæ¬¡ã®ããã«å®ãããš $D$ ã¯é»æ¿ã«æžãããæŽæ°ã®éåãšããŠããåŸããã®ã®ãã¡æ倧ãã€ïŒé»æ¿ã«æžããåŸãæŽæ°ãå
šãŠå«ãïŒ\r\n- $A=\\\\{2p+1,2p^2+p\\mid pã¯3以äžã®çŽ æ°, ~ 2p^2+p\\leq 2022\\\\}$\r\n- $B=\\\\{2p+2,p^2+p\\mid pã¯3以äžã®çŽ æ°, ~ p^2+p\\leq 2022\\\\}$\r\n- $C=\\\\{5,10\\\\}$\r\n- $D=A\\cup B\\cup C$\r\n\r\nããããã $S=2\\times 31^2+31=1953$ ãšãªãïŒãŸã $|A|=20,|B|=25,|C|=2$ ããããïŒ\r\n$|B|$ ã«ã€ããŠã¯ $12=2\\times 5+2=3^2+3$ ã«æ³šæããïŒ\r\n$A$ ã®èŠçŽ ã¯å
šãŠå¥æ°ïŒ$B$ ã®èŠçŽ ã¯å
šãŠå¶æ°ã§ããããšã«çæãããšïŒ\r\n$$A\\cap B=B\\cap C=C\\cap A=\\emptyset$$\r\nã確èªã§ããïŒãã£ãŠ $T=|D|=|A|+|B|+|C|=47$ ã§ããïŒè§£çãã¹ãå€ã¯ $1953\\times 47=\\mathbf{91791}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/mathpower2022/editorial/2255"
}
] | ãé»æ¿ã« $1$ ä»¥äž $2022$ 以äžã®çžç°ãªãæŽæ°ãããã€ãæžãããŠããïŒä»¥äžã®æ¡ä»¶
- é»æ¿ã«æžãããä»»æã®æ° $x$ ã«å¯ŸãïŒé»æ¿ã«æžããã $x$ 以å€ã®æ° $y$ ã§ãã£ãŠïŒ$$\dfrac{xy}{x+y+\max(x,y)}$$ãçŽ æ°ãšãªããããªãã®ãååšããïŒ
ãã¿ãããŠããŸãïŒãã®ãšãïŒæžãããŠãã**æ°**ãšããŠããããæ倧å€ã $S$ïŒæžãããŠãã**æ°ã®åæ°**ãšããŠããããæ倧å€ã $T$ ãšãããšãïŒ**ç©** $S\times T$ ãæ±ããŠãã ããïŒ |
MathPoweræ¯2022 | https://onlinemathcontest.com/contests/mathpower2022 | https://onlinemathcontest.com/contests/mathpower2022/tasks/5604 | H | MathPoweræ¯2022(H) | 500 | 33 | 66 | [
{
"content": "ã$$b_n=a_{n+1}-a_n=\\left\\lfloor\\sqrt{a_n}\\right\\rfloor,\\quad c_n=a_n-b_n^2$$\r\nãšããïŒ\r\n$a_n$ ã¯ç矩å調å¢å ïŒ$b_n$ ã¯åºçŸ©å調å¢å ã§ããïŒ\r\n$b_N\\geq 10^{10}$ ãšãªããããªæå°ã®æ£ã®æŽæ° $N$ ãæ±ããã°ããïŒ\r\n$\\left\\lfloor\\sqrt{a_n}\\right\\rfloor\\leq \\sqrt{a_n}\\lt \\left\\lfloor\\sqrt{a_n}\\right\\rfloor+1$ ãã\r\n$b_n^2\\leq a_n\\leq b_n^2+2b_n$ïŒããªãã¡ $0\\leq c_n\\leq 2b_n$ ã§ããïŒ\\\r\nã$c_n\\leq b_n$ ã®ãšãïŒ\r\n$$b_n^2\\leq a_{n+1}=(b_n^2+c_n)+b_n\\lt (b_n+1)^2$$\r\nãã $b_{n+1}=b_n$ ã§ããïŒãŸã $c_n\\gt b_n$ ã®ãšãïŒ\r\n$$(b_n+1)^2\\leq a_{n+1}=(b_n^2+c_n)+b_n\\lt (b_n+2)^2$$\r\nãã $b_{n+1}=b_n+1$ ã§ããïŒãŸãšããã°ïŒä»¥äžã®ããã«ãªãïŒ\r\n$$(b_{n+1},c_{n+1})=\\begin{cases}(b_n,c_n+b_n) & (c_n\\leq b_n)\\\\\\\\ (b_n+1,c_n-b_n-1) & (c_n\\gt b_n)\\end{cases}$$\r\nããããèžãŸããã°ïŒçµ $(b_n,c_n)$ ã®é·ç§»ã¯\r\n$$ (b_n,0) \\mapsto (b_n,b_n) \\mapsto (b_n,2b_n) \\mapsto (b_n+1,b_n-1)$$\r\nããã³\r\n$$ (b_n,c_n) \\mapsto (b_n,c_n+b_n) \\mapsto (b_n+1,c_n-1) \\qquad (c_n\\neq 0)$$\r\nã®çµã¿åããã§èšè¿°ã§ããããšããããïŒãããèžãŸããã°ïŒ$K$ ãåºå®ãããšãïŒ$b_n=K$ ãšãªã $n$ ã®åæ°ã¯ïŒ$K$ ã $2$ ããã®ãšã $3$ïŒããã§ãªããšã $2$ ã§ããããšãïŒç°¡åãªåž°çŽæ³ã«ãã£ãŠãããïŒ\\\r\nããããã£ãŠ $b_n\\leq 10^{10}-1$ ãšãªã $n$ ã®åæ°ã¯ïŒ$10^{10}-1$ 以äžã® $2$ ããã®åæ°ã $34$ åã§ããããšã«æ³šæãããšïŒ\r\n$$2\\cdot (10^{10}-1)+34=2\\cdot 10^{10}+32$$\r\nã§ããïŒããªãã¡ $b_N\\geq 10^{10}$ ãªãæå°ã® $N$ 㯠$2\\cdot 10^{10}+33={\\bf 20000000033}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/mathpower2022/editorial/5604"
}
] | ãæ£æŽæ°å $\\{a_n\\}\_{n=1,2,\dots}$ ãïŒ$a_1=1$ ããã³ä»¥äžã®æŒžååŒã§å®ããŸãïŒ
$$ a_{n+1}=a_n+\left\lfloor\sqrt{a_n}\right\rfloor\quad (n=1,2,\dots)$$
ãã®ãšãïŒ$a_N\geq 10^{20}$ ãšãªããããªæå°ã®æ£æŽæ° $N$ ãæ±ããŠãã ããïŒ\
ããã ãïŒå®æ° $x$ ã«å¯ŸãïŒ$\lfloor x\rfloor $ 㧠$x$ 以äžã®æ倧ã®æŽæ°ãè¡šããŸãïŒ |
OMC120 | https://onlinemathcontest.com/contests/omc120 | https://onlinemathcontest.com/contests/omc120/tasks/3436 | A | OMC120(A) | 100 | 270 | 280 | [
{
"content": "ãå³ã®ããã«ç¹ããšãã° $\\angle BAC=60^\\circ,\\angle ABC=30^\\circ,\\angle ACB=90^\\circ$ ãªã©ãæãç«ã€ããïŒ$S$ ã¯æ¬¡ã®ããã«æ±ããããïŒ\r\n$$\\begin{aligned}\r\nS&=(æ圢ACDã®é¢ç©)+(æ圢BCDã®é¢ç©)-(åè§åœ¢ACBDã®é¢ç©)\\\\\\\\\r\n&=1^2\\times\\pi\\times\\frac{120}{360}+\\sqrt{3}^2\\times\\pi\\times\\frac{60}{360}-\\frac{1}{2}\\times 2\\times\\sqrt{3}\\\\\\\\\r\n&=\\frac{5}{6}\\pi-\\sqrt3\r\n\\end{aligned}$$\r\nãããã次ãæãç«ã€ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{88}$ïŒ\r\n$$88.45=\\frac{250\\times 3.141}{3} -173.3\\lt100S\\lt\\frac{250\\times 3.142}{3} -173.2=88.63\\dots$$\r\n![figure 1](\\/images\\/rGxbZCygLDRBc9ZBejl2v7Lj6FOT3ml85hu8oaYf)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc120/editorial/3436"
}
] | ãå¹³é¢äžã« $2$ ã€ã®åæ¿ãããïŒäžå¿éã®è·é¢ã¯ $2$ïŒãŸãååŸã¯ãããã $1,\sqrt{3}$ ã§ãïŒãããã®å
±ééšåã®é¢ç©ã $S$ ãšãããšãïŒ$100S$ ã®**æŽæ°éšå**ãæ±ããŠãã ããïŒ\
ããã ãïŒ$3.141\lt\pi\lt3.142$ ããã³ $1.732\lt\sqrt3\lt1.733$ ãä¿èšŒãããŸãïŒ |
OMC120 | https://onlinemathcontest.com/contests/omc120 | https://onlinemathcontest.com/contests/omc120/tasks/3531 | B | OMC120(B) | 200 | 202 | 267 | [
{
"content": "ã$k=2,3,4,5,6$ ã«ã€ããŠïŒ$k-1$ åç®ã®äº€æçµäºæã« $x$ åãçšæãããã¬ãŒã³ãã $y$ åãæã£ãŠãããšã $kx\\equiv y\\pmod{n}$ ãæãç«ã€ïŒãã£ãŠæ¡ä»¶ã¯å $k=2,3,4,5,6$ ã«ã€ããŠæ¬¡ãæãç«ã€ããšãšèšãæããããïŒ\r\n- ä»»æã® $1\\leq i\\lt j\\leq n$ ã«å¯Ÿã㊠$ki\\not\\equiv kj\\pmod{n}$ïŒ\r\n\r\nããã㯠$n$ ãš $k$ ãäºãã«çŽ ã§ããããšãšåå€ã§ããããšã確ãããããïŒãããã£ãŠæ¡ä»¶ã¯ $n$ ã $30$ ãšäºãã«çŽ ã§ããããšãšèšãæãããïŒãããã¿ãã $2\\leq n\\leq 314$ 㯠$\\bf{83}$ åïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc120/editorial/3531"
}
] | ãååãå²ãã $n$ 人ã®äººã
ïŒåæèšåãã« $1$ åïŒ$2$ åïŒ$\ldots$ïŒ$n$ åãšããïŒãïŒãã¬ãŒã³ã亀æäŒãããããã« $1$ 人 $1$ åãã€ãã¬ãŒã³ããçšæããŸããïŒå $i=1,\ldots,n$ ã«å¯ŸãïŒã¯ãã $i$ åã¯ïŒ$i$ åèªèº«ãçšæãããã¬ãŒã³ã $1$ åã®ã¿ãæã£ãŠããŸãïŒ\
ããã¬ãŒã³ã亀æäŒã§ã¯ïŒ**å
šå¡ãåæã«**次ã®äº€æãããããšã $5$ åç¹°ãè¿ããŸãïŒ
- **亀æ**ïŒãã®æç¹ã§æã£ãŠãããã¬ãŒã³ããçšæããã®ã $i$ åã§ãããšãïŒãããèªåããåæèšåãã«æ°ããŠïŒ**èªåã®é£ãã¹ã¿ãŒããšããŠ**ïŒ$i$ çªç®ã®äººã«æž¡ãïŒ
ãã ãïŒå亀æã®çµäºæã«ãã¬ãŒã³ãã $2$ ã€ä»¥äžæã£ãŠãã人ãããå ŽåïŒãã¬ãŒã³ã亀æäŒã¯**倱æ**ãšããŠãã以éã®äº€æã¯è¡ããŸããïŒ$5$ åã®äº€æããããã倱æãšãªããã«çµãããããã㪠$n$ ã¯ïŒ$2\leq n\leq 314$ ã®ç¯å²ã«ããã€ãããŸããïŒ |
OMC120 | https://onlinemathcontest.com/contests/omc120 | https://onlinemathcontest.com/contests/omc120/tasks/3437 | C | OMC120(C) | 300 | 165 | 247 | [
{
"content": "ãæåŸã®æåã«ãªãåŸãã®ã¯ $\\text{e},\\text{n}$ ã®ã¿ã§ããïŒããã« $\\text{n}$ ã§ãããšããã®çŽå㯠$\\text{e}$ ã§ããïŒ \\\r\nãæåŸã®æåã $\\text{e}$ ã§ãããšãïŒæ®ãã® $8$ æåã®äžŠã³ã¯ïŒ $\\circ$ $5$ åãš $\\bullet$ $3$ åã䞊ã¹ãã®ã¡ïŒ$\\circ$ ã«ã¯ $\\text{c}, \\text{i}, \\text{r}, \\text{c}, \\text{l}$ ããã®é ã«å
¥ãïŒ$\\bullet$ ã«ã¯ $\\text{y}, \\text{e}, \\text{n}$ ããã®é ã«å
¥ããããšã§ãã¹ãŠåŸãããããïŒ${}\\_{8}\\mathrm{C}\\_{3}$ éãã§ããïŒ\\\r\nãæåŸã® $2$ æåã $\\text{e}, \\text{n}$ ã§ãããšãïŒæ®ãã® $7$ æåã®äžŠã³ã¯ïŒäžãšåæ§ã« $\\circ$ $5$ åãš $\\text{y}$ ãš $\\text{e}$ ã®äžŠã³æ¿ããšåäžèŠã§ããããïŒ$7\\times 6$ éãã§ããïŒãããã£ãŠïŒå
šäœã§æ±ããå Žåã®æ°ã¯ $\\mathbf{98}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc120/editorial/3437"
}
] | ã$\text{c, i, r, c, l, e, y, e, n}$ ã® $9$ æåã䞊ã³æ¿ããŠåŸãããæååã§ãã£ãŠïŒïŒ**é£ç¶ãããšã¯éããªã**ïŒéšåæååãšããŠã$\text{circle}$ããšã$\text{yen}$ãããšãã«å«ããã®ã¯ããã€ãããŸããïŒãã ãïŒåãæåã¯åºå¥ããŸããïŒ\
ãããšãã°ïŒ$\text{circleyen}$ ã $\text{ecirclyen}$ ã¯ãã®æ¡ä»¶ãã¿ããæååã®äžã€ã§ãïŒ
<details><summary>ãïŒé£ç¶ãããšã¯éããªãïŒéšåæååããšã¯ïŒ<\/summary>
ãããæååã«å¯ŸãïŒãããã $0$ æå以äžãä»»æã«åé€ãïŒæ®ã£ãæåãé çªãä¿ã£ãŠåŸãããæååãæããŸãïŒããšãã° $\text{abcda}$ ã«ããã $\text{aca}$ ã $\text{bda}$ ãªã©ã§ãïŒ
<\/details> |
OMC120 | https://onlinemathcontest.com/contests/omc120 | https://onlinemathcontest.com/contests/omc120/tasks/4779 | D | OMC120(D) | 500 | 39 | 88 | [
{
"content": "$$\\begin{aligned} N^2 &= (a_i\\gt a_{i+1} ãæºãã iã®åæ°)\\times (a_j\\gt a_{j+1} ãæºãã jã®åæ°)\\\\\\\\\r\n&=(a_i\\gt a_{i+1} ããã³ a_j\\gt a_{j+1}ãæºãã i,j ã®åæ°)\r\n\\end{aligned}$$\r\n\r\nã§ããããïŒ$a_i\\gt a_{i+1}$ ããã³ $a_j\\gt a_{j+1}$ ãæºãããããªçœ®æ $\\\\{a_n\\\\}$ ã®åæ°ã $S_{i,j}$ ãšãããšïŒ\r\n$$M=\\dfrac{1}{1000!}\\left(\\sum_{1\\leq i,j \\leq 999}S_{i,j}\\right)$$ãæãç«ã€ïŒãããš\r\n$$S_{i,j}=\\left\\\\{\r\n\\begin{aligned} \r\n\\dfrac{1000!}{2}&ã(|i-j|=0ã®ãšã)\\\\\\\\\r\n\\dfrac{1000!}{6}&ã(|i-j|=1ã®ãšã) \\\\\\\\\r\n\\dfrac{1000!}{4}&ã(|i-j|\\geq 2ã®ãšã)\r\n\\end{aligned}\r\n\\right.$$\r\nããïŒ\r\n$$\\begin{aligned}\r\nM &=\\dfrac{1}{1000!}\\left(\\dfrac{1000!}{2}\\times999+\\dfrac{1000!}{6}\\times998\\times2+\\dfrac{1000!}{4}\\times(999\\times998-998\\times2)\\right)\\\\\\\\\r\n&=\\dfrac{748751}{3}\r\n\\end{aligned}$$\r\nãšãªãïŒè§£çãã¹ãå€ã¯ $\\bf 748754$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc120/editorial/4779"
},
{
"content": "ã$1000!$ éããã眮æãåæ§ã«ç¢ºãããã確çã§èµ·ãããšä»®å®ããŠïŒ$N^2$ ã®æåŸ
å€ãæ±ããïŒ\\\r\nãä»»æã® $i$ ã«å¯ŸããŠïŒç¢ºçå€æ° $x_i$ ã次ã®ããã«å®ããïŒ\r\n\r\n- $a_i \\gt a_{i+1}$ ã§ããã° $x_i=1$ïŒããã§ãªããã° $x_i=0$ïŒ\r\n\r\nã$x_i$ ãš $x_j$ ã¯åºæ¬çã«ã¯ç¬ç«ã§ãããïŒ$a_i \\gt a_{i+1} \\gt a_{i+2}$ ã§ãã確ç㯠$\\dfrac{1}{6}$ ã§ããããšã«æ³šæããªããã°ãªããªãïŒä»¥äžïŒæåŸ
å€ã¯ $E(*)$ ã§è¡šãïŒ\\\r\n$$\\begin{aligned}\r\nE(N^2)=E(\\left( \\sum\\limits_{i=1}^{999} x_i \\right)^2) &= \\sum\\limits_{i=1}^{999} E(x_i^2)+\\sum\\limits_{|i-j|=1} E(x_i x_j)+\\sum\\limits_{|i-j| \\geq 2} E(x_i x_j)\\\\\\\\\r\n&=999Ã\\dfrac{1}{2}+998Ã2Ã\\dfrac{1}{6}+(999Ã998-998Ã2)Ã\\dfrac{1}{4}\r\n\\end{aligned}$$\r\nãšãªã£ãŠïŒå
¬åŒè§£èª¬ãšåãåŒãåŸãïŒ",
"text": "æåŸ
å€ã®æ§è³ªãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc120/editorial/4779/441"
}
] | ã$1,2,3,\ldots,1000$ ã®çœ®æ $a_1,a_2,\ldots,a_{1000}$ ã«ã€ããŠïŒ$a_i\gt a_{i+1}$ ãã¿ãã $999$ 以äžã®æ£æŽæ° $i$ ã®åæ°ã $N$ ãšããŸãïŒ$1000!$ éããã眮æãã¹ãŠã«ã€ããŠïŒ $N^2$ ã®ïŒçžå ïŒå¹³å $M$ ãæ±ããŠãã ããïŒãã ãïŒ$M$ ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC120 | https://onlinemathcontest.com/contests/omc120 | https://onlinemathcontest.com/contests/omc120/tasks/3554 | E | OMC120(E) | 500 | 15 | 46 | [
{
"content": "#### ååïŒFibonacciæ°åã®çºèŠ\r\nã$($第 $2$ åŒ$)\\times4 - ($第 $1$ åŒ$)\\times12$ ããïŒ\r\n$$4x_1^2+4x_2^2+4x_3^2+\\cdots+4x_m^2-12x_1-12x_2-\\cdots-12x_m+8m=0$$\r\nãããå€åœ¢ãããšïŒ\r\n$$(2x_1-3)^2+(2x_2-3)^2+\\cdots+(2x_m-3)^2=m$$\r\nãšãªãïŒ$x_1,x_2,\\ldots,x_m$ ã¯æŽæ°ã§ããããïŒ$$(2x_1-3)^2=(2x_2-3)^2=\\cdots=(2x_m-3)^2=1$$\r\nã§ããã»ããªãïŒã€ãŸãïŒ$x_1, x_2, \\ldots, x_m$ ã¯ãã¹ãŠ $1$ ãŸã㯠$2$ ã§ããïŒ\\\r\nããã£ãŠïŒäžãããã $2$ åŒã¯ïŒ\r\n$$\\begin{cases}\r\nx_1+x_2+x_3+\\cdots+x_m=2505\\\\\\\\\r\nx_i = 1\\ \\mathrm{ or }\\ 2\\ \\ (i=1,2,\\cdots,m)\r\n\\end{cases}$$ \r\nã®ããã«æžãæããããšãã§ãïŒããã¯ã$2505$ 段ããé段ã $1$ 段ãŸã㯠$2$ 段ãã€ç»ã£ããšãïŒ$i$ æ©ç®ã§ $x_i$ 段ç»ã£ããç¶æ³ãšåãã§ããããïŒãã®ç·æ°ã¯ïŒ$1,1$ ããå§ãŸãïŒFibonacciæ°åã® $2506$ çªç®ã§ããïŒ\r\n****\r\n#### åŸåïŒå°äœã®åšææ§ã®çºèŠ\r\nãFibonacciæ°å $\\\\{F_n\\\\}$ ã®åé
ã $2,3,11,29$ ã§å²ã£ããšãã®äœãã®åšæãæ°ããã°ïŒãããã $3,8,10,14$ ã§ããããïŒ$\\\\{F_n\\\\}$ ã®åšæã¯ãããã®æå°å
¬åæ° $840$ ã§ããïŒãããšïŒ$$2506\\equiv -14\\pmod {840}$$ ããïŒ $F_{2506}=F_{(\\text{åšæ})-14}$ ãšãããïŒãããã£ãŠïŒ$$F_{(åšæ)-14}\\equiv-F_{14}=-377\\equiv1537\\pmod{1914}$$ãã解çãã¹ãå€ã¯ $\\bf 1537$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc120/editorial/3554"
}
] | ã以äžã® $2$ åŒãã¿ãã $m$ åã®**æŽæ°**ã®çµ $(x_1, x_2, \ldots, x_{m})$ ã®ç·æ°ãïŒãã¹ãŠã®æ£æŽæ° $m$ ã«ã€ããŠåèšãïŒããã $1914=2\times 3\times 11\times 29$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ
$$\begin{cases}
x_1+x_2+x_3+\cdots+x_m=2505\\\\
x_1^2+x_2^2+x_3^2+\cdots+x_m^2+2m=7515
\end{cases}$$ |
OMC120 | https://onlinemathcontest.com/contests/omc120 | https://onlinemathcontest.com/contests/omc120/tasks/3526 | F | OMC120(F) | 500 | 37 | 104 | [
{
"content": "ã$c=p+q,d=pq$ ãªãè€çŽ æ° $p, q$ ããšããšïŒäžãããã $4$ åŒã¯\r\n$$\\left\\\\{\r\n\\begin{aligned} \r\na+b+p+q&=4 \\\\\\\\ \r\nabp+abq+apq+bpq&=-160 \\\\\\\\ \r\nab+ap+aq+bp+bq+pq&=-36 \\\\\\\\ \r\nabpq&= k\r\n\\end{aligned}\r\n\\right.$$\r\nãšãªãããïŒ$a,b,p,q$ ã¯ä»¥äžã® $4$ 次æ¹çšåŒã® $4$ 解ã§ããïŒ\r\n$$x^4-4x^3-36x^2+160x+k=0$$\r\nããèæ°ãããå®æ°ä¿æ°å€é
åŒã®æ ¹ã§ãããšããã®å
±åœ¹ãåãå€é
åŒã®æ ¹ã§ããããšã«æ³šæããã°ïŒæ¡ä»¶ã¯ãããå®æ°è§£ãéè€èŸŒã¿ã§å°ãªããšã $2$ ã€ãã€ããšãšåå€ã§ããïŒ\\\r\nãããã§ïŒ$x^4-4x^3-36x^2+160x$ ã«ã€ããŠïŒãã®å°é¢æ°ã\r\n$$4(x+4)(x-2)(x-5)$$\r\nã§ããããšã«æ³šæããã°ïŒ$x=-4$ ã§æå°å€ $-704$ ããšãããšããããïŒãã£ãŠïŒæ±ããæ倧å€ã¯ $\\bf 704$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc120/editorial/3526"
},
{
"content": "解çãšåŸ®åŠã«éãæ¹éã§ããçºæ³æ¹æ³ã«ã€ããŠãã§ããã ãææåããŸãã\\\r\n$a+b+c=4 \\cdots â $\\\r\n$abc+ad+bd=-160 \\cdots â¡$\\\r\n$ab+ac+bc+d=-36 \\cdots â¢$\\\r\n$abd=k \\cdots â£$\\\r\näžã® $3$ ã€ã®åŒãèŠããšïŒ$a,b,c$ ã® $3$ å€æ°ã«ã€ããŠã¯å¯Ÿè±¡åŒããã£ããæã£ãŠããïŒäžã® $3$ ã€ã®åŒãèŠããšïŒäœãšãªã $d$ ã§æ¬ããšæ°åãè¯ããããªé°å²æ°ãæŒã£ãŠããŸãã\\\r\nããã§ïŒãŸã㯠$(x+a)(x+b)(x+c)$ ã®ãããªåœ¢ãäœã£ãŠã¿ãŠã¯ã©ãããšèããŸãããã\\\r\n$â¡+â¢Ãx+â Ãx^2+x^3$ ãäœã£ãŠã¿ããšïŒå·ŠèŸºã次ã®åŒã«ãªããŸãã\\\r\n$(x+a)(x+b)(x+c)+(a+b)d+dx$\\\r\nãããŸã§ãããšïŒããã«å
šäœã $x$ åããŠâ£ãå ãããšïŒ$(x+a)(x+b)$ ã§æ¬ããŠããæãã«ãªãããã§ãã\\\r\nãšããããšã§ïŒ$â¡Ãx+â¢Ãx^2+â Ãx^3+â£$ ãããŸãããã\\\r\n$(x+a)(x+b)(x^2+cx+d)=x^4+4x^3-36x^2-160x+k$ ãšãªããŸãã\\\r\n$a,b,c,d$ ãå®æ°ãšãªãå¿
èŠååæ¡ä»¶ã¯ïŒå³èŸºãäºã€ã®å®æ°è§£ãæã€ããšã§ããããšã¯ïŒåŸ®ç©åã®ç¥èãçšããŠé 匵ã£ãŠæå°å€ãèšç®ããŸãããã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc120/editorial/3526/133"
}
] | ã以äžã®çåŒããã¹ãŠã¿ãã**å®æ°**ã®çµ $(a, b, c, d)$ ãååšãããããªïŒæ倧ã®æŽæ° $k$ ãæ±ããŠãã ããïŒ
$$\left\\{
\begin{aligned}
a+b+c&=4 \\\\
abc+ad+bd&=-160\\\\
ab+ac+bc+d&=-36 \\\\
abd&= k
\end{aligned}
\right.$$ |
OMC119 (for beginners) | https://onlinemathcontest.com/contests/omc119 | https://onlinemathcontest.com/contests/omc119/tasks/3461 | A | OMC119(A) | 100 | 342 | 354 | [
{
"content": "ãçŽæ°ã $5$ ã€ãã€æ£æŽæ°ã¯çŽ æ° $p$ ãçšã㊠$p^4$ ãšè¡šãã. $p^4\\leq2022$ ãæºããçŽ æ° $p$ 㯠$2,3,5$ ã®äžã€ã§ãããã, æ±ãã解ç㯠$2^4 + 3^4 + 5^4 = \\bf{722}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc119/editorial/3461"
}
] | ãæ£ã®çŽæ°ãã¡ããã© $5$ ã€æã€ãããªïŒ$2022$ 以äžã®æ£æŽæ°ã®ç·åãæ±ããŠãã ããïŒ |
OMC119 (for beginners) | https://onlinemathcontest.com/contests/omc119 | https://onlinemathcontest.com/contests/omc119/tasks/4100 | B | OMC119(B) | 200 | 261 | 295 | [
{
"content": "ãå³åœ¢ã¯é段ç¶ã«ãªãïŒãã£ãŠïŒæ±ããé¢ç©ã $S$ ãšããã°ïŒ\r\n$$\\begin{aligned} S &= \\triangle A_0A_{2357}A_{2359} + \\triangle A_{2357}A_{2358}A_{2359}\\\\\\\\\r\n&= \\triangle A_0A_1A_3 + \\triangle A_1A_2A_3\\\\\\\\\r\n&= (å°åœ¢ A_0A_1A_2A_3)\\\\\\\\\r\n&= \\frac{1}{2} \\times (1+4999) \\times 1\\\\\\\\\r\n&= \\bf{2500}\r\n\\end{aligned}$$ \r\n\r\n![figure 1](\\/images\\/swQUQkJUGoB5Rdkfl0JifZGuSA24jByGLJLttooy)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc119/editorial/4100"
}
] | ããã¹ãŠã®å
è§ã $90^\circ$ ãŸã㯠$270^\circ$ ã§ãã $10000$ è§åœ¢ $A_0A_1 \cdots A_{9999}$ ã«ã€ããŠïŒ
$$\left\\{ \begin{aligned}
& A_0A_1 = A_0A_{9999} = 4999\\\\
& A_iA_{i+1} = 1 \quad (1 \leq i \leq 9998)
\end{aligned} \right.$$
ãæãç«ã€ãšãïŒåè§åœ¢ $A_0A_{2357}A_{2358}A_{2359}$ ã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC119 (for beginners) | https://onlinemathcontest.com/contests/omc119 | https://onlinemathcontest.com/contests/omc119/tasks/2991 | C | OMC119(C) | 200 | 309 | 328 | [
{
"content": "ã$n$ åç®ã«åããŠé»ç³ãéžã¶ãšãïŒçœç³ã¯ $n+1,n+2,\\ldots,100$ åç®ã®ããããã«éžã°ããããïŒæ±ããå€ã¯\r\n$$\\sum_{n=1}^{99}(100-n)=1+2+\\cdots+99=\\dfrac{99\\times 100}{2}=\\textbf{4950}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc119/editorial/2991"
}
] | ãç¡æ°ã®çœç³ãšé»ç³ããããŸãïŒOMCåã¯ããããçœç³ãŸãã¯é»ç³ãéžã¶ããšãã¡ããã© $100$ åç¹°ãè¿ããŸãïŒãã®ãšãïŒçœç³ããã³é»ç³ãå°ãªããšã $1$ å以äžéžã³ïŒãã€åããŠé»ç³ãéžãã§ä»¥éã¯ã¡ããã© $1$ åã®ã¿çœç³ãéžã¶æ¹æ³ã¯äœéããããŸããïŒ\
ããã ãïŒçœç³ããã³é»ç³ã¯ããããåºå¥ããªããã®ãšããŸãïŒ |
OMC119 (for beginners) | https://onlinemathcontest.com/contests/omc119 | https://onlinemathcontest.com/contests/omc119/tasks/2403 | D | OMC119(D) | 300 | 190 | 230 | [
{
"content": "ã$n$ ãå¥æ°ã®ãšã,\r\n$$2A_n=A_{n+1}+3A_{n-1}+A_{n-2}=A_{n}+A_{n-1}+A_{n-2}$$\r\nããªãã¡, $A_n=A_{n-1}+A_{n-2}$ ã§ãã. ãããçšããŠ, $\\\\{A_n\\\\}$ ãåããèšç®ããã°\r\n$$1,1,2,0,2,2,4,0,4,4,\\cdots$$\r\nããã確ãã«äžæ¡ä»¶ãã¿ããããšã¯æ°åŠçåž°çŽæ³ã«ãã£ãŠç€ºããã. ãããã, æ±ããç·åã¯\r\n$$2+3\\times(2^1+2^2+\\cdots+2^{504})+2\\times 2^{505}=2^{507}+2^{505}-2^2$$\r\nããã $2$ é²æ³ã§è¡šèšãããšãã®åäœã®å㯠$\\textbf{504}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc119/editorial/2403"
}
] | ãæ°å $\\{A_n\\}$ ã¯ïŒ$A_1=A_2=1$ ããã³ä»¥äžã®æ¡ä»¶ãã¿ãããŸã.
- $n\geq 3$ ãå¶æ°ã®ãšãïŒ$A_n=A_{n-1}-2A_{n-2}$.
- $n\geq 3$ ãå¥æ°ã®ãšãïŒ$A_n=\dfrac{1}{2}(A_{n+1}+3A_{n-1}+A_{n-2})$.
ãã®ãšãïŒ$A_1+A_2+\cdots+A_{2021}$ ã® $2$ é²æ³è¡šèšã§ã®åæ¡ã®åãæ±ããŠãã ããïŒ |
OMC119 (for beginners) | https://onlinemathcontest.com/contests/omc119 | https://onlinemathcontest.com/contests/omc119/tasks/3157 | E | OMC119(E) | 300 | 208 | 255 | [
{
"content": "ãå±éãã圢ãèããããšã§ïŒ$ N=2^2\\times3^3\\times5^5\\times7^7 $ ã«ã€ããŠ\r\n$$\\begin{aligned}\r\nY(N) &= \\\\{(2^0+2^2)(5^0+5^2+5^4)+2^1(5^1+5^3+5^5)\\\\}(7^0+7^1+\\cdots+7^7) \\\\\\\\\r\n&= 15(5^0+5^2+5^4)(7^0+7^1+\\cdots+7^7)\r\n\\end{aligned}$$\r\nãã£ãŠïŒæ±ããåã«ã€ããŠïŒ\r\n$$\\frac{(2^0+2^1+2^2)(3^0+3^1+3^2+3^3)}{15}\\times\\frac{5^0+\\cdots+5^5}{5^0+5^2+5^4}\\times\\frac{7^0+\\cdots+7^7}{7^0+\\cdots+7^7}$$\r\nãã㯠$7\\times40\\times(1+5)\\times1\\div15=\\textbf{112}$ ã«çããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc119/editorial/3157"
}
] | ãæ£æŽæ° $N$ ã«å¯ŸããŠïŒãã®æ£ã®çŽæ°ã®ç·åã $X(N)$ ãšãïŒç¹ã« $3$ ã§å²ã£ãŠ $1$ äœãæ£ã®çŽæ°ã®ç·åã $Y(N)$ ã§è¡šããŸãïŒãã®ãšãïŒ$ N=2^2\times3^3\times5^5\times7^7 $ ã«ã€ããŠïŒ
$$ \dfrac{X(N)}{Y(N)} $$
ã®å€ãæ±ããŠãã ããïŒ |
OMC119 (for beginners) | https://onlinemathcontest.com/contests/omc119 | https://onlinemathcontest.com/contests/omc119/tasks/2358 | F | OMC119(F) | 400 | 86 | 130 | [
{
"content": "ã$AD$ ãš $BC$ ã®äº€ç¹ã $F$ ãšããã° $AF=20$ ã§ãã, æ¹ã¹ãã®å®çãã $BF=25$ ãåŸããã, äžè§åœ¢ $CDF$ ããã« $ADE$ 㯠$3:4:5$ ã®çŽè§äžè§åœ¢ã§ãã. ããã§, $A,C,E,F$ ã¯ãã¹ãŠ $EF$ ãçŽåŸãšããååšäžã«ãããã, \r\n$$\\begin{aligned} \\frac{1}{2} EF=\\frac{1}{2} ED = \\frac{1}{2} \\times \\frac{5}{3} AD=\\frac{50}{3}\\end{aligned}$$\r\nãæ±ããååŸã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{53}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc119/editorial/2358"
},
{
"content": "äžè§æ³ãçšãã解çãèšãã\\\r\n$â \\mathrm{CBD}=â \\mathrm{CAD}=2\\theta$ ãšãããšïŒ$\\mathrm{CD}=7\\tan 2\\theta=40\\sin\\theta$ ãåŸãã\\\r\nããã§äºåè§ã®å
¬åŒãªã©ãçšããã°ïŒ$\\cos\\theta=\\frac{4}{5}$ãåŸãã\\\r\nããšã¯ïŒ$\\mathrm{AE}$ ã®é·ããš $\\sinâ \\mathrm{ACE}=\\sin(90°+\\theta)$ ãæ±ããã°ããã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc119/editorial/2358/131"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ ã以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$AC=AD=20,\quad BC=7,\quad \angle BCD=90^{\circ}$$
ãã®ãšãïŒçŽç· $AB$ ãš $CD$ ã®äº€ç¹ $E$ ã«ã€ããŠïŒäžè§åœ¢ $ACE$ ã®å€æ¥åã®ååŸãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC118 (for experts) | https://onlinemathcontest.com/contests/omc118 | https://onlinemathcontest.com/contests/omc118/tasks/2430 | A | OMC118(A) | 100 | 252 | 261 | [
{
"content": "ãåŽé«ãªæ° $n(\\gt 1)$ ã«ã€ããŠ, ãã®çŽ å æ°å解ã $p_1^{2a_1}p_2^{2a_2}\\cdots p_k^{2a_k}$ ãšããã°, æ¡ä»¶ã¯ä»¥äžãå¹³æ¹æ°ãšãªãããšã§ãã.\r\n$$(2a_1+1)(2a_2+1)\\cdots(2a_k+1)$$\r\nããã¯å¥æ°, ç¹ã« $9$ 以äžã§ããããšã«çæãã. ããã $9$ ã§ãããšã, $k=1$ ã〠$a_1=4$ ãŸã㯠$k=2$ ã〠$a_1=a_2=1$ ã§ãã, åŸè
ã«ã€ã㊠$\\\\{p_1,p_2\\\\}=\\\\{2,3\\\\}$ ã®ãšã $n=36$ ãæå°ã§ãã.\\\r\nã$36$ æªæºã®å¹³æ¹æ°ã¯æããã«æ£ã®çŽæ°ã $25$ å以äžãããªããã, æ±ããæå°å€ã¯ $\\textbf{36}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc118/editorial/2430"
}
] | ã$256$ ã®ããã«ïŒæ£ã®çŽæ°ã®åæ°ãå¹³æ¹æ°ã§ãããããªæ£ã®å¹³æ¹æ°ãïŒ**åŽé«ãªæ°**ãšåŒã¶ããšã«ããŸãïŒ$1$ ã®æ¬¡ã«å°ããåŽé«ãªæ°ã¯ããã€ã§ããïŒ |
OMC118 (for experts) | https://onlinemathcontest.com/contests/omc118 | https://onlinemathcontest.com/contests/omc118/tasks/3269 | B | OMC118(B) | 300 | 152 | 178 | [
{
"content": "ãæŸç©ç·ãšå $C$ ã®ç¹ $P$ ã«ãããå
±éæ¥ç·ã«ã€ããŠ, åŸã㯠$32$ ã§ãã, æ¥åŒŠå®çããçŽç· $BP$ ãšãªãè§åºŠã¯ $45^\\circ$ ã§ãããã, çŽç· $BP$ ã®åŸã㯠$\\tan$ ã®å æ³å®çãã $31\\/33$ ãšèšç®ã§ãã. äžæ¹ã§çŽç· $BP$ ã®åŸã㯠$b+16$ ãšãèšç®ã§ãããã, 以äžãã $b=-497\\/33$ ã§ãã, 解çãã¹ãå€ã¯ $\\mathbf{530}$ ã§ãã.\\\r\nããªã, $\\tan$ ã®å æ³å®çã䜿ããªããŠããã. ç¹ $Q(15, 224)$ ã¯å
±éæ¥ç·äžã«ãã, $\\angle BPQ=45^\\circ$ ãåŸã. ãã®ãšã, ç¹ $R(-17,225)$ ã«ã€ããŠ, $PQR$ 㯠$PQ=QR$ ãªãçŽè§äºç蟺äžè§åœ¢ã§ãããã, $R$ ã¯çŽç· $BP$ äžã«ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc118/editorial/3269"
}
] | ãå®æ° $a,b$ 㯠$a\lt b\lt 0$ ãã¿ãããŸãïŒ\
ãæŸç©ç· $y=x^2$ ãšå $C$ ã $2$ ç¹ $A(a, a^2), B(b, b^2)$ ã§äº€ããïŒç¹ $P(16, 256)$ ã§æ¥ããŠããŸãïŒããã« $\angle PAB=45^\circ$ ã§ãããšãïŒ$b$ ã®å€ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $p, q$ ãçšã㊠$-\dfrac pq$ ãšè¡šããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC118 (for experts) | https://onlinemathcontest.com/contests/omc118 | https://onlinemathcontest.com/contests/omc118/tasks/2433 | C | OMC118(C) | 400 | 139 | 205 | [
{
"content": "ã$2$ æ以äžäžŠã¹ããšã, $1$ ããã³ $128\\lt p \\le 256$ ãªã $23$ åã®çŽ æ° $p$ ã¯äžŠã¹ããã, $256\\/3\\lt p \\le128$ ãªã $8$ åã®çŽ æ° $p$ ã¯äž¡ç«¯ã«ããé
眮ã§ããªã. ãã£ãŠ, æ±ããææ°ã¯ $256-1-23-8+2=226$ æ以äžã§ãã.\\\r\nãä»¥äž $226$ æã䞊ã¹ãæ¹æ³ãæ§æãã. $5$ 以äžã®çŽ æ° $p$ ã«å¯ŸããŠå $S_p$ ã以äžã§å®ããïŒ\r\n\r\n- $S_p:5$ ä»¥äž $p$ æªæºã®çŽ å æ°ããããªã $1$ ä»¥äž $256$ 以äžã® $p$ ã®åæ°ã®ãã¡, $2p, 3p$ 以å€ãé©åœã«äžŠã¹ããã®\r\n\r\nããããçšããŠä»¥äžã®ããã«ããã°ãã. 以äžãã, æ±ããå€ã¯ $\\textbf{226}$ ã§ãã.\r\n$$89, 2\\times89, 2\\times5, S_5, 3\\times5, 3\\times7, S_7, 2\\times7, \\cdots, 2\\times83, S_{83}, 3\\times83,$$\r\n$$3, 3^2, \\cdots, 3^5, 2\\times3, 2\\times3^2,\\cdots, 2\\times3^4, 2^2\\times3,\\cdots 2^6\\times3, 2, 2^2, \\cdots, 2^8, $$ \r\n$$2\\times97, 2\\times101,\\cdots, 2\\times127, 127$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc118/editorial/2433"
}
] | ã $1$ ãã $256$ ãŸã§ã®æŽæ°ã®ãã¡ $1$ ã€ãæžãããã«ãŒããïŒããããã®æ°ã«ã€ã㊠$1$ æãã€ãããŸãïŒãã®äžã®äœæããïŒãã©ã®é£ãåã $2$ æã®ã«ãŒããäºãã«çŽ **ã§ãªã**ããšããæ¡ä»¶ãã¿ãããªãã暪äžåã«äžŠã¹ããšãïŒæ倧ã§äœæ䞊ã¹ãããŸããïŒ |
OMC118 (for experts) | https://onlinemathcontest.com/contests/omc118 | https://onlinemathcontest.com/contests/omc118/tasks/2421 | D | OMC118(D) | 600 | 64 | 108 | [
{
"content": "ãæäœãè¡ããªããªãã®ã¯, $(1,1)$ ãé€ãä»»æã® $(i,j)$ ã«å¯Ÿã㊠$N(i,j)=0$ ãšãªã£ããšãã§ããããšã«çæãã.\\\r\nãæ±ããã¹ãæ倧å€ã $M$ ãšãã, ããæç¹ã§ã®ç€é¢ã®ç¶æ
ã«å¯ŸããŠæŽæ° $S$ ã以äžã§å®ããïŒ\r\n$$S=\\sum_{1\\le i,j\\le16}2^{i+j-2}N(i,j)+(\\textrm{ä»ãŸã§æäœãè¡ã£ãåæ°})$$\r\nãã®ãšã, $S$ ã¯æäœã«ãã£ãŠ $2^{a+b-2}N(c,d)-1$ æžå°ãã. ç¹ã« $S$ ã¯åºçŸ©å調æžå°ã§ãã, \r\n$$\\sum_{1\\le i,j\\le16}2^{i+j-2}N(i,j)\\ge\\sum_{1\\le i,j\\le16}N(i,j)$$\r\nã«çæããã° $M$ ã¯åæç¶æ
ã§ã® $S$ 以äžã§ãã. åæç¶æ
ã§ã® $S$ ã $S_0$ ãšãã.\\\r\nã以äž, $M=S_0$ ã®å¯èœæ§ãèãã. æäœãè¡ããªããªããšã, äžã®äžçåŒã¯çå·ãšãªã. ãŸã, æäœã«ãã£ãŠ $S$ ãå€åããªãããã®å¿
èŠååæ¡ä»¶ã¯ $(a,b)=(1,1),N(c,d)=1$ ã§ãã.\\\r\nããããã, $N(c,d)=1$ ãªã $(c,d)\\neq(1,1)$ ã®ãã¡ $c+d$ ãæå°ã®ãã®ã®ã²ãšã€ãéžã³, $(a,b)=(1,1)$ ãšããæäœã, è¡ããªããªããŸã§é©åœã«ç¹°ãè¿ãããšã§, $M=S_0$ ãæç«ããããšã確èªã§ãã.\\\r\nããããã£ãŠ, $M=S_0=(2^{16}-1)^2=\\mathbf{4294836225}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc118/editorial/2421"
}
] | ã$16\times16$ ã®ãã¹ç®ãããïŒäžãã $i$ è¡ç®ïŒå·Šãã $j$ åç®ã«ãããã¹ã $(i,j)$ ã§è¡šããŸãïŒãŸãïŒ$(i,j)$ ã«ã¯éè² æŽæ° $N(i,j)$ ãã²ãšã€ãã€æžãããŠããŸãïŒ\
ãã¯ããïŒãã¹ãŠã®ãã¹ $(i,j)$ ã«ã€ã㊠$N(i,j)=1$ ã§ãïŒ\
ããããžïŒæ¬¡ã®äžé£ã®æäœã**å¯èœãªéã**ç¹°ãè¿ãè¡ãããšãèããŸãïŒ
- $a\le c, b\le d, N(c,d)\gt0$ ãã¿ããçžç°ãªããã¹ $(a,b), (c,d)$ ãéžã¶ïŒ
- $(a,b)$ ãã $(c,d)$ ãŸã§ïŒèŸºãå
±æãããã¹ç®ã蟿ã£ãŠãããçµè·¯ã®ãã¡æçã®ãã®ã $1$ ã€éžã³ïŒãã®çµè·¯äžã«ãã $(c,d)$ 以å€ã® $c+d-a-b$ ãã¹ã«æžãããæ°ãã¹ãŠã« $N(c,d)$ ãããããå ç®ããïŒ
- $N(c,d)$ ã $0$ ã«ããïŒ
ãæåŸã®æäœãçµäºããæç¹ã«ãããŠïŒã$256$ ãã¹ã®å€ã®ç·åããšããããŸã§ã«è¡ã£ãæäœã®åæ°ãã®åèšãšããŠããããæ倧å€ãæ±ããŠãã ããïŒ
<details>
<summary>æäœã®äŸ<\/summary>
ã以äžã®å³ã«ãããŠïŒ$(a,b)=(2,1), (c,d)=(4,4)$ ãéžã³ïŒæççµè·¯ãšããŠè²ã®å¡ããããã¹ãéžãã ãšãïŒãã¹ç®ã«æžãããæ°ã¯æ¬¡ã®ããã«å€åããŸãïŒ
![figure 1](\/images\/m6wExtwfSJWd0gLoQSXsw4Xa6Cfa7JsQxmQnrstI)
<\/details> |
OMC118 (for experts) | https://onlinemathcontest.com/contests/omc118 | https://onlinemathcontest.com/contests/omc118/tasks/2506 | E | OMC118(E) | 600 | 39 | 69 | [
{
"content": "ã$f(x)=\\sum^{16}\\_{n=1}n^2x^{17-n}-2022$ ãšããã°, $g(x)=(x-1)^3f(x)$ ã«ã€ããŠ\r\n$$g(x)=x^{19}+x^{18} -2311 x^3 + C_2 x^2 +C_1x +C_0$$\r\n($C_2,C_1,C_0$ã¯æŽæ°)ãšãªã. ãã£ãŠ, æ±ããã¹ãã¯ããã® $19$ åã®æ ¹ã® $16$ ä¹åãã $3$ ãåŒãããã®ã§ãã. \\\r\nãããã§, $19$ åã®å€æ° $x_1,\\cdots,x_{19}$ ã® $k$ 次åºæ¬å¯Ÿç§°åŒã $S_k$ ã§è¡šã. ãããš, $\\sum_{n=1}^{19}x_n^{16}$ 㯠$S_1,\\cdots,S_{16} $ ã®æŽæ°ä¿æ°å€é
åŒãšããŠäžæã«è¡šãã. ããã«å€é
åŒ $g$ ã«ã€ããŠ, æ ¹ã® $1,16$ 次åºæ¬å¯Ÿç§°åŒã®å€ã¯ãããã $-1,-2311$ ã§ãã, $2$ æ¬¡ä»¥äž $15$ 次以äžã®åºæ¬å¯Ÿç§°åŒã®å€ã¯ãã¹ãŠ $0$ ãšãªãã®ã§, $\\sum_{n=1}^{19}x_n^{16}$ ãåºæ¬å¯Ÿç§°åŒã§è¡šããéã® $S_1^{16}$ ã®ä¿æ° $a$ ãš $S_{16}$ ã®ä¿æ° $b$ ã«ã€ããŠã®ã¿èããã°ãã.\\\r\nã$a$ 㯠$x_1^{16}$ ã®ä¿æ°ãèããããšã§ $1$ ã§ãã, $b$ ã¯äŸãã° $19$ 次å€é
åŒ $x^{19}-x^3$ ãèãããš, ãã®æ ¹ã® $16$ ä¹å㯠$16$, $16$ 次åºæ¬å¯Ÿç§°åŒã®å€ã¯ $-1$ ãšãªã, $15$ 次以äžã®åºæ¬å¯Ÿç§°åŒã®å€ã¯ãã¹ãŠ $0$ ã§ããã®ã§, $b=-16$ ãšåãã.\\\r\nã以äžãã, æ±ããã¹ãå€ã¯ $1\\times(-1)^{16}+(-16)\\times(-2311)-3=\\mathbf{36974}$. \r\n---\r\n**å¥è§£.** æ¬è§£ãããããéã $C_2,C_1,C_0$ ã¯äœã§ããããã, $C_2=-2311$, $C_1=C_0=0$ ãšããå€é
åŒã $h(x)$ ãšããŠ, $h(x)$ ã®æ ¹ã® $16$ ä¹åãèããã°ãã. $h(x)=x^2(x+1)(x^{16}-2311)$ ã§ãããã, ããã¯ç°¡åã«æ±ãããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc118/editorial/2506"
},
{
"content": "ãå¥è§£ã§ã\r\n\r\n----\r\n\r\nãç°¡åã®ããå
¬åŒè§£èª¬ãšåæ§ã« $(x-1)^3$ ãæããŠä¿æ°ã $0$ ã§ãªãé
ãæžããïŒ\r\n$$f_0(x)=x^{19}+x^{18}-Nx^3+C_2x^2+C_1x+C_0=0$$\r\nïŒ$N=2311$ïŒ$C_2,C_1,C_0$ ã¯æŽæ°ïŒã®è€çŽ æ°è§£ã® $16$ ä¹åãæ±ããããšãèããŸãïŒ\r\n\r\n<details>\r\n<summary>$(x-1)^3$ ãæããåæ©<\\/summary>\r\n\r\nã次ã®ããšãã $(x-1)^3$ ãæãããšå€ãã®ä¿æ°ã $0$ ã«ãªãããšãäºæ³ã§ããŸãïŒ\r\n- $n^2$ ã«å¯ŸãïŒ$n$ ã«ã€ããŠã®å·®åã $3$ åãšãã° $0$ ã«ãªãããš\r\n- å€é
åŒã« $x-1$ ãæããã°ïŒ\"é£æ¥ããé
\"ã®ä¿æ°ã®å·®ããšãããšãã§ãã\r\n\r\nãããã¯æ¬¡ã®åŒã®äž¡èŸºã $x$ ã§åŸ®åãïŒäž¡èŸºã« $x$ ãæããŠå床埮åããåŒãèããããšã§ãæšæž¬ã§ããŸãïŒ\r\n$$x^{16}+x^{15}+\\cdots+x+1=\\frac{x^{17}-1}{x-1}$$\r\n<\\/details>\r\n\r\nãã¢ããã¯å€é
åŒ $f_n(x)$ ãïŒæ¹çšåŒ $f_{n-1}(x)=0$ ã®è€çŽ æ°è§£ã® $2$ ä¹ã解ã«æã€æ¹çšåŒã $f_n(x)=0$ ã§ããããã«å®ããŸãïŒãã®ãšãç¹ã«æ¹çšåŒ $f_0(x)=0$ ã®è€çŽ æ°è§£ã® $2^4=16$ ä¹ã解ã«æã€æ¹çšåŒã¯ $f_4(x)=0$ ã§ããããïŒ$f_4(x)$ ã® $x^{18}$ ã®ä¿æ°ã $A$ ãšãããšïŒè§£ãšä¿æ°ã®é¢ä¿ããæ±ããå€ã¯ $-A-3$ ã§åŸãããŸãïŒ\r\n\r\nãããã§ïŒäžè¬ã« $19$ 次æ¹çšåŒ $$(a):\\quad a_{19}x^{19}+a_{18}x^{18}+\\cdots+a_1x+a_0=0$$ ã«ã€ããŠïŒæ¬¡ã®æ¹çšåŒ $(b)$ 㯠$(a)$ ã®è€çŽ æ°è§£ã® $2$ ä¹ã解ã«æã€æ¹çšåŒã«ãªã£ãŠããŸãïŒ\r\n$$(b):\\quad (a_{19}x^9+a_{17}x^8+\\cdots+a_3x+a_1)^2x-(a_{18}x^9+a_{16}x^8+\\cdots+a_2x+a_0)^2=0$$\r\n\r\n<details>\r\n<summary>åæ©ïŒèšŒæ<\\/summary>\r\n**åæ©ïŒ** $(a)$ ã® $x$ ã圢åŒçã« $\\sqrt{x}$ ã§çœ®ãæãïŒé©åœã«æŽçããããšãèããŸãïŒ\r\n\r\n----\r\n\r\n**蚌æïŒ** $(a),(b)$ ã®å·ŠèŸºããããã $F(x),G(x)$ïŒæ¹çšåŒ $F(x)=0$ ã®è€çŽ æ°è§£ãéè€èŸŒã¿ã§ $\\alpha_1,\\dots,\\alpha_{19}$ ãšãããšæ¬¡ãæãç«ã€ïŒ\r\n$$\\begin{aligned}\r\nG(x^2)\r\n&=(a_{19}x^{18}+a_{17}x^{16}+\\cdots+a_3x^2+a_1)^2x^2-(a_{18}x^{18}+a_{16}x^{16}+\\cdots+a_2x^2+a_0)^2\\\\\\\\\r\n&=-F(x)F(-x)\\\\\\\\\r\n&=(x^2-\\alpha_1^2)\\cdots(x^2-\\alpha_{19}^2)\r\n\\end{aligned}$$\r\n\r\nãããã $G(x)=(x-\\alpha_1^2)\\cdots(x-\\alpha_{19}^2)$ ãåŸãããããïŒ$G(x)=0$ ã®è§£ã¯ $\\alpha_1^2,\\dots,\\alpha_{19}^2$ ã§ããïŒ\r\n<\\/details>\r\n\r\nããããçšããŠæçŽã« $f_1(x),\\dots,f_4(x)$ ãèšç®ããããšãã§ããŸããïŒ$A$ ãåŸãããã«ã¯äœæ¬¡ã®é
ã¯ç¡èŠããŠæ§ããªãããšãããããŸãïŒå
·äœçã«ã¯ïŒ$f_3(x)$ ã® $16$ 次以äžã®é
ïŒ$f_2(x)$ ã® $14$ 次以äžã®é
ïŒ$f_1(x)$ ã® $10$ 次以äžã®é
ã¯ç¡èŠã§ããŸãïŒããã«æ³šæããŠèšç®ããã°æ¬¡ã®ããã«ãªããŸãïŒ\r\n\r\n$$\\begin{aligned}\r\nf_1(x)&=(x^9-Nx+C_1)^2x-(x^9+C_2x+C_0)^2&&=x^{19}-x^{18}-2Nx^{11}+O(x^{10}),\\\\\\\\\r\nf_2(x)&=(x^9-2Nx^5+O(x^4))^2x-(-x^9+O(x^5))^2&&=x^{19}-x^{18}-4Nx^{15}+O(x^{14}),\\\\\\\\\r\nf_3(x)&=(x^9-4Nx^7+O(x^6))^2x-(-x^9+O(x^7))^2&&=x^{19}-x^{18}-8Nx^{17}+O(x^{16}),\\\\\\\\\r\nf_4(x)&=(x^9-8Nx^8+O(x^7))^2x-(-x^9+O(x^8))^2&&=x^{19}-(16N+1)x^{18}+O(x^{17})\r\n\\end{aligned}$$\r\n\r\nããããæ±ããå€ã¯ $(16N+1)-3=\\bf{36974}$ ãšããããŸããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc118/editorial/2506/129"
}
] | ã以äžã® $x$ ã® $16$ 次æ¹çšåŒã¯ïŒéè€åºŠã蟌ããŠïŒ$16$ åã®è€çŽ æ°è§£ããã¡ãŸãïŒ
$$x^{16}+4x^{15}+\cdots+225x^2+256x\left(=\sum^{16}_{n=1}n^2x^{17-n}\right)=2022$$
ãã®ãšãïŒ$16$ åã®è§£ããããã® $16$ ä¹ã®ç·åãæ±ããŠãã ããïŒ |
OMC118 (for experts) | https://onlinemathcontest.com/contests/omc118 | https://onlinemathcontest.com/contests/omc118/tasks/4331 | F | OMC118(F) | 900 | 3 | 21 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®å€æ¥åã® $B$ ã§ã®æ¥ç·ãš $C$ ã§ã®æ¥ç·ã®äº€ç¹ã $N$ ãšãã. äžè§åœ¢ $ABO$ ãšäžè§åœ¢ $PBA$, äžè§åœ¢ $ACO$ ãšäžè§åœ¢ $QCA$, äžè§åœ¢ $QCR$ ãšäžè§åœ¢ $PBR$ ã¯ããããçžäŒŒã§ãããã, \r\n$$BR:CR=PB:QC=(PB\\times OB):(QC\\times OC)=AB^2:AC^2$$\r\nãåŸã. åŸã£ãŠçŽç· $AR$ ã¯äžè§åœ¢ $ABC$ ã® $A$ ã«å¯Ÿããé¡äŒŒäžç·ã§ãããã, çŽç· $AR$ äžã« $N$ ãååšãã. \\\r\nããŸã, äžè§åœ¢ $SXY$ ã®å
å¿ã $A$ ãšãªãããã«ç¹ $S$ ãåããš\r\n$$\\angle NAX + \\angle SAX = \\angle YAD + \\angle SAX = (90^\\circ - \\angle AYX) + (180^\\circ - \\angle AXS - \\angle ASX) = 180^\\circ$$\r\nãã $S$ ã¯çŽç· $AN$ äžã«ãã. çŽç· $SN$ ãç·å $XY$ ã®åçŽäºçåç·ã§ãªãããšã«æ°ãã€ããã°\r\n$$XN = YN,\\quad \\angle XSN = \\angle YSN$$\r\nãã $4$ ç¹ $N,S,X,Y$ ã¯åäžååšäžã«ãã. $A$ ã¯äžè§åœ¢ $SXY$ ã®å
å¿ã§ãã£ããã, $AN = XN = YN$ ãåãã. \\\r\nãããã§, äžè§åœ¢ $ABC$ ã $N$ ãäžå¿ã« $B$ ã $C$ ã«éãªããŸã§å転ãããšã, $A$ ã®ç§»ãå
ã $A^\\prime$ ãšãã. ãã®ãšã, \r\n$$|\\triangle ABC|=|\\triangle AA^\\prime C|$$\r\nãæç«ãã. å®é, $\\angle BAC+ACA^\\prime=180^\\circ$ ããããã. ãããã, 以äžã®æç«ãåãã.\r\n$$|\\triangle ABC|=\\frac12(|\\triangle AA^\\prime N|-|\\triangle BCN|)=\\frac12(NA^2-NB^2)\\sin\\angle BAC\\cos\\angle BAC$$\r\nããã«, \r\n$$NA^2-NB^2=NX^2-NB^2=XB^2=\\bigg(\\frac1{2\\sin\\angle BAC}(XY+BC)\\bigg)^2$$\r\nã§ãããã, çµå±äžè§åœ¢ $ABC$ ã®é¢ç©ã¯ä»¥äžã®ããã«æ±ãããã. ç¹ã«, 解çãã¹ãå€ã¯ $\\mathbf{103549}$.\r\n$$|\\triangle ABC|=\\frac12\\bigg(\\frac1{2\\sin\\angle BAC}(XY+BC)\\bigg)^2\\sin\\angle BAC\\cos\\angle BAC=\\frac{103544}{5}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc118/editorial/4331"
},
{
"content": "ã$NA=NX=NY$ ã®å¥èšŒæã§ã. $AR$ ãsymmedianã§ããããšã¯ç€ºãããšããŸã.\r\n- - -\r\nãæ¡ä»¶ãã $\\angle XAY$ ãš $\\angle DAN$ ã®äºçåç·ã¯äžèŽããã®ã§ãããš $BC$ ã®åçŽäºçåç·ã®äº€ç¹ã $T$ ãšãã. ãã®ãšã, $A$ ãçŽç· $NT$ äžã«ãªãããšã«æ°ãã€ããã° $AXTY$ ã¯å
±åã§ãã. ããã«, \r\n$$\\angle NAT=\\angle DAT=\\angle NTA$$\r\nãã $N$ 㯠$AT$ ã®åçŽäºçåç·äžã«ãããã, $N$ 㯠$AXTY$ ã®å€æ¥åã®äžå¿ã§ãã. ç¹ã« $NA=NX=NY$ ã瀺ããã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc118/editorial/4331/128"
}
] | ã$AB\lt AC$ ãªãéè§äžè§åœ¢ $ABC$ ã«ãããŠïŒå€å¿ã $O$ïŒ$A$ ãã $BC$ ã«ããããåç·ã®è¶³ã $D$ ãšããŸãïŒåçŽç· $BO$ äžã« $2$ ç¹ $P, X$ ãïŒåçŽç· $CO$ äžã« $2$ ç¹ $Q, Y$ ãïŒèŸº $BC$ äžã«ç¹ $R$ ãïŒãã¹ãŠã®ç¹ãçžç°ãªãããã«ãšããšïŒä»¥äžãæç«ããŸããïŒ
- $AB=AP, \quad AC=AQ$ïŒ
- $\angle BPR=\angle CQR$ïŒ
- $\angle RAX=\angle DAY$ïŒ
- çŽç· $BC$ ãšçŽç· $XY$ ã¯å¹³è¡.
- $BC=256 , ~ XY=260 , ~ \cos\angle BAC=\dfrac{28}{53}$ïŒ
ããã®ãšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ãæ±ããŠãã ããïŒãã ãïŒçãã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC117 (for beginners) | https://onlinemathcontest.com/contests/omc117 | https://onlinemathcontest.com/contests/omc117/tasks/3035 | A | OMC117(A) | 100 | 311 | 313 | [
{
"content": "ãåã®ååŸã $r$ ãšãããš, $r^2\\pi=1000$ ã§ãã. äžæ¹ã§ $S$ 㯠$4r^2$ ãšè¡šããã®ã§, ããããã $S=\\dfrac{4000}{\\pi}$ ãåŸã.\\\r\nããã£ãŠ, 解çãã¹ãå€ã¯ $\\textbf{4000}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc117/editorial/3035"
}
] | ãé¢ç©ã $1000$ ã®åã«å€æ¥ããæ£æ¹åœ¢ã®é¢ç© $S$ ã«ã€ããŠïŒ$S\pi$ ã®å€ãæ±ããŠãã ããïŒ |
OMC117 (for beginners) | https://onlinemathcontest.com/contests/omc117 | https://onlinemathcontest.com/contests/omc117/tasks/2923 | B | OMC117(B) | 200 | 291 | 305 | [
{
"content": "$$10^{12}=(10^6)^2=(10^4)^3=(10^2)^6$$\r\nã§ãããã, $10^{12}$ 以äžã®æ£æŽæ°ã®ãã¡, å¹³æ¹æ°ã¯ $10^6$ å, ç«æ¹æ°ã¯ $10^4$ å, å¹³æ¹æ°ãã€ç«æ¹æ°ã§ããæ°ã¯ $10^2$ åã§ãã.\r\nåŸã£ãŠ, æ±ããåæ°ã¯ $10^6+10^4-10^2=\\mathbf{1009900}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc117/editorial/2923"
}
] | ã$10^{12}$ 以äžã®æ£æŽæ°ã®ãã¡ïŒå¹³æ¹æ°**ãŸãã¯**ç«æ¹æ°ã§ãããã®ã¯ããã€ãããŸããïŒ |
OMC117 (for beginners) | https://onlinemathcontest.com/contests/omc117 | https://onlinemathcontest.com/contests/omc117/tasks/2496 | C | OMC117(C) | 300 | 240 | 274 | [
{
"content": "ãäžè§åœ¢ $PQR$ ã®éå¿ã $G$ ãšããïŒç·å $QR$ ã®äžç¹ $M$ ãåãç¯å²ã¯äžè§åœ¢ $ABC$ ã®å蟺ã®äžç¹ãš $A$ ãé ç¹ãšããå¹³è¡å蟺圢ã®å
éšåã³åšäžã§ããïŒ$P$ ãäžå¿ã« $M$ ã $\\displaystyle\\frac{2}{3}$ åæ¡å€§ããç¹ã $G$ ãªã®ã§, $P$ ãåºå®ããããšã $G$ ã¯ãã®å¹³è¡å蟺圢ã®ç¯å²ã $P$ ãäžå¿ã« $\\displaystyle\\frac{2}{3}$ åæ¡å€§ããç¯å²ãåãïŒ$P$ ã®åºå®ãå€ããŠèŸº $BC$ äžãåãããš, $G$ ãåãç¯å²ã®å¹³è¡å蟺圢㯠$\\displaystyle\\frac{1}{3}\\overrightarrow{BC}$ ã ãå¹³è¡ç§»åããïŒ\\\r\nããããã£ãŠ $G$ ã®åãç¯å²ã¯äžè§åœ¢ $ABC$ ã®å蟺ã $3$ çåããç¹ãçµãã§ã§ããå
è§åœ¢ãªã®ã§æ±ããé¢ç©ã¯\r\n$$\\displaystyle 600-\\frac{1}{9}\\cdot 600\\times 3=\\textbf{400}$$ \r\nããªã, äœçœ®ãã¯ãã«ãçšããŠã容æã«è§£ãããšãåºæ¥ãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc117/editorial/2496"
}
] | ãé¢ç© $600$ ã®äžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $BC,CA,AB$ äžãããããç¹ $P,Q,R$ ãåããšãïŒ$3$ ç¹ $P,Q,R$ ã®éå¿ïŒå¹Ÿäœäžå¿ïŒãééãããç¯å²ã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC117 (for beginners) | https://onlinemathcontest.com/contests/omc117 | https://onlinemathcontest.com/contests/omc117/tasks/2924 | D | OMC117(D) | 300 | 162 | 264 | [
{
"content": "ã$a=b$ ã®ãšãïŒ$a=c$ ãŸã㯠$a=d$ ã§ãããã®ãæ°ããã°ããïŒ$c=d$ ã®éè€ãèæ
®ããã°\r\n$$10^{300}\\times(2\\times 10^{300}-1)=2Ã10^{600}-10^{300}$$\r\nã$a\\neq b$ ã®ãšããåæ§ã§ãããïŒã$a=c$ ã〠$b=d$ããŸãã¯ã$a=d$ ã〠$b=c$ããªãçµã®é€å€ã«æ³šæããã°ïŒ\r\n$$10^{300}\\times(10^{300}-1)\\times(4\\times 10^{300}-6)=4\\times 10^{900}-10^{601}+6\\times 10^{300}$$\r\nã以äžãã\r\n$$M=4Ã10^{900}-8Ã10^{600}+5Ã10^{300}=3\\overbrace{99\\cdots 99}^{299å}2 \\overbrace{00\\cdots 00}^{299å}5 \\overbrace{00 \\cdots 00}^{300å}$$\r\nãšãªãã®ã§, $M$ ã®åæ¡ã®æ°åã®åã¯, $3+9Ã299+2+5=\\textbf{2701}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc117/editorial/2924"
}
] | ã$1$ ä»¥äž $10^{300}$ 以äžã®æŽæ°ã®ïŒé åºä»ããïŒçµ $(a,b,c,d)$ ã§ãã£ãŠïŒ
$$|(x-a)(x-b)|+|(x-c)(x-d)|=0$$
ãã¿ããå®æ° $x$ ã**ã¡ããã© $\mathbf{1}$ ã€**ååšãããããªãã®ãïŒ$M$ åååšãããšããŸãïŒ\
ããã®ãšãïŒ$M$ ã® $10$ é²æ³è¡šèšã«ãããåæ¡ã®åãæ±ããŠäžããïŒ |
OMC117 (for beginners) | https://onlinemathcontest.com/contests/omc117 | https://onlinemathcontest.com/contests/omc117/tasks/248 | E | OMC117(E) | 300 | 87 | 146 | [
{
"content": "ã$t=x-(1\\/x)$ ãšããã°, å®æ° $x$ ã«å¯Ÿã $t$ ãå
šå®æ°ãåãããšãã, 以äžã® $t$ ã«ã€ããŠã®æ¹çšåŒã«ã€ããŠå®æ°è§£ãèããããšãšåå€ã§ãã.\r\n$$t^2+at+(n+2)=0$$\r\nããã¯å€å¥åŒãèããããšã§ $|a|\\lt2\\sqrt{n+2}$ ãšè¡šçŸã§ãã. ããªãã¡æ¡ä»¶ã¯ $n=2\\lceil2\\sqrt{n+2}\\rceil-1$ ã§ãã. ãããã¿ããæ£æŽæ°ã¯ $n=17,19$ ã§ããããšã容æã«ããããã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{36}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc117/editorial/248"
},
{
"content": "ãå
¬åŒè§£çã«ããã次ã®æ¡ä»¶åŒã解ãããŒãã®è£è¶³ã§ã\r\n$$n=2\\lceil 2\\sqrt{n+2}\\rceil-1ã(n\\in\\mathbb{N})ãã»ã»ã»â»$$\r\n$\\lceil 2\\sqrt{n+2}\\rceil$ãé¢åãªã®ã§ããã$k$ãšçœ®ããŠããŸããŸãããïŒå€©äºé¢æ°ã®å®çŸ©ãã次ã®äžçåŒãåŸãŸãïŒ\r\n$$k-1\\lt2\\sqrt{n+2}\\leq k$$\r\n $â»$ ãã $n=2k-1$ ã§ããã®ã§, å
ã»ã©ã®äžçåŒã¯ $k$ ã«ã€ããŠã® $2$ 次äžçåŒã«åž°çã§ããŸã.\r\n$$k-1\\lt2\\sqrt{2k+1}\\leq kã\\Longrightarrowãk^2-10k-3\\lt 0\\leq k^2-8k-4$$\r\nãã®é£ç«äžçåŒã $k\\in\\mathbb{N}$ ã®ç¯å²ã§è§£ããš $k=9,10$ ãåŸãŸãïŒããªãã¡ $n=17,19$ ã§ãïŒ\\\r\nå®éã« $n=17,19$ ã $â»$ ãæºããããšã確èªããŠååæ§ããã§ãã¯ããã°OKã§ãïŒ\r\n\r\nãé解ãããããã®ãªã\\\r\nã» $â»$ ãã $n$ ã¯å¥æ°ã§ããå¿
èŠããããªã\\\r\nã»å·ŠèŸºã®æ¹ãéãå¢å ãããªã\\\r\nã»ãšããããšã¯åœãŠãã£ãœã㧠$n$ ãåŸãã°çµããã ãªã\\\r\nã» $n=17,19$ ãå
¥ããŠã¿ããããŸããã£ã\\\r\nã» $n=13,15,21,23$ ãããã¯ãã¡ã ã£ããã $n=17,19$ ã§æ±ºãŸãã ãã\\\r\nãããã®ãæ°æã¡ã§éã«è§£ããŸãïŒïŒæ¬è³ªã¯ $t=x-x^{-1}$ 眮æãªã®ã§èš±ããŠãã ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc117/editorial/248/277"
}
] | ã$n$ ãæ£æŽæ°ãšããŸãïŒä»¥äžã® $x$ ã«ã€ããŠã®æ¹çšåŒ
$$x^4+ax^3+nx^2-ax+1=0$$
ãå®æ°è§£ããããªããããªæŽæ° $a$ ãã¡ããã© $n$ åååšãããšãïŒ$n$ ãšããŠãããããã®ããã¹ãŠæ±ãïŒãããã®ç·åã解çããŠãã ããïŒ |
OMC117 (for beginners) | https://onlinemathcontest.com/contests/omc117 | https://onlinemathcontest.com/contests/omc117/tasks/1973 | F | OMC117(F) | 400 | 84 | 175 | [
{
"content": "ã察称æ§ããç¹ $P(-m,-n)$ ã第 $3$ 象éã«ããå Žåã®ã¿èã㊠$4$ åããã°ãã. åå°ããã軞ã«ãã£ãŠå
è·¯ãæãè¿ã, ãããç·åã«çŽãããšãèããã°, æ¡ä»¶ã¯æ¬¡ã®ããã«èšãæããããïŒ\r\n- ç¹ $P$ ãäžå¿ãšããååŸ $15$ ã®ååšäžã®æ Œåç¹ã§ãã£ãŠ, 第 $1$ 象é (軞äžãå«ãŸãªã) ã«ååšãããã®ããã äžã€ååšãã.\r\n\r\nããã§, å
šäœã®åº§æšãå¹³è¡ç§»åããŠç¹ $P$ ãåç¹ã«ç§»åãããããšã§, æ¡ä»¶ã¯æ¬¡ã®ããã«è¡šçŸã§ãã.\r\n- åç¹ãäžå¿ãšããååŸ $15$ ã®ååšäžã®æ Œåç¹ã§ãã£ãŠ, ç¹ $(m,n)$ ãããå³äžãã«ãããã®ããã äžã€ååšãã.\r\n\r\n$x^2+y^2=15^2$ ã®æ£æŽæ°è§£ã¯ $(x,y)=(9,12),(12,9)$ ã®ã¿ã§ããããšã«æ³šæããã°, ç¹ $P$ ãšããŠããåŸããã®ã®ã¯, ç¹ $(0,9),(9,9),(9,12),(0,12)$ ãé ç¹ãšããé·æ¹åœ¢, ããã³ããã $y=x$ ã§æãè¿ããé·æ¹åœ¢ã®å
éš (äžéšã®åšäžãé€ã) ã«ååšãã. ãããã£ãŠ, æ±ããç·æ°ã¯ $2\\times 8\\times 3\\times 4=\\textbf{192}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc117/editorial/1973"
}
] | ã$xy$ å¹³é¢ã«ãããŠïŒè»žäžã«ãªãæ Œåç¹ $P$ ããïŒä»¥äžã®ãããªç¹æ®ãªå
ç·ãçºå°ããŸãïŒ
- åèšã§è·é¢ $15$ é²ããŸã§æžè¡°ããïŒè·é¢ $15$ é²ãã æç¹ã§æ¶æ»
ããïŒ
- $x$ 軞ããã³ $y$ 軞ã«ãã£ãŠïŒå
¥å°è§ãšåå°è§ãçãããªãããã«åå°ãããïŒ
- ãã ãïŒåç¹ã«å
¥å°ããå Žåã¯ïŒå
¥å°æ¹åã«ãã®ãŸãŸåå°ãããïŒ\
ãã®ãšãïŒå軞㧠$1$ åãã€ïŒèš $2$ ååå°ããããã®ãšã¿ãªãïŒ
ãã®ãšãïŒä»¥äžã®æ¡ä»¶ãã¿ããæ Œåç¹ $P$ ã¯ããã€ãããŸããïŒ
- 軞㧠$2$ ååå°ããïŒãã€è»žäžã«ãªãæ Œåç¹ã§å
ç·ãæ¶æ»
ãããããªå
ç·ã®çºå°æ¹åãïŒäžæã«ååšããïŒ |
OMC116 | https://onlinemathcontest.com/contests/omc116 | https://onlinemathcontest.com/contests/omc116/tasks/2747 | A | OMC116(A) | 200 | 293 | 313 | [
{
"content": "$$\\sin^2 \\theta =\\sin\\theta\\cos\\theta\\tan\\theta= \\sin2\\theta\\cos2\\theta\\tan2\\theta = \\sin^2 2\\theta$$\r\nãã $\\sin\\theta=\\pm \\sin2\\theta$ ã§ãã, é©åœã«å ŽååãããŠä»¥äžãåŸã.\r\n$$\\theta=0^\\circ, 60^\\circ, 120^\\circ, 180^\\circ, 240^\\circ, 300^\\circ$$\r\nãã£ãŠæ±ããå€ã¯ $\\bf{900}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc116/editorial/2747"
}
] | ã以äžãã¿ãã $0^\circ \leq \theta \lt 360^\circ$ ã®ç·åãïŒåºŠæ°æ³ã§è§£çããŠãã ããïŒ
$$\sin\theta\cos\theta\tan\theta = \sin2\theta\cos2\theta\tan2\theta$$
ãã ãïŒ$\tan\theta$ ããã³ $\tan2\theta$ ãå®çŸ©ãããªããã㪠$\theta$ ã¯èããªããã®ãšããŸãïŒ |
OMC116 | https://onlinemathcontest.com/contests/omc116 | https://onlinemathcontest.com/contests/omc116/tasks/2050 | B | OMC116(B) | 200 | 298 | 315 | [
{
"content": "ãããçã®äœçœ®ãåºå®ã, é¡æ ãèæ
®ããããšã§åºæ¬çã«\r\n$$a_n=\\dfrac{1}{2}(n-1)!$$\r\nã§ããã, $n=1,2$ ã§ã¯é¡æ ãèæ
®ããå¿
èŠããªããããã $1=(n-1)!$ éãã§ãã. ããªãã¡, æ±ããç·åã¯\r\n$$\\dfrac{1}{2}(7!+\\cdots+2!)+1!+0!=\\textbf{2958}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc116/editorial/2050"
}
] | ãäºãã«åºå¥ã§ããçã $n$ åãããšãïŒãããããã¹ãŠäœ¿ã£ãŠæ°ç ãäœãïŒããªãã¡ïŒååšäžã«äžŠã¹ããïŒå転ãè£è¿ãã§äžèŽãããã®ã¯åããã®ãšæ°ããïŒå Žåã®æ°ã $a_n$ ãšãããŸãïŒãã®ãšãïŒä»¥äžã®ç·åãæ±ããŠãã ããïŒ
$$a_8+a_7+a_6+a_5+a_4+a_3+a_2+a_1$$
ãã ãïŒ$0!=1$ ãšããŠïŒä»¥äžãä¿èšŒãããŸãïŒ
$$7!+6!+5!+4!+3!+2!+1!+0!=5914$$ |
OMC116 | https://onlinemathcontest.com/contests/omc116 | https://onlinemathcontest.com/contests/omc116/tasks/2182 | C | OMC116(C) | 300 | 249 | 309 | [
{
"content": "ãäžè¬ã«, æ£ $n$ è§åœ¢ã® $2$ ã€ã®å¯Ÿè§ç·ãŸãã¯èŸºã®ãªãè§åºŠãšããŠããåŸããã®ã¯ $180m\\/n$ ã®åœ¢åŒã§ãããã, æ¡ä»¶ã¯\r\n$$0.2021\\leq \\dfrac{180m}{n} \\lt 0.2022 \\iff \\dfrac{180}{0.2022}m\\lt n\\leq \\dfrac{180}{0.2021}m $$\r\nãªãæŽæ° $m$ ãååšããããšã§ãã, $m=2$ ã®ãšã $n=\\textbf{1781}$ ãçºèŠã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc116/editorial/2182"
}
] | ãæ£ $n$ è§åœ¢ã«ãããŠïŒçžç°ãªã $2$ æ¬ã®å¯Ÿè§ç·ãŸãã¯èŸºãé©åœã«éžã³ïŒãããïŒã延é·ããŠçŽç·ãšãããã®ïŒã®ãªãè§åºŠã床æ°æ³ã§æ±ãããšããïŒ$0.2021^\circ$ ä»¥äž $0.2022^\circ$ æªæºã§ããïŒãã®ãããªããšãããããæå°ã®æŽæ° $n(\geq4)$ ãæ±ããŠãã ããïŒ |
OMC116 | https://onlinemathcontest.com/contests/omc116 | https://onlinemathcontest.com/contests/omc116/tasks/5305 | D | OMC116(D) | 400 | 169 | 247 | [
{
"content": "ã$2$ çš®é¡ã®å€ã $x,y$ ãšããã°ïŒ$a_1$ ãã $a_{100}$ ã¯ãã¹ãŠç°ãªãããšãã\r\n$$a_1+a_2=x,ãa_2+a_3=y,ã\\dots,ãa_{98}+a_{99} = y,ãa_{99}+a_{100}=x$$\r\nãšãªãã»ããªãïŒ\\\r\nããã㧠$a_1, a_3, \\ldots, a_{99}$ ã¯å
¬å·® $y-x$ ã®çå·®æ°åã§ããïŒããã㯠$1$ ä»¥äž $100$ 以äžã§ããããïŒå
¬å·®ã¯ $\\pm1, \\pm2$ ã®ã¿ãé©ããããšããããïŒäžæ¹ã§ $a_2, a_4, \\ldots, a_{100}$ ã¯å
¬å·® $x-y$ ã®çå·®æ°åã§ããããïŒ$(a_1, y-x)$ ãšããŠèããããçµã¯ä»¥äžã®ããã«åæã§ããïŒ\r\n$$(1,1),ã(51,1),ã(1,2),ã(2,2),ã(50,-1),ã(100,-1),ã(99,-2),ã(100,-2).$$\r\nããããã«ã€ã㊠$a_1\\times a_{100}$ ãèšç®ããã°ïŒæ±ããå€ã¯ $51+2+5000+9900=\\textbf{14953}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc116/editorial/5305"
}
] | ã$(1,2,\ldots,100)$ ã®äžŠã¹æ¿ã $(a_1, a_2, \ldots, a_{100})$ ã«ã€ããŠïŒ
$$a_1+a_2,ãa_2+a_3,ã\cdots,ãa_{99}+a_{100}$$
ã®äžã«çŸããå€ã¯ã¡ããã© $2$ çš®é¡ã§ããïŒ\
ããã®ãšãïŒ$a_1\times a_{100}$ ããšãåŸãå€ãã¹ãŠã«ã€ããŠïŒãããã®ç·åãæ±ããŠãã ããïŒ |
OMC116 | https://onlinemathcontest.com/contests/omc116 | https://onlinemathcontest.com/contests/omc116/tasks/1396 | E | OMC116(E) | 500 | 95 | 190 | [
{
"content": "ãäžè§åœ¢ $ADP, BCP$ ã®é¢ç©ããããã $a,b$ ãšã, åè§åœ¢ $ABCD$ ã®é¢ç©ã $x$ ãšãã. $a+b=5$ ã§ãã.\\\r\nã$BC$ ã«é¢ã㊠$P$ ãšåãåŽã«, $BCE$ ãæ£äžè§åœ¢ãšãªããããªç¹ $E$ ããšãã°, äžè§åœ¢ $BAE,BPC,EDC$ ã¯ãã¹ãŠååã§ãã. ããã« $AE=PC=PD$ ãªã©ãã $AEDP$ ã¯å¹³è¡å蟺圢ã§ãããã, ç¹ã«äžè§åœ¢ $AED$ ãš$DPA$ ã¯ååã§ãã. 以äžãã, $BCE$ ã®é¢ç©ã $9\\sqrt{3}$ ã§ããããšã«çæããã°, äºè§åœ¢ $ABCDE$ ã®é¢ç©ã $2$ éãã«è¡šãããšã§ $9\\sqrt{3}+2b=x+a$ ãåŸã. åæ§ã«ã㊠$4\\sqrt{3}+2a=x+b$ ã§ãããã, ãããã蟺ã
足ãåãã㊠$a+b=5$ ãçšããã° $x=(5+13\\sqrt{3})\\/2$ ãåŸã. ç¹ã«è§£çãã¹ãå€ã¯ $5+507+2=\\textbf{514}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc116/editorial/1396"
},
{
"content": "$\\angle\\mathrm{APD}=\\theta$ ãšçœ®ãã$\\angle\\mathrm{BPC}=240^\\circ-\\theta$ ã§ããããŸãïŒ$\\mathrm{AP}=\\mathrm{BP}=x$ïŒ$\\mathrm{CP}=\\mathrm{DP}=y$ ãšçœ®ããæ±ããããã®ã¯ $\\triangle \\mathrm{ABP}+\\triangle \\mathrm{CDP}+5=\\dfrac{\\sqrt{3}}{4}(x^2+y^2)+5$ ã§ããïŒ$x^2+y^2$ ã®å€ãæ±ãŸãã°è¯ãã\\\r\n é¢ç©ã®æ¡ä»¶ããïŒ$xy \\\\{ \\sin \\theta+\\sin(240^\\circ-\\theta)\\\\}=10$ãåŸãã\\\r\n ãŸãäœåŒŠå®çãã $x^2+y^2-2xy \\cos \\theta =16$ïŒ$x^2+y^2-2xy \\cos (240^\\circ-\\theta) =36$ïŒåŒãç®ããããšã§æ¬¡ãåŸãïŒ\\\r\n $xy\\\\{\\cos\\theta-\\cos(240^\\circ-\\theta)\\\\}=10$\\\r\n å æ³å®çãçšã㊠$\\sin(240^\\circ-\\theta)$ïŒ$\\cos(240^\\circ-\\theta)$ ã $\\sin\\theta$ïŒ$\\cos\\theta$ ã§è¡šããŠé£ç«æ¹çšåŒã解ãã°ïŒ$xy\\cos\\theta=\\dfrac{15-5\\sqrt{3}}{3}$ãåŸãã\\\r\n ãã£ãŠïŒ$x^2+y^2=16+2xy \\cos \\theta=\\dfrac{78-10\\sqrt{3}}{3}$\\\r\n ãããã $\\dfrac{\\sqrt{3}}{4}(x^2+y^2)+5=\\dfrac{5+13\\sqrt{3}}{2}$ ãåŸãã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc116/editorial/1396/124"
},
{
"content": "$AB=a,CD=b$ ãšãããšæ±ãããå€ã¯ $5+\\dfrac{\\sqrt{3}}{4}(a^2+b^2)$ ã§ããïŒ\\\r\näžè§åœ¢ $ADP$ ãç¹ $P$ ãäžå¿ã«å転ãããŠç¹ $D$ ãç¹ $C$ ã«éãããš,移ååŸã¯ $AB=\\sqrt{3}a$ ãªã®ã§äœåŒŠå®çãã\r\n$$\\cos\\angle BCA=\\frac{52-3a^2}{48}$$\r\näžæ¹ã§äžè§åœ¢ $ABC$ ã®é¢ç©ã«ã€ããŠ\r\n$$\\frac{1}{2}\\cdot4\\cdot6\\sin\\angle BCA=5+\\frac{\\sqrt{3}}{4}a^2\\Longleftrightarrow\\sin\\angle BCA=\\frac{20+\\sqrt{3}a^2}{48}$$\r\n2åŒãã $\\cos\\angle BCA,\\sin\\angle BCA$ ãæ¶å»ããŠæŽçãããšæ¬¡ã®åŒãåŸãïŒ\r\n$$3a^4+(10\\sqrt{3}-78)a^2+200=0$$\r\näžè§åœ¢ $ADP$ ãç¹ $P$ ãäžå¿ã«å転ãããŠç¹ $A$ ãç¹ $B$ ã«éããŠ,åæ§ã®è°è«ãããããšã§æ¬¡ã®åŒãåŸãããïŒ\r\n$$3b^4+(10\\sqrt{3}-78)b^2+200=0$$\r\nãããã£ãŠ $a^2,b^2$ ã¯äºæ¬¡æ¹çšåŒ $3x^2+(10\\sqrt{3}-78)x+200=0$ ã®2解ãªã®ã§è§£ãšä¿æ°ã®é¢ä¿ãã $a^2+b^2=\\dfrac{78-10\\sqrt{3}}{3}$\\\r\n以äžãã $5+\\dfrac{\\sqrt{3}}{4}(a^2+b^2)=\\dfrac{5+13\\sqrt{3}}{2}$ ãåŸãïŒ\r\n\r\nâ» $a\\rightarrow\\dfrac{2}{\\sqrt{3}}a$ ãªã©ãšããŠãããšèšç®ã軜ããªããããããŸããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc116/editorial/1396/125"
}
] | ã$AD=4,BC=6$ ãªãåžåè§åœ¢ $ABCD$ ã«ãããŠïŒå
éšã«ç¹ $P$ ããšããšïŒ$ABP$ ããã³ $CDP$ ã¯ãšãã«æ£äžè§åœ¢ã«ãªãïŒäžè§åœ¢ $ADP$ ãšäžè§åœ¢ $BCP$ ã®é¢ç©ã®å㯠$5$ ã§ããïŒãã®ãšãïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã¯æ倧å
¬çŽæ°ã $1$ ã§ããæ£æŽæ° $a,b,c$ ã«ãã£ãŠ $\dfrac{a+\sqrt{b}}{c}$ ãšè¡šãããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMC116 | https://onlinemathcontest.com/contests/omc116 | https://onlinemathcontest.com/contests/omc116/tasks/2049 | F | OMC116(F) | 600 | 12 | 79 | [
{
"content": "ãäžè¬ã« $100$ ãéè² æŽæ° $n$ ã«çœ®ãæã, åæ§ã®ç¢ºç $p_n$ ãæ±ããã. ãã®ãšã, $n\\geq 2$ ã«å¯Ÿã,\r\n$$p_{n}=\\frac{2}{(n+1)(n+2)}\\sum_{i=0}^{n}{(n+1-i)p_{i}}$$\r\nãæç«ããïŒãããå€åœ¢ããããšã§\r\n$$(n+3)(n+4)p_{n+2}-2(n+2)(n+3)p_{n+1}+(n+1)(n+2)p_{n}=2p_{n+2}$$\r\nããªãã¡\r\n$$(n+5)(p_{n+2}-p_{n+1})=(n+1)(p_{n+1}-p_{n}).$$\r\nã㟠$p_0=1,p_1=0$ ã«çæããã° $p_3-p_2=26\\/45-3\\/5=-1\\/45$ ãšèšç®ã§ãããã, \r\n$$\\begin{aligned}\r\np_{n+1}-p_{n} &= -\\frac{8}{(n+4)(n+3)(n+2)(n+1)}\\\\\\\\\r\n&=\\frac{8}{3(n+4)(n+3)(n+2)}-\\frac{8}{3(n+3)(n+2)(n+1)}\r\n\\end{aligned}$$\r\nãããã£ãŠ\r\n$$p_{n}=\\frac{5}{9}+\\frac{8}{3(n+3)(n+2)(n+1)}.$$\r\nç¹ã« $n=100$ ã代å
¥ããããšã§, 解çãã¹ãå€ã¯ $\\textbf{275102}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc116/editorial/2049"
}
] | ãèµ€çã $2$ åïŒéçã $100$ åãããŸãïŒ\
ãOMCåã¯éçã $1$ å以äžã«ãªããŸã§ä»¥äžã®æäœãç¹°ãè¿ããŸãïŒ
- ãŸã æšãŠãããŠããªãçãã¹ãŠãïŒæ±è¥¿äžåã«ã©ã³ãã ïŒç確çïŒã«äžŠã¹çŽãïŒ
- $2$ åã®èµ€çã®éã«**æãŸããŠããªã**éçããã¹ãŠæšãŠãïŒ
äŸãã°ãééèµ€ééééèµ€éããšäžŠãã ãšãïŒ$3$ åã®éçãæšãŠãããŸãïŒ\
ããã®ãšãïŒæçµçã«éçã $0$ åã«ãªã確ç $p$ ãæ±ããŠãã ããïŒãã ãïŒ$p$ ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ
----
ããªãïŒãã®æäœã¯æéåã§çµäºããªããããããŸãããïŒ$p$ ã®ååšãä¿èšŒãããŸãïŒå³å¯ã«ã¯ïŒæäœã®åæ°ã«äžéãèšããŠèãïŒãã®æ¥µéããšãããšã§ $p$ ãå®ããŸãïŒ |
OMC115 (SEGæ¯) | https://onlinemathcontest.com/contests/omc115 | https://onlinemathcontest.com/contests/omc115/tasks/5527 | A | OMC115(A) | 100 | 308 | 330 | [
{
"content": "ã$(S,E,G)=(p,1,q)$ïŒãã ã $p=2,3,5,7$ ããã³ $q=1,2,\\ldots,9$ïŒãæ±ããçµã§ããïŒ\\\r\nããã£ãŠïŒæ±ããçµæ°ã¯ $4\\times9=\\textbf{36}$ çµïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc115/editorial/5527"
}
] | ã$S^{E^G}$ ãçŽ æ°ãšãªã $1$ ä»¥äž $9$ 以äžã®æŽæ°ã®çµ $(S,E,G)$ ã¯ããã€ãããŸããïŒ\
ããã ãïŒ $S^{E^G}$ 㯠$S^{(E^G)}$ ãæå³ããŸãïŒ |
OMC115 (SEGæ¯) | https://onlinemathcontest.com/contests/omc115 | https://onlinemathcontest.com/contests/omc115/tasks/5529 | B | OMC115(B) | 200 | 261 | 273 | [
{
"content": "$$\\dfrac{1}{S+E}=x,\\quad \\dfrac{1}{E+G}=y,\\quad \\dfrac{1}{G+S}=z$$\r\nãšãããšïŒæ¹çšåŒã¯ä»¥äžã®ããã«ãªãïŒããã解ããš $x=-6,y=3,z=2$ ãšãªãïŒ\r\n $$\r\n\\begin{cases}\r\n 2x+3y+5z=7 \\\\\\\\\r\n 3x+5y+7z=11 \\\\\\\\\r\n 5x+7y+11z=13 \\\\\\\\\r\n\\end{cases}\r\n$$\r\nãã£ãŠïŒ\r\n$$S+E=-\\frac{1}{6},\\quad E+G=\\frac{1}{3},\\quad G+S=\\frac{1}{2}$$\r\nãšãªãïŒèŸºã
ã足ãåãããã®ã¡ $2$ \r\n ã§å²ãããšã§ $S+E+G=\\dfrac{1}{3}$ ãšãªãã®ã§ïŒè§£çãã¹ãæ°å€ã¯ $1+3=\\textbf{4}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc115/editorial/5529"
}
] | ã以äžãã¿ããå®æ° $S,E,G$ ã¯äžæã«ååšããŸãïŒ
$$
\begin{cases}
\dfrac{2}{S+E}+\dfrac{3}{E+G}+\dfrac{5}{G+S}=7 \\\\
\\\\
\dfrac{3}{S+E}+\dfrac{5}{E+G}+\dfrac{7}{G+S}=11 \\\\
\\\\
\dfrac{5}{S+E}+\dfrac{7}{E+G}+\dfrac{11}{G+S}=13 \\\\
\end{cases}
$$
ãã®ãšãïŒ$S+E+G$ ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ $a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC115 (SEGæ¯) | https://onlinemathcontest.com/contests/omc115 | https://onlinemathcontest.com/contests/omc115/tasks/5528 | C | OMC115(C) | 200 | 210 | 297 | [
{
"content": "ã $\\text{S},\\text{E},\\text{E},\\text{G}$ ã®äžŠã³æ¿ã $\\dfrac{4!}{2}=12$ éãã®ãã¡ïŒ $\\text{S},\\text{E},\\text{G}$ ããã®é ã«äžŠã¶ãã®ã¯\r\n$$(\\text{S},\\text{E},\\text{G},\\text{E}), \\quad (\\text{S},\\text{E},\\text{E},\\text{G}), \\quad (\\text{E},\\text{S},\\text{E},\\text{G})$$\r\nã® $3$ éãã§ããïŒãã£ãŠïŒæ±ããå Žåã®æ°ã¯ $\\text{S},\\text{E},\\text{G},\\text{M},\\text{E},\\text{N},\\text{T}$ ã®äžŠã³æ¿ã $\\dfrac{7!}{2}$ éãã® $\\dfrac{3}{12}$ åïŒããªãã¡ $\\textbf{630}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc115/editorial/5528"
}
] | ã$\text{S},\text{E},\text{G},\text{M},\text{E},\text{N},\text{T}$ ã® $7$ æåã䞊ã³æ¿ããŠåŸãããæååã®ãã¡ïŒ $\underline{\text{S}}\text{T}\underline{\text{E}}\text{N}\text{M}\underline{\text{G}}\text{E}$ ã®ããã« $\text{S},\text{E},\text{G}$ ã® $3$ æåãé çªãä¿ã£ãŠäžŠãã§ããç®æããããã®ã¯ïŒ$\text{SEGMENT}$ ãå«ãããã€ãããŸããïŒãã ãïŒ$2$ ã€ã® $\text{E}$ ã¯åºå¥ããŸããïŒ |
OMC115 (SEGæ¯) | https://onlinemathcontest.com/contests/omc115 | https://onlinemathcontest.com/contests/omc115/tasks/5530 | D | OMC115(D) | 200 | 146 | 239 | [
{
"content": "ã$A$ ã®èŠçŽ $2^{S}\\times3^{E}\\times5^{G}$ ã«å¯ŸãïŒãã㊠$2^{100}\\times3^{100}\\times5^{100}$ ãšãªãæ°ã¯ $2^{100-S}\\times3^{100-E}\\times5^{100-G}$ ã§ããïŒãã㯠$S,E,G$ ã®ãã¡å°ãªããšã $1$ ã€ã $0$ ã®ãšã㯠$A$ ã®èŠçŽ ã«ãªããïŒ $S,E,G$ ãå
šãŠ $50$ ã®ãšãã¯èªåèªèº«ãšãªãïŒãã以å€ã®ãšãã¯ç°ãªã $A$ ã®èŠçŽ ãšãªãïŒ\\\r\nããã£ãŠïŒç°ãªã $2$ æ°ã®ç©ã $2^{100}\\times3^{100}\\times5^{100}$ ãšãªããã¢ã¯ $A$ ã®äžã« $(99^3-1)\\div2$ çµããïŒ\\\r\nãããããã®ãã¢ã®äžãã $1$ ã€ãã€éžã³ïŒããã«ãããã®ãã¢ã«ååšããªã $A$ ã«å±ããæ°ãå
šãŠéžãã ãšããéåã®èŠçŽ æ°ãæ倧ãšãªããšããªã®ã§ïŒæ±ããæ倧å€ã¯\r\n$$\\frac{99^3-1}{2}+100^3-(99^3-1)=\\textbf{514851}$$\r\nãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc115/editorial/5530"
}
] | ã $0$ ä»¥äž $99$ 以äžã®æŽæ° $S,E,G$ ãçšããŠïŒ $2^S\times3^E\times5^G$ ã®åœ¢ã«è¡šããæ°å
šäœãããªãéåã $A$ ãšããŸãïŒä»¥äžã®æ¡ä»¶ãæºãã $A$ ã®éšåéåã«ã€ããŠïŒãã®èŠçŽ ã®åæ°ãšããŠããåŸãæ倧ã®å€ãæ±ããŠãã ããïŒ
- ã©ã®çžç°ãªã $2$ ã€ã®èŠçŽ ã«ã€ããŠãïŒãããã®ç©ã¯ $2^{100}\times3^{100}\times5^{100}$ ã§ãªãïŒ |
OMC115 (SEGæ¯) | https://onlinemathcontest.com/contests/omc115 | https://onlinemathcontest.com/contests/omc115/tasks/5531 | E | OMC115(E) | 300 | 128 | 201 | [
{
"content": "ãå $G$ ããå $E$ ãžã® $C$ ãäžå¿ãšããçžäŒŒæ¡å€§ $f$ ã«ãã£ãŠïŒå $E$ 㯠å $S$ ã«ãã€ãïŒ ç·å $YZ$ ã¯ç·å $XY$ ã«ãã€ãïŒããã§ïŒ$f$ 㯠$\\frac{9}{4}$ åã®çžäŒŒæ¡å€§ã§ããã®ã§ïŒ$3$ å $S,E,G$ ã®ååŸã¯ããããïŒ $81r,36r,16r$ ãšãããïŒãã®ãšãïŒäžå¹³æ¹ã®å®çãã\r\n$$YZ=\\sqrt{(36r+16r)^2-(36r-16r)^2}=4$$ ãšãªãã®ã§ïŒ$r=\\frac{1}{12}$ ã§ããïŒ\\\r\nã以äžããïŒ $3$ å $S,E,G$ ã®é¢ç©ã®åèšã¯\r\n$$(81^2+36^2+16^2)\\pi r^2=\\frac{8113}{144}\\pi$$\r\nã§ããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{8257}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc115/editorial/5531"
}
] | ãäžè§åœ¢ $ABC$ ã®å
æ¥åã $S$ ãšãïŒå $S$ ã«å€æ¥ããã€èŸº $AC$ ãšèŸº $BC$ ã«ãæ¥ããåã $E$ ãšãïŒå $E$ ã«å€æ¥ããã€èŸº $AC$ ãšèŸº $BC$ ã«ãæ¥ããåã $G$ ãšããŸãïŒ$3$ å $S,E,G$ ãšèŸº $BC$ ã®æ¥ç¹ããããã $X,Y,Z$ ãšãããšïŒ
$$XY=9,\quad YZ=4$$
ãšãªããŸããïŒãã®ãšãïŒ $3$ å $S,E,G$ ã®é¢ç©ã®åèšã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}\pi$ ãšè¡šããã®ã§ïŒ $a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC115 (SEGæ¯) | https://onlinemathcontest.com/contests/omc115 | https://onlinemathcontest.com/contests/omc115/tasks/5532 | F | OMC115(F) | 400 | 63 | 98 | [
{
"content": "**ã¯ããã«.**ã[ãã¡ãã®ãŠãŒã¶ãŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc115\\/editorial\\/5532\\/111)ã¯ããæå¿«ãããããªãæ¹éããšã£ãŠããïŒãªã¹ã¹ã¡ã§ããïŒ\r\n\r\n----\r\n\r\n**解ç.**ãäžåŒã¯ä»¥äžã®ããã«å€åœ¢ã§ããããšããããïŒ\r\n$$\\begin{aligned}\r\n(\\text{äžåŒ})\r\n&=\\frac{S^4(G-E)+E^4(S-G)+G^4(E-S)}{(S-E)(E-G)(G-S)}\\\\\\\\\r\n&=\\frac{(S-E)(E-G)(G-S)(S^2+E^2+G^2+SE+EG+GS)}{(S-E)(E-G)(G-S)}\\\\\\\\\r\n&=S^2+E^2+G^2+SE+EG+GS\\\\\\\\\r\n&=(S+E+G)^2-(SE+EG+GS)\r\n\\end{aligned}$$\r\nãã£ãŠïŒè§£ãšä¿æ°ã®é¢ä¿ããïŒãã®åŒã®å€ã¯ $\\biggl(-\\dfrac{5}{7}\\biggr)^2-\\biggl(-\\dfrac{3}{7}\\biggr)=\\dfrac{46}{49}$ ã§ããïŒè§£çãã¹ãå€ã¯ $46+49=\\textbf{95}$ ã§ããïŒ\r\n\r\n----\r\n\r\n**è£è¶³.**\r\n$$f(S,E,G)=S^4(G-E)+E^4(S-G)+G^4(S-E)$$\r\nãšããã°ïŒ$f(S,E,G)$ ã¯äº€ä»£åŒãªã®ã§ïŒ $(S-E)(E-G)(G-S)(S,E,Gã®å¯Ÿç§°åŒ)$ ã®åœ¢ã«å æ°å解ã§ããïŒæ¬¡æ°ã«ã泚æããã°ïŒ\r\n$$f(S,E,G)=(S-E)(E-G)(G-S)(a(S^2+E^2+G^2)+b(SE+EG+GS))$$\r\nãšãããïŒããšã¯ä¿æ°ãæ¯èŒããŠïŒ$a,b$ ãæ±ããã°ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc115/editorial/5532"
},
{
"content": "ã以äžã確èªã§ããïŒãã㯠$S,E,G$ ãçžç°ãªãã°ãã®å€ã«äŸããæç«ããïŒïŒ\r\n$$\\frac{1}{(S-E)(S-G)} + \\frac{1}{(E-G)(E-S)}+\\frac{1}{(G-S)(G-E)} = 0, $$\r\n$$\\frac{S}{(S-E)(S-G)} + \\frac{E}{(E-G)(E-S)}+\\frac{G}{(G-S)(G-E)} = 0, $$\r\n$$\\frac{S^2}{(S-E)(S-G)} + \\frac{E^2}{(E-G)(E-S)}+\\frac{G^2}{(G-S)(G-E)} = 1 $$\r\nãŸã $x=S,E,G$ ã $7x^3+5x^2-3x-2=0$ ãæºããããšãçšããã°ïŒ$x=S,E,G$ ã«ã€ããŠ\r\n$$\\begin{aligned}\r\nx^4 &= -\\frac57 x^3 + \\frac37 x^2 + \\frac27 x \\\\\\\\\r\n&= \\frac{25}{49} x^2 - \\frac{15}{49} x - \\frac{10}{49} + \\frac37 x^2 + \\frac27 x \\\\\\\\\r\n&= \\frac{46}{49} x^2 - \\frac{1}{49} x - \\frac{10}{49}\r\n\\end{aligned}$$\r\nãšå€åœ¢ã§ããïŒåŸã£ãŠæ±ããå€ã¯\r\n$$\\frac{46}{49}\\times 1 - \\frac{1}{49}\\times 0 - \\frac{10}{49} \\times 0 = \\frac{46}{49}$$\r\nã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{95}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc115/editorial/5532/111"
}
] | ã $x$ ã® $3$ 次æ¹çšåŒ
$$7x^3+5x^2-3x-2=0$$
ã® $3$ 解ã $x=S,E,G$ ãšããŸãïŒãã®ãšãïŒä»¥äžã®å€
$$\frac{S^4}{(S-E)(S-G)}+\frac{E^4}{(E-G)(E-S)}+\frac{G^4}{(G-S)(G-E)}$$
ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ã $a+b$ ã解çããŠãã ããïŒ |
OMC114 | https://onlinemathcontest.com/contests/omc114 | https://onlinemathcontest.com/contests/omc114/tasks/4950 | A | OMC114(A) | 100 | 314 | 317 | [
{
"content": "ãé£ç¶ããæŽæ°ã $8$ å以äžéžã¶ãšïŒãã®äžã«ã¯é£ç¶ãã $2$ ã€ã® $4$ ã®åæ°ãå«ãŸããŠããïŒãã®ãã¡å°ãªããšãäžæ¹ã¯ãããæ°ã§ããïŒããªãã¡ïŒ$m \\geq 8$ ã¯æ¡ä»¶ãæºãããªãïŒäžæ¹ã§ïŒ\r\n$$1897, 1898, 1899, 1900, 1901, 1902, 1903$$\r\nã«ã¯ãããæ°ãå«ãŸããªãããïŒ$m = 7$ ã¯æ¡ä»¶ãæºããïŒä»¥äžããïŒæ±ããæ倧å€ã¯ $\\mathbf{7}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc114/editorial/4950"
}
] | ãæŽæ° $n$ ã**ãããæ°**ã§ãããšã¯ïŒ$n$ ã $400$ ã§å²ã£ãäœããïŒ$100, 200, 300$ 以å€ã® $4$ ã®åæ°ã§ããããšãæããŸãïŒãã®ãšãïŒä»¥äžãã¿ããæ倧ã®æ£æŽæ° $m$ ãæ±ããŠãã ããïŒ
- é£ç¶ãã $m$ åã®æŽæ°ã§ãã£ãŠïŒãã®ãã¹ãŠããããæ°ã§ãªããããªãã®ãååšããïŒ |
OMC114 | https://onlinemathcontest.com/contests/omc114 | https://onlinemathcontest.com/contests/omc114/tasks/3961 | B | OMC114(B) | 200 | 247 | 292 | [
{
"content": "ãéžã°ãã $50$ åã®æ°ã¯ãã¹ãŠå¥æ°ã§ãããïŒãã¹ãŠå¶æ°ã§ãªããã°ãªããªãïŒéžã°ããæ°ã®ãã¡æå°ã®ãã®ã $m$ ãšãããšïŒ$m$ ã®ãšãåŸãç¯å²ã¯ $1 \\leq m \\leq 902$ ã§ããïŒ$1 \\leq m \\leq 900$ ã®ãšã㯠$m$ 以å€ã® $49$ æ°ã $m + 2, m + 4, \\cdots, m + 100$ ã® $50$ åã®äžããéžã¹ã°ããïŒãã®ãããªéžã³æ¹ã¯ $50$ éãããïŒ$m = 901, 902$ ã®ãšã㯠$m$ 以å€ã®æ°ã $1$ éãã«å®ãŸãïŒä»¥äžããïŒå
šéšã§ $900 \\times 50 + 2 = \\mathbf{45002}$ éãã®éžã³æ¹ãååšããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc114/editorial/3961"
}
] | ã$1000$ 以äžã®æ£ã®æŽæ°ã®äžããçžç°ãªã $50$ åãéžãã ãšããïŒãã®äžããã©ã®ç°ãªã $2$ ã€ãéžãã§ããã®å·®ã®çµ¶å¯Ÿå€ã¯ $100$ 以äžã®å¶æ°ãšãªããŸããïŒãã®ãããªéžã³æ¹ã¯å
šéšã§äœéããããŸããïŒ |
OMC114 | https://onlinemathcontest.com/contests/omc114 | https://onlinemathcontest.com/contests/omc114/tasks/3974 | C | OMC114(C) | 300 | 237 | 256 | [
{
"content": "ããŸãã¯ãã¹ãŠã $16$ ã®åæ°ãšãªããããªæŽæ° $3$ ã€ãèŠã€ããããšãç®æšã«ãããïŒ$3$ æ°ãšãäžã®äœã¯ $2, 4, 6, 8$ ã®ãããããšãªãïŒããäžã®äœã $4$ ãŸã㯠$8$ ã§ãããªãã°ïŒåã®äœãå¶æ°ã§ãªããã°ãªããªãïŒãã®ããšãã $4, 8$ ã®ãã¡äžæ¹ã¯äžã®äœãšããŠäœ¿ãããšãã§ããªãïŒããã«ïŒäž $2$ æ¡ã $48$ ã§ãã $3$ æ¡ã® $16$ ã®åæ°ã¯ $448, 848$ ã«éããããïŒããããäœãããšãã§ããªãæ°ã§ããïŒ\\\r\nããããã£ãŠ $3$ æ°ã¯ä»¥äžã®ããã«åé¡ããããšãã§ãïŒãããã $a, b, c$ ãšããããšã«ããïŒ\r\n- äžã®äœã $2$ ã§ãããã® ïŒ $a$ ãšããïŒ\r\n- äžã®äœã $6$ ã§ãããã® ïŒ $b$ ãšããïŒ\r\n- äž $2$ æ¡ã $84$ ã§ãããã® ïŒ $c$ ãšããïŒ \r\n\r\nãããã§ïŒ$b$ ãšããŠããåŸãæ°ã¯ $176, 576, 736, 976$ ã® $4$ éãã«éãããããšãåããïŒãããã£ãŠ $b$ ãäœãã®ã« $7$ ãå¿
ã䜿ãããïŒãããš $c$ ãšããŠããåŸãæ°ã¯ $384$ ã«éããïŒ$b = 736$ ã¯æé€ãããïŒ\r\n- $b = 176$ ã®ãšãã¯ïŒ$a = 592$ ãé©ããïŒ\r\n- $b = 576$ ã®ãšãã¯ïŒ$a = 192, 912$ ãé©ããïŒ\r\n- $b = 976$ ã®ãšãã¯ïŒ$a = 512$ ãé©ããïŒ\r\n\r\nãã®äžã§ãç¹ã«ïŒã©ã® $2$ æ°ã®æ倧å
¬çŽæ°ã $16$ ã§ãããšããæ¡ä»¶ãæºãããã®ã¯ïŒ$\\\\{176, 384, 592\\\\}$ ã«éãããïŒããã«ïŒè§£çãã¹ãå€ã¯ $\\mathbf{176384592}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc114/editorial/3974"
}
] | ã$1$ ä»¥äž $9$ 以äžã®æŽæ°ãããããåæ¡ã« $1$ 床ãã€çšã㊠$3$ æ¡ã®æŽæ°ã $3$ ã€äœã£ããšããïŒãã®äžããã©ã® $2$ æ°ãéžãã§ãæ倧å
¬çŽæ°ã $16$ ã«ãªããŸããïŒäœã£ãæŽæ°ã $x\lt y\lt z$ ãšãããšãã® ${10}^6 x + {10}^3 y + z$ ã®å€ã解çããŠãã ããïŒãªãïŒãã®ãã㪠$3$ æ°ã®çµã¿åããã¯äžæã«æ±ºãŸãããšã蚌æã§ããŸãïŒ |
OMC114 | https://onlinemathcontest.com/contests/omc114 | https://onlinemathcontest.com/contests/omc114/tasks/4753 | D | OMC114(D) | 400 | 153 | 204 | [
{
"content": "ã$x_1=0$ ãèæ
®ããã°ïŒ$x_n = a r^{n-1} + b(n - 1) - a$ ãšããããšãã§ããïŒããã§éå·®ã $2$ åãšãã°ïŒ\r\n$$x_{n+2} - 2x_{n+1} + x_n = a(r-1)^2 r^{n-1}$$\r\nãæãç«ã€ïŒãã㧠$n = 1, 2$ ãšããã°ïŒä»¥äžãåŸãïŒ\r\n$$a(r-1)^2 = 128, \\qquad a(r-1)^2 r = 192$$\r\nãããã $\\displaystyle a = 512, r = 3\\/2$ ã§ããïŒ$b = -576$ ããããïŒãããã£ãŠïŒäžè¬é
ã¯\r\n$$x_n = 2^{10-n} \\cdot 3^{n-1} - 576n + 64.$$\r\nãæããã«ãããæŽæ°ãšãªãã®ã¯ $n \\leq 10$ ã®ç¯å²ã§ããïŒãŸãïŒå
ã»ã©ã® $2$ åéå·®ãåžžã«æ£ã®å€ããšãããšãš $x_3 = x_4$ ããïŒ$\\\\{x_n\\\\}$ 㯠$n \\geq 4$ ã®ç¯å²ã§ç矩å調å¢å ãšãªãïŒãã£ãŠïŒæ±ããæ倧å€ã¯ $x_{10} = \\mathbf{13987}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc114/editorial/4753"
}
] | ãïŒäžã€ã®ïŒçå·®æ°åãšïŒäžã€ã®ïŒçæ¯æ°åã®åãšããŠè¡šãããå®æ°å $\\{x_n\\}\_{n=1,2,\ldots}$ ãããïŒ
$$x_1 = 0, \quad x_2 = -320, \quad x_3 = x_4 = -512$$
ãã¿ãããŸãïŒãã®ãšãïŒ$\\{x_n\\}$ ã«å«ãŸãåŸãæŽæ°å€ã¯æéåã§ããããšã蚌æã§ããã®ã§ïŒãã®ãã¡æ倧ã®ãã®ãæ±ããŠãã ããïŒ |
OMC114 | https://onlinemathcontest.com/contests/omc114 | https://onlinemathcontest.com/contests/omc114/tasks/5248 | E | OMC114(E) | 400 | 10 | 58 | [
{
"content": "ãäžè¬ã«æ£ã®æ¬æ°ã $N \\geq 5$ ãšããŠèããïŒäžŠã¹ããã $N$ æ¬ã®ãã¡ $5$ æ¬ã®æ£ã®çµã¿åãããåã«**çµ**ãšåŒã³ïŒçµã®äžã§å·Šãã $3$ çªç®ã®æ£ããã®çµã®**äžå¿**ãšåŒã³ïŒçµã§ãã£ãŠä»¥äžãæºãããã®ã**è¯ãçµ**ãšåŒã¶ããšã«ããïŒ\r\n- çµãæ§æããæ£ã®ãã¡äžå¿ããé·ããã®ãïŒäžå¿ã®å·Šå³ã«ã¡ããã© $1$ æ¬ãã€ååšããïŒ\r\n\r\nã$1$ æ¬ã®æ£ $s$ ã«çç®ãããšãïŒ$s$ ã«å²ãåœãŠãããæ°ã¯ $s$ ãäžå¿ãšããè¯ãçµã®åæ°ã«çããïŒãããã£ãŠæ£ã®äžŠã¹æ¹ã«ãããè¯ãçµãã¹ãŠã®åæ°ãïŒãã®æ£ã®äžŠã¹æ¹ã®ã¹ã³ã¢ã«äžèŽããïŒ\\\r\nããã㧠$N$ æ¬ã®ãã¡ $5$ æ¬ã®çµã¿åãããåºå®ãããšïŒãããè¯ãçµãšãªã確ç㯠$16\\/5!=2\\/15$ ã§ããããšããããïŒãããã£ãŠïŒæ±ããæåŸ
å€ã¯ $2{}\\_{N}\\mathrm{C}\\_{5}\\/15$ ã§ããïŒ $N=100$ ã§ãã㯠$\\mathbf{10038336}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc114/editorial/5248"
},
{
"content": "ãããŸãæ¹æ³ãæãä»ããªããŠãèšç®å次第ã§äœãšããªãããšãããããšããããšã§ïŒèšç®åã䜿ã£ãŠè§£ãæ¹æ³ã玹ä»ããŸãïŒ\r\n\r\n----\r\n\r\nããŸãïŒ$\\dbinom{n}{k}$ ã§ïŒ$0\\leq k\\leq n$ ã®ãšãã¯éåžžã®äºé
ä¿æ°ïŒ$k\\lt0$ ã $k\\gt n$ ã®ãšã㯠$0$ ãè¡šããšããŸãïŒ$n$ ãè² ã®å Žåã¯ããã§ã¯æ±ããŸããïŒ\\\r\nãå€é
åŒ $f(x)$ ã® $x^n$ ã®ä¿æ°ã $[x^n]f(x)$ ã§è¡šããŸãïŒå€é
åŒã§ãªããŠãããã®ã§ããããã§ã¯å€é
åŒãšããŠãããŸãïŒïŒäŸãã°ïŒ$f(x)=5x^2-14x+3$ ã®ãšãã¯ïŒ $[x^0]f(x)=3,\\ [x^1]f(x)=-14,\\ [x^3]f(x)=0$ ãªã©ãšãªããŸãïŒ\\\r\nããã®èšæ³ãçšãããšïŒå€é
åŒ $f(x),g(x)$ ã«å¯ŸãïŒ\r\n$$\\displaystyle\\sum_{k=0}^n[x^k]f(x)[x^{n-k}]g(x)=[x^n] (f(x)g(x))$$\r\nãšãªããŸãïŒèšŒæã¯å²æããã®ã§åèªç¢ºãããŠãã ããïŒïŒ\\\r\nããŸãïŒ$[x^k] (1+x)^p=\\dbinom{p}{k}$ ã§ããããšã䜿ããš\\\r\n$$\\begin{aligned}\r\n\\sum_{k=0}^n\\binom{p}{k}\\binom{q}{n-k}\r\n&=\\sum_{k=0}^n[x^k] (1+x)^p[x^{n-k}] (1+x)^q\\\\\\\\\r\n&=[x^{n+k}] (1+x)^{p+q}\r\n=\\binom{p+q}{n}\r\n\\end{aligned}$$\r\nãšãªããŸãïŒ$k\\gt p$ ã§ã $[x^k] (1+x)^p=\\dbinom{p}{k}$ ã¯æãç«ã£ãŠããããšã«æ³šæïŒïŒïŒ\\\r\nããã㯠**Vandermondeã®æçåŒ** ãšåŒã°ããŠããïŒããšã§äœ¿ããŸãïŒ\r\n\r\n---\r\n\r\nãåé¡ã®è§£èª¬ã«å
¥ããŸãïŒè§£èª¬ã®éœåäžïŒæ£ã䞊ã³æ¿ãããšããç¶æ³ãïŒåãã¹ã«æŽæ°ãæžã蟌ããšããç¶æ³ã«çœ®ãæããŸãïŒã¹ã³ã¢ã®æåŸ
å€ã¯ïŒåãã¹ã§ã® $LlRr$ ã®æåŸ
å€ã®åèšã«ãªããŸãïŒå·Šãã $k+1$ çªç®ã®ãã¹ã« $m+1$ ãæžã蟌ãŸããŠãããšããŠïŒä»ã® $99$ ãã¹ãžã®æŽæ°ã®æžã蟌ã¿æ¹ $99!$ éãã«ã€ããŠã® $LlRr$ ã®æåŸ
å€ã $E(k,m)$ ãšããŸãïŒ\\\r\nã$1$ ãã $100$ ãŸã§ã« $m+1$ ããå°ããæŽæ°ã¯ $m$ åããïŒå€§ããæŽæ°ã¯ $99-m$ åãããŸãïŒãŸãïŒ $m+1$ ã®å·Šã«ã¯ $k$ ãã¹ããïŒå³ã«ã¯ $99-k$ ãã¹ãããŸãïŒ\\\r\nã$m+1$ ããå°ãã $m$ åã®æŽæ°ã®ãã¡ $l$ åã $m+1$ ããå·ŠïŒ$m-l$ åãå³ã«ãããšããŸãïŒãã®ãšãïŒ $LlRr$ ã®å€ã¯ $l(k-l)(m-l)(99-k-m+l)$ ãšãªãïŒãã®ãããªæžã蟌ã¿æ¹ã¯ $\\dbinom{m}{l}\\dbinom{99-\r\nm}{k-l}k!(99-k)!$ éããããŸãïŒ$l\\gt k$ ã®ãšã㯠$LlRr$ ã®å€ãè² ã«ãªããŸããïŒäºé
ä¿æ°ã®éšåã $0$ ã«ãªãã®ã§åž³å°»ã¯åã£ãŠããŸãïŒïŒ\r\n\r\nãããã«ããïŒ\r\n$$\\begin{aligned}\r\n\\displaystyle E(k,m)\r\n&=\\frac{1}{99!}\\sum_{l=0}^m\\dbinom{m}{l}\\dbinom{99-\r\nm}{k-l}k!(99-k)!\\ l(k-l)(m-l)(99-k-m+l) \\\\\\\\\r\n&=\\frac{k!(99-k)!}{99!}\\sum_{l=0}^m\\frac{m!}{l!(m-l)!}\\frac{(99-m)!}{(k-l)!(99-k-m+l)!}l(k-l)(m-l)(99-k-m+l) \\\\\\\\\r\n&=m(m-1)(99-m)(98-m)\\frac{k!(99-k)!}{99!}\\sum_{l=1}^{m-1}\\frac{(m-2)!}{(l-1)!(m-l-1)!}\\frac{(97-m)!}{(k-l-1)!(98-k-m+l)!} \\\\\\\\\r\n&=m(m-1)(99-m)(98-m)\\frac{k!(99-k)!}{99!}\\sum_{l=1}^{m-1}\\binom{m-2}{l-1}\\binom{97-m}{k-l-1} \\\\\\\\\r\n&=m(m-1)(99-m)(98-m)\\frac{k!(99-k)!}{99!}\\binom{95}{k-2} \\\\\\\\\r\n&=\\frac{m(m-1)(99-m)(98-m)k(k-1)(99-k)(98-k)}{99\\cdot98\\cdot97\\cdot96}\r\n\\end{aligned}$$\r\nãšèšç®ã§ããŸãïŒ\\\r\nãæ±ããæåŸ
å€ $E$ ã¯\r\n$$\\begin{aligned}\r\nE\r\n&=\\sum_{k=0}^{99}\\frac{1}{100}\\sum_{m=0}^{99}E(k,m)\\\\\\\\\r\n&=\\frac{1}{100\\cdot99\\cdot98\\cdot97\\cdot96}\\left(\\sum_{k=0}^{99}k(k-1)(99-k)(98-k)\\right)^2\r\n\\end{aligned}$$\r\nãšãªããŸãïŒ\r\n\r\nã次ã«ïŒ$S_n=\\displaystyle\\sum_{k=0}^nk(k-1)(n-k)(n-k-1)$ ãæ±ããŸãããïŒ$S_n$ ãèšç®ããŠã¿ããšïŒ\r\n$$S_0=S_1=S_2=S_3=0,\\quad S_4=4,\\quad S_5=24,\\quad S_6=84,\\quad S_7=224,\\quad S_8=504,\\ldots$$\r\nãšãªãã®ã§ïŒ\r\n$$S_n=\\dfrac{(n+1)n(n-1)(n-2)(n-3)}{30}$$\r\nãšäºæ³ã§ããŸãïŒäºæ³ã®ã³ãã¯éå·®ã§ã¯ãªãæ¯ãèŠãããšã§ãïŒïŒ\\\r\nãããã§ïŒ$S_n$ ã¯é«ã
$5$ 次ã®å€é
åŒã§ããããšãããã£ãŠããã®ã§ïŒãã®äºæ³ã¯æ£ããã§ãïŒ\\\r\nããŸãïŒæ¬¡ã®ããã«æ±ããããšãã§ããŸãïŒ$|x|\\lt1$ ã®ãšã $\\displaystyle\\frac{1}{1-x}=\\sum_{n=0}^\\infty x^n$ ã§ããããšãæãåºããŸãããïŒãããšïŒ$\\displaystyle[x^n]\\frac{1}{1-x}=1$ ãšæžããŸãïŒ$[x^n]f(x)$ ã®èª¬æã§å€é
åŒã§ãªããŠããããšèšã£ãŠããŸãããïŒããã®ããšã§ãïŒåæååŸå
ã§ããã°é
ã®é åºãå€ããŠãããã®ã§ïŒç³ã¿èŸŒã¿ã®åŒãæãç«ã£ãŠããŸãïŒïŒåŸ®åããããšã§\r\n$$\\displaystyle[x^n]\\frac{2}{(1-x)^3}=(n+1)(n+2),\\quad [x^n]\\frac{120}{(1-x)^6}=(n+1)(n+2)(n+3)(n+4)(n+5)$$\r\nãåŸãŸãïŒçŽæ°ãšåŸ®åã¯å
¥ãæ¿ããŠãããšããšæªããšãããããŸããïŒä»åã¯ãããšãã§ãïŒïŒ\\\r\nãããã䜿ããšïŒ\r\n$$\\begin{aligned}\r\nS_n\r\n&=\\sum_{k=0}^n[x^{k-2}]\\frac{2}{(1-x)^3}[x^{n-k-2}]\\frac{2}{(1-x)^3}\\\\\\\\\r\n&=[x^{n-4}]\\frac{4}{(1-x)^6}=\\dfrac{(n+1)n(n-1)(n-2)(n-3)}{30}\r\n\\end{aligned}$$\r\nãšèšç®ã§ããŸãïŒ\r\n\r\nãæåŸã«ïŒ$S_n=\\dfrac{(n+1)n(n-1)(n-2)(n-3)}{30}$ ã代å
¥ãããšïŒ\r\n$$\\begin{aligned}\r\nE&=\\frac{S_{99}^2}{100\\cdot99\\cdot98\\cdot97\\cdot96}\r\n&=\\frac{100\\cdot99\\cdot98\\cdot97\\cdot96}{900}=\\mathbf{10038336}\r\n\\end{aligned}$$\r\nãšãªããŸãïŒ\r\n\r\n---\r\n\r\nã解説ãªã®ã§é·ããªããŸãããïŒãããããã®èšç®ãªãæ
£ããã°10åã»ã©ã§çµãããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc114/editorial/5248/115"
},
{
"content": "tria_math_ ããã®è§£èª¬ã«é¢é£ããŠïŒã©ã°ã©ã³ãžã¥è£éãçšãã解æ³ã«ã€ããŠèª¬æããŸãïŒã©ã°ã©ã³ãžã¥è£éã«ã€ããŠã¯å€ãã®æç®ãã€ã³ã¿ãŒãããã«ãããã®ã§ïŒãã¡ããé©å®åç
§ããŠãã ããïŒä»åã®è§£èª¬ã¯é«æ ¡æ°åŠã®çŸããç©èªããã®èšäº (https:\\/\\/manabitimes.jp\\/math\\/726) ããèªãã°ååç解ã§ãããšæããŸãïŒ\r\n\r\nããã§ã¯æ¬åã®è§£èª¬ã«ç§»ããŸãïŒ\r\n\r\n---\r\n\r\n\r\ntria_math_ ããã®è§£èª¬ã§ $S_n$ ãæ±ããã®ã«äºæ³ãçšããŠããŸãããïŒããã§ã¯äºæ³ã䜿ããã« $S_n$ ãæ±ããæ¹æ³ãæžããŸãïŒä»¥äžïŒ$S_n$ 㯠$n$ ã«å¯Ÿããé«ã
$5$ 次ã®å€é
åŒãšããŠèŠãã»ããéœåãè¯ãã®ã§ïŒ$S(n)$ ãšè¡šèšããããšãšããŸãïŒ\r\n\r\n$S(0),S(1),\\ldots,S(5)$ ãæ±ãããšïŒ$S(0)=S(1)=S(2)=S(3)=0,S(4)=4,S(5)=24$ ã§ãïŒã©ã°ã©ã³ãžã¥è£éãçšãããšæ°å㧠$S(99)$ ãèšç®ã§ããŸãïŒ\r\n\r\n$\\displaystyle f_k(x)=\\frac{\\prod_{i=0}^5 (x-i)}{x-k}$ ãšçœ®ããŸãïŒã©ã°ã©ã³ãžã¥ã®è£éå
¬åŒãã\r\n\r\n$$\\begin{aligned}\r\nS(99) &= \\sum_{i=0}^5 S(i)\\frac{f_i(99)}{f_i(i)} \\\\\\\\\r\n&=4\\frac{f_4(99)}{f_4(4)} + 24\\frac{f_5(99)}{f_5(5)}\\\\\\\\\r\n& =99\\times98\\times97\\times96\\times95\\times94 \\times \\Big( -\\frac{4}{95\\times 24} + \\frac{24}{94\\times 120} \\Big)\\\\\\\\\r\n& = 99\\times98\\times97\\times96\\times \\Big( -\\frac{4\\times 94}{ 24} + \\frac{95 \\times 24}{ 120} \\Big)\\\\\\\\\r\n&= 99\\times98\\times97\\times96\\times\\frac{10}{3}\r\n\\end{aligned}$$\r\n\r\nãåŸãããŸãïŒä»¥äž tria_math_ ããã®è§£èª¬ã«åæµããŸãïŒ\r\n\r\n---\r\n\r\nã©ã°ã©ã³ãžã¥è£éã¯ç«¶ææ°åŠçéã§ã¯ããŸãã¡ãžã£ãŒã§ã¯ãªãæ°ãããŸããïŒæ¬åã®ããã«äŸ¿å©ã«äœ¿ããããšããããŸãïŒïŒèšç®ã倧å€ãªãšãããããŸãïŒïŒ æ¯éãã¯ããã¯ã®äžã€ãšããŠèŠããŠããã ãããšå¬ããã§ãïŒ\r\n\r\n---\r\n\r\nã©ã°ã©ã³ãžã¥è£éã®ç·Žç¿åé¡ã§ãïŒ\r\n\r\nOMC081-F (https:\\/\\/onlinemathcontest.com\\/contests\\/omc081\\/tasks\\/2518)",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc114/editorial/5248/116"
}
] | ãé·ãã®çžç°ãªã $100$ æ¬ã®æ£ããããŸãïŒããããå·Šå³äžåã«äžŠã¹ïŒããããã®æ£ã«å¯ŸããŠä»¥äžã®ããã«éè² æŽæ°ãå²ãåœãŠãŸãïŒ
- èªèº«ããé·ãæ£ã®äžã§ïŒèªèº«ããå·Šã»å³ã«ãããã®ã®åæ°ããããã $L, R$ ãšããïŒãŸãïŒèªèº«ããçãæ£ã®äžã§ïŒèªèº«ããå·Šã»å³ã«ãããã®ã®åæ°ããããã $l, r$ ãšããïŒãã®ãšãã® $LRlr$ ã®å€ãå²ãåœãŠãïŒ
ãã¹ãŠã®æ£ã«å²ãåœãŠãæ°ã®ç·åãïŒæ£ã®äžŠã¹æ¹ã«å¯Ÿãã**ã¹ã³ã¢**ãšããŸãïŒ\
ã$100!$ éãã®æ£ã®äžŠã¹æ¹ãã¹ãŠã«å¯ŸããŠïŒã¹ã³ã¢ã®å¹³åãæ±ããŠäžããïŒ |
OMC114 | https://onlinemathcontest.com/contests/omc114 | https://onlinemathcontest.com/contests/omc114/tasks/3964 | F | OMC114(F) | 500 | 9 | 62 | [
{
"content": "ã$C$ ã®ç«¯ç¹ããããã $R_1, R_2$ ãšãããšãïŒ$\\triangle Q_2 Q_3 Q_4$ ãš $\\triangle R R_1 R_2$ ã¯ã©ã¡ããæ£äžè§åœ¢ã§ããïŒ\\\r\nã$3$ ç¹ $X, Y, Z$ ã®éå¿ã $G$ ãšãïŒ$x = 1\\/3$ ãšããïŒ$Y, Z$ ãåºå®ãã $X$ ã®ã¿ã $O$ äžã§åããããšãã«ã§ãã $G$ ã®è»è·¡ã¯ååŸ $x$ ã®ååšã§ããïŒãã®ååšã $L$ ãšããïŒ\\\r\nã$Y$ ãåºå®ãã $X, Z$ ããããã $O, C$ äžã§åããããšãã«ã§ãã $G$ ã®é åã¯ïŒæ¬¡ã®å³ã«ç€ºãéãïŒ$L$ ã®äžå¿ãïŒ$C$ ã $x$ åã«çž®å°ãããŠã§ããå匧ã«æ²¿ã£ãŠåããããšãã« $L$ ãééããéšåã§ããïŒãã®é åã $D$ ãšããïŒ$D$ ã¯ïŒååŸ $2x$ ã§äžå¿è§ $300^{\\circ}$ ã®æ圢ã $1$ åïŒååŸ $x$ ã§äžå¿è§ $60^{\\circ}$ ã®æ圢ã $2$ åïŒäžèŸºã®é·ãã $x$ ã®æ£äžè§åœ¢ $2$ åã«åå²ããããšãã§ããïŒããã§ïŒ$D$ ãæç»ãããšãã«å®ããå匧ãå«ãåã®äžå¿ã®ããšãïŒ$D$ ã®äžå¿ãšåŒã¶ããšã«ããïŒ\r\n\r\n![figure 1](\\/images\\/ylSxKQPvZw68J6zKkFh1PqFIsqvsJlpJcQgLZyYN)\r\n\r\nã$G$ ãåãåŸãé åã¯ïŒæäžéšã®å³ $(\\mathrm{i})$ ã瀺ãéãïŒ$D$ èªèº«ãå転ãããã« $M$ ã $x$ åã«çž®å°ãããŠã§ããæãç·ã«æ²¿ã£ãŠ $D$ ã®äžå¿ãåããããšãã« $D$ ãééããéšåã§ããïŒãã®é åã¯æäžéšã®å³ $(\\mathrm{ii})$ ã§ç€ºãéã以äžã®å³åœ¢ã«åå²ã§ããïŒ\r\n- äžå¿è§ãåèšãããš $420^{\\circ}$ ãšãªãååŸ $2x$ ã®æ圢 $4$ å\r\n- äžå¿è§ãåèšãããš $60^{\\circ}$ ãšãªãååŸ $x$ ã®æ圢 $2$ å\r\n- äžèŸºã®é·ãã $x$ ã®æ£äžè§åœ¢ $13$ å\r\n- äžèŸºã®é·ãã $x$ ã®æ£æ¹åœ¢ $11$ å\r\n\r\nããããã£ãŠæ±ããé¢ç© $S$ ã¯ïŒ\r\n$$S = \\frac{7\\pi(2x)^2}{6} + \\frac{\\pi x^2}{6} + \\frac{13\\sqrt{3}x^2}{4} + 11x^2 = \\frac{58 \\pi + 39 \\sqrt{3} + 132}{108}$$\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{337}$ ã§ããïŒ\r\n\r\n![figure 1](\\/images\\/ib10gyproHzBDJTqLeMErsIuX61H88AS3mw9q5tz)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc114/editorial/3964"
}
] | ã$xy$ å¹³é¢äžã® $7$ å®ç¹
$$\begin{aligned}
&P(-3, 0), &&R(3,0)\\\\
&Q_1(-1, -1), &&Q_2(-1, 1), &Q_3(0, 1-\sqrt{3}), \\\\
&Q_4(1, 1), &&Q_5(1, -1)
\end{aligned}$$
ã«å¯ŸãïŒååš $O$ïŒæãç· $M$ïŒå匧 $C$ ããããã次ã®ããã«å®ããŸãïŒ
- ç¹ $P$ ãäžå¿ãšããååŸ $1$ ã®ååšã $O$ ãšããïŒ
- ãã¹ãŠäž¡ç«¯ãå«ã $4$ æ¬ã®ç·å $Q_1Q_2,Q_2Q_3,Q_3Q_4,Q_4Q_5$ ãåãããŠã§ããæãç·ã $M$ ãšããïŒ
- ç¹ $R$ ãäžå¿ãšããååŸ $1$ ã®ååšã®ãã¡ $x \leq 3 + (\sqrt{3} \/ 2)$ ã®ç¯å²ã«å«ãŸããéšåã«ãããå匧ã $C$ ãšããïŒ
ã$O, M, C$äžããç¹ã $1$ åãã€åãïŒãããã $X, Y, Z$ ãšãããŸã. $3$ ç¹ $X,Y,Z$ ã®éå¿ãååšãåŸãé åã®é¢ç©ã $S$ ãšãããšãïŒæ倧å
¬çŽæ°ã $1$ ã§ãããã㪠$4$ åã®æ£ã®æŽæ° $a, b, c, d$ ãçšã㊠$\displaystyle S = \frac{a \pi + b \sqrt{3} + c}{d}$ ãšè¡šãããšãã§ããã®ã§ïŒ$a + b + c + d$ ã®å€ã解çããŠãã ããïŒ |
OMC113 (SEGæ¯) | https://onlinemathcontest.com/contests/omc113 | https://onlinemathcontest.com/contests/omc113/tasks/3861 | A | OMC113(A) | 100 | 323 | 327 | [
{
"content": "ãå
šäœã®ãäœæ¥éãã $1$ ãšãïŒ$A$ ããã»$B$ ãããäœæ¥ãæ
åœããæéããããã $x$ åã»$y$ åãšããã°ïŒ\r\n$$x+y=330, \\quad \\cfrac{x}{300}+\\cfrac{y}{400}=1$$\r\nãæãç«ã€ïŒããã解ããš $x=210$, $y=120$ ãåŸããã, æ±ããå€ã¯ $\\textbf{210}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc113/editorial/3861"
}
] | ã$A$ ããäžäººã ãš $300$ åïŒ$B$ ããäžäººã ãš $400$ åã§çµããäœæ¥ããããŸãïŒãã®äœæ¥ãéäžãŸã§ $A$ ãããïŒãã以é㯠$B$ ãããæ
åœãããšããïŒåèšã§ $330$ åã§çµãããŸããïŒãã®ãšãïŒ$A$ ããããã®äœæ¥ãæ
åœããã®ã¯äœåéã§ããïŒãã ãïŒäž¡è
ã¯ããããäžå®ã®ããŒã¹ã§äœæ¥ãåŠçãããã®ãšããŸãïŒ |
OMC113 (SEGæ¯) | https://onlinemathcontest.com/contests/omc113 | https://onlinemathcontest.com/contests/omc113/tasks/4444 | B | OMC113(B) | 200 | 202 | 270 | [
{
"content": "ãå転ã®äžå¿ãšãªãç¹ã $O$ ãšãããš, äžè§åœ¢ $APO, BQO, CRO, DSO$ ã¯æ£äžè§åœ¢ãšãªã. ãã£ãŠ, \r\n$$AO=15,\\quad BO=7,\\quad CO=20$$ \r\nãããã, British flag theoremããæ±ããçãã¯\r\n$$DS=DO=\\sqrt{15^2+20^2-7^2}=\\textbf{24}$$\r\nã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc113/editorial/4444"
}
] | ãæ£æ¹åœ¢ $ABCD$ ã, ããå
éšã®ç¹ãäžå¿ã« $60\degree$ å転ããããã®ãæ£æ¹åœ¢ $PQRS$ ãšããŸã. ãã ã, $A$ 㯠$P$ ã«, $B$ 㯠$Q$ ã«, $C$ 㯠$R$ ã«, $D$ 㯠$S$ ã«ç§»ã£ããã®ãšããŸã.
$$AP=15,\quad BQ=7,\quad CR=20$$
ã§ãããšã, $DS$ ã®é·ããæ±ããŠãã ãã. |
OMC113 (SEGæ¯) | https://onlinemathcontest.com/contests/omc113 | https://onlinemathcontest.com/contests/omc113/tasks/2589 | C | OMC113(C) | 200 | 178 | 234 | [
{
"content": "ãOMCåãã©ã®ããã«è¡åãåã£ããšããŠã $x+y$ ã¯å¶æ°ã®ãŸãŸã§ãã. äžæ¹ã§OMCåã¯\r\n$$(0,0)\\to (3,1)\\to (2,4)\\to (1,1)$$\r\nã®èŠé ã§æãã«ç§»åã§ãããã, 察称æ§ãããã®ãããªåããç¹°ãè¿ãã° $x+y$ ãå¶æ°ã®ç¹ãã¹ãŠã«å°éã§ãã.\\\r\nã以äžãã, 解çãã¹ãå€ã¯æå®ãããç¯å²å
ã® $x$ ãš $y$ ã®åãå¶æ°ã§ããæ Œåç¹ã®æ°ã§ãããã,\r\n$$2023\\times2023+2022\\times2022=\\textbf{8181013}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc113/editorial/2589"
}
] | ã$xy$ 座æšå¹³é¢äžã«ãããŠïŒOMCåã¯ã¯ããåç¹ã«ããïŒä»¥äžã®ããããã®è¡åã $0$ å以äžç¹°ãè¿ãããšãã§ããŸãïŒãã ãïŒè€å·ã¯ããããä»»æã«éžæã§ãããšããŸãïŒ
- ç¹ $(x,y)$ ã«ãããšãïŒ$(x\pm 1,y\pm 3)$ ã§è¡šãããç¹ã«ã¯ãŒãããïŒ
- ç¹ $(x,y)$ ã«ãããšãïŒ$(x\pm 3,y\pm 1)$ ã§è¡šãããç¹ã«ã¯ãŒãããïŒ
ããªãã¡ïŒããããã®æäœã§éžæã§ããã¯ãŒãå
㯠$8$ ãæãããŸãïŒ\
ããã®ãšãOMCåãæçµçã«å°éãåŸãæ Œåç¹ã®ãã¡ïŒ
$$(2022,2022),\quad(2022,-2022),\quad(-2022,2022),\quad(-2022,-2022)$$
ã $4$ é ç¹ãšããæ£æ¹åœ¢ã®å
éšãŸãã¯åšäžã®ãã®ã¯ããã€ãããŸããïŒ |
OMC113 (SEGæ¯) | https://onlinemathcontest.com/contests/omc113 | https://onlinemathcontest.com/contests/omc113/tasks/2441 | D | OMC113(D) | 300 | 149 | 212 | [
{
"content": "ã$P_n$ ã«ã€ããŠ, äžå¿ã $O_n$, å³äžã®é ç¹ã $A_n$, é¢ç©ã $S_n$ ãšããã°, äžå¹³æ¹ã®å®çãã\r\n$$O_nA_n^2+O_{n+1}A_{n+1}^2=O_nA_n^2+O_{n+1}A_n^2=n^2$$\r\näžæ¹ $S_n=2O_nA_n^2$ ã§ãããã, $S_n+S_{n+1}=2n^2$ ãæç«ã, 以äžããæ±ããé¢ç©ã¯\r\n$$\\begin{aligned}\r\nS_{1001}&=\\sum_{k=1}^{1001}S_k-\\sum_{k=1}^{1000}S_k\\\\\\\\\r\n&=\\left( S_1+\\sum_{k=1}^{500}(S_{2k}+S_{2k+1})\\right)-\\sum_{k=1}^{500}(S_{2k-1}+S_{2k})\\\\\\\\\r\n&=1+2\\sum_{k=1}^{500}(2k)^2-2\\sum_{k=1}^{500}(2k-1)^2\\\\\\\\\r\n&=1+2\\sum_{k=1}^{500}(4k-1)\\\\\\\\\r\n&=\\bm{1001001}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc113/editorial/2441"
}
] | ã$xy$ å¹³é¢äžã«å蟺ã軞ãšå¹³è¡ãªæ£æ¹åœ¢ $P_1,P_2,\ldots,P_{1001}$ ã暪äžåã«äžŠãã§ãã, å $n=1,2,\ldots,1000$ ã«å¯ŸããŠä»¥äžã®æ¡ä»¶ãã¿ãããŸã.
- ãã¹ãŠã®æ£æ¹åœ¢ã¯, ãã®äžåŽã®èŸºã $x$ 軞äžã«ãã.
- $P_n$ ã®å³äžã®é ç¹ãš $P_{n+1}$ ã®å·Šäžã®é ç¹ãäžèŽãã.
- $P_n$ ãš $P_{n+1}$ ã®äžå¿éã®è·é¢ã¯ $n$ ã§ãã.
$P_1$ ã®é¢ç©ã $1$ ã§ãããšã, $P_{1001}$ ã®é¢ç©ãæ±ããŠãã ãã. |
OMC113 (SEGæ¯) | https://onlinemathcontest.com/contests/omc113 | https://onlinemathcontest.com/contests/omc113/tasks/1993 | E | OMC113(E) | 300 | 90 | 209 | [
{
"content": "ã$N=2^a3^b5^c7^d\\ (a,b,c,d \\geq 1)$ ãšããã°, äºã€ç®ã®æ¡ä»¶ã¯\r\n$$(2a+1)(2b+1)(2c+1)(2d+1)=999999=3^3\\times7\\times 11\\times 13\\times 37$$\r\nåçŽ å æ°ã®åé
ãèããŠå
é€åçãé©çšããããšã§, æ±ããå Žåã®æ°ã¯\r\n$$\\sum\\_{i=1}^{4} (-1)^i \\binom{4}{i}\\binom{i+2}{3}i^4=\\textbf{2260}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc113/editorial/1993"
},
{
"content": "å
é€åçããŒãã®èª¬æã§ãïŒ\r\n\r\n$x=2a+1, y=2b+1, z=2c+1, w=2d+1$ ãšçœ®ããšïŒ æ±ãããã®ã¯ ã$xyzw=999999$ ã〠$x\\neq1$ ã〠$y\\neq1$ ã〠$z\\neq1$ ã〠$w\\neq1$ ããæºããæ£æŽæ° $(x,y,z,w)$ ã®çµã§ãïŒããã§ïŒ$xyzw=999999$ ãæºãã $(x,y,z,w)$ ã®çµã®ãã¡ $x=1$ ãæºãããã®ã®éåã $X$ ãšçœ®ããŸãïŒåæ§ã« $y=1, z=1, w=1$ ãæºããçµã®éåã $Y,Z,W$ ãšçœ®ããŸãïŒãã®ãšãïŒ($xyzw=999999$ ãæºãããã¹ãŠã® $(x,y,z,w)$ ã®çµã®åæ°)$-|X\\cup Y\\cup Z\\cup W|$ ãçãã«ãªããŸãïŒ\r\n\r\n($xyzw=999999$ ãæºãããã¹ãŠã® $(x,y,z,w)$ ã®çµã®åæ°) ãæ±ããã®ã¯å®¹æã§ãïŒ$3$ ã® $x,y,z,w$ ãžã®åé
æ¹æ³ã ${}\\_6\\mathrm{C}\\_{3}$ éãïŒ$7,11,13,37$ ã®åé
æ¹æ³ããããã $4$ éããªã®ã§ ${}\\_6\\mathrm{C}\\_{3}\\times4^4$ åã«ãªããŸãïŒ\r\n\r\nãŸãïŒå
é€åçãã以äžãæãç«ã¡ãŸãïŒ\r\n$$\\begin{aligned}\r\n&|X\\cup Y\\cup Z\\cup W|\\\\\\\\\r\n=&|X|+|Y|+|Z|+|W|\\\\\\\\\r\n-&|X\\cap Y|-|X\\cap Z|-|X\\cap W|-|Y\\cap Z|-|Y\\cap W|-|Z\\cap W|\\\\\\\\\r\n+&|X\\cap Y\\cap Z|+|X\\cap Y\\cap W|+|X\\cap Z\\cap W|+|Y\\cap Z\\cap W|\\\\\\\\\r\n-&|X\\cap Y\\cap Z\\cap W|\r\n\\end{aligned}$$\r\n\r\nå³èŸºã®ããããã®æ®µã«ã€ããŠèããŠã¿ãŸãïŒ\r\n\r\n- äžæ®µç®ã®ã€ããŠïŒ$|X|$ ã¯ã$xyzw=999999$ ã〠$x=1$ãïŒããªãã¡ $yzw=999999$ ãæºãã $(y,z,w)$ ã®åæ°ã§ãïŒããã¯å
ã»ã©åæ§ã«åé
æ¹æ³ãèããããšã§ ${}\\_5\\mathrm{C}\\_{3}\\times3^4$ ãšæ±ããããšãã§ããŸãïŒ$|Y|, |Z|, |W|$ ãåæ§ã§ãïŒãã£ãŠäžæ®µç®ã®å€ã¯ $4\\times{}\\_5\\mathrm{C}\\_{3}\\times3^4(={}\\_4\\mathrm{C}\\_{1}\\times{}\\_5\\mathrm{C}\\_{3}\\times3^4)$ ã§ãïŒ\r\n- äºæ®µç®ã«ã€ããŠïŒ$|X\\cap Y|$ ã¯ã$xyzw=999999$ ã〠$x=1$ ã〠$y=1$ãïŒããªãã¡ $zw=999999$ ãæºãã $(z,w)$ ã®åæ°ã§ãïŒãããå
ã»ã©åæ§ã«åé
æ¹æ³ãèããããšã§ ${}\\_4\\mathrm{C}\\_{3}\\times2^4$ ãšæ±ããããšãã§ããŸãïŒä»ãåæ§ã§ãïŒãã£ãŠäžæ®µç®ã®å€ã¯ $6\\times{}\\_4\\mathrm{C}\\_{3}\\times2^4(={}\\_4\\mathrm{C}\\_{2}\\times{}\\_4\\mathrm{C}\\_{3}\\times2^4)$ ã§ãïŒ\r\n- äžæ®µç®ã«ã€ããŠïŒ$|X\\cap Y\\cap Z|$ ã¯ã$xyzw=999999$ ã〠$x=1$ ã〠$y=1$ ã〠$z=1$ãïŒããªãã¡ $w=999999$ ãæºãã $(w)$ ã®åæ°ã§ãïŒãããå
ã»ã©åæ§ã«åé
æ¹æ³ãèããããšã§ ${}\\_3\\mathrm{C}\\_{3}\\times1^4$ ãšæ±ããããšãã§ããŸãïŒä»ãåæ§ã§ãïŒãã£ãŠäžæ®µç®ã®å€ã¯ $4\\times{}\\_3\\mathrm{C}\\_{3}\\times1^4(={}\\_4\\mathrm{C}\\_{1}\\times{}\\_3\\mathrm{C}\\_{3}\\times1^4)$ ã§ãïŒ\r\n- å段ç®ã«ã€ããŠïŒ$|X\\cap Y\\cap Z\\cap W|$ ã¯ã$xyzw=999999$ ã〠$x=1$ ã〠$y=1$ ã〠$z=1$ ã〠$w=1$ããæºãã $(x,y,z,w)$ ã®åæ°ã§ããïŒãããæºãããã®ã¯ååšããªãã®ã§ $0$ ã§ãïŒ\r\n\r\n以äžã®å€ãããšã®åŒã«ä»£å
¥ããããšã§ïŒå
¬åŒè§£èª¬ã®åŒãåŸãŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc113/editorial/1993/113"
}
] | ã以äžã®æ¡ä»¶ããšãã«ã¿ããæ£æŽæ° $N$ ã¯ããã€ãããŸããïŒ
- $N$ ããã€çŽ å æ°ã®éå㯠$\\{2,3,5,7\\}$ ã§ãã.
- $N^2$ ã¯æ£ã®çŽæ°ãã¡ããã© $999999$ åãã€. |
OMC113 (SEGæ¯) | https://onlinemathcontest.com/contests/omc113 | https://onlinemathcontest.com/contests/omc113/tasks/1551 | F | OMC113(F) | 400 | 49 | 89 | [
{
"content": "ã$O(0,0),A(1\\/4,0),B(0,1\\/3)$ ãšããã°, ååã®çŽåŸã¯ç·å $OA,OB,AB$ ã§ãã. ãã㧠$O$ ãäžå¿ãšããååŸ $1$ ã®åã«ãã£ãŠå転ãè¡ããš, $A,B$ ã¯ãããã $A^{\\prime}(4,0),B^{\\prime}(0,3)$ ã«ç§»ããã, ååã®åã¯\r\n$$C^{\\prime}_1:x=4,\\quad C^{\\prime}_2:y=3,\\quad C^{\\prime}_3:3x+4y=12$$\r\nããã㯠$3$ 蟺ã $3,4,5$ ãšããçŽè§äžè§åœ¢ããªã. $C_0$ ã®åã¯ãã®äžè§åœ¢çŽè§å
ã®åæ¥åã§ãã, ãã®ååŸã¯ $6$, äžå¿ã¯ $(-2,-3)$ ã§ããããšã容æã«ããã. ããã§, 以äžã®äºå®ã«çæããïŒ\r\n\r\n**äºå®.**ãäžå¿ $O$, ååŸ $1$ ã®åã§äžå¿ $X$, ååŸ $r$ ã® ($O$ ãéããªã) å $C$ ãå転ãããšã, ãã®åã«ãããåã®ååŸã¯ $\\displaystyle\\frac{r}{|r^2-OX^2|}$ ã§è¡šããã.\r\n\r\n**蚌æ.**ã$OX$ ãš $C$ ã® $2$ 亀ç¹ã移ãå
ãèããã°ãã. $C$ ã®åã«ãããŠ, ããã $2$ 亀ç¹ã®åã¯çŽåŸããªã. (蚌æçµ)\r\n\r\nãå
ã®åé¡ã«é©çšããã°, $C_0$ ã®ååŸã¯ $\\displaystyle\\frac{6}{6^2-(2^2+3^2)}=\\frac{6}{23}$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{29}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc113/editorial/1551"
}
] | ã座æšå¹³é¢äžã«æ¬¡ã®æ¹çšåŒã§äžãããã $3$ å $C_1,C_2,C_3$ ããããŸã.
$$\begin{aligned}
C_1&:x\left(x-\frac{1}{4}\right)+y^2=0, \\\\
C_2&:x^2+y\left(y-\frac{1}{3}\right)=0, \\\\
C_3&:x\left(x-\frac{1}{4}\right)+y\left(y-\frac{1}{3}\right)=0
\end{aligned}$$
ããã $3$ åãã¹ãŠãããå $C_0$ ã«å
æ¥ãããšã, $C_0$ ã®ååŸãæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\displaystyle\frac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC112 (for experts) | https://onlinemathcontest.com/contests/omc112 | https://onlinemathcontest.com/contests/omc112/tasks/3378 | A | OMC112(A) | 300 | 226 | 252 | [
{
"content": "ãã¹ã³ã¢ã®æå°å€ã $\\textbf{22}$ ã§ããããšã瀺ãïŒ\\\r\nããŸãã¹ã³ã¢ã $22$ ã«ãªãæžã蟌ã¿æ¹ã®äŸãšããŠæ¬¡ã®ãããªãã®ãããïŒ\r\n$$\\begin{aligned}\r\n18 && 1 && 36 \\\\\\\\\r\n4 && 9 && 2 \\\\\\\\\r\n6 && 3 && 12 \r\n\\end{aligned}$$\r\n\r\nã以äžïŒã¹ã³ã¢ã $22$ 以äžã«ãªãããšã瀺ãïŒ$2$ ã®åæ°ã«æ³šç®ãããšïŒæžã蟌ãæ°ã®ãã¡ $2$ ã®åæ°ã¯ $6$ åããïŒããããé£ãããç®æã§æ倧å
¬çŽæ°ã $2$ ã®åæ°ãšãªãïŒãã®ãšãïŒã©ã®ããã«æžã蟌ãã§ã $2$ ã®åæ°ã $3$ ç®æ以äžã§é£ãããããšããããïŒå®éïŒä»¥äžã®ããšã確èªã§ããïŒ\r\n- ãã¹ç®ã®äžå€®ã®æ°ã $2$ ã®åæ°ã§ãªããšãïŒ$4$ ç®æ以äžã§é£ãããïŒ\r\n- ãã¹ç®ã®äžå€®ã®æ°ã $2$ ã®åæ°ã®ãšãïŒ\r\n - ãã¹ç®ã®åé
ã®æ°ãã¹ãŠã $2$ ã®åæ°ãªãã°ïŒã¡ããã© $3$ ç®æã§é£ãããïŒ\r\n - ããã§ãªãå Žåã¯ïŒ$4$ ç®æ以äžã§é£ãããïŒ\r\n\r\nããããã£ãŠïŒã㢠$12$ åã®æ倧å
¬çŽæ°ã®ãã¡ $3$ ã€ä»¥äžã¯ $2$ ã®åæ°ãšãªãïŒåæ§ã« $3$ ã®åæ°ã«æ³šç®ããããšã§ïŒã㢠$12$ åã®æ倧å
¬çŽæ°ã®ãã¡ $3$ ã€ä»¥äžã¯ $3$ ã®åæ°ãšãªãããšããããïŒãã£ãŠïŒã¹ã³ã¢ã¯ $1\\times 6 + 2 \\times 3 + 3\\times 3 = 21$ 以äžã§ããïŒãªãïŒ$12$ åã®äžã« $6$ ã®åæ°ãååšããå Žåã¯ïŒã¹ã³ã¢ã¯ $21$ ãã倧ããããšã«æ³šæããïŒ\\\r\nãããã§ïŒã¹ã³ã¢ã $21$ ãšãªãæžã蟌ã¿æ¹ãååšãããšãããšïŒäžèšã®èå¯ããã㢠$12$ åã®æ倧å
¬çŽæ°ã¯ $1$ ã $6$ åïŒ$2$ ã $3$ åïŒ$3$ ã $3$ åã§ïŒãŸããã¹ç®ã®äžå€®ãšåé
ã®æ°ã®èš $5$ ã€ã $6$ ã®åæ°ã§ãªããšãããªããïŒæžã蟌ãæ°ã« $6$ ã®åæ°ã¯ $4$ åãããªãããççŸããïŒãããã£ãŠãã®ãããªæžã蟌ã¿æ¹ã¯ååšããïŒçµæãšããŠã¹ã³ã¢ã $22$ 以äžãšãªãããšãããã£ãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc112/editorial/3378"
}
] | ã$3\times 3$ ã®ãã¹ç®ã« $36$ ã®æ£ã®çŽæ° $9$ åãéè€ãªã $1$ ã€ãã€æžã蟌ã¿ãŸãïŒãã®ãšãïŒããããã®æžã蟌ã¿æ¹ã«ã€ããŠïŒãã®**ã¹ã³ã¢**ã以äžã®ããã«å®ããŸãïŒ
- 蟺ã§é£ããããã¹ã®ã㢠$12$ çµã®ããããã«ã€ããŠïŒæžããã $2$ æ°ã®æ倧å
¬çŽæ°ãæ±ãïŒããããã¹ãŠã足ãåããããã®ãã¹ã³ã¢ãšããïŒ
ããã®ãšãïŒã¹ã³ã¢ãšããŠããããæå°å€ãæ±ããŠãã ããïŒ
<details><summary>ã¹ã³ã¢ã®èšç®äŸ<\/summary>
ãããšãã°ïŒä»¥äžã®ãããªæžã蟌ã¿æ¹
$$\begin{aligned}
1 && 2 && 3 \\\\
4 && 6 && 9 \\\\
12 && 18 && 36
\end{aligned}$$
ã«ã€ããŠïŒãã®ã¹ã³ã¢ã¯ä»¥äžã®ããã«èšç®ã§ããŸãïŒ
$$1+1+1+2+2+3+3+4+6+6+9+18=56$$
<\/details> |
OMC112 (for experts) | https://onlinemathcontest.com/contests/omc112 | https://onlinemathcontest.com/contests/omc112/tasks/3382 | B | OMC112(B) | 500 | 52 | 100 | [
{
"content": "ã$I$ ãå
å¿ãšããã°ïŒ$\\angle BDI =90^\\circ= \\angle BFI$ ãã $4$ ç¹ $B,D,F,I$ ã¯åäžååšäžã«ãã. ãã£ãŠ\r\n$$\\angle FEH = \\angle FED = \\angle FDB = \\angle FIB$$\r\nããäžè§åœ¢ $FEH$ ãšäžè§åœ¢ $BIF$ ã¯çžäŒŒ. \r\nåæ§ã«äžè§åœ¢ $FDH$ ãšäžè§åœ¢ $AIF$ ã¯çžäŒŒã§ãã. \r\nåŸã£ãŠ, $AF = a, BD = b, CE = c$ ãšãããš\r\n$$DH : EH = IF\\times\\frac{FH}{a} : IF\\times\\frac{FH}{b} = b : a$$\r\nã§ããããMenelausã®å®çãã\r\n$$DP = CP\\times\\frac{DH}{HE}\\times\\frac{EA}{AC} = 7\\times\\frac{b}{a}\\times\\frac{a}{22} = \\frac{7}{22}b$$\r\nãåŸã. ãŸã, \r\n$$c - b = (a+c) - (a+b) = 22 - 20 = 2$$\r\nã§ãããã\r\n$$b+2 = c = DP + CP = 7+\\frac{7}{22}b$$\r\nãåãã. ããã解ãããšã§ $b = \\dfrac{22}{3}, c = \\dfrac{28}{3}$ ãåããã®ã§ $BC = \\dfrac{50}{3}$ ãåŸã. ç¹ã«è§£çãã¹ã㯠$\\bf{53}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc112/editorial/3382"
},
{
"content": "ã»ãŒçžäŒŒã®äžçºã²ãŒã§è§£ãã解æ³ã§ã.\r\n\r\n---\r\näžè§åœ¢ $ABC$ ã®å
å¿ã $I$ ãšãïŒäžè§åœ¢ $ABC$ ã®å
æ¥åãš $FH$ ã®äº€ç¹ã $G(\\neq F)$ ãšãã. ãã®ãšãïŒç°¡åãªè§åºŠèšç®ããäžè§åœ¢ $GED$ ãšäžè§åœ¢ $IAB$ ã¯çžäŒŒã§ããïŒãã£ãŠ $AF:FB=EH:HD$. ããã« $AE=AF, BE=BD$ ãã $AE:EH=BD:DH$ ã§ããïŒãŸã $\\angle AEH=\\angle BDH$ ã§ããããïŒäžè§åœ¢ $AEH$ ãš $BDH$ ã¯çžäŒŒ. ãããã£ãŠïŒ$AF=x$ ãšãããšïŒ$\\angle AHF=\\angle BHF, \\angle BHD=\\angle DHF$ ããïŒ$AH:HB=AF:FB, HB:HF=BD:DF$ ãã $AH:HF=AF:DP=x:15-x$ ãšãªã. 以äžïŒäžè§åœ¢ $HECP$ ã®é¢ç©ã«æ³šç®ããããšã§ $22Ã15-x^2=20(22-x)-(20-x)(15-x)$ïŒã€ãŸã $x=\\dfrac{38}{3}$ ãå°ããã®ã§ïŒ$BC=42-2x=\\dfrac{50}{3}$ïŒãããã£ãŠè§£çãã¹ãå€ã¯ $\\textbf{53}$ ã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc112/editorial/3382/173"
}
] | ã$AB=20$, $AC=22$ ã§ããäžè§åœ¢ $ABC$ ã«ã€ããŠïŒå
æ¥åãšèŸº $BC$, $CA$, $AB$ ã®æ¥ç¹ããããã $D$, $E$, $F$ ãšããŸãïŒ$F$ ããçŽç· $DE$ ãžäžãããåç·ã®è¶³ã $H$ ãšããïŒçŽç· $AH$ ãšèŸº $BC$ ã®äº€ç¹ã $P$ ãšãããšãïŒ$CP=7$ ãšãªããŸããïŒãã®ãšãïŒèŸº $BC$ ã®é·ããæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a$, $b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC112 (for experts) | https://onlinemathcontest.com/contests/omc112 | https://onlinemathcontest.com/contests/omc112/tasks/3393 | C | OMC112(C) | 600 | 54 | 139 | [
{
"content": "ã以äžã§ã¯ $M = 99x + 100y + 101z + 102w$ ã®æå°å€ãæ±ããïŒçãã¯ãã® $2$ ä¹ã§ããïŒããŸæ¡ä»¶ã¯\r\n$$(x+z+w)(y+z+w) = z^2+zw+w^2+1$$\r\nãšæžããããããããïŒçžå ã»çžä¹å¹³åã®äžçåŒã«ãã\r\n$$\\begin{aligned}\r\nM &= 99(x+z+w) + 100(y+z+w) -98z - 97w \\\\\\\\\r\n&\\geq 2 \\sqrt{9900(x+z+w)(y+z+w)} - 98z - 97w \\\\\\\\\r\n&= \\sqrt{39600(z^2+zw+w^2+1)} - 98z - 97w\r\n\\end{aligned}$$\r\nãšãããïŒãŸãCauchy-Schwarzã®äžçåŒã«ããïŒ\r\n$$\\begin{aligned}\r\n39600(z^2+zw+w^2+1) &= 19800\\big(z^2 + w^2 + (z+w)^2 + 2\\big) \\\\\\\\\r\n&= (1089+1024+4225+13462)\\big(z^2 + w^2 + (z+w)^2 + 2\\big) \\\\\\\\\r\n&\\geq \\Big(33z+32w+65(z+w)+\\sqrt{26924}\\Big)^2 \\\\\\\\\r\n&= \\Big(98z+97w+\\sqrt{26924}\\Big)^2 \r\n\\end{aligned}$$\r\n\r\nãšãªãããïŒ$M \\geq \\sqrt{26924}$ ã§ããïŒçå·ã¯\r\n$$\\begin{aligned}\r\nx = \\dfrac{35}{\\sqrt{6731}}, && y = \\dfrac{34}{\\sqrt{6731}}, && z = \\dfrac{33}{\\sqrt{6731}}, && w = \\dfrac{32}{\\sqrt{6731}}\r\n\\end{aligned}$$\r\nã®æã«æç«ãã. ãããã£ãŠ $M$ ã®æå°å€ã¯ $\\sqrt{26924}$ ã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{26924}$ ã§ããïŒ\r\n\r\n\r\n**å¥è§£.**ãæ£ã®å®æ° $a_1, a_2, \\cdots, a_n$ ããã³ $b_1, b_2, \\cdots, b_n$ ã«ã€ããŠïŒä»¥äžã®äžçåŒãæãç«ã€ïŒ\r\n$$\r\n\\bigg(\\sum_{i\\not=j} a_i b_j\\bigg)^2 \\geq \\bigg(\\sum_{i\\not=j} a_i a_j\\bigg)\\bigg(\\sum_{i\\not=j} b_i b_j\\bigg)\r\n$$\r\nãã®äžçåŒã $n=4$, $(a_1, a_2, a_3, a_4) = (35, 34, 33, 32)$, $(b_1, b_2, b_3, b_4) = (x, y, z, w)$ ãšããŠé©çšããïŒ\r\n\r\n**ã³ã¡ã³ã.**ãäžã®è§£èª¬ã§ïŒCauchy-Schwarzã®äžçåŒã«ããè©äŸ¡ã«ã€ããŠïŒåºãŠããä¿æ°ã倩äžãçã«èŠãããããããªããïŒãããã¯çå·æç«æ¡ä»¶ãæèããããšã§æ±ºå®ããããšãã§ããïŒãŸãå¥è§£ã®äžçåŒã¯ïŒããšãã°\r\n$$f_i(t) = a_i t-b_i, \\quad F(t) = \\sum _{i\\not=j}f_i(t)f_j(t)$$\r\nãšãã㊠$F(t)=0$ ã®å€å¥åŒãèããããšã§èšŒæã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc112/editorial/3393"
},
{
"content": "$$f(x, y, z, w) = 99x+100y+101z+102w$$\r\n$$g(x, y, z, w) = xy+xz+xw+yz+yw+zw - 1$$\r\n$$L(x, y, z, w, \\lambda) = f(x, y, z, w) - \\lambda g(x, y, z, w)$$\r\nãšãã ($\\lambda$: å®æ°). $g(x, y, z, w)=0$ ã®ããšã§ $f(x, y, z, w)$ ã極å€ããšãã®ã¯, \r\n$$\\frac{\\partial L}{\\partial x}=\\frac{\\partial L}{\\partial y}=\\frac{\\partial L}{\\partial z}=\\frac{\\partial L}{\\partial w}=\\frac{\\partial L}{\\partial \\lambda}=0$$\r\nã®è§£ã§ãã. é£ç«ããŠè§£ãããšã§,\r\n$$(x, y, z, w) = \\left(\\frac{35}{\\sqrt{6731}}, \\frac{34}{\\sqrt{6731}}, \\frac{33}{\\sqrt{6731}}, \\frac{32}{\\sqrt{6731}}\\right)$$\r\nãåŸã. ãã®ãšã, $f(x, y, z, w) = 2\\sqrt{6731}$ ã§ãããã, æ±ããå€ã¯ãã®äºä¹ã§, $\\bold{26924}$ ã§ãã.\r\n\r\n- å³å¯ã«ã¯, Lagrange ã®æªå®ä¹æ°æ³ã¯æ¥µå€ãååšããããšãåæã§ãã, ãŸã極å€ãæå°å€ãã©ããã¯å¥éæ€èšŒããå¿
èŠããã. ä»åã¯è§£ãå¯äžã§ãããã, ã³ã³ãã¹ãã®ã«ãŒã«äžãã®å€ã§æ±ºãæã¡ããŠåçããŠããŸãã°ããã ãã.\r\n- é¡é¡: [OMC132(E)](https:\\/\\/onlinemathcontest.com\\/contests\\/omc132\\/tasks\\/4656)",
"text": "Lagrange ã®æªå®ä¹æ°æ³",
"url": "https://onlinemathcontest.com/contests/omc112/editorial/3393/112"
}
] | ãæ£ã®å®æ° $x$, $y$, $z$, $w$ ã
$$xy+xz+xw+yz+yw+zw =1$$
ãã¿ãããšãïŒ
$$(99x+100y+101z+102w)^2$$
ã®ãšãåŸãæå°å€ãæ±ããŠãã ããïŒ |
OMC112 (for experts) | https://onlinemathcontest.com/contests/omc112 | https://onlinemathcontest.com/contests/omc112/tasks/3381 | D | OMC112(D) | 600 | 42 | 81 | [
{
"content": "ã$101$, $107$, $113$, $131$, $137$ ã¯ãã¹ãŠ $3$ ã§å²ã£ãŠ $2$ äœãçŽ æ°ã§ããïŒãããããããã $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ ãšããïŒ$N=p_1 p_2 p_3 p_4 p_5$ ã§ããïŒ\\\r\nã$N$ 以äžã®æ£æŽæ°ã§ $N$ ãšäºãã«çŽ ãªãã®ã®åæ° $\\varphi$ ã®æ±ãæ¹ã®äžã€ãšããŠïŒå
é€åçãçšããæ¹æ³ãèããïŒæ·»åéå $J = \\\\\\{ 1, 2, 3, 4, 5\\\\\\}$ ã®éšåéå $I$ ã«å¯Ÿã $P_{I} = \\prod_{i\\in I} p_i$ ãšãã (ãã ã $P_{\\varnothing} = 1$)ïŒ$N$ 以äžã§æ£ã® $P_I$ ã®åæ°ã®å
šäœéåã $S_I$ ãšããïŒãã®ãšãïŒå
é€åçã«ãã\r\n\r\n$$\r\n\\varphi = \\sum_{I\\subset J} (-1)^{|I|} |S_I| = \\sum_{I\\subset J} (-1)^{|I|} \\dfrac{N}{P_I}\r\n$$\r\n\r\nãæãç«ã¡ïŒçµæãšã㊠$\\displaystyle \\varphi = N \\prod_{i=1}^{5}\\bigg(1-\\frac{1}{p_i}\\bigg) = \\prod_{i=1}^{5} (p_i-1)$ ãšèšç®ãããïŒ\\\r\nãäžèšã®èãæ¹ãå©çšã㊠$a$ ãš $b$ ãæ±ããïŒ$N$ ãšäºãã«çŽ 㪠$N$ 以äžã®æ£æŽæ°ã®ãã¡ $3$ ã§å²ã£ãŠ $1$ äœããã®ã®å
šäœéåã $A$ ãšããïŒ$3$ ã§å²ã£ãŠ $2$ äœããã®ã®å
šäœéåã $B$ ãšããïŒ\\\r\nããŸã $a$ ã«ã€ããŠïŒ$N$ ã $3$ ã§å²ããš $2$ äœãããšããïŒ$n \\in A$ ã®ãšã $N-n \\in A$ ãšãªãïŒãã£ãŠãããããã¢ã«ããããšã§ $a = N \\times |A| \\div 2$ ãšèšç®ã§ããïŒããã§ïŒ$S_I$ ã®å
ã®ãã¡ $3$ ã§å²ã£ãŠ $1$ äœããã®å
šäœã $T_I$ ãšãããšïŒå
é€åçã«ãã\r\n\r\n$$\r\n|A| = \\sum_{I\\subset J} (-1)^{|I|} |T_I|\r\n$$\r\n\r\nãšãªãïŒãŸãïŒ\r\n- $P_I$ ã $3$ ã§å²ã£ãŠ $1$ äœããšãïŒ$|T_I| = \\dfrac{1}{3}\\bigg(\\dfrac{N}{P_I}+1\\bigg)$\r\n- $P_I$ ã $3$ ã§å²ã£ãŠ $2$ äœããšãïŒ$|T_I| = \\dfrac{1}{3}\\bigg(\\dfrac{N}{P_I}-1\\bigg)$\r\n\r\nã§ããããšããïŒäžã®åŒã«ä»£å
¥ã㊠$|A| = \\dfrac{1}{3}(\\varphi+32)$ ãšèšç®ã§ããïŒãã£ãŠïŒ$a = \\dfrac{1}{6}N\\varphi + \\dfrac{16}{3}N$ ã§ããïŒ\\\r\n ã次㫠$b$ ã«ã€ããŠïŒ$S_I$ ã®å
ã®ãã¡ $3$ ã§å²ã£ãŠ $2$ äœããã®å
šäœã $U_I$ ãšããŠïŒãããã®ç·åã $u_I$ ãšããïŒãã®ãšãïŒå
é€åçãåã«ã€ããŠé©çšããåŒã«ãã\r\n$$\r\nb = \\sum_{I\\subset J} (-1)^{|I|} u_I\r\n$$\r\n\r\nãšãªãïŒãŸãïŒ\r\n$$\r\nu_I = \\dfrac{1}{6} P_I \\bigg(\\dfrac{N}{P_I}+1\\bigg)\\bigg(\\dfrac{N}{P_I}+2\\bigg) = \\dfrac{1}{6}\\cdot\\frac{N^2}{P_I} + \\dfrac{1}{2}N +\\dfrac{1}{3} P_I\r\n$$\r\n\r\nãšèšç®ãããããïŒ\r\n\r\n$$\r\nb = \\dfrac{N}{6}\\sum_{I\\subset J} (-1)^{|I|}\\frac{N}{P_I} + \\dfrac{N}{2} \\sum_{I\\subset J} (-1)^{|I|} + \\dfrac{1}{3} \\sum_{I\\subset J} (-1)^{|I|} P_I = \\frac{1}{6}N\\varphi - \\dfrac{1}{3}\\varphi\r\n$$\r\n\r\nãšãªãïŒãã ãïŒåã®èšç®ã«ãããŠç¬¬ $3$ é
ã¯\r\n$$\r\n\\sum_{I\\subset J} (-1)^{|I|} P_I = \\prod_{i=1}^{5}(1-p_i) = -\\varphi\r\n$$\r\n\r\nãçšããïŒ\\\r\nã以äžã«ããïŒ$a-b = \\dfrac{1}{3} (16N+\\varphi)$ ãšãããïŒãããèšç®ãããš $\\textbf{123885711344}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc112/editorial/3381"
}
] | ã$N = 101\times 107 \times 113 \times131 \times 137$ ãšããŸãïŒåæ°ã¯ãã¹ãŠçŽ æ°ã§ãïŒïŒ\
ã$N$ 以äžã®æ£æŽæ°ã§ $N$ ãšäºãã«çŽ ãªãã®ã®ãã¡ïŒ$3$ ã§å²ã£ãŠ $1$ äœããã®ã®ç·åã $a$ ãšãããŸãïŒãŸãïŒ$N$ 以äžã®æ£æŽæ°ã§ $N$ ãšäºãã«çŽ ãªãã®ã®ãã¡ïŒ$3$ ã§å²ã£ãŠ $2$ äœããã®ã®ç·åã $b$ ãšãããŸãïŒ$a-b$ ãæ±ããŠãã ããïŒ |
OMC112 (for experts) | https://onlinemathcontest.com/contests/omc112 | https://onlinemathcontest.com/contests/omc112/tasks/3383 | E | OMC112(E) | 700 | 16 | 71 | [
{
"content": "$\\\\\\{F_n\\\\\\}$, $\\\\\\{L_n\\\\\\}$ ãããããFibonacciæ°åãšLucasæ°åãšããïŒããªãã¡ïŒ\r\n- $F_0 = 0$, $F_1 = 1$, $n \\geq 0$ ã«ã€ã㊠$F_{n+2} = F_{n+1} + F_{n}$\r\n- $L_0 = 2$, $L_1 = 1$, $n \\geq 0$ ã«ã€ã㊠$L_{n+2} = L_{n+1} + L_{n}$\r\n\r\nãšããïŒãã®ãšãïŒ$n \\geq 1$ ã«ã€ããŠ\r\n$$a_{n+2} + 1 = (a_{n+1} + 1) + (a_{n} + 1),\\quad b_{n+2} - 1 = (b_{n+1} - 1) + (b_{n} - 1)$$\r\n\r\nã§ããããšããïŒ$a_n = F_{n+2} -1$, $b_n = F_{n-1}+1$ ãšèšç®ã§ããïŒ\\\r\nããããšïŒFibonacciæ°åã®äžè¬é
ã«ãã衚瀺ãçšããŠïŒä»¥äžã®äºå®ã確ãããããšãã§ããïŒ\r\n- $a_{4n+1} = F_{4n+3} - 1 = F_{2n+2}L_{2n+1}$\r\n- $b_{4n+1} = F_{4n} + 1= F_{2n-1}L_{2n+1}$\r\n\r\nãªãïŒäžè¬ã« $F_{n+m}+(-1)^mF_{n-m}=F_nL_m$ ãæãç«ã€ïŒãããã£ãŠïŒ\r\n$$\\gcd(a_{4n+1}, b_{4n+1}) = L_{2n+1}\\cdot\\gcd(F_{2n+2}, F_{2n-1})$$\r\nã§ããïŒããã«ïŒ\r\n$$\r\n\\gcd(F_{n+3}, F_{n}) = \\gcd(F_{n}+2F_{n+1}, F_{n}) = \\gcd(2F_{n+1}, F_{n})\r\n$$\r\n\r\nã§ããïŒ$\\gcd(F_{n+1}, F_{n}) = 1$ ãã $\\gcd(F_{n+3}, F_{n}) = \\gcd(F_{n}, 2)$ ã§ããïŒããã§åšææ§ãã $F_n$ ãå¶æ°ã§ããããšãš $n$ ã $3$ ã®åæ°ã§ããããšãåå€ãªã®ã§ïŒ$\\gcd(F_{n}, 2)$ 㯠$n$ ã $3$ ã®åæ°ã®ãšã $2$, ãã以å€ã§ $1$ ã§ããïŒ\\\r\nãã㊠$N=123456789$ ã«ã€ããŠïŒ$M = (N-1)\\/4$ ãšãããš $M$ ã¯æŽæ°ã§ïŒ$2M-1$ 㯠$3$ ã®åæ°ã§ããããïŒ\r\n$$\r\n\\gcd(a_{N}, b_{N}) = L_{2M+1}\\cdot \\gcd(F_{2M+2}, F_{2M-1}) = L_{2M+1}\\cdot \\gcd(F_{2M-1}, 2) = 2L_{2M+1}\r\n$$\r\n\r\nãšèšç®ã§ããïŒ\\\r\nãããšã¯ $2L_{2M+1}$ ã $957=3\\times 11 \\times 29$ ã§å²ã£ãäœããæ±ãããšããïŒ$\\bmod 3$, $\\bmod {11}$, $\\bmod {29}$ ã§ã®Lucasæ°åã®åšæããããã $8$, $10$, $14$ ã§ããããšã確ããããïŒããã«ãã以äžããããïŒ\r\n- $2M+1 \\equiv 3 \\pmod 8$ ããïŒ $L_{2M+1} \\equiv 1 \\pmod 3$\r\n- $2M+1 \\equiv 5 \\pmod {10}$ ããïŒ $L_{2M+1} \\equiv 0 \\pmod {11}$\r\n- $2M+1 \\equiv 1 \\pmod {14}$ ããïŒ $L_{2M+1} \\equiv 1 \\pmod {29}$\r\n\r\nãã£ãŠïŒäžåœå°äœå®çã«ãã $L_{2M+1} \\equiv 88 \\pmod {957}$ ãšæ±ããããããïŒçã㯠$\\textbf{176}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc112/editorial/3383"
}
] | ãæ°å $\\\{a_n\\\}$, $\\\{b_n\\\}$ ã以äžã®ããã«å®ããŸãïŒ
- $a_1 = 1$, $a_2 = 2$, $n \geq 1$ ã«ã€ã㊠$a_{n+2} = a_{n+1} + a_{n} + 1$
- $b_1 = 1$, $b_2 = 2$, $n \geq 1$ ã«ã€ã㊠$b_{n+2} = b_{n+1} + b_{n} - 1$
$a_{123456789}$ ãš $b_{123456789}$ ã®æ倧å
¬çŽæ°ã $957$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC112 (for experts) | https://onlinemathcontest.com/contests/omc112 | https://onlinemathcontest.com/contests/omc112/tasks/3688 | F | OMC112(F) | 700 | 4 | 27 | [
{
"content": "ã以äžã§ã¯æžã蟌ãæ°å
šãŠãåºå¥ããŠèãïŒ$36!$ éããã¹ãŠã®æžã蟌ã¿æ¹ã«å¯Ÿããã¹ã³ã¢ã®åèšã $S$ ãšããïŒå¹³åã $A$ ãšããïŒãã®ãšãïŒ$A$ ãå
ã®åé¡ã§æ±ããå¹³åãšäžèŽããããšã«æ³šæããïŒãŸãïŒ$S = 36! \\times A$ ã§ããïŒ\\\r\nã$36$ åã®æ°ãã $6$ åãéžã¶ãšãïŒãããããšãã«åãè¡ã»åãåã»åã察è§ç·ã®ããããã«ãããããªæžã蟌ã¿æ¹ã¯ $30! \\times 6! \\times 14$ éãããïŒãã®å Žåã« ã$6$ åã®æ°ã®åã $7$ ã§å²ã£ãäœãã ã $S$ ã«å¯äžãããïŒ\\\r\nã$36$ åã®æ°ãã $6$ åãéžã¶ ${}\\_{36}\\mathrm{C}\\_{6}$ éãããããã«ã€ããŠïŒ$6$ åã®æ°ã®åã $7$ ã§å²ã£ãäœããæ±ãïŒãã®åèšã $T$ ãšãããšïŒäžã®èå¯ãã $S = 30! \\times 6! \\times 14 \\times T$ ã§ããïŒ$A = \\dfrac{14T}{{}\\_{36}\\mathrm{C}\\_{6}}$ ãšãªãïŒãŸãïŒ ${}\\_{36}\\mathrm{C}\\_{6}$ éãã®ãã¡ïŒ$6$ åã®æ°ã®åã $7$ ã§å²ã£ãäœãã $r$ ($0 \\leq r \\leq 6$) ãšãªããã®ã®åæ°ã $U_r$ ãšãããšïŒ$T = \\displaystyle \\sum \\_{r=1}^{6} r U_r$ ãšãªãïŒ \\\r\nã以äžã§ã¯ïŒ$U_r$ ãæ±ããã®ã«æ¯é¢æ°ãçšããïŒæ¬¡ã®ãã㪠$2$ å€æ°é¢æ° $F(x, t)$ ãèããïŒ\r\n$$\r\nF(x, t) = \\sum_{n, k} a_{n, k} x^n t^k := \\prod_{i=1}^{6} (1+t^i x)^6\r\n$$\r\n\r\nãããšïŒ$F(x, t)$ ã® $x^n t^k$ ã®ä¿æ° $a_{n, k}$ã¯ïŒ$36$ åã®æ°ããåã $k$ ãšãªãããã« $n$ åéžã¶å Žåã®æ°ãšãªãããšã確èªã§ããïŒç¹ã«ïŒ$U_r$ 㯠$a_{6,7m+r}$ ($m$ ã¯éè² æŽæ°) ãšãã圢ã®ä¿æ°ã®åã§ããïŒ\\\r\nã$\\omega$ ã $1$ ã®åå§ $7$ ä¹æ ¹ãšããŠïŒ$0\\leq r \\leq 6$ ã«å¯Ÿã $g_r(x) = \\displaystyle \\sum_{j=0}^{6} \\omega ^ {-rj} F(x, \\omega ^j)$ ãšãããšïŒ\r\n$$\r\ng_r(x) = \\sum_{j=0}^{6} \\sum_{n, k} a_{n, k} x^n \\omega ^{j(k-r)} = \\sum_{n, k} \\Bigg( \\sum_{j=0}^{6} \\omega ^{j(k-r)} \\Bigg)a_{n, k} x^n\r\n$$ \r\nãšèšç®ã§ããïŒãã㧠$\\displaystyle \\sum_{j=0}^{6} \\omega ^{j(k-r)}$ ã¯ïŒ $k-r$ ã $7$ ã§å²ãåãããšãã« $7$, ããã§ãªããšãã« $0$ ãšãªãïŒãããã£ãŠïŒ$g_r(x)$ ã® $x^6$ ã®ä¿æ°ã¯ $7U_r$ ã§ããïŒ\\\r\nãäžæ¹ $F(x, \\omega ^j)$ ã«ã€ããŠïŒ$j=0$ ã®ãšã $(1+x)^{36}$ ã§ããïŒãŸã $1\\le j \\le 6$ ã®ãšãã¯\r\n$$\r\n\\prod_{i=1}^{6} (1+\\omega^{ij} x)^6 = \\prod_{i=1}^{6} (1+\\omega^{i} x)^6 = (1-x+x^2-x^3+x^4-x^5+x^6)^6\r\n$$\r\nãšãªãïŒ$1\\leq r \\leq 6$ ã®å ŽåïŒ$\\displaystyle \\sum_{j=1}^{6} \\omega ^ {-rj} = -1$ ã§ããããïŒ$g_r(x)$ ã¯ä»¥äžã®ããã«èšç®ãããïŒ\r\n$$\r\ng_r(x) = (1+x)^{36} - (1-x+x^2-x^3+x^4-x^5+x^6)^6\r\n$$\r\nã$(1-x+\\cdots+x^6)^6$ ã® $x^6$ ã®ä¿æ°ãæ±ãããïŒ$-x$ ã $x$ ãšãããªããã°ïŒ$(1+x+\\cdots+x^6)^6$ ã® $x^6$ ã®ä¿æ°ãèããã°ããïŒããã¯ããŒã« $6$ åãšä»åã $5$ ã€ãäžåã«äžŠã¹ãå Žåã®æ°ïŒããªãã¡ ${}\\_{11}\\mathrm{C}\\_{5}=462$ ã«çããïŒ\\\r\nãããããïŒ$g_r(x)$ ã® $x^6$ ã®ä¿æ°ã¯ ${}\\_{36}\\mathrm{C}\\_{6}-462$ ã§ããïŒãã£ãŠïŒ$1\\leq r \\leq 6$ ã«ã€ã㊠$U_r = \\dfrac{{}\\_{36}\\mathrm{C}\\_{6}-462}{7}$ ã§ïŒ\r\n$$\r\nT = 21 \\times \\dfrac{{}\\_{36}\\mathrm{C}\\_{6}-462}{7} = 3 \\times ({}\\_{36}\\mathrm{C}\\_{6}-462)\r\n$$\r\nãšãªãïŒä»¥äžããïŒ\r\n$$A = \\dfrac{42 \\times ({}\\_{36}\\mathrm{C}\\_{6}-462)}{{}\\_{36}\\mathrm{C}\\_{6}}$$\r\nãšããã£ãïŒ ${}\\_{36}\\mathrm{C}\\_{6} = 462\\times 4216$ ã«æ³šæãããšïŒãã®å€ã¯ $\\dfrac{88515}{2108}$ ãšãªãïŒè§£çãã¹ãå€ã¯ $\\textbf{90623}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc112/editorial/3688"
},
{
"content": "ããŠãŒã¶ãŒè§£èª¬ïŒæ¯é¢æ°ã䜿ã代ããã«é 匵ã£ãŠæžãåºã解æ³ã§ãïŒäžå¯èœã§ã¯ãªãèšç®éã§ããïŒèšç®ãã¹ãªã©ãèããã°çŸå®çã§ã¯ãªããšæããŸãïŒïŒ\r\n\r\n----\r\n\r\nãè¡ã»åã»å¯Ÿè§ç·ã®ããäžã€ã«æ³šç®ãïŒããã«æžã蟌ãŸããæ°åã®éå $X$ ã«ã€ããŠèããïŒ**åãæ°åãåºå¥ããã°** $X$ ãšããŠããåŸããã®ã¯ $\\binom{36}{6}$ åããïŒãã®ãã¡èŠçŽ ã®ç·åã $7$ ã®åæ°ã§ãããã®ïŒ**綺éºãªéå**ãšåŒã¶ããšã«ããïŒã®åæ°ã $S$ ãšããã°æ¬åã®çã㯠$\\dfrac{49(\\binom{36}{6}-S)}{\\binom{36}{6}}$ ã§æ±ããããïŒ\r\n<details>\r\n<summary>ãªãïŒ<\\/summary>\r\nã$\\bmod{7}$ ã§èãããšãä»»æã® $a\\in\\\\{1,2,3,4,5,6\\\\}$ ã«ã€ã㊠$\\\\{a,2a,3a,4a,5a,6a\\\\}=\\\\{1,2,3,4,5,6\\\\}$ ã§ããããšã«æ³šæããã°ïŒ$X$ ã®ãã¡ç·åã $7$ ã§å²ã£ãããŸãã $1,2,\\dots,6$ ã§ãããã®ã¯å
šãŠåãã ãååšããããšããããïŒãããã $X$ ã®ç·åã $7$ ã§å²ã£ãããŸãã®å¹³åã¯\r\n$$\\frac{0\\times S+(1+2+3+4+5+6)\\times\\left(\\binom{36}{6}-S\\right)\\/6}{\\binom{36}{6}}=\\frac{7(\\binom{36}{6}-S)}{2\\binom{36}{6}}$$\r\nã§ããïŒ$14$ åããã°æ¬åã®çãã«ãªãïŒ\r\n<\\/details>\r\n\r\nã以äž**åãæ°åã¯åºå¥ãã**ã«ïŒ$X$ ã¯å€ééåãšããŠèããïŒ$f(X,i)$ 㧠$X$ ã«å«ãŸãã $i$ ã®åæ°ãè¡šããã®ãšã㊠$X$ ã«åºãŠããåæ°åã®åæ°ã®å€ééå $F(X):=\\\\{f(X,i)\\mid 1\\leq i\\leq 6\\\\}$ ãèãããšïŒä»¥äžãæãç«ã€ïŒ\r\n$$S=\\sum_{X}\\prod_{1\\leq i\\leq 6}\\binom{6}{f(X,i)}=\\sum_{Y}\\\\#\\\\{X\\mid F(X)=Y\\\\}\\times\\prod_{y\\in Y}\\binom{6}{y}$$\r\nãã ã $X$ ã¯ç¶ºéºãªéåå
šäœãïŒ$Y$ ã¯ç¶ºéºãªéå $X$ ã«å¯Ÿãã $F(X)$ ãšããŠããåŸããã®å
šäœãåãïŒå®éã« $Y$ ããšãåŸãã®ã¯æ¬¡ã® $9$ åã§ããïŒ\r\n$$\\begin{aligned}\r\n&\\\\{5,1,0,0,0,0\\\\},\\\\{4,2,0,0,0,0\\\\},\\\\{4,1,1,0,0,0\\\\},\\\\{3,3,0,0,0,0\\\\},\\\\{3,2,1,0,0,0\\\\},\\\\\\\\\r\n&\\\\{3,1,1,1,0,0\\\\},\\\\{2,2,2,0,0,0\\\\},\\\\{2,2,1,1,0,0\\\\},\\\\{1,1,1,1,1,1\\\\}\r\n\\end{aligned}$$\r\n\r\nãããããã«å¯Ÿå¿ãã綺éºãªéå $X$ ãããã€ãããïŒå
šãŠæžãåºããŠæ°ãããïŒ$X$ ã®èŠçŽ ã®ç·åã $7$ ã®åæ°ã§ããããšã¯ç·åã $7,14,21,28,35$ ã®ããããã§ããããšãšåå€ã§ããïŒãã㧠$1$ ãš $6$ïŒ$2$ ãš $5$ïŒ$3$ ãš $4$ ãããããå
¥ãæ¿ããã°ç·åã $7$ ãš $35$ïŒ$14$ ãš $28$ ã®å Žåãããããäžå¯Ÿäžã§å¯Ÿå¿ã¥ããããããïŒå®éã«æžãåºããŠæ°ããã®ã¯ $7,14,21$ ã®å Žåã®ã¿ã§ããïŒ\r\n<details>\r\n<summary>ç·åã $7,14,21$ ã®å Žå<\\/summary>\r\n\r\n- $7$ ã®å ŽåïŒ$\\\\{1,1,1,1,1,2\\\\}$ ã®ã¿ïŒ\r\n- $14$ ã®å ŽåïŒæ¬¡ã® $16$ åïŒ\r\n$$\\begin{aligned}\r\n&\\\\{1,1,1,1,4,6\\\\},\\\\{1,1,1,1,5,5\\\\},\\\\{1,1,1,2,3,6\\\\},\\\\{1,1,1,2,4,5\\\\},\\\\{1,1,1,3,3,5\\\\},\\\\\\\\\r\n&\\\\{1,1,1,3,4,4\\\\},\\\\{1,1,2,2,2,6\\\\},\\\\{1,1,2,2,3,5\\\\},\\\\{1,1,2,2,4,4\\\\},\\\\{1,1,2,3,3,4\\\\},\\\\\\\\\r\n&\\\\{1,1,3,3,3,3\\\\},\\\\{1,2,2,2,2,5\\\\},\\\\{1,2,2,2,3,4\\\\},\\\\{1,2,2,3,3,3\\\\},\\\\{2,2,2,2,2,4\\\\},\\\\\\\\\r\n&\\\\{2,2,2,2,3,3\\\\}\r\n\\end{aligned}$$\r\n- $21$ ã®å ŽåïŒæ¬¡ã® $32$ åïŒ\r\n$$\\begin{aligned}\r\n&\\\\{1,1,1,6,6,6\\\\},\\\\{1,1,2,5,6,6\\\\},\\\\{1,1,3,4,6,6\\\\},\\\\{1,1,3,5,5,6\\\\},\\\\{1,1,4,4,5,6\\\\},\\\\\\\\\r\n&\\\\{1,1,4,5,5,5\\\\},\\\\{1,2,2,4,6,6\\\\},\\\\{1,2,2,5,5,6\\\\},\\\\{1,2,3,3,6,6\\\\},\\\\{1,2,3,4,5,6\\\\},\\\\\\\\\r\n&\\\\{1,2,3,5,5,5\\\\},\\\\{1,2,4,4,4,6\\\\},\\\\{1,2,4,4,5,5\\\\},\\\\{1,3,3,3,5,6\\\\},\\\\{1,3,3,4,4,6\\\\},\\\\\\\\\r\n&\\\\{1,3,3,4,5,5\\\\},\\\\{1,3,4,4,4,5\\\\},\\\\{1,4,4,4,4,4\\\\},\\\\{2,2,2,3,6,6\\\\},\\\\{2,2,2,4,5,6\\\\},\\\\\\\\\r\n&\\\\{2,2,2,5,5,5\\\\},\\\\{2,2,3,3,5,6\\\\},\\\\{2,2,3,4,4,6\\\\},\\\\{2,2,3,4,5,5\\\\},\\\\{2,2,4,4,4,5\\\\},\\\\\\\\\r\n&\\\\{2,3,3,3,4,6\\\\},\\\\{2,3,3,3,5,5\\\\},\\\\{2,3,3,4,4,5\\\\},\\\\{2,3,4,4,4,4\\\\},\\\\{3,3,3,3,3,6\\\\},\\\\\\\\\r\n&\\\\{3,3,3,3,4,5\\\\},\\\\{3,3,3,4,4,4\\\\}\\end{aligned}$$\r\n\r\n<\\/details>\r\n\r\né 匵ã£ãŠæ°ãäžããã° $S$ ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\nS\r\n&=6\\binom{6}{5}\\binom{6}{1}+6\\binom{6}{4}\\binom{6}{2}+6\\binom{6}{4}\\binom{6}{1}^2+3\\binom{6}{3}^2+12\\binom{6}{3}\\binom{6}{2}\\binom{6}{1}\\\\\\\\\r\n&\\quad+12\\binom{6}{3}\\binom{6}{1}^3+2\\binom{6}{2}^3+18\\binom{6}{2}^2\\binom{6}{1}^2+\\binom{6}{1}^6\\\\\\\\\r\n&=278652\\left(=\\dfrac{\\binom{36}{6}+6\\binom{11}{5}}{7}\\right)\r\n\\end{aligned}$$\r\nããããæ¬åã®çã㯠$\\dfrac{49(1947792-278652)}{1947792}=\\dfrac{88515}{2108}$ ãšæ±ããããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc112/editorial/3688/110"
}
] | ã$6 \times 6$ ã®ãã¹ç®ã« $1$ ãã $6$ ãŸã§ã®æŽæ°ã $6$ åãã€æžã蟌ã¿ãŸãïŒãã®ãšãïŒããããã®æžã蟌ã¿æ¹ã«ã€ããŠïŒãã®**ã¹ã³ã¢**ã以äžã®ããã«å®ããŸãïŒ
- åè¡ã»ååã»å察è§ç·ã«ã€ããŠïŒæžããã $6$ åã®æ°ã®åã $7$ ã§å²ã£ãäœããæ±ãïŒããã $14$ æ°ãã¹ãŠã足ãåããããã®ãã¹ã³ã¢ãšããïŒ
ããã®ãšãïŒæžã蟌ã¿æ¹ãšããŠãããããã®ãã¹ãŠã«å¯Ÿããã¹ã³ã¢ã®ïŒçžå ïŒå¹³åãæ±ããŠãã ããïŒ ãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a$, $b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ\
ããªãïŒå転ãè£è¿ãã§äžèŽããæžã蟌ã¿æ¹ããããã**å¥ã®ãã®ãšããŠæ±ããŸã**ïŒ
<details><summary>ã¹ã³ã¢ã®èšç®äŸ<\/summary>
ãããšãã°ïŒä»¥äžã®ãããªæžã蟌ã¿æ¹
$$\begin{aligned}
1 && 2 && 3 && 4 && 5 && 6\\\\
1 && 2 && 3 && 4 && 5 && 6\\\\
1 && 2 && 3 && 4 && 5 && 6\\\\
1 && 2 && 3 && 4 && 5 && 6\\\\
1 && 2 && 3 && 4 && 5 && 6\\\\
1 && 2 && 3 && 4 && 5 && 6\\\\
\end{aligned}$$
ã«ã€ããŠïŒãã®ã¹ã³ã¢ã¯ä»¥äžã®ããã«èšç®ã§ããŸãïŒ
$$0\times 8+1+2+3+4+5+6=21$$
<\/details> |
OMC111 (SEGæ¯) | https://onlinemathcontest.com/contests/omc111 | https://onlinemathcontest.com/contests/omc111/tasks/5287 | A | OMC111(A) | 100 | 344 | 345 | [
{
"content": "ãäžã®äœã®æ°åã®æ±ºãæ¹ã $9$ éãïŒæ¡æ°ã®æ±ºãæ¹ã $5$ éãããããååšããããïŒæ±ããåæ°ã¯ $9\\times5=\\mathbf{45}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc111/editorial/5287"
}
] | ã$1$ ã $22$ ã $333$ ã®ããã«ïŒãã¹ãŠã®æ¡ã®æ°åãçãããã㪠$10^5$ æªæºã®æ£æŽæ°ã¯ããã€ãããŸããïŒ |
OMC111 (SEGæ¯) | https://onlinemathcontest.com/contests/omc111 | https://onlinemathcontest.com/contests/omc111/tasks/1688 | B | OMC111(B) | 200 | 282 | 312 | [
{
"content": "ã$S(k)\\equiv k \\pmod{9}$ ãã $n^2\\equiv (n+1)^2\\pmod{9}$ ã§ãããã, $n\\equiv 4\\pmod{9}$ ãå¿
èŠã§ãã. ãããããšã« $6$ åã®åè£ããããã調ã¹ãããšã§, $n=4,13,22,49$ ãæ¡ä»¶ãã¿ãããã, 解çãã¹ãç·å㯠$\\textbf{88}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc111/editorial/1688"
}
] | ãæ£æŽæ° $k$ ã® (åé²æ³ã§ã®) åæ¡ã®åã $S(k)$ ã§è¡šããšã, $S(n^2)=S((n+1)^2)$ ãã¿ãã $50$ 以äžã®æ£æŽæ° $n$ ããã¹ãŠæ±ã, ãããã®ç·åã解çããŠãã ãã. |
OMC111 (SEGæ¯) | https://onlinemathcontest.com/contests/omc111 | https://onlinemathcontest.com/contests/omc111/tasks/3807 | C | OMC111(C) | 200 | 233 | 316 | [
{
"content": "ã$5$ å以äžã®ã¬ãã¥ãããæ°ã®è¶³ãç®ã«ãããŠç¹°ãäžããã¯çºçããªãããïŒåã®åœ¢ãšããŠè¡šãããšãã§ãããã®ã¯æ¬¡ã®ããã«èšãæããããããšããããïŒ\r\n- ïŒ$5$ æ¡ã«æºããªãå Žå㯠$5$ æ¡ã«ãªãããã« $0$ ã§è£ã£ãŠïŒåé²æ³è¡šèšã§ $\\overline{a_1a_2\\cdots a_5}$ ãšè¡šããããšãïŒ$0\\leq a_1 \\leq a_2 \\leq \\cdots \\leq a_5 \\leq 5$ ãæºããïŒ\r\n\r\nãã£ãŠïŒæ±ããåæ°ã¯ $0,1,2,3,4,5$ ã®äžããéè€ãèš±ã㊠$5$ åéžã¶å Žåã®æ°ïŒãã ããã¹ãŠ $0$ ãšãªãå Žåãé€ãïŒãšçããïŒãã㯠${}\\_{10}\\mathrm{C}\\_{5}-1=\\mathbf{251}$ åã§ãããšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc111/editorial/3807"
}
] | ã$1$ ã $11111$ ã®ããã«ïŒãã¹ãŠã®æ¡ã®æ°åã $1$ ã§ãããããªæ°ã**ã¬ãã¥ãããæ°**ãšãããŸãïŒ$10^5$ æªæºã®æ£æŽæ°ã®ãã¡ïŒ$\mathbf{5}$ **å以äž**ã®ïŒçžç°ãªããšã¯éããªãïŒã¬ãã¥ãããæ°ã®åã®åœ¢ãšããŠè¡šãããšãã§ãããã®ã¯ããã€ãããŸããïŒ |
OMC111 (SEGæ¯) | https://onlinemathcontest.com/contests/omc111 | https://onlinemathcontest.com/contests/omc111/tasks/4273 | D | OMC111(D) | 300 | 102 | 155 | [
{
"content": "ã$Q,R$ ã¯ããããç·å$AB, AD$ ã®åçŽäºçåç·ã«é¢ã㊠$P$ ã察称移åãããç¹ã§ãã. åŸã£ãŠ, æ£æ¹åœ¢ $ABCD$ ã®å¯Ÿè§ç·ã®äº€ç¹ã $M$ ãšããã°, $M$ ã¯ç·å $QR$ ã®äžç¹ã§ãã. åŸã£ãŠ, äžç·å®çãã $AM^2 = 56$ ã§ãããã, æ±ããçã㯠$2AM^2 = \\bf{112}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc111/editorial/4273"
}
] | ãæ£æ¹åœ¢ $ABCD$ ã®å
éšã«ç¹ $P$ ããšããŸãïŒäžè§åœ¢ $ABP$ ã®å€æ¥åãšäžè§åœ¢ $CDP$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ç¹ $P$ ã§ãªããã®ãç¹ $Q$ ïŒäžè§åœ¢ $BCP$ ã®å€æ¥åãšäžè§åœ¢ $DAP$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ç¹ $P$ ã§ãªããã®ãç¹ $R$ ãšãããšïŒ$AQ = 7$ïŒ$AR = 9$ïŒ$QR = 6$ ãšãªããŸããïŒæ£æ¹åœ¢ $ABCD$ ã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC111 (SEGæ¯) | https://onlinemathcontest.com/contests/omc111 | https://onlinemathcontest.com/contests/omc111/tasks/3774 | E | OMC111(E) | 300 | 122 | 224 | [
{
"content": "ã$R_n=\\dfrac{10^n-1}{9}$ ã§ããããïŒ\r\n$$\\displaystyle \\sum_{k=1}^{11111} R_k=\\dfrac{1}{9}\\left(\\sum_{k=1}^{11111}10^k-11111\\right)$$\r\nã§ããïŒããã§ïŒ$\\dfrac{1}{9}(10^9+10^8+\\cdots+10^1)=123456790$ ã§ããããšãå©çšãããšïŒ\r\n$$\\begin{aligned}\r\n\\sum_{k=1}^{11111} R_k &= \\dfrac{1}{9}(10^9+10^8+\\cdots+10^1)(10^{11102}+10^{11093}+\\cdots+10^5)+\\dfrac{111110-11111}{9}\\\\\\\\\r\n&=123456790123456790\\cdots12345679011111\r\n\\end{aligned}$$\r\nã§ããïŒãã㯠$123456790$ ã $(11102-5)\\/9+1=1234$ åç¹°ãè¿ããããåŸã« $11111$ ã䞊ãã æ°ã§ããããïŒæ±ããæ¡å㯠$(1+2+3+4+5+6+7+9+0)\\times 1234 + 5=\\mathbf{45663}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc111/editorial/3774"
}
] | ãåé²æ³è¡šèšã§ $1$ ã $n$ å䞊ãã æ°ã $R_n$ ãšããŸãïŒäŸãã° $R_1=1, R_5=11111$ ã§ãïŒãã®ãšã
$\displaystyle \sum_{k=1}^{11111} R_k$
ã®åäœã®æ°åã®åãæ±ããŠãã ããïŒ |
OMC111 (SEGæ¯) | https://onlinemathcontest.com/contests/omc111 | https://onlinemathcontest.com/contests/omc111/tasks/4599 | F | OMC111(F) | 400 | 71 | 132 | [
{
"content": "ãæ£æŽæ° $m$ ã«å¯ŸãïŒ$m$ ã $2$ ã§å²ãåããæ倧ã®åæ°ã $v(m)$ ãšããïŒ\r\n$${}\\_{2^{20}+1}\\mathrm{C}\\_{n}\r\n=\\dfrac{\\left(2^{20}+1\\right) 2^{20}\\left(2^{20}-1\\right)\\cdots \\left(2^{20}-\\left(n-2\\right)\\right)}{n!}$$ \r\nã§ãããïŒã㟠$1\\leq m\\leq 2^{20}-1$ ã«å¯Ÿã $v(m)=v(2^{20}-m)$ ã«çæããã°ïŒ\r\n$$v\\bigl({}\\_{2^{20}+1}\\mathrm{C}\\_{n}\\bigr)=20+v\\bigl((n-2)!\\bigr)-v\\bigl(n!\\bigr)=20-v\\bigl(n(n-1)\\bigr) $$\r\nã§ããïŒããªãã¡ïŒ$v\\left(n(n-1)\\right)=10$ ãã¿ãã $n$ ãæ±ããã°è¯ãïŒ$n$ ãš $n-1$ ã®å¶å¥ã¯ç°ãªãããšã«æ³šæããã°ïŒ$v(n)=10$ ãŸã㯠$v(n-1)=10$ ã®ãããããæãç«ã€ïŒ\r\n\r\n- $v(n)=10$ ã®ãšãïŒæŽæ° $k\\ (1\\leq k\\leq 512)$ ã«ãã£ãŠ $n=2^{10}(2k-1)$ ãšè¡šãããïŒ\r\n- $v(n-1)=10$ ã®ãšãïŒæŽæ° $k\\ (1\\leq k\\leq 512)$ ã«ãã£ãŠ $n=2^{10}(2k-1)+1$ ãšè¡šãããïŒ\r\n\r\nããã£ãŠïŒãããã®ç·åã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$ \\sum_{k=1}^{512} \\bigl(2\\times 2^{10}(2k-1)+1 \\bigr)=2^{11}\\times 512^2+512=\\bm {536871424}. $$\r\n\r\n\r\nã",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc111/editorial/4599"
}
] | ã${}\_{2^{20}+1}\mathrm{C}\_{n}$ ã $2$ ã§ã¡ããã© $10$ åå²ãåãããããªïŒ$2^{20}+1$ 以äžã®æ£æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC110 | https://onlinemathcontest.com/contests/omc110 | https://onlinemathcontest.com/contests/omc110/tasks/4218 | A | OMC110(A) | 200 | 230 | 270 | [
{
"content": "ãæ±ããçã㯠$4$ ã€ã®ç®±å
šãŠã« $100$ åçãå
¥ãïŒåèš $79$ åã®çãæšãŠãæ¹æ³ã®æ°ãšäžèŽããããïŒæ±ããçã㯠${}\\_{79+3}\\mathrm{C}\\_{3}=\\bf{88560}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc110/editorial/4218"
},
{
"content": "圢åŒçåªçŽæ° $f(x)=1+x+\\ldots+x^{100} = \\frac{1-x^{101}}{1-x}$ ãèãããšïŒè§£ã¯ $f(x)^4$ ã® $321$ 次ã®ä¿æ°ãšäžèŽããïŒ\r\n\r\nè² ã®äºé
å®çãçšãããšïŒçã㯠$\\binom{4}{0}\\binom{321+3}{3}-\\binom{4}{1}\\binom{220+3}{3} +\\binom{4}{2}\\binom{119+3}{3} -\\binom{4}{3}\\binom{18+3}{3} = 88560$ ãšæ©æ¢°çã«èšç®ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc110/editorial/4218/109"
}
] | ããããã$100$ åãŸã§çãå
¥ããããªïŒåºå¥ã§ãã $4$ ã€ã®ç®±ã«ïŒåèšã§ $321$ åã®åºå¥ã§ããªãçãå
¥ããæ¹æ³ã¯äœéããããŸããïŒ |
OMC110 | https://onlinemathcontest.com/contests/omc110 | https://onlinemathcontest.com/contests/omc110/tasks/1328 | B | OMC110(B) | 200 | 258 | 277 | [
{
"content": "**解æ³1.**ã$A$ ãã $BC$ ã«ããããåç·ã®è¶³ã $H$ ãšã, $H$ ã«å¯Ÿã㊠$B$ ãšå¯Ÿç§°ãªç¹ã $D$ ãšããã°, è§åºŠã®æ¡ä»¶ãã\r\n$$45=AB=AD=CD$$\r\nãããã. ããªãã¡ $BH=DH=27$ ã§ãã.\\\r\nããã£ãŠäžå¹³æ¹ã®å®çãã $AH=36$ ã§ãã, æ±ããé¢ç©ã¯ $AH\\times BC\\/2=\\textbf{1782}$ ã§ãã.\r\n\r\n**解æ³2.**ã$\\angle B$ ã®äºçåç·ãš $AC$ ã®äº€ç¹ã $E$ ãšããã°, $AE=5x,EC=11x$ ãšããã.\\\r\nãäžæ¹ã§è§åºŠãèããããšã§äžè§åœ¢ $ABC$ ãš $AEB$ ã¯çžäŒŒã§ããããšãããããã, \r\n$$AB^2=AC\\times AE$$\r\nããã解ã㊠$x=9\\sqrt{5}\\/4$ ãåŸã. æ®ãã®æ±ç©ã¯å®¹æã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc110/editorial/1328"
}
] | ã$AB=45,BC=99,\angle ABC=2\angle ACB$ ãªãäžè§åœ¢ $ABC$ ã®é¢ç©ãæ±ããŠãã ãã. |
OMC110 | https://onlinemathcontest.com/contests/omc110 | https://onlinemathcontest.com/contests/omc110/tasks/4434 | C | OMC110(C) | 400 | 114 | 192 | [
{
"content": "ãæ¡ä»¶ã®åŒãã $α$ 㯠$1$ ã§ãªã $1$ ã® $97$ ä¹æ ¹ã® $1$ ã€ã§ããããšãåãã. ãã㧠$97$ ã¯çŽ æ°ã§ããã®ã§, $97$ ã®åæ°ã§ãªãä»»æã®æŽæ° $t$ ã«ã€ã㊠$t, 2t, 3t, \\dots, 96t$ ã $97$ ã§å²ã£ãäœãã¯çžç°ãªããã, \r\n$$1+\\alpha^t + \\alpha^{2t} + \\cdots + \\alpha^{96t} = 0$$\r\nãæç«ãã. ãããšäºé
å®çãã, çãã¯\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k=1}^{97} (1 + \\alpha^k)^{99}\\alpha^k &= \\sum_{k=1}^{97} \\left(\\sum_{l=0}^{99}{}\\_{99}\\mathrm{C}\\_{l}\\~\\alpha^{kl}\\right)\\alpha^k\\\\\\\\\r\n&=\\sum_{k=1}^{97}\\sum_{l=0}^{99} {}\\_{99}\\mathrm{C}\\_{l}\\~\\alpha^{k(l+1)}\\\\\\\\\r\n&=\\sum_{k=1}^{97} {}\\_{99}\\mathrm{C}\\_{96} \\~\\alpha^{97k} &\\left(\\because l\\neq 96 \\text{ã®ãšã}\\sum_{k=1}^{97}\\alpha^{k(l+1)}=0 \\right)\\\\\\\\\r\n&=97\\cdot {}\\_{99}\\mathrm{C}\\_{96} \\\\\\\\\r\n&= \\bf{15214353}\r\n\\end{aligned}$$\r\nãšèšç®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc110/editorial/4434"
}
] | ãè€çŽ æ° $\alpha$ ã¯ä»¥äžã®åŒãæºãããŸã.
$$1 + \alpha + \alpha^2 + \cdots + \alpha^{96} = 0$$
ãã®ãšã,
$$\sum_{k=1}^{97} (1 + \alpha^k)^{99}\alpha^k$$
ã®å€ãæ±ããŠãã ãã. |
OMC110 | https://onlinemathcontest.com/contests/omc110 | https://onlinemathcontest.com/contests/omc110/tasks/1750 | D | OMC110(D) | 400 | 102 | 188 | [
{
"content": "ã$f(n,k)$ ã®èšç®ã«ãããŠ, å $2$ ã¹ãã®å¯äžãåé¢ããŠèããããšã§ä»¥äžã®çåŒãåŸãïŒ\r\n$$\r\nf(n,k) = \\sum_{i=0}^{n-1} {}\\_{n-1}\\mathrm{C}\\_{k-1} 2^{i} = {}\\_{n-1}\\mathrm{C}\\_{k-1} (2^{n}-1)\r\n$$\r\nãã®ãšã, $500$ 以äžã®æ£æŽæ° $N$ ã«å¯Ÿã㊠$g(N) = f(1000-N,N)$ ãšãããš,\r\n$$\r\n\\frac{g(N+1)}{g(N)} = \\frac{(1000-2N)(999-2N)}{N(999-N)} \\times \\frac{2^{999-N}-1}{2^{1000-N}-1}\r\n$$\r\nããã§, é©åœãªè©äŸ¡ã«ãã£ãŠè¿äŒŒçã« $\\displaystyle \\frac{2^{999-N}-1}{2^{1000-N}-1} \\approx \\frac{1}{2}$ ãšã¿ãªããŠèšç®ããŠã圱é¿ããªãããšãåãã. ããªãã¡\r\n$$g(N+1)\\geq g(N) \\implies 6N^{2} - 5996N + 999000 \\geq 0 \\implies 1 \\leq N \\lt 211.29$$\r\n以äžãã, $N=\\textbf{212}$ ã $g(N)$ ã®æ倧å€ãå¯äžäžãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc110/editorial/1750"
}
] | ãæ£æŽæ° $n\geq k$ ã«å¯ŸããŠ, $n$ åã®æŽæ° $2^{0}, 2^{1}, \cdots ,2^{n-1}$ ã®ãã¡çžç°ãªã $k$ åã®åãšããŠããåŸãå€ãã¹ãŠã®ç·åã $f(n,k)$ ãšããŸã. äŸãã° $f(4,2)$ ã«ã€ããŠ
$$f(4,2) = 3 + 5 + 6 + 9 + 10 + 12 = 45$$
ã§ãïŒ$500$ 以äžã®æ£æŽæ° $N$ ã«ã€ããŠ, $f(1000-N,N)$ ãæ倧å€ããšããã㪠$N$ ã®ç·åãæ±ããŠãã ãã. |
OMC110 | https://onlinemathcontest.com/contests/omc110 | https://onlinemathcontest.com/contests/omc110/tasks/4303 | E | OMC110(E) | 400 | 27 | 76 | [
{
"content": "ãäžè¬ã«ç®±ã $k$ åïŒçã $k$ çš®é¡ããïŒç®± $i$ ã«ç $i$ ãšç $i+1$ ãåãã㊠$c_{i}$ åå
¥ãããšãã®çããèããïŒå $i\\~(1\\leq i\\leq k)$ ã«ã€ããŠç®± $i$ ã«ç $i$ ã $x_i$ åå
¥ãããšã $a\\_{i}=x\\_{i}+c\\_{i+1}-x\\_{i+1}$ ã§ããããšã«æ³šæããã°ïŒæ¬¡ãèããã°ããïŒ\r\n- å $i\\~(1\\leq i\\leq k)$ ã«ã€ã㊠$0\\leq x_i\\leq c_i$ ãã¿ããæŽæ° $k$ åã®çµ $(x_1,\\dots,x_k)$ ã**è¯ãçµ**ãšåŒã¶ããšãšããïŒ$X=(x_1,\\dots,x_k)$ ãè¯ãçµã§ãããšãïŒ$\\varphi(X):=(x\\_{1}-x\\_{2},\\dots,x\\_{k-1}-x\\_{k},x\\_{k}-x\\_{1})$ ãšããŠããåŸããã®ã¯ããã€ãããïŒ\r\n\r\nããã§è¯ãçµ $X=(x_1,\\dots,x_k),X^\\prime=(x_1^\\prime,\\dots,x_k^\\prime)$ ã«ã€ããŠæ¬¡ã¯åå€ã§ããïŒ\r\n- $\\varphi(X)=\\varphi(X^\\prime)$ïŒ\r\n- ããæŽæ° $n$ ãååšãïŒä»»æã® $i~(1\\leq i\\leq k)$ ã«ã€ã㊠$x_i=x_i^\\prime+n$ïŒ\r\n\r\nãŸãè¯ãçµ $X=(x_1,\\dots,x_k)$ ã«ã€ã㊠$(x_1-\\min X,\\dots,x_k-\\min X)$ ãè¯ãçµã§ããããïŒçµå±è¯ãçµ $X$ ã§ãã£ãŠ $\\min X=0$ ãæºãããã®ã®åæ°ãæ°ããã°ããããšããããïŒ\r\nãã㯠$0\\le x\\_{i}\\le c\\_{i}\\ (1\\le i\\le k)$ ãæºããçµ $(x_1,\\dots,x_k)$ ã®åæ°ãã $1\\le x\\_{i}\\le c\\_{i}\\ (1\\le i\\le k)$ ãæºããçµ $(x_1,\\dots,x_k)$ ã®åæ°ãæžããã°æ±ãããïŒçãã¯\r\n$$\\prod\\_{i=1}\\^{k}(c\\_{i}+1)-\\prod\\_{i=1}\\^{k}c\\_{i}$$\r\nã§ããïŒ\\\r\nãç¹ã«æ¬åã«ãããŠã¯ $k=9, c\\_{i}=10$ ã§ããããïŒæ±ããå€ã¯ $11\\^{9}-10\\^{9}=\\mathbf{1357947691}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc110/editorial/4303"
}
] | ã$9$ ã€ã®ç®± $1,2,\dots,9$ ãããïŒãããã« $9$ çš®é¡ã®ç $1,2,\dots,9$ ã次ãã¿ããããã«å
¥ããããšãèããŸãïŒ
- å $i=1,2,\dots,9$ ã«å¯Ÿãç®± $i$ ã«ã¯ ç $i$ ãšç $i+1$ ãåãã㊠$10$ åå
¥ã£ãŠããïŒãã以å€ã®çš®é¡ã®çã¯1ã€ãå
¥ã£ãŠããªãïŒ
ãã ãç $10$ ã¯ç $1$ ãè¡šããã®ãšãïŒãŸã $1$ çš®é¡ã®çããå
¥ã£ãŠããªãç®±ããã£ãŠãæ§ããŸããïŒ
ç®±ã«å
¥ã£ãŠããç $i$ ã®ç·æ°ã $a_i$ ãšãããšãïŒçµ $(a_1,a_2,\dots,a_9)$ ãšããŠããåŸããã®ã¯äœéããããŸããïŒ |
OMC110 | https://onlinemathcontest.com/contests/omc110 | https://onlinemathcontest.com/contests/omc110/tasks/2437 | F | OMC110(F) | 600 | 10 | 54 | [
{
"content": "ã$PQ$ ãš $BC$ ã®äº€ç¹ã $M$ ãšã, $PQ$ ãš $\\triangle{ABC}$ ã®å€æ¥åã®äº€ç¹ã $R~(\\neq P)$ ãšãã.\\\r\nã$A,Q,D,P,E$ ã¯åäžååšäžã«ãããã, $\\angle{QAD}=\\angle{QPD}=\\angle{RPC}$ ã§ãã. äžæ¹ $\\angle{QAD}=\\angle{PRB}$ ã§ãããã, $\\angle{RPC}=\\angle{PRB}$ ã§ãã, $BR\\parallel CP$ ã§ãã. åæ§ã«ã㊠$BP\\parallel CR$ ã§ãããã, åè§åœ¢ $BRCP$ ã¯å¹³è¡å蟺圢ã§ãã, $M$ ã¯ç·å $BC$ ããã³ $PR$ ã®äžç¹ã§ãããšåãã.\\\r\nã $\\triangle{APB}\\sim\\triangle{CPA}$ ã§ãããã, $BP=b$, $CP=c$ ãšãããš, $bc=AP^2=16$ ãšãªã. ãŸã, $\\triangle{BPC}$ ã«ãããŠäœåŒŠå®çãã $b^2+c^2+bc=100$ ã§ãããã, $b^2+c^2=84$ ãšãªã, äžç·å®çãã $PR=2\\sqrt{17}$ ãåŸã.\\\r\nããã㧠$BP$ ãš $\\triangle{ABC}$ ã®å€æ¥åã®äº€ç¹ã $S$ $(\\neq{B})$ ãšãããš, $\\triangle{CPS}$ ã¯æ£äžè§åœ¢ã§ãã, $BP\\times PS=bc=16$ ã§ãã. ãã£ãŠ, æ¹ã¹ãã®å®çãã $PQ=\\sqrt{\\dfrac{64}{17}}$ ã§ãããã, æ±ããå€ã¯ $\\textbf{81}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc110/editorial/2437"
}
] | ã$\angle A=60^\circ,BC=10$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒ
$$\angle{APB}=\angle{BPC}=\angle{CPA}$$
ãã¿ããç¹ $P$ ããšããšïŒ$AP=4$ ãæãç«ã¡ãŸããïŒ$AB$ ãš $CP$ ã®äº€ç¹ã $D$ïŒ$AC$ ãš $BP$ ã®äº€ç¹ã $E$ ãšãïŒäžè§åœ¢ $ABC,ADE$ ããããã®å€æ¥åã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ã $Q$ ãšãããšãïŒ$PQ$ ã®é·ããæ±ããŠãã ããïŒ\
ããã ãïŒçãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\sqrt{\dfrac{a}{b}}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC109 (SEGæ¯) | https://onlinemathcontest.com/contests/omc109 | https://onlinemathcontest.com/contests/omc109/tasks/3985 | A | OMC109(A) | 100 | 319 | 321 | [
{
"content": "ãæ£ $n$ è§åœ¢ã®å€è§ã®å㯠$360\\degree$ ã§ãããã\r\n$$n\\times(180\\degree - 179.9\\degree)=360\\degree$$\r\nãæç«ãã. ãã£ãŠæ±ããå€ã¯ $\\mathbf{3600}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc109/editorial/3985"
}
] | ãããæ£ $n$ è§åœ¢ã«ã€ããŠ, $1$ ã€ã®å
è§ã®å€§ãã㯠$179.9\degree$ ã§ãã. ãã®ãšã $n$ ã®å€ãæ±ããŠãã ãã. |
OMC109 (SEGæ¯) | https://onlinemathcontest.com/contests/omc109 | https://onlinemathcontest.com/contests/omc109/tasks/1395 | B | OMC109(B) | 100 | 313 | 317 | [
{
"content": "ã$5$ ã€ã®é£ç¶ããæ£æŽæ°ã®åã¯, ãããã§æå°ã®ãã®ã $k$ ãšããã° $5k+10$ ãšè¡šãã. ããªãã¡, äžã€ç®ã®æ¡ä»¶ãã¿ããã®ã¯ $15$ 以äžã® $5$ ã®åæ°ãã¹ãŠã§ãã. ãããèžãŸããã°, äºã€ç®ã®æ¡ä»¶ããã¿ããæ£æŽæ°ã¯ $55,555,5555$ ã® $3$ ã€ã§ãã, ãããã®ç·å㯠$\\textbf{6165}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc109/editorial/1395"
}
] | ã以äžã®æ¡ä»¶ããšãã«ã¿ãã $10000$ 以äžã®æ£æŽæ°ããã¹ãŠæ±ã, ãããã®ç·åã解çããŠãã ããïŒ
- é£ç¶ãã $5$ ã€ã®æ£æŽæ°ã®åãšããŠè¡šãã.
- åé²æ³ã§ãã¹ãŠã®æ¡ãåãæ°ãããªã. |
OMC109 (SEGæ¯) | https://onlinemathcontest.com/contests/omc109 | https://onlinemathcontest.com/contests/omc109/tasks/1538 | C | OMC109(C) | 200 | 288 | 312 | [
{
"content": "ã$7,11,13$ ã®æå°å
¬åæ°ã¯ $1001$ ã§ããããïŒæ¡ä»¶ã¯ä»¥äžãšåå€ã§ããïŒ\r\n\r\n- äž $3$ æ¡ãšäž $3$ æ¡ãäžèŽãïŒãããã $3$ ã§å²ãåããªãïŒ\r\n\r\n$3$ æ¡ã®æ£æŽæ°ã $3$ ã§å²ãåããªã確ç㯠$\\dfrac{2}{3}$ ã§ããïŒäž $3$ æ¡ãåºå®ãããšãäž $3$ æ¡ãé©ãããã®ã«ãªã確ç㯠$\\dfrac{1}{1000}$ ã§ããããïŒå
šäœã§æ±ãã確çã¯\r\n$$\\dfrac{2}{3}\\times\\dfrac{1}{1000}=\\dfrac{1}{1500}$$\r\nã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{1501}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc109/editorial/1538"
}
] | ãOMCåã¯ïŒ$6$ æ¡ã®æ£æŽæ° (ããªãã¡ $100000$ ãã $999999$ ãŸã§) ã®ãã¡äžã€ãç確çã§éžã³ãŸããïŒãã®ãšãïŒéžãã æ°ã $3$ ã§å²ãåããªãã $7$ ã§ã $11$ ã§ã $13$ ã§ãå²ãåãã確çãæ±ããŠãã ããïŒãã ãïŒæ±ãã確çã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{b}{a}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC109 (SEGæ¯) | https://onlinemathcontest.com/contests/omc109 | https://onlinemathcontest.com/contests/omc109/tasks/1503 | D | OMC109(D) | 300 | 207 | 241 | [
{
"content": "ã$\\angle PAB=\\theta$ ãšããã°, 以äžã®ããã«èšç®ã§ããïŒ\r\n$$\\angle APB=180^\\circ-\\theta-(60^\\circ-2\\theta)=120^\\circ+\\theta=180^\\circ-2\\theta-(60^\\circ-3\\theta)=\\angle CPB$$\r\nããã¯éè§ã§ãããã, $AB=BC$ ãšäœµããŠäžè§åœ¢ $ABP$ ãš $CBP$ ã¯ååã§ãã, $\\theta=15^\\circ$ ã§ãã.\\\r\nãããããäžè§åœ¢ $ACP$ ãçŽè§äºç蟺äžè§åœ¢ã«ãªãããšãåãããã, æ±ããé¢ç©ã¯ \r\n$$\\triangle PAB=\\frac{1}{2}(\\triangle ABC-\\triangle PCA)=\\frac{1}{2}(4\\sqrt{3}-4)=2\\sqrt{3}-2$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $12+2=\\textbf{14}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc109/editorial/1503"
},
{
"content": "ããŸãç¥ãããŠããªããšæãã®ã§ Ceva ã®å®çã®åå€ãªåœ¢ã玹ä»ããŸãïŒ\r\n\r\n$----------------$\\\r\nCeva ã®å®çã®ç³»\r\n\r\näžè§åœ¢ $ABC$ ã®èŸº $BC,CA,AB$ äžã«ããããç¹$X,Y,Z$ããããšãïŒ\\\r\n$AX,BY,CZ$ ã $1$ ç¹ã§äº€ããããšãš $\\dfrac{\\sin\\angle BAX\\sin\\angle CBY\\sin\\angle ACZ}{\\sin\\angle CAX\\sin\\angle ABY\\sin\\angle BCZ}=1$ ã¯åå€ã§ããïŒ\\\r\n$----------------$\r\n\r\n(蚌æ)\\\r\näžè§åœ¢ $PQR$ ã®é¢ç©ã $|\\triangle PQR|$ ã§è¡šããŸãïŒ\\\r\n$\\dfrac{BX}{CX}=\\dfrac{|\\triangle ABX|}{|\\triangle ACX|}=\\dfrac{\\frac{1}{2}AB\\cdot AX\\cdot\\sin\\angle BAX}{\\frac{1}{2}AC\\cdot AX\\cdot\\sin\\angle CAX}=\\dfrac{AB}{AC}\\cdot\\dfrac{\\sin\\angle BAX}{\\sin\\angle CAX}$\r\nãšãªããŸãïŒ\\\r\nåæ§ã«ïŒ\\\r\n$\\dfrac{CY}{YA}=\\dfrac{BC}{BA}\\cdot\\dfrac{\\sin\\angle CBY}{\\sin\\angle ABY}$\\\r\n$\\dfrac{AZ}{ZB}=\\dfrac{CA}{CB}\\cdot\\dfrac{\\sin\\angle ACZ}{\\sin\\angle BCZ}$\\\r\nãæãç«ã€ã®ã§ïŒããããæãåãããããšã§\\\r\n$\\dfrac{BX}{CX}\\dfrac{CY}{AY}\\dfrac{AZ}{BZ}=\\dfrac{\\sin\\angle BAX\\sin\\angle CBY\\sin\\angle ACZ}{\\sin\\angle CAX\\sin\\angle ABY\\sin\\angle BCZ}$\\\r\nãšãªãã®ã§ïŒããç¥ããã Ceva ã®å®çãããã®ç³»ãçã§ããããšãããããŸãïŒ\\\r\n(蚌æçµ)\r\n\r\n\r\n$\\angle PAB=\\theta$ ãšããŸãïŒ\r\näžã®ç³»ãçšãããšïŒ$AP,BP,CP$ ã $1$ ç¹ã§äº€ãã£ãŠããããšãã\\\r\n$\\dfrac{\\sin\\theta\\sin2\\theta\\sin3\\theta}{\\sin(60^\\circ-\\theta)\\sin(60^\\circ-2\\theta)\\sin(60^\\circ-3\\theta)}=1$\\\r\nãšãªããŸãïŒ$0^\\circ\\lt\\theta\\lt20^\\circ$ ã«ãããŠååã¯å調å¢å ïŒåæ¯ã¯å調æžå°ãšãªãã®ã§ïŒãã®åŒãã¿ãã $\\theta$ ã¯é«ã
$1$ åã§ãïŒ\\\r\nãŸãïŒ$\\theta=15^\\circ$ ã¯ãã®åŒãã¿ããã®ã§ïŒ $\\angle PAB=15^\\circ$ ãããããŸãïŒ\r\n\r\nããšã¯å
¬åŒè§£èª¬ãšåãããã«èšç®ãããšçããæ±ãŸããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc109/editorial/1503/108"
}
] | ãå蟺ã®é·ãã $4$ ã§ããæ£äžè§åœ¢ $ABC$ ã«ãããŠ, å
éšã®ç¹ $P$ ã以äžã®æ¡ä»¶ãã¿ãããŸããïŒ
$$\angle PAB:\angle PBC:\angle PCA=1:2:3$$
ãã®ãšã, äžè§åœ¢ $PAB$ ã®é¢ç©ã¯æ£æŽæ° $a,b$ ã«ãã£ãŠ $\sqrt{a}-b$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC109 (SEGæ¯) | https://onlinemathcontest.com/contests/omc109 | https://onlinemathcontest.com/contests/omc109/tasks/1873 | E | OMC109(E) | 400 | 66 | 123 | [
{
"content": "ã$x^3-6x+6=0$ ã¯å®æ°è§£ $x=k$ ãå¯äžã€ãã€ããšãããã, èæ°è§£ã®å㯠$-k$ ãšãªã. äžæ¹ã§\r\n$$x^4+3x-2=(x^2-x+2)(x^2+x-1)$$\r\nãã, $x^4+3x-2=0$ ã®èæ°è§£ã®ç·å㯠$1$ ã§ãã. ãã£ãŠ, èããã¹ãç·å $s$ 㯠$1-k$ ã§ãããã, ãã®æå°å€é
åŒã¯ä»¥äžã§äžããã, 解çãã¹ãå€ã¯ $\\textbf{969699}$ ã§ãã.\r\n$$-(1-x)^3+6(1-x)-6=x^3-3x^2-3x-1$$\r\nããªã, $x^3-6x+6=0$ ã $k$ ã®æå°å€é
åŒãšãªãããšãã, $s$ ã®æå°å€é
åŒããããã«äžæ¬¡åŒã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc109/editorial/1873"
}
] | ã以äžã® $x$ ã®**èæ°è§£**ã®ç·åã«ã€ããŠïŒãã®æå°å€é
åŒã $P(x)$ ãšãããšãïŒ$P(100)$ ãæ±ããŠãã ããïŒ
$$(x^3-6x+6)(x^4+3x-2)=0$$
ããã§ïŒè€çŽ æ° $\alpha$ ã®**æå°å€é
åŒ**ãšã¯ïŒ$\alpha$ ãæ ¹ã«ãã€æé«æ¬¡ä¿æ° $1$ ã®æçæ°ä¿æ°å€é
åŒã®ãã¡ïŒæ¬¡æ°ãæå°ã®ãã®ãæããŸãïŒ |
OMC109 (SEGæ¯) | https://onlinemathcontest.com/contests/omc109 | https://onlinemathcontest.com/contests/omc109/tasks/1521 | F | OMC109(F) | 400 | 56 | 199 | [
{
"content": "ãæ¡ä»¶ã¯ä»¥äžã®ããã«è¡šçŸã§ãã. ããã§ç¬Šå·ã®éžæãå Žåã®æ°ã®äžéšã§ãã.\r\n$$d_1\\pm d_3\\pm d_5\\pm d_7=0=\\pm d_2\\pm d_4\\pm d_6\\pm d_8$$\r\näžè¬æ§ã倱ãã $d_1\\lt d_3\\lt d_5\\lt d_7$ ããã³ $d_2\\lt d_4\\lt d_6\\lt d_8$ ãšããŠãã, ããã« $d_1=2$ ã«éå®ã㊠$2\\times(4!)^2$ åããã°ãã. ããã§, å蟺å
㧠$3$ ã€ä»¥äžã®ç¬Šå·ãäžèŽããã«ã¯ $2+3+4-9$ ãšããã»ããªã, ãã®ãšãå³èŸºã¯ $5-6-7+8$ (ããã³ãã® $-1$ å) ãšå®ãŸã. ãããã£ãŠ, 䞡蟺ã§å笊å·ã $2$ ã€ãã€çŸããå Žåã以äžèããã°ãã.\\\r\nãããã¯äŸãã° $3$ ä»¥äž $9$ 以äžã®æŽæ° $3$ ã€ã§å $20$ ãäœãæ¹æ³ãããšã«æ°ãäžããã°ãã. 以äžã«ãã®æ¹æ³ããã³å¯Ÿå¿ãã巊蟺ã®ã¿ã瀺ã. ãã®ãšãå³èŸºã¯äžæã«å®ãŸã, ããããçžç°ãªããã®ãåŸããã.\r\n\r\n- $3,8,9 \\to 2-4-6+8,\\quad 2-4-7+9,\\quad 2-5-6+9$\r\n- $4,7,9 \\to 2-3-6+7,\\quad 2-3-8+9,\\quad 2-5-6+9$\r\n- $5,6,9 \\to 2-3-4+5,\\quad 2-3-8+9,\\quad 2-4-7+9$\r\n- $5,7,8 \\to 2-3-4+5,\\quad 2-3-6+7,\\quad 2-4-6+8$\r\n\r\n以äžãã, æ±ããå Žåã®æ°ã¯ $(2+12)\\times2\\times(4!)^2=\\textbf{16128}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc109/editorial/1521"
}
] | ã$d_1,d_2,\cdots,d_8$ ã $\\{2,3,4,\cdots,9\\}$ ã®çœ®æãšããŸã. ããŸOMCåã¯åº§æšå¹³é¢ã®åç¹ã«ãã, $x$ 軞ã®æ£ã®æ¹åãåããŠããŸã. 圌ã¯ç¶ããŠä»¥äžã®æäœã $i=1,2,\cdots,8$ ã®é ã«è¡ããŸãïŒ
- åããŠããæ¹åã«æ²¿ã£ãŠ, è·é¢ $d_i$ ã ãçŽé²ãã.
- ãã®åŸ, $90^\circ$ å·ŠãŸã㯠$90^\circ$ å³ã«åãæ¹åãå€ãã.
æçµçã«OMCåãåã³åç¹ã«å°éãããšã, 圌ã®éã£ãéçãšããŠããåŸããã®ã¯ããã€ãããŸããïŒãã ã, å転ãå転ã§äžèŽãããã®ãåºå¥ããŠæ°ããŸã. ãŸã, OMCåã¯éäžã§åãç¹ã $2$ å以äžéã£ãŠãè¯ããã®ãšããŸã. |
OMC108 | https://onlinemathcontest.com/contests/omc108 | https://onlinemathcontest.com/contests/omc108/tasks/3092 | A | OMC108(A) | 100 | 319 | 319 | [
{
"content": "ãäžåŒã¯ $A(A-2)(A+2)=0$ ãšå€åœ¢ãããããïŒæ±ããæŽæ°è§£ã¯ $A=0, 2, -2$ ã® $\\textbf{3}$ ã€ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc108/editorial/3092"
}
] | ã以äžã®çåŒãæºããæŽæ° $A$ ã¯ããã€ãããŸããïŒ
$$A\times A\times A=A+A+A+A$$ |
OMC108 | https://onlinemathcontest.com/contests/omc108 | https://onlinemathcontest.com/contests/omc108/tasks/3552 | B | OMC108(B) | 200 | 253 | 301 | [
{
"content": "ãè·é¢ $1$ ã§ãã $2$ ç¹ã®éã«ç·åã匵ãããŠãããšãïŒ$9$ ã€ã®ç¹ãã¡ããã©äžåºŠãã€èŸ¿ãçµè·¯ã®æ°ãåãåé¡ã§ãããšè§£éã§ããïŒãã®ãšãïŒäžå¿ãŸã㯠$4$ é
ã®æ Œåç¹ã®ã¿ãå§ç¹ãšãªãåŸãããšã確èªã§ããïŒ\\\r\nãäžå¿ãå§ç¹ãšãããšãïŒæåã«é²ãåãã $4$ éãïŒæ¬¡ã«é²ãåãã $2$ éãããïŒæ®ãã¯äžæã«å®ãŸãïŒ\\\r\nã$4$ é
ã«äœçœ®ããããæ Œåç¹ãå§ç¹ãšãããšãïŒæåã«é²ãåãã $2$ éãããïŒæ®ã㯠$4$ éãããããšã確èªã§ããïŒ$2$ æ¬ç®ã§åãåãã«é²ãã å Žåã $3$ éãã§ïŒçŽäº€ããåãã«é²ãã å Žåã¯äžæã«å®ãŸãïŒïŒ\\\r\nã以äžããïŒæ±ããå Žåã®æ°ã¯ $4\\times 2+4\\times 2\\times 4=\\mathbf{40}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc108/editorial/3552"
}
] | ãçŽäº€åº§æšå¹³é¢äžã«ïŒä»¥äžã§å®çŸ©ããã $9$ ã€ã®æ Œåç¹ããããŸãïŒ
$$\begin{aligned}
P_1&=(-1,1), & P_2&=(0,1), & P_3&=(1,1) \\\\
P_4&=(-1,0), & P_5&=(0,0), & P_6&=(1,0) \\\\
P_7&=(-1,-1), & P_8&=(0,-1), & P_9&=(1,-1)
\end{aligned}$$
ã$1,2,\ldots,9$ ã®äžŠã¹æ¿ã $p_1,p_2,\ldots,p_9$ ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãã¿ãããã®ã¯äœéããããŸããïŒ
- $i=1,2,\ldots,8$ ã«å¯ŸãïŒ$P_{p_i}$ ãš $P_{p_{i+1}}$ ã®è·é¢ã¯ $1$ ã§ããïŒ |
OMC108 | https://onlinemathcontest.com/contests/omc108 | https://onlinemathcontest.com/contests/omc108/tasks/3304 | C | OMC108(C) | 300 | 261 | 285 | [
{
"content": "ãå¶å¥ãèããããšã§ $p, q, r$ ã®ãããã㯠$2$ ã§ããïŒ\r\n\r\n- $p=2$ ã®ãšã\\\r\nã$r^4-6=q$ ã§ããïŒ$r\\neq 5$ ã®ãšã $r^4-6$ 㯠$5$ ã§å²ãåããã®ã§ïŒ $q, r$ ã®ãããã㯠$5$ ã§ããïŒãããã調ã¹ãããšã§ $(p, q, r)=(2, 619, 5)$ ãåŸãïŒ\r\n- $q=2$ ã®ãšã\\\r\nã$3p+2=r^4$ ã§ãããïŒå¹³æ¹æ°ã¯ $3$ ã§å²ã£ãããŸãã $2$ ã«ãªãåŸãªãã®ã§äžé©ïŒ\r\n- $r=2$ ã®ãšã\\\r\nã$16\\gt 3p$ ã«æ³šæããŠæ¢çŽ¢ãããš $(p, q, r)=(3, 7, 2)$ ãåŸãïŒ\r\n\r\nã以äžããæ±ããçµã¯\r\n$$(p, q, r)=(2, 619, 5), (3, 7, 2)$$\r\nã§ããïŒæ±ããç·ç©ã¯ $\\bf{7512}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc108/editorial/3304"
}
] | ãçŽ æ°ã®çµ $(p, q, r)$ ã§ãã£ãŠïŒä»¥äžã®çåŒ
$$3p+q=r^4$$
ãã¿ãããã®ãã¹ãŠã«ã€ããŠïŒ$p+q+r$ ã®**ç·ç©**ãæ±ããŠãã ããïŒ |
OMC108 | https://onlinemathcontest.com/contests/omc108 | https://onlinemathcontest.com/contests/omc108/tasks/3213 | D | OMC108(D) | 400 | 120 | 239 | [
{
"content": "ã$AB=AE$ ããã³ $\\angle{BAE}=2\\angle{CAD}$ ããïŒ$AC$ ã«ã€ã㊠$B$ ãšå¯Ÿç§°ãªç¹ãšïŒ$AD$ ã«ã€ã㊠$E$ ãšå¯Ÿç§°ãªç¹ã¯äžèŽããïŒããã $P$ ãšããã°ïŒ\r\n$$PC=BC=CD=DE=PD$$\r\nãã $\\angle{CPD}=60^\\circ$ ã§ããïŒ$\\angle ABC+\\angle AED= 300^{\\circ}$ ãåŸãïŒãã£ãŠ $ABCDE$ ã®å
è§ã®åã«ã€ããŠ\r\n$$540^{\\circ}=\\angle CDE+300^{\\circ}+91^{\\circ}+22^{\\circ}$$\r\nããïŒè§£çãã¹ãå€ã¯ $540-300-91-22=\\bf{127}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc108/editorial/3213"
}
] | ãå
šãŠã®å
è§ã $180^{\circ}$ æªæºã§ããäºè§åœ¢ $ABCDE$ ã«ãããŠä»¥äžãæç«ããŸãã :
$$\begin{aligned}
&AB=AE,\quad BC=CD=DE,\\\\
&\angle BAE=22^{\circ},\quad \angle CAD=11^{\circ},\quad \angle BCD=91^{\circ}
\end{aligned}$$
ãã®ãšãïŒ$\angle CDE$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ããïŒ |
OMC108 | https://onlinemathcontest.com/contests/omc108 | https://onlinemathcontest.com/contests/omc108/tasks/4024 | E | OMC108(E) | 500 | 75 | 179 | [
{
"content": "ãæ¡ä»¶ãã $f$ ã¯æããã«å
šåå°ã§ããïŒããã§ïŒ\r\n$$f(a_1)=a_2 ,\\quad f(a_2)=a_3, \\quad \\ldots , \\quad f(a_k)=a_1$$\r\nãªãçžç°ãªã $S$ ã®å
ã®çµ $(a_1,\\ldots,a_k)$ ãïŒé·ã $k$ ã®**ãµã€ã¯ã«**ãšãã¶ïŒ\r\nãã ã $(a_1,a_2,\\dots,a_k)$ ãš $(a_2,\\dots,a_k,a_1)$ ãªã©ïŒã·ããããŠäžèŽãããã®ã¯åäžã®ãµã€ã¯ã«ãšã¿ãªãããšãšããïŒ\r\n$f$ ã¯å
šåå°ã§ããããïŒãã¹ãŠã® $S$ ã®å
ã¯ã¡ããã©äžã€ã®ãµã€ã¯ã«ã«å«ãŸããããšã«æ³šæããïŒ\r\nãã®ãšãæ¡ä»¶ã¯ä»¥äžã®ããã«èšãæããããïŒ\r\n\r\n- ä»»æã®ãµã€ã¯ã«ã«ã€ããŠïŒå«ãŸããå
ããã¹ãŠãã®ãµã€ã¯ã«ã®é·ãã®åæ°ã§ããïŒ\r\n\r\nã$k\\geq 4$ ã®ãšã $S$ 㯠$k$ ã®åæ°ã $k$ åæªæºããå«ãŸãªãããšããïŒãµã€ã¯ã«ã®é·ãã¯é«ã
$3$ ã§ããããšãåŸãïŒãŸãïŒé·ã $3$ ã®ãµã€ã¯ã«ã¯é«ã
äžã€ã§ããããïŒããã«å¿ããŠå ŽååãããïŒ\\\r\nãé·ã $3$ ã®ãµã€ã¯ã«ãååšããªããšãïŒå¶æ° $7$ åããé©åœã«ãã¢ãçµãã°ããããïŒãã®ç·æ°ã¯\r\n$${}\\_{7}\\mathrm{C}\\_{0}+{}\\_{7}\\mathrm{C}\\_{2}+{}\\_{7}\\mathrm{C}\\_{4}\\times 3+{}\\_{7}\\mathrm{C}\\_{6}\\times 5\\times 3=232$$\r\nãšèšç®ã§ããïŒ\\\r\nãé·ã $3$ ã®ãµã€ã¯ã«ãååšãããšãïŒãã®äžã«å«ãŸããå¶æ°ã®åæ°ã§å ŽååãããïŒãŸãé·ã $3$ ã®ãµã€ã¯ã«ãå¶æ°ãå«ãŸãªããšãïŒé·ã $3$ ã®ãµã€ã¯ã«ã®äœãæ¹ã¯ $2$ éãããïŒæ®ãã®çµã¿æ¹ã«ã€ããŠã¯äžãšåãã $232$ éãã§ããïŒå¶æ°ã $1$ ã€ã»$2$ ã€ã®å Žåãããããåæ§ã«èšç®ããã°ïŒå
šäœã§æ±ãã $f$ ã®ç·æ°ã¯\r\n$$232+2\\times 232+12\\times76+6\\times26=\\mathbf{1764}$$\r\nã§ããããšããããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc108/editorial/4024"
}
] | ã$S=\\{1,2,3,\dots,15\\}$ ãšããŸãïŒ
次ã®æ¡ä»¶ãã¿ããé¢æ° $f:S\to S$ ã¯ããã€ãããŸããïŒ
- ä»»æã® $S$ ã®å
$x$ ã«å¯ŸããŠïŒ$f^{f(x)}(x)= x$ ãæãç«ã€ïŒ
ãã ãïŒ$f^{f(x)}(x)$ 㯠$\underbrace{f(f(\cdots f}_{f(x)å}(x)\cdots))$ ãæå³ããŸãïŒ |
OMC108 | https://onlinemathcontest.com/contests/omc108 | https://onlinemathcontest.com/contests/omc108/tasks/2805 | F | OMC108(F) | 600 | 8 | 77 | [
{
"content": "ãæŽæ° $N$ ãçšã㊠$\\dfrac{a^2-bc}{2a-b-c}=N$ ãšè¡šãã°, 以äžã®ããã«å€åœ¢ãããïŒ\r\n$$(a-N)^2=(b-N)(c-N)$$\r\nããããïŒæŽæ° $x\\neq 0$ ããã³äºãã«çŽ ãã€çžç°ãªãæ£æŽæ° $y,z$ ã«ãã£ãŠïŒä»¥äžã®ããã«äžæã«è¡šããïŒ\r\n$$a-N=xyz, \\quad b-N=xy^2, \\quad c-N=xz^2$$\r\nãã®ãšãïŒ\r\n$$2a-b-c=-x(y-z)^2, \\quad M=b-c=x(y+z)(y-z)$$\r\nã§ããããïŒ$\\left\\lvert\\dfrac{y-z}{y+z}\\right\\rvert$ ã®ãšãåŸãå€ã $1000$ çš®é¡ã§ãããšè¡šçŸã§ããïŒ$\\gcd(y+z,y-z)\\leq 2$ ã«çæããã°ïŒæ¡ä»¶ã¯ä»¥äžã®ãã¡ã©ã¡ãããã¿ããäºãã«çŽ ãªæ£æŽæ°ã®çµ $(s,t)$ ãåèšã§ $1001$ çµååšããããšãšè¡šçŸã§ããããšããããïŒ\r\n\r\n- $st\\mid M$ ã〠$s,t$ ã¯ãšãã«å¥æ°ã§ããïŒ\r\n- $4st\\mid M$ ã〠$s,t$ ã¯å¶å¥ãäžèŽããªãïŒ\r\n\r\nãã㧠$1001$ ã§ããã®ã¯ $(s,t)=(1,1)$ ãå«ãŸããããã§ããïŒããŸïŒ$M$ ãçŽ å æ°å解ãã圢ã\r\n$$M=2^{q_{1}}p_2^{q_2}\\cdots p_n^{q_n}$$\r\nã§è¡šãã°ïŒåè
ã®æ¡ä»¶ãã¿ããçµã¯\r\n$$(2q_2+1)(2q_3+1)\\cdots(2q_n+1)$$\r\néãããïŒåŸè
ã®æ¡ä»¶ãã¿ããçµã¯\r\n$$2\\max\\\\{q_1-2,0\\\\}\\times(2q_2+1)\\cdots(2q_n+1)$$\r\néãããïŒããªãã¡ïŒåèšã§ã¯ä»¥äžã $1001=7\\times 11\\times 13$ ãšçããããšãæ¡ä»¶ã§ããïŒ\r\n$$\\begin{cases}\r\n(2q_2+1)(2q_3+1)\\cdots(2q_n+1) && (q_1\\leq 2) \\\\\\\\\r\n(2q_1-3)(2q_2+1)(2q_3+1)\\cdots(2q_n+1) && (q_1\\geq3) \\\\\\\\\r\n\\end{cases}$$\r\nããããã調ã¹ãããšã§ïŒæ±ããæå°å€ã¯ $2^8\\times 3^5\\times 5^3=\\textbf{7776000}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc108/editorial/2805"
},
{
"content": "$$\\frac{a^2-bc}{2a-b-c}=\\frac{a^2-b(b-M)}{2a-b-(b-M)}=\\frac{a^2-b^2+bM}{2a-2b+M}=b+\\frac{(a-b)^2}{2(a-b)+M}$$\r\n$a-b=x$ãšãããš $|2a-b-c|=|2x+M|$. ãããŠ, $a, b, c$ã¯ãã¹ãŠçžç°ãªãããšãã $x\\neq 0, -M$ , ã€ãŸã $|2x+M|\\neq M$ ãåãã. \r\n$$\\frac{a^2-bc}{2a-b-c}=b+\\frac{x^2}{2x+M}=b+\\frac{2x-M+\\frac{M^2}{2x+M}}{4}=b-x+\\frac{\\frac{M^2}{2x+M}-(2x+M)}{4}$$\r\n$\\frac{M^2}{s}-s$ãæŽæ°ã§ãã$4$ã§å²ãåãããšã $s$ãš$M$ã®å¶å¥ãäžèŽããããšãåããã®ã§, $2x+M$ãæŽæ°$s$ã«çœ®ãæããŠãè¯ã.ãããããããã\r\n$\\frac{\\frac{M^2}{s}-s}{4}$ãæŽæ°ã«ãªããããªæŽæ°$s$ãã¹ãŠã§, $|s|$ã®åãããå€ã$1000$çš®é¡, ã€ãŸã$\\frac{\\frac{M^2}{s}-s}{4}$ãæŽæ°ã«ãªããããªæ£æŽæ°$s$ã®åæ°ã$s=M$ãå«ããŠ$1001$åã«ãªãæå°ã®$M$ãèŠã€ããã°ãã.\\\r\n$M$ãå¥æ°ã®ãšã, $\\frac{M^2}{s}-s$ãæŽæ°ãªãå¿
ç¶çã«$4$ã®åæ°ã«ãªãã®ã§, $M^2$ã®æ£ã®çŽæ°ã$1001$ã§ããæå°ã®$M$ãæ±ããã°ãã. ãã®ãããªæ°ã¯$3^6 \\times 5^5 \\times 7^3$.\\\r\n$M$ã4ã®åæ°ã§ã¯ãªãå¶æ°ã®ãšã, $s$ãå¶æ°ã§ããããšãèšç®ã«ãããããã®ã§, $M=2m, s=2t$ãšãããš, $\\frac{\\frac{M^2}{s}-s}{4}=\\frac{\\frac{m^2}{t}-t}{2}$ã$m$ã¯æ£ã®çŽæ°ã$1001$åãã€å¥æ°ãªã®ã§, æå°ã®$M$㯠$2 \\times 3^6 \\times 5^5 \\times 7^3$.\\\r\n$M$ã$4$ã®åæ°ã®æ, $s$ã$4$ã®åæ°ã§ããããšãèšç®ã«ãããããã®ã§, $M=4m, s=4t$ãšãããš, $\\frac{\\frac{M^2}{s}-s}{4}=\\frac{m^2}{t}-t$ã$m$ã¯æ£ã®çŽæ°ã$1001$åæã€æ£æŽæ°ãªã®ã§, æå°ã®$M$㯠$2^8 \\times 3^5 \\times 5^3$.\\\r\nãã£ãŠæå°ã®$M$ã¯$2^8 \\times 3^5 \\times 5^3$.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc108/editorial/2805/105"
}
] | ãããåºå®ãããæ£æŽæ° $M$ ã«å¯ŸããŠïŒ$b-c=M$ ãã¿ããïŒã〠$2a-b-c\neq 0$ ã $a^2-bc$ ãå²ããããããªçžç°ãªãæŽæ°ã®çµ $(a,b,c)$ å
šäœãèãããšïŒ$|2a-b-c|$ ã®ãšãåŸãå€ã¯ã¡ããã© $1000$ çš®é¡ã§ãã£ããšãããŸãïŒ\
ããã®ãã㪠$M$ ãšããŠããããæå°å€ãæ±ããŠãã ããïŒ |
OMC107 (for beginners) | https://onlinemathcontest.com/contests/omc107 | https://onlinemathcontest.com/contests/omc107/tasks/4782 | A | OMC107(A) | 100 | 300 | 331 | [
{
"content": "ãåã®äœããé ã«èãããšïŒã©ã®äœãæ°ã®éžã³æ¹ã¯ $9$ éãããïŒåã®äœã¯ $1,2,\\dots,9$ïŒãã以éã®äœã¯ $0,1,\\dots,9$ ã®ãã¡äžã€åã®äœãšç°ãªããã®ïŒïŒ\r\nãã£ãŠæ±ããåæ°ã¯ $9^{4}=\\mathbf{6561}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc107/editorial/4782"
}
] | ãã©ã®é£ãåã $2$ ã€ã®äœã®æ°ãç°ãªããããªïŒåé²æ³è¡šèšã§ $4$ æ¡ïŒ$1000$ ä»¥äž $9999$ 以äžïŒã®æ£æŽæ°ã¯ããã€ãããŸããïŒ |
OMC107 (for beginners) | https://onlinemathcontest.com/contests/omc107 | https://onlinemathcontest.com/contests/omc107/tasks/1546 | B | OMC107(B) | 100 | 325 | 327 | [
{
"content": "ãæŸåãã, 竹åãã, æ¢
åããã®çŸåšã®å¹Žéœ¢ããããã $x,y,z$ ãšãããš, \r\n$$y=4z,\\quad x-1=2(y-1),\\quad x-3=12(z-3)$$\r\n\r\nãæç«ãã. ããã解ãããšã§\r\n$x=\\textbf{63}, y=32, z=8$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc107/editorial/1546"
}
] | ã以äžã§ã¯, ç»å Žäººç©ã®å¹Žéœ¢ã¯ãã¹ãŠæºå¹Žéœ¢ïŒèªçããæã $0$ æ³ãšã, 以åŸèªçæ¥ãè¿ãããã³ã« $1$ æ³æ³ããšãïŒã§èãããã®ãšããŸã.\
ãæŸåãã, 竹åãã, æ¢
åãã㯠$3$ äžä»£ã®èŠªåã§ã. çŸåš, 竹åããã®å¹Žéœ¢ã¯æ¢
åããã®å¹Žéœ¢ã® $4$ åã§ã. ãŸã, ä»ããã¡ããã© $1$ 幎åã®ãšãæŸåããã®å¹Žéœ¢ã¯ç«¹åããã®å¹Žéœ¢ã® $2$ åã§ãã. ããã«, ä»ããã¡ããã© $3$ 幎åã«ã¯æŸåããã®å¹Žéœ¢ã¯æ¢
åããã®å¹Žéœ¢ã® $12$ åã§ãã. ãã®ãšã, **çŸåšã®æŸåããã®å¹Žéœ¢**ãçããŠãã ãã. |
OMC107 (for beginners) | https://onlinemathcontest.com/contests/omc107 | https://onlinemathcontest.com/contests/omc107/tasks/4137 | C | OMC107(C) | 200 | 290 | 322 | [
{
"content": "ãäž $2$ æ¡ã®åã®æ倧å€ã¯ $9+9=18$ ã§ãããã, äž $2$ æ¡ã®åãšããŠããåŸããã®ã¯ $1$ ãã $9$ ã§ãã. ããã§, åã®äœã $0$ ã«ãªããªãããšã«æ³šæãã.\r\n\r\n- äž $2$ æ¡ã®åã $k~(k\\leq4)$ ã®ãšã\\\r\n äž $2$ æ¡ãšããŠããåŸããã®ã¯ $k$ éã,äž $2$ æ¡ãšããŠããåŸããã®ã¯ $2k+1$ éãååš. \r\n\r\n- äž $2$ æ¡ã®åã $k~(k\\geq5)$ ã®ãšã\\\r\n äž $2$ æ¡ãšããŠããåŸããã®ã¯ $k$ éã, äž $2$ æ¡ãšããŠããåŸããã®ã¯ $(18-2k)+1$ éãååš. \r\n\r\nããã£ãŠ, æ±ããçãã¯\r\n$$\\sum_{k=1}^4k(2k+1)+\\sum_{k=5}^9k((18-2k)+1)=\\mathbf{225}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc107/editorial/4137"
}
] | ã$4$æ¡ã®æ£æŽæ°ã®ãã¡, 以äžã®æ¡ä»¶ãæºãããã®ã¯ããã€ã§ããïŒ
- äž $2$ æ¡ã®åãäž $2$ æ¡ã®åã® $2$ åã§ãã.
äŸãã°, $2022$ ã¯æ¡ä»¶ãæºãã, $2021$ ã $2023$ ã¯æ¡ä»¶ãæºãããŸãã. |
OMC107 (for beginners) | https://onlinemathcontest.com/contests/omc107 | https://onlinemathcontest.com/contests/omc107/tasks/1719 | D | OMC107(D) | 200 | 239 | 278 | [
{
"content": "ã$\\cos\\angle A$ ãæå°åããã°ãã. $AC=6BC$ ã«çæããã°, äœåŒŠå®çãã\r\n$$\\cos\\angle A=\\dfrac{35BC^2+1}{12BC}=\\dfrac{35}{12}BC+\\dfrac{1}{12BC}\\geq \\dfrac{\\sqrt{35}}{6}$$\r\nãã ãæåŸã§çžå ã»çžä¹å¹³åã®é¢ä¿ãçšãã. çå·ã¯ $BC=\\sqrt{\\dfrac{1}{35}}$ ã§æç«ãããã, 解çãã¹ãå€ã¯ $\\textbf{36}$ ã§ãã.\\\r\nããªã, $A,B$ ãåºå®ãããšã $C$ 㯠(ã¢ããããŠã¹ã®) ååšäžãåããã, ããã« $A$ ããåŒããæ¥ç·ãšã®æ¥ç¹ãšã㊠$C$ ããšã£ããšããææã®æ§å³ãå®çŸããããšã«çæããŠã解ãããšãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc107/editorial/1719"
},
{
"content": "ã幟äœçãªè§£æ³ãæžããŠãããŸã.\r\n\r\n$A(0,0), B(1,0)$ ãšãããš, $C$ ã®ééé å㯠$(\\dfrac{6}{7},0)$ ãš $(\\dfrac{6}{5},0)$ ãçµãã ç·åãçŽåŸãšããåã«ãªããã, $D(\\dfrac{36}{35},0)$ ãšå®çŸ©ãããš $C$ ã®ééé å㯠$D$ ãäžå¿ãšããååŸ $\\dfrac{6}{35}$ ã®åã§ãã.\r\n\r\nããã§, åé¡æã§äžããããæ¡ä»¶ãæºããã®ã¯ $\\angle ACD=90^\\circ$ ã®ãšãã§ãã, ãã㯠$AD:DC=\\dfrac{36}{35}:\\dfrac{6}{35}=6:1$ ãã$AD:DC:CA=6:1:\\sqrt{35}$ ãšåå€ã§ãã.\r\n\r\n以äžããåé¡æã§äžããããæ¡ä»¶ãæºãããšã, $BC=AD*\\dfrac{AC}{AD}*\\dfrac{BC}{AC}=\\dfrac{36}{35}*\\dfrac{\\sqrt{35}}{6}*\\dfrac{1}{6}=\\sqrt{\\dfrac{1}{35}}$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc107/editorial/1719/103"
},
{
"content": "ãæ£åŒŠå®çãã $\\sin \\angle B = 6\\sin \\angle A$ ã ãã $\\sin \\angle A \\leq \\dfrac 16$ ã§ããïŒ$\\angle A$ ã¯éè§ã§ããããïŒ$\\sin \\angle A = \\dfrac 16$ ããªãã¡ $\\angle B$ ãçŽè§ã®æã« $\\angle A$ ã¯æ倧ãšãªãïŒãã®ãšã $BC$ ã®é·ã㯠$\\sqrt{\\dfrac{1}{35}}$ ãšèšç®ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{36}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc107/editorial/1719/104"
}
] | ã$AB=1$ ããã³ $AC:BC=6:1$ ãªãäžè§åœ¢ $ABC$ ã§ãã£ãŠ, $\angle A$ ã®å€§ãããæ倧ã§ãããã®ã«ã€ããŠ, $BC$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $x,y$ ã«ãã£ãŠ $\sqrt{\dfrac{x}{y}}$ ãšè¡šããŸã. $x+y$ ã解çããŠãã ãã. |
OMC107 (for beginners) | https://onlinemathcontest.com/contests/omc107 | https://onlinemathcontest.com/contests/omc107/tasks/3220 | E | OMC107(E) | 300 | 187 | 237 | [
{
"content": "ã$\\\\{a_n\\\\}$ ã«ã€ããŠïŒ$na_{n+1}=(n+2)a_n$ ããªãã¡\r\n$$\\frac{a_n}{n(n+1)}=\\frac{a_{n+1}}{(n+1)(n+2)}$$\r\n$\\\\{b_n\\\\}$ ã«ã€ããŠãåæ§ã«èããããšã§ïŒä»¥äžã®æç«ããããïŒ\r\n$$a_n=2n( n+1),\\quad b_n=\\dfrac{2\\times 10000}{n(n+1)}$$\r\nãã㧠$x+\\dfrac{10000}{x}$ 㯠$x=\\sqrt{10000}=10^2$ ã§æ¥µå°å€ããšãããšã«æ³šæããã°ïŒ\r\næå°å€ãäžãã $n$ ã®åè£ã¯ $n=9,10$ ã«çµããïŒå®éã«æ¯èŒããããšã§ $n=10$ ã®ãšãæå°å€ $a_{10}+b_{10}=\\dfrac{4420}{11}$ ããšãïŒè§£çãã¹ãå€ã¯ $\\textbf{4431}$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc107/editorial/3220"
}
] | ãæ°å $\\{a_n\\},\\{b_n\\}$ ã, $a_1=4,b_1=10000$ ããã³ $n=1,2,\ldots$ ã«å¯Ÿã以äžãæºãããŸã.
$$n(a_{n+1}-a_n)=2a_n,\quad n(b_{n+1}-b_n)=-2b_{n+1}$$
ãã®ãšã, $a_n+b_n$ ã®æå°å€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC107 (for beginners) | https://onlinemathcontest.com/contests/omc107 | https://onlinemathcontest.com/contests/omc107/tasks/3202 | F | OMC107(F) | 400 | 113 | 212 | [
{
"content": "ããŸãïŒçŽ ã¹ã $a=p^x$ ã«å¯Ÿã㊠$f(a)$ ãèãããïŒãã®ãšãïŒ\r\n\r\n- $p=2$ ã〠$x=1$ ã®ãšãïŒ$f(a)$ ã¯æŽæ°ã§ãªãïŒ\r\n- $p\\not\\equiv 1\\pmod{3}$ ã〠$x=2$ ã®ãšãïŒ$f(a)$ ã¯æŽæ°ã§ãªãïŒ\r\n\r\nãããããïŒ$m$ ã¯å¥æ°ã§ããïŒã〠$3^2$ ããã³ $5^2$ ã§å²ãåããªãïŒäžæ¹ã§ïŒ\r\n\r\n- $p\\neq 2$ ã〠$x=1$ ã®ãšãïŒ$f(a)$ ã¯æŽæ°ã§ããïŒ\r\n- $p\\equiv 1\\pmod{3}$ ã〠$x=2$ ã®ãšãïŒ$f(a)$ ã¯æŽæ°ã§ããïŒ\r\n\r\nãããã£ãŠïŒ $f$ ãä¹æ³çã§ããïŒ$m\\leq 100$ 㯠$7$ ã§é«ã
$2$ åïŒ$11$ 以äžã®çŽ æ°ã§é«ã
$1$ åããå²ãåããªãããšãèžãŸããã°ïŒ$3^2$ ããã³ $5^2$ ã§å²ãåããªã $100$ 以äžã®å¥æ°ã¯ãã¹ãŠæ¡ä»¶ãã¿ããïŒãããã®ç·å㯠$\\textbf{2076}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc107/editorial/3202"
}
] | ãæ£ã®æŽæ° $m$ ã«å¯ŸãïŒãã®æ£ã®çŽæ°ãã¹ãŠã®çžå å¹³åã $f(m)$ ã§è¡šããŸãïŒ$a$ ã $m$ ã®æ£ã®çŽæ°ã§ãããšãïŒ$f(a)$ ãåžžã«æŽæ°ã«ãªããããªïŒ$1$ ä»¥äž $100$ 以äžã®æŽæ° $m$ ã®ç·åãæ±ããŠãã ããïŒ |
IMO2022æ¥æ¬ä»£è¡šäž»å¬ ããµãŒã¢ã³æ¯ã Day2 | https://onlinemathcontest.com/contests/imo2022-day2 | https://onlinemathcontest.com/contests/imo2022-day2/tasks/5131 | A | ãµãŒã¢ã³æ¯ åé¡4 | 500 | 23 | 45 | [
{
"content": "ããŸã $|S|$ ãæ±ãã. ä»»æã® $0\\le i\\le 6,0\\le j\\le 10$ ã«ã€ããŠ, $7$ ã§å²ã£ãŠ $i$ äœã $11$ ã§å²ã£ãŠ $j$ äœã $0$ ä»¥äž $76$ 以äžã®æŽæ°ã¯ãã äžã€ååšãããã, $|S|$ ã¯ä»¥äžã®äºã€ã®åé¡ã®çãã®ç©ã«çããããšãåãã.\r\n\r\n----\r\n**åé¡A.**ã瞊 $2022$ ãã¹æšª $712$ ãã¹ã®ãã¹ç®ããããŸã. åãã¹ã«ã¯ $\\bf{6}$ 以äžã®éè² æŽæ°ãæžã蟌ãŸããŠãã, äžãã $i$ è¡ç®, å·Šãã $j$ åç®ã®ãã¹ã«æžãããæ°ã $a_{i, j}$ ãšãããš, 以äžãå
šãŠæç«ãããããªæžã蟌ã¿æ¹ãäœéããããçããŠãã ãã. \r\n- ä»»æã® $1\\le i\\le 2022, 1\\le j\\le 707$ ã«ã€ããŠ, $a_{i,j} + 2a_{i,j+1} + \\cdots + 6a_{i, j+5}$ 㯠$7$ ã®åæ°ã§ãã. \r\n- ä»»æã® $1\\le i\\le 2017, 1\\le j\\le 707$ ã«ã€ããŠ, $a_{i,j} + 2a_{i+1,j+1} + \\cdots + 6a_{i+5, j+5}$ 㯠$7$ ã®åæ°ã§ãã. \r\n\r\n**åé¡B.**ã瞊 $2022$ ãã¹æšª $712$ ãã¹ã®ãã¹ç®ããããŸã. åãã¹ã«ã¯ $\\bf{10}$ 以äžã®éè² æŽæ°ãæžã蟌ãŸããŠãã, äžãã $i$ è¡ç®, å·Šãã $j$ åç®ã®ãã¹ã«æžãããæ°ã $a_{i, j}$ ãšãããš, 以äžãå
šãŠæç«ãããããªæžã蟌ã¿æ¹ãäœéããããçããŠãã ãã. \r\n- ä»»æã® $1\\le i\\le 2013, 1\\le j\\le 712$ ã«ã€ããŠ, $a_{i,j} + 2a_{i+1,j} + \\cdots + 10a_{i+9, j}$ 㯠$11$ ã®åæ°ã§ãã.\r\n- ä»»æã® $1\\le i\\le 2013, 10\\le j\\le 712$ ã«ã€ããŠ, $a_{i,j} + 2a_{i+1,j-1} + \\cdots + 10a_{i+9, j-9}$ 㯠$11$ ã®åæ°ã§ãã.\r\n----\r\nãŸãåé¡Aã解ã(å®ã¯å
šãåæ§ã®è°è«ã«ãã£ãŠåé¡Bã解ãã). äžåŒãé©åœã«è¶³ãåŒãããããšã§ä»¥äžãåŸã.\r\n\r\n- ä»»æã® $1\\le i\\le 2022, 1\\le j\\le 705$ ã«ã€ã㊠$a_{i,j}=a_{i, j+7}$\r\n- ä»»æã® $1\\le i\\le 2015, 1\\le j\\le 705$ ã«ã€ã㊠$a_{i,j}=a_{i+7, j+7}$\r\n\r\nãããã $a_{i,j} (1\\le i\\le 7, 1\\le j\\le 7)$ ã®æ±ºãæ¹ã®ã¿èããã°ããããšãããã. 以äžæ·»åã $7$ ãè¶
ãããã®ã«ã€ããŠã¯é©å® $7$ ãåŒããŠèããããšãšãã. $a_{i,j} (1\\le i\\le 7, 1\\le j\\le 7)$ ãæºããã¹ãæ¡ä»¶ãäœã§ããããèãããš,\r\n\r\n**æ¡ä»¶A**ãä»»æã® $1\\le i\\le 7$ ã«ã€ããŠ, $a_{i,1} + a_{i,2} + \\cdots + a_{i, 7}$ 㯠$7$ ã®åæ°ã§ãã. \\\r\n**æ¡ä»¶B**ãä»»æã® $1\\le i\\le 7$ ã«ã€ããŠ, $a_{i,1} + a_{i+1,2} + \\cdots + a_{i+6, 7}$ 㯠$7$ ã®åæ°ã§ãã.\\\r\n**æ¡ä»¶C**ãä»»æã® $1\\le i\\le 7$ ã«ã€ããŠ, $a_{i,1} + 2a_{i,2} + \\cdots + 6a_{i, 6}$ 㯠$7$ ã®åæ°ã§ãã. \\\r\n**æ¡ä»¶D**ãä»»æã® $1\\le i\\le 7$ ã«ã€ããŠ, $a_{i,1} + 2a_{i+1,2} + \\cdots + 6a_{i+5, 6}$ 㯠$7$ ã®åæ°ã§ãã. \r\n\r\nããããã¹ãŠãæºãããšã, ãŸããã®æã«éã£ãŠåé¡Aã®æ¡ä»¶ãæºããããšãåãã. ããããæºããæžã蟌ã¿æ¹ãèããåã«, äžæ¬¡å
ã«ãã以äžã®åé¡ãèããŠã¿ãã.\r\n\r\n----\r\n**åé¡C.**ã瞊 $1$ ãã¹æšª $7$ ãã¹ã®ãã¹ç®ããããŸã. åãã¹ã«ã¯ $6$ 以äžã®éè² æŽæ°ãæžã蟌ãŸããŠãã, å·Šãã $j$ åç®ã®ãã¹ã«æžãããæ°ã $a_{j}$ ãšãããš, 以äžãå
šãŠæç«ãããããªæžã蟌ã¿æ¹ãäœéããããçããŠãã ãã. \r\n- $a_{1} + a_{2} + \\cdots + a_{7}$ 㯠$7$ ã®åæ°ã§ãã.\r\n- $a_{1} + 2a_{2} + \\cdots + 6a_{6}$ 㯠$7$ ã®åæ°ã§ãã.\r\n\r\n----\r\n\r\n$ 7 $ ãã¹ã®ãã¡é©åœãª $ 5 $ ãã¹ã«èªç±ã«æ°ãæžã蟌ãã æ, æ®ãã® $ 2 $ ãã¹ã®æ°ã®æžã蟌ã¿æ¹ã§ãã£ãŠ $ 2 $ ã€ã®æ¡ä»¶åŒãæºãããã®ã¯ãã äžã€ããã®ã§, ãã®åé¡ã®çã㯠$ 7^{5} $ ã§ãã. ãããšåãããã« $ 49 $ ãã¹ã®ãã¡ããã€ãã«èªç±ã«æ°ãæžã蟌ã¿, æ®ãã®ãã¹ã§æ¡ä»¶ãæºããããã«èª¿æŽããŠããããšãèãã. $ 7 $ ã§ãªã $ 3 $ ã ã£ãå ŽåïŒå
šãŠ $ 0 $ ãå
šãŠ $ 1 $ ãå
šãŠ $ 2 $ ãã® $ 3 $ éãïŒã®èŠ³å¯ãæºããã¹ãå®è³ªçãªæ¡ä»¶åŒã $ 28 $ åããå°ãå°ãªãããšãªã©ãèæ
®ã, $ a_{i,j} (1\\le i\\le 5, 1\\le j\\le 5) $ ãèªç±ã«æ±ºããããšãèãã. ãã®æåé¡Cãšåæ§ã®èŠ³å¯ã«ããæ¡ä»¶A,Cãæºããããã« $ a_{i,j} (1\\le i\\le 5, 6\\le j\\le 7) $ ãäžæã«å®ãŸã, æ¡ä»¶B,Dãæºããããã« $ a_{i,j} (6\\le i\\le 7, 1\\le j\\le 7) $ ãäžæã«å®ãŸã. ãã®æ, ãŸã æãç«ã€ãããããªãåŒã $ 4 $ ã€ããã, ãããã«ã€ããŠããã§ã«æãç«ã£ãŠãã $ 24 $ åã®åŒãé©åœã«è¶³ãåŒãããããšã§æç«ã確èªã§ãã. ãã£ãŠ $ 25 $ ãã¹ãèªç±ã«æ±ºãããšæ¡ä»¶ãæºããæ®ãã®ãã¹ã®åãæ¹ãäžåºŠ $1$ éãããããåé¡Aã®çã㯠$ 7^{25} $ ãšããã. åæ§ã«ããŠåé¡Bã®çã㯠$11^{81}$ ãšããããã $ |S|=7^{25}\\times 11^{81} $ ãåŸããã. \\\r\nã$x,y$ ãæ±ãããïŒ\r\n$$680\\equiv 1 \\pmod 7,\\quad 680\\equiv 9\\pmod{11}$$\r\nã§ããã®ã§, äžãšåæ§ã«èããã° $a_{1,1} = a_{680,680}$ ãšåé¡Aã®æ¡ä»¶ãæºããåãæ¹ã¯ $7^{25}$ éã, $a_{1,1} = a_{680,680}$ ãšåé¡Bã®æ¡ä»¶ãæºããåãæ¹ã¯ $11^{81-1}$ éãããããšãåãã, $x = 7^{25}\\times 11^{80}$ ãåŸã. ãŸã\r\n$$1003\\equiv2\\pmod7,\\quad79\\equiv2\\pmod{11}$$\r\nã§ããã®ã§, $a_{1,1} = a_{1003,79}$ ãšåé¡Aã®æ¡ä»¶ãæºããåãæ¹ã¯ $7^{25-1}$ éã, $a_{1,1} = a_{1003,79}$ ãšåé¡Bã®æ¡ä»¶ãæºããåãæ¹ã¯ $11^{81-1}$ éãããããšãåãã, $y = |S| - 7^{24}\\times11^{80} = 76\\times 7^{24}\\times11^{80}$ ãåŸã. 以äžããæ±ããçã㯠$\\bf{8100}$ ãšèšç®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/imo2022-day2/editorial/5131"
}
] | ã瞊 $2022$ ãã¹æšª $712$ ãã¹ã®ãã¹ç®ããããŸã. åãã¹ã«ã¯ $76$ 以äžã®éè² æŽæ°ãæžã蟌ãŸããŠãã, äžãã $i$ è¡ç®, å·Šãã $j$ åç®ã®ãã¹ã«æžãããæ°ã $a_{i, j}$ ãšãããš, 以äžãå
šãŠæç«ããŸãã.
- ä»»æã® $1\le i\le 2022, 1\le j\le 707$ ã«ã€ããŠ, $a_{i,j} + 2a_{i,j+1} + \cdots + 6a_{i, j+5}$ 㯠$7$ ã®åæ°ã§ãã.
- ä»»æã® $1\le i\le 2013, 1\le j\le 712$ ã«ã€ããŠ, $a_{i,j} + 2a_{i+1,j} + \cdots + 10a_{i+9, j}$ 㯠$11$ ã®åæ°ã§ãã.
- ä»»æã® $1\le i\le 2017, 1\le j\le 707$ ã«ã€ããŠ, $a_{i,j} + 2a_{i+1,j+1} + \cdots + 6a_{i+5, j+5}$ 㯠$7$ ã®åæ°ã§ãã.
- ä»»æã® $1\le i\le 2013, 10\le j\le 712$ ã«ã€ããŠ, $a_{i,j} + 2a_{i+1,j-1} + \cdots + 10a_{i+9, j-9}$ 㯠$11$ ã®åæ°ã§ãã.
ãã®ãããªæžã蟌ã¿æ¹å
šãŠã®éåã $S$ ãšããŸã. $S$ ã®å
ã®ãã¡, $a_{1,1} = a_{680,680}$ ãæºãããã®ã®åæ°ã $x$, $a_{1,1} \neq a_{1003,79}$ ãæºãããã®ã®åæ°ã $y$ ãšãããšã, $x\neq y$ ãšãªãããšã蚌æã§ããŸã. $|x-y|$ ã®æ£ã®çŽæ°ã®åæ°ã解çããŠãã ãã. |
IMO2022æ¥æ¬ä»£è¡šäž»å¬ ããµãŒã¢ã³æ¯ã Day2 | https://onlinemathcontest.com/contests/imo2022-day2 | https://onlinemathcontest.com/contests/imo2022-day2/tasks/4598 | B | ãµãŒã¢ã³æ¯ åé¡5 | 600 | 23 | 84 | [
{
"content": "ããŸã, $4a+b^2=n^2$ ãã, $n^2-4a$ ã¯å¹³æ¹æ°ã§ãã. ãã®ãšã, $t$ ã®äºæ¬¡æ¹çšåŒ\r\n$$t^2-nt+a=0$$\r\nã®(éè€åºŠèŸŒã¿ã§)äºã€ã®è§£ $x, y$ ã¯ããããæ£ã®æŽæ°ã§ãã. åŸã£ãŠ, 解ãšä¿æ°ã®é¢ä¿ãã\r\n$$n=x+y, a=xy$$\r\nãšããããšãã§ãã. $ac+4=n^2$ ã«ããã代å
¥ããã°, æ¡ä»¶åŒã¯\r\n$$\\frac{(x+y)^2-4}{xy}=2+\\frac{x^2+y^2-4}{xy}$$\r\nãéè² æŽæ°ã«ãªãããšãšåå€ã§ãã. $(x, y)=(1, 1)$ ãé€ãã°, ãããéè² æŽæ°ã§ããããšãš, \r\n$$\\frac{x^2+y^2-4}{xy}$$\r\nãéè² æŽæ°ã«ãªãããšã¯åå€ã§ãã. ãã®åŒã®å€ã $k$ ãšãã. $k\\le 1$ ã®ãšãã¯æããã« $(x, y)=(2, 2)$ ã®ã¿ã解ã§ãã, $k=2$ ã®ãšã㯠$\\\\{ x, y\\\\} =\\\\{ t, t+2\\\\} $( $t$ ã¯æ£ã®æŽæ°) ã®ã¿ã解ã§ãã. ããã«, $x=y$ ã®å Žåã¯ãã®ã»ãã«è§£ãååšããªããã, ä»¥äž $x\\lt y, k\\ge3$ ã®ããšã§\r\n$$x^2+y^2-kxy-4=0$$\r\nã®æŽæ°è§£ãèããã°ãã. $k\\ge3$ ãåºå®ã, 以äžã®è£é¡ã瀺ã.\r\n----\r\n**è£é¡**. $x\\lt y$ ãªãçµ $(x, y)$ ã解ã§ããããã«ã¯, ãã $i=1,2,\\cdots$ ãååšã, 以äžã®æç«ãå¿
èŠååæ¡ä»¶ã§ãã:\r\n$$(x, y)=(a_i, a_{i+1})$$\r\nãã ã, $\\{a_i\\}$ ã¯ä»¥äžã§å®ãããã, æ£ã®æŽæ°ãããªãç矩å調å¢å ãªæ°åã§ãã.\r\n$$a_1=2, a_2=2k, a_{n+2}=ka_{n+1}-a_n\\ \\ \\ \\ (i=1,2,\\cdots)$$\r\n\r\n**蚌æ**. $x\\lt y$ ãªã解 $(x, y)$ ãååšãããšã, $x, y$ ããããã«ã€ããŠã®äºæ¬¡æ¹çšåŒãšèŠããšãã®è§£ãšä¿æ°ã®é¢ä¿ãã\r\n$$(kx-y, x), \\ \\ \\ (y, ky-x)$$\r\nã解ã§ãã. ããã§, $kx-y$ ã¯æŽæ°ã§ãã,\r\n$$kx-y=\\dfrac{x^2-4}{y}\\lt x$$\r\nã§ãã. ããŸ, ãã $kx-y\\le -1$ ã ãšä»®å®ãããš, \r\n$$0=x^2-kxy+y^2-4\\ge x^2+y-4$$\r\nã§ãã, $(x, y)=(1, 1), (1, 2), (1, 3)$ ã§ããã, ããããäžé©ã§ãã.\r\nãŸã, ãã $kx-y=0$ ã ãšä»®å®ãããš, $(x, y)=(2, 2k)=(a_1, a_2)$ ã容æã«ããã.\r\n$(x, y)\\longmapsto(y, ky-x)$ ã«ãã£ãŠ $(a_i, a_{i+1})$ \r\n㯠$(a_{i+1}, a_{i+2})$ã«ãã€ã. åŸã£ãŠ, ååæ§ã¯åž°çŽçã«ç€ºããã.\\\r\nãããã§, $(x, y)=(a_i, a_{i+1})$ ãšè¡šãããšãã§ããªã解ãååšãããšä»®å®ã, \r\nãã®äžã§ $y$ ãæå°ã®ãã®ã®äžã€ã $(x_0, y_0)$ ãšãã. ãã®ãšã, $(kx_0-y_0, x_0)$ ã\r\n解ãšãªã, ãã㯠$kx_0-y_0\\gt 0, x_0\\lt y_0$ ãæºãã. ããã«, \r\n$$(x, y)\\longmapsto(kx-y, x)$$\r\n$$(x, y)\\longmapsto(y, ky-x)$$\r\nãäºãã«éååã§ããããšããååæ§ã®è°è«(ã®å¯Ÿå¶)ãã $(a_i, a_{ i+1} )$ \r\nãšè¡šçŸã§ããªã. ãã㯠$y_0$ ã®æå°æ§ã«ççŸãã.\r\n以äžããå¿
èŠæ§ã瀺ããã. \r\n---- \r\nãä»¥äž $a=xy$ ã $1000$ 以äžãšãªãæ¡ä»¶ãèãã. ãã ã, $x, y$ ã¯é äžåã§ããããšã«æ°ãä»ãã.\r\n- $(x, y)=(1, 1), (2, 2)$ ã¯æããã«é©ãã\r\n- $t=1, 2, \\cdots30$ ã«å¯Ÿã $\\\\{ x, y\\\\} =\\\\{ t, t+2\\\\}$ ã¯ããããé©ãã\r\n\r\nãŸã, \r\n$$a_1a_2=4k, \\ \\ a_2a_3=4k(k^2-1), \\ \\ a_3a_4=4k(k^2-1)(k^2-2)$$\r\nã«çæããããšã§, $k\\ge 3$ ã®å Žåã«ã€ããŠä»¥äžã®ããã«å Žååããã§ãã.\r\n- $k=3, 4, \\cdots, 250$ ã«å¯Ÿã $a_1a_2=4k$ ãããããé©ãã\r\n- $k=3, 4, 5, 6$ ã®ãšã, ããã« $a_2a_3=96, 240, 480, 840$ ãããããé©ãã\r\n- $k=3$ ã®ãšã, ããã« $a_3a_4=672$ ãé©ãã\r\n\r\n\r\nã以äžããŸãšãããš, æ±ããã¹ãåèšã¯\r\n$$1+4+\\sum_{i=1}^{30}i(i+2)+\\sum_{i=3}^{250}4i+96+240+480+840+672=\\mathbf{138206}$$\r\nãšèšç®ã§ãã. \r\n\r\n**è£è¶³.**ãè£é¡ã®ããã«, 解ãšä¿æ°ã®é¢ä¿ãçšããŠäžã€ã®è§£ããããå°ããå¥ã®è§£ãäœãåºãæå°æ§ã«ççŸãããææ³ã**Vieta Jumping**ãšåŒã³ãŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/imo2022-day2/editorial/4598"
}
] | ã以äžãæç«ãããã㪠$1000$ 以äžã®**æ£ã®æŽæ°** $a$, ( $1000$ 以äžãšã¯éããªã) **éè² æŽæ°** $b, c, n$ ã®çµãã¹ãŠã«ã€ã㊠$a$ ã®ç·åãæ±ããŠãã ãã.
$$4a+b^2=ac+4=n^2$$ |
IMO2022æ¥æ¬ä»£è¡šäž»å¬ ããµãŒã¢ã³æ¯ã Day2 | https://onlinemathcontest.com/contests/imo2022-day2 | https://onlinemathcontest.com/contests/imo2022-day2/tasks/2398 | C | ãµãŒã¢ã³æ¯ åé¡6 | 900 | 1 | 11 | [
{
"content": "ãåé¡ã®æ¡ä»¶ã«ãããŠ, $a_{210}=k, a_{8765}=(k-2)^2$ ã®æ¡ä»¶ã $a_1=k, a_{8556}=(k-2)^2$ ã«å€æŽããŠèããŠãã.\\\r\nã$\\dfrac{a_ia_{i+2}}{a_{i+1}^{k-1}}$ ãæ倧ãšãªããã㪠$2$ ä»¥äž $n+1$ 以äžã®æŽæ° $i$ ããšã. \r\n$$\\dfrac{a_{i-1}a_{i+1}}{a_i^{k-1}}\\leq\\dfrac{a_ia_{i+2}}{a_{i+1}^{k-1}},\\quad \\dfrac{a_{i+1}a_{i+3}}{a_{i+2}^{k-1}}\\leq\\dfrac{a_ia_{i+2}}{a_{i+1}^{k-1}}$$\r\nãã, \r\n$$a_{i-1}\\leq\\dfrac{a_i^ka_{i+2}}{a_{i+1}^k},\\quad a_{i+3}\\leq\\dfrac{a_ia_{i+2}^k}{a_{i+1}^k}$$\r\nããã«, åé¡ã®åŒã«ä»£å
¥ããŠäžåŒãåŸã.\r\n$$\\begin{aligned}\r\na_ia_{i+2}(a_i^k+a_i)(a_{i+2}^k+a_{i+2})&=a_{i+1}^{2k}\\Big(a_{i-1}+\\dfrac{1}{a_{i+1}}\\Big)\\Big(a_{i+3}+\\dfrac{1}{a_{i+1}}\\Big)\\\\\\\\\r\n&\\leq a_{i+1}^{2k}\\Big(\\dfrac{a_i^ka_{i+2}}{a_{i+1}^k}+\\dfrac{1}{a_{i+1}}\\Big)\\Big(\\dfrac{a_ia_{i+2}^k}{a_{i+1}^k}+\\dfrac{1}{a_{i+1}}\\Big)\r\n\\end{aligned}$$\r\nåŸã£ãŠ, äžåŒãã $\\dfrac{a_ia_{i+2}}{a_{i+1}^{k-1}}\\leq1$ ã§ãã.\r\n$$a_ia_{i+2}(a_i^ka_{i+2}+a_ia_{i+2}^k)+a_i^2a_{i+2}^2\\leq a_{i+1}^{k-1}(a_i^ka_{i+2}+a_ia_{i+2}^k)+a_{i+1}^{2(k-1)}$$\r\n以äžãã, ä»»æã® $2$ ä»¥äž $n+1$ 以äžã®æŽæ° $m$ ã«å¯Ÿã, $\\dfrac{a_ma_{m+2}}{a_{m+1}^{k-1}}\\leq1$ ã§ãã. $\\dfrac{a_ia_{i+2}}{a_{i+1}^{k-1}}$ ãæå°ãšãªããã㪠$2$ ä»¥äž $n+1$ 以äžã®æŽæ° $i$ ããšãããšã«ãã, å
šãåæ§ã«ä»»æã® $2$ ä»¥äž $n+1$ 以äžã®æŽæ° $m$ ã«å¯Ÿã, $\\dfrac{a_ma_{m+2}}{a_{m+1}^{k-1}}\\geq1$ ã§ããããšãããã. ããã«, ä»»æã® $n$ 以äžã®æ£æŽæ° $m$ ã«å¯ŸããŠ, $\\dfrac{a_ma_{m+2}}{a_{m+1}^{k-1}}=1$ ã§ãã. ããã§, é¢æ°å $(f_m)$ ã\r\n- $f_0(x)=0, f_1(x)=1$\r\n- ä»»æã®æŽæ° $i$ ã«å¯Ÿã, $f_{i+2}(x)=xf_{i+1}(x)-f_i(x)$\r\n\r\nãæºããããã«ãšã. ãã®ãšã, $a_1 = k$ ã§ãããã, $a_2=A$ ãšãããš\r\n$$a_m=k^{f_{2-m}(k-1)}A^{f_{m-1}(k-1)}$$\r\nãæãç«ã€. \r\n\r\n----\r\n\r\n**è£é¡.**ã$\\sin{\\theta}\\neq0$ ãªãå®æ° $\\theta$ ãšä»»æã®æŽæ° $m$ ã«å¯Ÿã㊠\r\n$$f_m(2\\cos\\theta)=\\dfrac{\\sin m\\theta}{\\sin\\theta}$$\r\nãæç«ãã. ç¹ã«, \r\n$$f_m(x)=-f_{-m}(x),\\quad f_{m-1}(x)f_{m+1}(x)+1=f_m(x)^2$$\r\nã§ãã, $m$ ã $2$ 以äžã®ãšã, \r\n$$f_{m}(x)=\\Big(x-2\\cos\\dfrac{\\pi}{m}\\Big)\\Big(x-2\\cos\\dfrac{2\\pi}{m}\\Big)\\cdots\\Big(x-2\\cos\\dfrac{(m-1)\\pi}{m}\\Big)$$\r\nãæãç«ã€.\r\n----\r\n\r\n**蚌æ.**ã$m=0,1$ ã§ã¯æãã. $m=p,p+1$ ã§æç«ãããšä»®å®ãããš\r\n$$\\begin{aligned}\r\nf_{p+2}(2\\cos\\theta)&=2\\cos\\theta f_{p+1}(2\\cos\\theta)-f_p(2\\cos\\theta)\\\\\\\\\r\n&=\\dfrac{2\\cos\\theta\\sin(p+1)\\theta-\\sin p\\theta}{\\sin\\theta}\\\\\\\\\r\n&=\\dfrac{(\\sin(p+2)\\theta+\\sin p\\theta)-\\sin p\\theta}{\\sin\\theta}\\\\\\\\\r\n&=\\dfrac{\\sin(p+2)\\theta}{\\sin\\theta}\r\n\\end{aligned}$$\r\nãã, $m=p+2$ ã§ã®æç«ã確èªã§ãããã, $m$ ãéè² ã®ãšãã«ã€ããŠç€ºããã. $m$ ãè² ã®å Žåãåæ§ã« $f_m(2\\cos\\theta)=\\dfrac{\\sin m\\theta}{\\sin\\theta}$ ã瀺ãã.\\\r\nããŸã, $m$ ãæ£ã®ãšã, $f_m(x), f_{-m}(x)$ ã¯æé«æ¬¡ã®ä¿æ°ããããã $1, -1$ ã§ãã $m-1$ 次å€é
åŒã§ãããã, $f_m(x)=-f_{-m}(x)$ åã³, $m$ ã $2$ 以äžã®æŽæ°ã®ãšã\r\n$$f_{m}(x)=\\Big(x-2\\cos\\dfrac{\\pi}{m}\\Big)\\Big(x-2\\cos\\dfrac{2\\pi}{m}\\Big)\\cdots\\Big(x-2\\cos\\dfrac{(m-1)\\pi}{m}\\Big)$$\r\nã§ããããšã¯æãã.\r\n$$\\begin{aligned}\r\nf_{m-1}(2\\cos\\theta)f_{m+1}(2\\cos\\theta)+1&=\\dfrac{\\sin(m-1)\\theta\\sin(m+1)\\theta+\\sin^2\\theta}{\\sin^2\\theta}\\\\\\\\\r\n&=\\dfrac{(\\sin m\\theta\\cos\\theta-\\cos m\\theta\\sin\\theta)(\\sin m\\theta\\cos\\theta+\\cos m\\theta\\sin\\theta)+\\sin^2\\theta}{\\sin^2\\theta}\\\\\\\\\r\n&=\\dfrac{(\\sin m\\theta\\cos\\theta)^2+(1-\\cos^2m\\theta)\\sin^2\\theta}{\\sin^2\\theta}\\\\\\\\\r\n&=\\dfrac{\\sin^2m\\theta}{\\sin^2\\theta}=f_m(2\\cos\\theta)^2\r\n\\end{aligned}$$\r\nãã, $f_{m-1}(x)f_{m+1}(x)+1=f_m(x)^2$ ãæç«ãã.\r\n----\r\n\r\n$f_m(x)=-f_{-m}(x)$ ãš $a_{n+1}=k, a_{n+2}=A$ ããäžåŒãåŸã.\r\n$$\\begin{aligned}\r\n(f_{n-1}(k-1)+1)\\log k&=f_{n}(k-1)\\log A\\\\\\\\\r\nf_{n}(k-1)\\log k&=(f_{n+1}(k-1)-1)\\log A\r\n\\end{aligned}$$\r\n- $k = 1$ ã®ãšã\\\r\nã$a_1 = a_2 = \\cdots = a_{n+4} = 1$ ã¯æ¡ä»¶ãæºãã. \r\n\r\n- $k \\neq 1, f_n(k-1)\\neq 0$ ã®ãšã\\\r\nãäžã®äºåŒãå€åœ¢ããããšã§\r\n$$(f_{n-1}(k-1)+1)(f_{n+1}(k-1)-1)=f_{n}(k-1)^2$$\r\nãåŸã. åŸã£ãŠ, $f_{n-1}(k-1)f_{n+1}(k-1) + 1 = f_n(k-1)^2$ ã $(f_m)$ ã«ãæ°ãã€ããããšã§, \r\n$$4f_n(k-1)^2 = (f_{n-1}(k-1) + f_{n+1}(k-1))^2 = (k-1)^2f_n(k-1)^2$$\r\nãæç«ããããšãåããã®ã§, $k = 3$ ãåŸã. ãã£ãŠ, $\\dfrac{a_ma_{m+2}}{a_{m+1}^{k-1}}=1$ ã«æ°ãã€ããã°æ°å $a$ ã®é£æ¥ããäºé
ã®æ¯ã¯äžå®ã§ããã, $a_1 = a_{n+1}$ ã§ãããããã®æ¯ã¯ $1$, ã€ãŸã $a_1 = a_2 = \\cdots = a_{n+4}$ ã§ãã. ããããã㯠$a_1 \\neq a_{8556}$ ã«ççŸããããäžé©. \r\n\r\n- $f_{n}(k-1) = 0$ ã®ãšã\\\r\nããã $\\dfrac{2n}{3}$ æªæºã®æ£æŽæ° $i$ ãçšã㊠$k = 2\\cos\\dfrac{i\\pi}{n} + 1$ ãšè¡šããã, $i$ ãå¥æ°ã®ãšã㯠$f_{n-1}(k-1) = 1$ ãšãªãäžé©. åŸã£ãŠ $k$ 㯠$i = 1,2,...,14403$ ãçšã㊠$k = 2\\cos\\dfrac{i\\pi}{21605} + 1$ ãšè¡šãã. \r\n$$a_{8556}=k^{f_{-8554}(k-1)}A^{f_{8555}(k-1)}$$\r\nãã, $f_{8555}(k-1)\\neq0$ ã®ãšãã¯å $k$ ã«å¯ŸããŠæ¡ä»¶ãã¿ãã $a_1,a_2,\\cdots,a_{43214}$ ã $1$ ã€ååšãã. $f_{8555}(k-1)=0$ ã®ãšã, $f_{-8554}(k-1)=\\pm1$ ãã, $a_1=a_{8556}$ ãŸã㯠$a_1a_{8556}=1$ ã§ãããã, æ¡ä»¶ãã¿ãããã®ã¯\r\n$$k=\\dfrac{3+\\sqrt{5}}{2}, \\dfrac{3-\\sqrt{5}}{2}\\Big(=2\\cos\\dfrac{\\pi}{5}+1, 2\\cos\\dfrac{3\\pi}{5}+1\\Big)$$\r\nã®ã¿ã§ãã. $\\theta=\\dfrac{\\pi}{5}, \\dfrac{3\\pi}{5}$ ã®ãšã $f_{-8554}(2\\cos\\theta)=-1$ ãã, ãããã®å Žåãä»»æã® $A$ ã§æ¡ä»¶ãã¿ãã $a_1,a_2,...,a_{n+4}$ ãååšãã. $f_{8555}(k-1) = 0$ 㯠$\\dfrac{8555i}{21605}$ ãæŽæ°ãšãªãããšãšåå€ã§ãããã, ãã®ãã㪠$k$ 㯠$96$ åååšãã. \r\n\r\n以äžããæ±ããå€ã¯ $1+14403-96+2=\\mathbf{14310}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/imo2022-day2/editorial/2398"
}
] | ã$n=43210$ ãšããŸã. æ£ã®å®æ° $k$ ã§ãã£ãŠ, 次ã®æ¡ä»¶ãã¿ãã $n+4$ åã®æ£ã®å®æ° $a_1,a_2,\cdots,a_{n+4}$ ãååšãããã®ã¯ããã€ãããŸãã.
- $a_{210}=k, \quad a_{8765}=(k-2)^2$
- $a_{n+1}=a_1,\quad$ $a_{n+2}=a_2,\quad$ $a_{n+3}=a_3,\quad$ $a_{n+4}=a_4$
- $i=1,2,\cdots,n$ ã«å¯ŸããŠ,
$$a_{i+2}^{2k}\Big(a_i+\dfrac{1}{a_{i+2}}\Big)\Big(a_{i+4}+\dfrac{1}{a_{i+2}}\Big)=a_{i+1}a_{i+3}(a_{i+1}^k+a_{i+1})(a_{i+3}^k+a_{i+3})$$ |
IMO2022æ¥æ¬ä»£è¡šäž»å¬ ããµãŒã¢ã³æ¯ã Day1 | https://onlinemathcontest.com/contests/imo2022-day1 | https://onlinemathcontest.com/contests/imo2022-day1/tasks/4696 | A | ãµãŒã¢ã³æ¯ åé¡1 | 500 | 95 | 128 | [
{
"content": "ã$a_0=0$ ãšãïŒ$b_n=a_n-a_{n-1}$ ãšããïŒãã®ãšãïŒ$b_1=1,b_2=0$ ã§ããïŒãŸãïŒ$3$ 以äžã®æŽæ° $n$ ã«ã€ããŠïŒ\r\n$$b_n=\\sum_{k=2}^n(a_{\\lfloor n\\/k\\rfloor}-a_{\\lfloor(n-1)\\/k\\rfloor})$$\r\nã§ããïŒããã§ïŒ\r\n$$a_{\\lfloor n\\/k\\rfloor}-a_{\\lfloor(n-1)\\/k\\rfloor} = \r\n\\begin{cases}\r\nb_{n\\/k} & (k \\mid n)\\\\\\\\\r\n0 & (k \\nmid n)\r\n\\end{cases}$$\r\nã§ããã®ã§ïŒ\r\n$$b_n=\\sum_{d|n,d\\neq n}b_d$$\r\nã§ããïŒãããç¹°ãè¿ãçšããããšã§ïŒ $p,q,r$ ãçžç°ãªãå¥çŽ æ°ãšãããš\r\n$$\r\nb_p = 1,\\quad b_{2p}=2,\\quad b_{8p}=12,\\quad b_{4p^2}=18,\\quad b_{2pq}=10,\\quad b_{pqr}=13,\\quad b_{4p^3}=56\r\n$$\r\nãšèšç®ã§ããïŒãã£ãŠïŒ\r\n$$\\begin{aligned}\r\na_{110}&=a_{100}+b_{101}+b_{102}+b_{103}+b_{104}+b_{105}+b_{106}+b_{107}+b_{108}+b_{109}+b_{110}\\\\\\\\\r\n&=658+1+10+1+12+13+2+1+56+1+10\\\\\\\\\r\n&=\\bf{765}\\end{aligned}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/imo2022-day1/editorial/4696"
}
] | ãæ°å $\\{ a_n \\}$ ã次ã®ããã«å®ããŸãïŒ
- $a_1=1$
- $a_n=a_{\lfloor n\/2\rfloor}+a_{\lfloor n\/3\rfloor}+\dots+a_{\lfloor n\/n\rfloor}ã(n\gt1)$
$a_{100}=658$ ã§ãïŒ$a_{110}$ ãæ±ããŠãã ããïŒ |
IMO2022æ¥æ¬ä»£è¡šäž»å¬ ããµãŒã¢ã³æ¯ã Day1 | https://onlinemathcontest.com/contests/imo2022-day1 | https://onlinemathcontest.com/contests/imo2022-day1/tasks/2682 | B | ãµãŒã¢ã³æ¯ åé¡2 | 600 | 17 | 54 | [
{
"content": "ãå蟺 $e$ ã«å¯ŸããŠ, $e$ ã $F,F^\\prime$ ã®èŸºã§ãããšã, (ãã ã $F\\neq F^\\prime$)\r\n$$g(e)=\r\n\\begin{cases}\r\n\\dfrac{2(11+d_F^2)}{d_F} & (d_F=d_{F^\\prime}) \\\\\\\\\r\n\\dfrac{11+d_{F^\\prime}^2}{d_F} & (d_F\\lt d_{F^\\prime}) \\\\\\\\\r\n\\dfrac{11+d_{F}^2}{d_{F^\\prime}} & (d_F\\gt d_{F^\\prime})\r\n\\end{cases}\r\n$$\r\nãšå®ããã° $f(F)$ ã®ç·å㯠$g(e)$ ã®ç·åãšçãã. ããã§æ¬¡ã®è£é¡ã瀺ã.\r\n\r\n----\r\n**è£é¡.**ãä»»æã®èŸº $e$ ã«ã€ããŠ, \r\n$$g(e)\\geq9.$$\r\nçå·æç«ã¯ $(d_F,d_{F^\\prime})=(3,4),(4,3),(4,5),(5,4)$ ã®ãšã.\r\n\r\n**蚌æ.**\r\n- $d_F=d_{F^\\prime}$ã®ãšã\\\r\n$$\\begin{aligned}\r\n g(e)&=\\dfrac{2(11+d_F^2)}{d_F}\\\\\\\\\r\n &=2\\left(d_F+\\dfrac{11}{d_F}\\right)\\\\\\\\\r\n &\\geq4\\sqrt{11}\\gt9\r\n\\end{aligned}$$\r\nããè£é¡ã¯æ£ãã.\r\n\r\n- $d_F\\neq d_{F^\\prime}$ ã®ãšã\\\r\n察称æ§ãã $d_F\\lt d_{F^\\prime}$ ã®ãšããèããã°è¯ã. $d_F,d_{F^\\prime}$ ã¯æŽæ°ãªã®ã§ $d_{F^\\prime}\\geq d_F+1$. ãã£ãŠ\r\n$$\\begin{aligned}\r\n g(e)&=\\dfrac{11+d_{F^\\prime}^2}{d_F}\\\\\\\\\r\n &\\geq \\dfrac{11+(d_F+1)^2}{d_F}\\\\\\\\\r\n &=9+\\dfrac{(d_F-3)(d_F-4)}{d_F}\\\\\\\\\r\n &\\geq 9\r\n\\end{aligned}$$\r\nçå·ã¯ $d_F=3,4$ ã®ãšãã ããè£é¡ã¯ç€ºããã.\r\n\r\n----\r\n\r\nãè£é¡ãã, $ f(F) $ ã®ç·åã $X$ ã®èŸºæ°ã§å²ã£ãå€ã¯ $ 9 $ 以äžã§ãã, $ 9 $ ãšãªãã®ã¯ $ d_F=3,4,5 $ ã§é£ãåãé¢å士ã®èŸºæ°ã®å·®ã $ 1 $ ã§ãããšãã§ãã. åŸã£ãŠ $ d_F=3,4,5 $ ã§é£ãåãé¢å士ã®èŸºæ°ã®å·®ã $ 1 $ ã§ãããšãã®é¢ã®æ°ã®æ倧å€ãæ±ããã°ãã.\\\r\nã$ d_F=3,4,5 $ ãšãªãé¢ã®æ°ããããã $ a,b,c $ ãšã, 蟺ã®æ°ã $ x $, é¢ã®æ°ã $ y(=a+b+c) $ ãšãã. $ d_F=4 $ ãæºããé¢å士, $ d_F=3,5 $ ãæºããé¢å士ã¯é£æ¥ããªãã®ã§\r\n$$ x=4b=3a+5c $$\r\nãšãªã. åŸã£ãŠ $ a\\equiv c\\pmod4 $ ã§ãããã $ a=4p+r, c=4q+r $ ãªãéè² æŽæ° $ p,q $, $ 0 $ ä»¥äž $ 3 $ 以äžã®æŽæ° $ r $ ãååšãã. ãŸã, ãªã€ã©ãŒã®å€é¢äœå®çãã, \r\n$$ a+b+c-x+24680=2 $$\r\nãšãªã.ããšã«æ°ãã€ããã°,\r\n$$ b=3p+5q+2r,\\quad 5p+11q+4r=24678,\\quad y=7p+9q+4r $$\r\nãåãã. åŸã£ãŠ $ y-24678=2(p-q) $ ãªã®ã§, $ y $ ãæ倧åããã«ã¯ $ p-q $ ãæ倧åããã°è¯ã. $5p + 11q = 24678-4r$ ã«æ°ãã€ããã°, $r = 0,1,2,3$ ã®ãšã, $p-q$ ã®æ倧å€ã¯ãããã $4926, 4922, 4934,4930$ ã§ãããã, æ±ããæ倧å€ã¯ $34546$ ã§ãã. å®éã« $y = 34546$ ãšãªã $X$ ãååšããããšã確èªã§ããã®ã§, 解çãã¹ã㯠$\\bf{34546}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/imo2022-day1/editorial/2682"
}
] | ã$X$ ãé ç¹ã $24680$ åããç©Žã®ãªãå€é¢äœãšããŸã. $X$ ã®åé¢ $F$ ã«å¯Ÿã㊠$F$ ã®èŸºã®æ°ã $d_F$ ãšã, $F$ ãšäžèŸºãå
±æããé¢ $F^\prime$ ã§ãã£ãŠ $d_F\leq d_{F^\prime}$ ãã¿ãããã®å
šãŠã«ã€ããŠã® $\dfrac{11+d_{F^\prime}^2}{d_F}$ ã®ç·åã $f(F)$ ãšããŸã. $f(F)$ ã®ç·åã $X$ ã®èŸºã®æ°ã§å²ã£ãå€ãæå°ãšãªããšã, $X$ ã®é¢ã®æ°ãšããŠããåŸãæ倧å€ãæ±ããŠãã ãã. |
IMO2022æ¥æ¬ä»£è¡šäž»å¬ ããµãŒã¢ã³æ¯ã Day1 | https://onlinemathcontest.com/contests/imo2022-day1 | https://onlinemathcontest.com/contests/imo2022-day1/tasks/5223 | C | ãµãŒã¢ã³æ¯ åé¡3 | 700 | 62 | 90 | [
{
"content": "ãç¹ $A$ ãéã $BC$ ã«å¹³è¡ãªçŽç·ãš $\\omega$ ã®äº€ç¹ã $A^\\prime$ ãšã, 匧 $BAC$ ã®äžç¹ã $N$ ãšãã. çŽç· $A^\\prime Q$ ã¯äžè§åœ¢ $A^\\prime BC$ ã®symmedianã§ãããã, åè§åœ¢ $A^\\prime BQC$ ã¯èª¿ååè§åœ¢ã§ãã. ãã£ãŠ, çŽç· $A^\\prime P$ ãš $QN$ ã¯çŽç· $BC$ äžã§äº€ããã®ã§, ãã®ç¹ã $T$ ãšãã. ãŸã, äžè§åœ¢ $TPN$ ã®åå¿ã $H$ ãšããã°, $H$ ã¯çŽç· $PQ, MT$ ã®äº€ç¹ã§ãããã $H=R$ ã§ãã, åŸã£ãŠ $R$ ã¯çŽç· $A^\\prime N$ äžã«ããããšãåãã. ãã£ãŠ, $R$ ãäžå¿ãšãã $\\omega$ ãå€åããªããããªå転ããããšèª¿ååè§åœ¢ $APA^\\prime N$ ã¯åè§åœ¢ $SQNA^\\prime$ ã«ç§»ããã, ããã調ååè§åœ¢ã§ãã. ãŸã, åè§åœ¢ $BQCA^\\prime$ ã調ååè§åœ¢ã§ãã£ããã, $\\omega$ ã® $A^\\prime, Q$ ã§ã®æ¥ç·, çŽç· $BC, SN$ ã¯äžç¹ã§äº€ããã®ã§, ãã®ç¹ã $X$ ãšãã. çŽç· $SN$ 㯠$\\angle BSC$ ã®å€è§ã®äºçåç·ã§ãããã, \r\n$$BS : CS = BX : CX = A^\\prime B^2 : A^\\prime C^2 = AC^2 : AB^2$$\r\nãåãã. ãã£ãŠ, $BS = 144x$ ãšããã°, äœåŒŠå®çãã\r\n$$\\frac{AB^2 + AC^2 - BC^2}{2\\times AB\\times AC} = \\cos\\angle BAC = \\cos\\angle BSC = \\frac{(49x)^2 + (144x)^2 - BC^2}{2\\times 49x\\times 144x}$$\r\nãåãã, ããã解ãããšã§ $x = \\dfrac{11}{\\sqrt{17089}}$ ãåŸã. åŸã£ãŠ, Ptolemyã®å®çãã\r\n$$AS = \\frac{AC\\times BS - AB\\times CS}{BC} = \\frac{1385}{\\sqrt{17089}}$$\r\nãåŸãã®ã§, ç¹ã«è§£çãã¹ã㯠$\\bf{18474}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/imo2022-day1/editorial/5223"
},
{
"content": "ãããã§ã¯, $R$ ã®äœçœ®ãç¹å®ããããšãç®æšãšããŸã. \r\nãä», $AP$ ãš $BC$ ã®äº€ç¹ã $T$ ãšããã°, ååšè§ã®å®çãªã©ãçšããŠä»¥äžã®ãããªè§åºŠèšç®ãå®è¡ããããšã«ãã $4$ ç¹ $A,T,Q,R$ ã®å
±åãããããŸã. $$\\angle{TRQ}=\\angle{BCQ}-\\angle{RQC}=\\angle{BAQ}-\\angle{PBC}=\\angle{BAQ}-\\angle{BAP}=\\angle{PAQ}$$\r\nãããããæ¹ã¹ãã®å®çãã以äžãæãç«ã¡ãŸã. $$AMÃMQ=TMÃMR$$\r\nãäžæ¹ $4$ ç¹ $A,B,Q,C$ ã®å
±åã«çæããã°, æ¹ã¹ãã®å®çãã以äžãæãç«ã¡ãŸã. $$AMÃMQ=BMÃCM=\\left(\\frac{11}{2}\\right)^2=\\frac{121}{4}$$\r\nãä», $BT:TC=7:12$ ãªã®ã§, $$TM= BM-BT=\\dfrac{11}{2}-11Ã\\dfrac{7}{7+12}=\\dfrac{55}{38}$$\r\nã§ãã, 以äžãã $$MR=\\frac{AMÃMQ}{TM}=\\frac{121}{4}Ã\\frac{38}{55}=\\frac{209}{10}$$\r\nãšæ±ãŸããŸãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/imo2022-day1/editorial/5223/100"
},
{
"content": "$$BP:PC = 1:1,ãBQ:QC=12:7$$\r\nã容æã«åããïŒ$\\triangle CQR$ ãš $\\triangle PBR$ ïŒ$\\triangle BQR$ ãš $\\triangle PCR$ ã¯ããããçžäŒŒã§ãããã\r\n$$CR=QR\\times \\frac{PC}{BQ} = BR\\times \\frac{QC}{BP}\\times \\frac{PC}{BQ} =\\frac{7}{12}BR$$\r\nã§ããïŒãããã $CR=\\dfrac{77}{5}$ ãåŸãïŒããšã¯äžå¹³æ¹ã®å®çãæ¹ã¹ãã®å®çãé©åœã«çšããŠçããæ±ããããšãã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/imo2022-day1/editorial/5223/101"
}
] | ãäžè§åœ¢ $ABC$ ã®å€æ¥åã $\omega$ ãšã, 蟺 $BC$ ã®äžç¹ã $M$ ãšããŸã. $\angle A$ ã®äºçåç·ãš $\omega$ ã®äº€ç¹ã $P$ ãšã, çŽç· $AM$ ãš $\omega$ ã®äº€ç¹ã $Q$ ãšããŸã. çŽç· $BC$ ãšçŽç· $PQ$ ã®äº€ç¹ã $R$ ãšã, çŽç· $AR$ ãš $\omega$ ã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ã $S$ ãšããŸã.
$$AB = 7,\quad BC = 11, \quad CA = 12$$
ã§ãããšã, ç·å $AS$ ã®é·ããæ±ããŠãã ãã. ãã ã, æ±ããçãã¯å¹³æ¹å åãæããªãæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{\sqrt{b}}$ ãšè¡šããã®ã§, $a + b$ ã解çããŠãã ãã. |
OMC106 (for experts) | https://onlinemathcontest.com/contests/omc106 | https://onlinemathcontest.com/contests/omc106/tasks/3007 | A | OMC106(A) | 300 | 144 | 189 | [
{
"content": "ãåé¡ã®æ¡ä»¶ã¯, ä»»æã® $1$ ä»¥äž $1000$ 以äžã®æŽæ° $x$ ã«å¯Ÿã, 以äžãæãç«ã€ããšãšåå€ã§ãã.\r\n$$ x \\not \\in S_i ~(1 \\leq i \\leq 5) \\quad \\text{ãŸãã¯} \\quad x \\not \\in S_i ~(6 \\leq i \\leq 10)$$\r\näžåŒãæºããããã«, $x$ ã $S_i$ ã«å±ãããã©ããå²ãåœãŠãæ¹æ³ã¯ $2^5 + 2^5 - 1 = 63$ éãã§ãããã, \r\n$$M = 63^{1000} = 3^{2000} \\times 7^{1000}.$$\r\nã以äžãã, $M$ ã®ãã€æ£ã®çŽæ°ã®åæ°ã¯ $(2000+1)(1000+1) = \\textbf{2003001}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc106/editorial/3007"
}
] | ãéå $\\{ 1,2, \ldots, 1000 \\}$ ã®çžç°ãªããšã¯éããªã $10$ åã®éšåéåïŒç©ºãèš±ãïŒã®é åºä»ããçµ $(S_1, S_2, \ldots, S_{10})$ ã§ãã£ãŠïŒ
$$ (S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5) \cap (S_6 \cup S_7 \cup S_8 \cup S_9 \cup S_{10}) = \varnothing
$$
ãæºãããã®ã®åæ°ã $M$ ãšãããŸãïŒ$M$ ããã€æ£ã®çŽæ°ã®åæ°ãæ±ããŠãã ããïŒ\
ããã ãïŒ$\varnothing$ ã¯ç©ºéåãè¡šããŸãïŒ |
OMC106 (for experts) | https://onlinemathcontest.com/contests/omc106 | https://onlinemathcontest.com/contests/omc106/tasks/3734 | B | OMC106(B) | 400 | 147 | 179 | [
{
"content": "ã$\\triangle XYZ$ ã®é¢ç©ã $S(XYZ)$ ã§è¡šãããšãšããïŒ\r\n\r\n----\r\n\r\n**解æ³1.**ã$OP_1:OP_2=1:3,\\ \\angle P_1OP_2=60^{\\circ}$ ãšãªãç¹ $O$ ã $\\angle P_1P_2P_3$ ã®å
åŽã«ãšããšç°¡åãªè§åºŠèšç®ã«ãã $\\angle OP_1P_2=\\angle OP_2P_3$ ããããããïŒ$\\triangle OP_1P_2\\sim\\triangle OP_2P_3$ ãåŸãããïŒãã®ãšã $OP_2:OP_3=1:3$ ã§ããããïŒåæ§ã®è°è«ã§ $\\triangle OP_1P_2,\\dots,\\triangle OP_9P_{10}$ ã¯å
šãŠçžäŒŒã§ããïŒ\r\nãããã $n=1,2,\\dots,10$ ã«å¯Ÿã㊠$OP_1:OP_n=1:3^{n-1}$ïŒãŸã $1\\leq i,j\\leq 10$ ã«ã€ã㊠$$S(OP_iP_j)=\\begin{cases}\r\n\\dfrac{\\sqrt{3}}{4}\\cdot OP_i\\cdot OP_j&(i\\not\\equiv j\\pmod{3})\\\\\\\\\r\n0&(i\\equiv j\\pmod{3})\\\\\\\\\r\n\\end{cases}$$ ãæãç«ã€ããšãçšããã°ïŒæ¬¡ã®æç«ããããïŒ\r\n$$\\begin{aligned}\r\n&\\quad\\ S(P_1P_2P_3):S(P_1P_5P_{10})\\\\\\\\\r\n&=\\bigl(S(OP_1P_2)+S(OP_2P_3)-S(OP_1P_3)\\bigr):\\bigl(S(OP_1P_5)+S(OP_5P_{10})\\bigr)\\\\\\\\\r\n&=(3^1+3^3-3^2):(3^4+3^{13})\\\\\\\\\r\n&=1:\\bf{75924}\r\n\\end{aligned}$$ \r\n\r\n----\r\n\r\n**解æ³2.** ã$\\alpha=3(\\cos 60^\\circ+i\\sin 60^\\circ)$ ãšããïŒè€çŽ æ°å $\\\\{z_n\\\\}$ ã $z_1=0, z_2=1$ ããã³\r\n$$z_{n+2}-z_{n+1}=\\alpha(z_{n+1}-z_n)$$ \r\nã§å®ãïŒè€çŽ æ°å¹³é¢äžã§ç¹ $P_n(z_n)$ ãšããã°æ¡ä»¶ãã¿ããïŒ\r\nãã®ãšã $S(P_1P_2P_3)=\\dfrac{3\\sqrt{3}}{4}$ ã§ããïŒãŸã $z_n=\\dfrac{\\alpha^{n-1}-1}{\\alpha-1}$ ãæãç«ã€ïŒ\\\r\nãããã§ç¹ $Q\\Bigl(\\dfrac{-1}{\\alpha-1}\\Bigr)$ ã«ã€ã㊠$P_nQ=\\dfrac{3^{n-1}}{\\sqrt{7}}$ ããã³ $\\angle P_1QP_5=120^\\circ,\\angle P_1QP_{10}=180^\\circ$ ãæãç«ã€ããïŒæ¬¡ãåŸãããïŒ\r\n$$S(P_1P_5P_{10})=\\frac{1}{2}(P_1Q+P_{10}Q)\\cdot P_5Q\\cdot\\sin 120^\\circ=\\frac{3\\sqrt{3}}{4}\\times\\bf{75924}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc106/editorial/3734"
}
] | ãå¹³é¢äžã® $10$ ç¹ $P_1,P_2,\dots, P_{10}$ ã«ã€ããŠïŒæ¬¡ãæãç«ã£ãŠããŸãïŒ
- $n=1,2,\dots,8$ ã«å¯ŸãïŒ$P_nP_{n+1}:P_{n+1}P_{n+2}=1:3$ïŒ
- $n=1,2,\dots,8$ ã«å¯ŸãïŒ$\angle P_nP_{n+1}P_{n+2}=120^{\circ}$ïŒ
- $n=1,2,\dots,7$ ã«å¯ŸãïŒç·å $P_nP_{n+2}$ ãš $P_{n+1}P_{n+3}$ ã¯äº€ãã£ãŠããïŒ
ãã®ãšãïŒäžè§åœ¢ $P_1P_5P_{10}$ ã®é¢ç©ã¯äžè§åœ¢ $P_1P_2P_3$ ã®é¢ç©ã®äœåãæ±ããŠãã ããïŒ |
OMC106 (for experts) | https://onlinemathcontest.com/contests/omc106 | https://onlinemathcontest.com/contests/omc106/tasks/3711 | C | OMC106(C) | 500 | 84 | 157 | [
{
"content": "ã$(n-1)\\/4$ ãè¶
ããªãæ倧ã®æŽæ°ã $m$ ãšãããšãïŒ$f(n)=m$ ã§ããããšã瀺ãïŒ\r\nAliceã¯æ¬¡ã®ãããªæŠç¥ããšãããšã§Bobã®æžã蟌ã¿æ¹ã«ãããåŸç¹ã $m$ 以äžã«ã§ããïŒ\r\n\r\n- ã¯ããã® $5$ å㯠$1,m+1,2m+1,3m+1,4m+1$ ã $1$ åãã€å®£èšããïŒ$6$ åç®ã§ã¯ïŒç©ºããã¹ã«é£æ¥ããªããã¹ã«æžãããŠããæ°åãå床宣èšãã. \r\n\r\näžæ¹ïŒBobã¯ä»¥äžã®èŠåã«åŸã£ãŠæ°åãæžã蟌ãããšã§Aliceã®å®£èšããæ°åã«ãããåŸç¹ã $m$ 以äžã«ã§ããïŒ\r\nãã ãïŒç«¯ãã $i$ çªç®ã®ãã¹ããã¹ $i$ ãšããïŒ\r\n\r\n- ãã¹ $2$ ãŸãã¯ãã¹ $5$ ã«æ°åãæžãããŠãããšãïŒå¥œããªãã¹ã«æžã蟌ãïŒ\r\n- ããã§ãªããšãïŒãã¹ $x$ ã空ãªãã°ãã¹ $x$ ã«ïŒããã§ãªããªãã°ãã¹ $y$ ã«æžã蟌ãïŒ\r\nãã ã $x,y$ ã¯å®£èšãããæ°å $X$ ã«å¿ã次ã®ããã«å®ããïŒ\r\n$$\\begin{cases}\r\nx=1,\\ y=2&(1\\leq X\\leq m+1)\\\\\\\\\r\nx=3,\\ y=2&(m+2\\leq X\\leq 2m+2)\\\\\\\\\r\nx=4,\\ y=5&(2m+3\\leq X\\leq 3m+3)\\\\\\\\\r\nx=6,\\ y=5&(3m+4\\leq X\\leq n)\\\\\\\\\r\n\\end{cases}$$\r\n\r\nã以äžãã $f(n)=m$ ã§ããããšã瀺ãããïŒãã®ãšãæ±ããå€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\sum_{n=1}^{2022}f(n)=4\\sum_{m=0}^{504}m+2\\times 505=\\textbf{510050}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc106/editorial/3711"
}
] | ã$n$ ãæ£ã®æŽæ°ãšããŸãïŒAliceãšBobã¯ä»¥äžã®æé ã«åŸã£ãŠã²ãŒã ãè¡ããŸãïŒ
1. ã¯ããïŒäœãæžã蟌ãŸããŠããªã $1\times 6$ ã®ãã¹ç®ãããïŒ
2. ãŸãïŒAlice㯠$1$ ä»¥äž $n$ 以äžã®æŽæ°ã $1$ ã€å®£èšããïŒãããŸã§ã«å®£èšããæ°åãšåããã®ã宣èšããŠãæ§ããªãïŒ
3. 次ã«ïŒBobã¯ãŸã æ°åãæžã蟌ãŸããŠããªããã¹ã $1$ ã€éžã³ïŒããã«Aliceã宣èšããæ°åãæžã蟌ãïŒ
4. ãã®åŸïŒãã¹ãŠã®ãã¹ã«æ°åãæžãããŠãããªãã°ã²ãŒã ãçµäºããïŒããã§ãªããªãã°ïŒ2. ãžæ»ãïŒ
ãã²ãŒã ãçµäºãããšãïŒé£ãåããã¹ç®ã«æžãããå€ã®å·®ã®çµ¶å¯Ÿå€ $5$ ã€ã®ãã¡æå°ã®ãã®ããã®ã²ãŒã ã«ããã**åŸç¹**ãšããŸãïŒãŸãåæ£æŽæ° $n$ ã«å¯ŸãïŒæ¬¡ãæºããæå°ã®æŽæ° $k$ ã $f(n)$ ãšããŸã.
- Aliceã®æŠç¥ã«ãããïŒBobã¯åŸç¹ã $k$ 以äžã«ããããšãã§ãã.
ããã®ãšãïŒ$f(1)+f(2)+\cdots+f(2022)$ ã®å€ãæ±ããŠãã ããïŒ
----
ã**21:42 è¿œèš**ãAliceã¯ãã¹ç®ã®ç¶æ
ãã€ãã«ç¢ºèªã§ãããã®ãšããŸãïŒ |