contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC089 | https://onlinemathcontest.com/contests/omc089 | https://onlinemathcontest.com/contests/omc089/tasks/3635 | B | OMC089(B) | 200 | 235 | 243 | [
{
"content": "ãäžèŸºã®é·ãã $a$ ã®æ£æ¹åœ¢ã®é¢ç©ã¯ $a^2$ ã§ãããã,\r\næ±ããã¹ãåæ°ã®æ倧å€ã¯\r\n$$\\Biggl \\lfloor\t{\\frac{99^2}{\\lparen \\sqrt 2 \\rparen ^ 2}} \\Biggr\\rfloor = 4900$$\r\n以äžã§ãã. \r\néã«, äžèŸºã®é·ãã $\\sqrt 2$ ã®æ£æ¹åœ¢ã $4900$ åçµã¿åãããäžèŸºã®é·ãã\r\n$70 \\sqrt 2$ ã®æ£æ¹åœ¢ãèãããš, $70\\sqrt{2}=\\sqrt{9800}\\lt\\sqrt{9801}=99$ ããããã¯é åå
ã«å
¥ãããšããããã®ã§, æ±ããã¹ãå€ã¯ $\\mathbf{4900}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc089/editorial/3635"
}
] | ãäžèŸºã®é·ãã $99$ ã®æ£æ¹åœ¢ã®é åå
ïŒåšäžãå«ãïŒã«, äžèŸºã®é·ãã $\sqrt 2$ ã®æ£æ¹åœ¢ãäºãã«éãªããªãããé
眮ãããšã, ãã®åæ°ã®æ倧å€ãæ±ããŠãã ãã. |
OMC089 | https://onlinemathcontest.com/contests/omc089 | https://onlinemathcontest.com/contests/omc089/tasks/1662 | C | OMC089(C) | 300 | 146 | 204 | [
{
"content": "ãæ¡ä»¶ãã $AD=5$ ãšèšç®ã§ãããã, äžè§åœ¢ $ABD^\\prime$ ã¯æ£äžè§åœ¢ã§ãã, $D^\\prime $ ããå¹³é¢ $ABC$ ã«ããããåç·ã®è¶³ $H$ ã«ã€ããŠ, $D^\\prime A=D^\\prime B=D^\\prime C=5$ ãã $H$ 㯠$ABC$ ã®å€å¿ã§ããããšãããã.\\\r\nãæ£åŒŠå®çãã $AH=5\\sqrt{10}\\/6$ ã§ãããã, äžå¹³æ¹ã®å®çãã $D^\\prime H=5\\sqrt{26}\\/6$ ãšèšç®ã§ãã. äžè§åœ¢ $ABC$ ã®é¢ç©ã $9\\/2$ ã§ããããšãšäœµããŠæ±ããäœç©ã¯ $5\\sqrt{26}\\/4$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{35}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc089/editorial/1662"
}
] | ã$AB=5,BC=3,CA=\sqrt{10}$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, åçŽç· $BC$ äžã« $CD=5$ ãªãç¹ $D$ ããšã, äžè§åœ¢ $ABD$ ã $AC$ ã§æãããšã§äžè§é $D^\prime-ABC$ ãäœããŸã. ãã ã, $D^\prime$ 㯠$D$ ã®ç§»ãå
ã§ã. $\angle D^\prime AB=60^\circ$ ã§ãããšã, ãã®äžè§éã®äœç©ãæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯æ£æŽæ° $a,b,c$ ã«ãã£ãŠ $\dfrac{a}{b}\sqrt{c}$ ãšè¡šããã®ã§ (ãã ã $a$ ãš $b$ ã¯äºãã«çŽ ã§, $c$ ã¯å¹³æ¹å åããããªã), $a+b+c$ ã解çããŠãã ãã. |
OMC089 | https://onlinemathcontest.com/contests/omc089 | https://onlinemathcontest.com/contests/omc089/tasks/2170 | D | OMC089(D) | 400 | 114 | 141 | [
{
"content": "ã$a_1,\\ldots,a_{15}$ ã®ãã¡æ倧ã®ãã®ã $a_{15}$ ã§ãªããšä»®å®ã, ããã $a_i$ ãšãã ($i\\leq 14$). ãã®ãšã, $a_{i}+2^ia_{15-i}$ 㯠$a_i$ ãã倧ãããã , æ°åã«å«ãŸãåŸãççŸãã. ãããã£ãŠ, $a_{15}$ ãæ倧ã§ãã.\\\r\nãããã«, $a_1,\\ldots,a_{14}$ ã®ãã¡æ倧ã®ãã®ã $a_{14}$ ã§ãªããšä»®å®ã, ããã $a_i$ ãšãã ($i\\leq 13$). ãã®ãšã, $a_{i}+2^ia_{14-i}$ ããã³ $a_{i}+2^ia_{15-i}$ ã¯çžç°ãªã, ãã€ãšãã« $a_i$ ãã倧ããã, $a_i$ ãã倧ããæ°ã¯æ°åã« $a_{15}$ ããå«ãŸããªãã®ã§, ããã¯ççŸã§ãã. åæ§ã®è°è«ãç¹°ãè¿ãããšã§, $a_1 \\lt a_2 \\lt \\cdots \\lt a_{15}$ ãæãç«ã€ããšãããã.\\\r\nãããŸ, $j=1, 2, âŠ, 14$ ã«ã€ããŠ, $a_1+2a_j$ ã¯æ°åã«å«ãŸãã. ãŸã, \r\n$$\r\na_1 \\lt a_1+2a_1 \\lt a_1+2a_2 \\lt \\cdots \\lt a_1+2a_{14}\r\n$$\r\nãã, $a_{j+1}=a_1+2a_j$ ã€ãŸã $a_n=(2^n-1)a_1 \\ (n=1, 2, âŠ, 15)$ ãå¿
èŠã§ãã. éã«ãã®ãšã, \r\n$$ \r\na_i+2^ia_j = (2^i-1)a_1 + 2^i(2^j-1)a_1 = (2^{i+j}-1)a_1\r\n$$\r\nã§ãã, åé¡æäžã®æ¡ä»¶ãæºãã. ãã£ãŠ, æ°åãæ¡ä»¶ãæºããããã®å¿
èŠååæ¡ä»¶ã¯, æ£æŽæ° $m$ ãçšããŠ\r\n$$a_n=(2^n-1)m \\quad (n=1, 2, âŠ, 15)$$\r\nãšè¡šããããšã§ãã. ãã®æ°åã®ç·å㯠$m$ ã®å€ã«ãã£ãŠå®ãŸã, \r\n$$\r\n\\sum_{k=1}^{15} (2^k-1)m = (2^{16}-2-15)m\r\n$$\r\nãšè¡šãã. 解çãã¹ãå€ã¯ç¹ã« $m = 15$ ã®ãšãã§ãã, $(2^{16}-2-15) \\times 15 = \\mathbf{982785}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc089/editorial/2170"
}
] | ãçžç°ãªãæ£æŽæ°ãããªãæ°å $a_1, a_2, \dots, a_{15}$ ã, 以äžã®æ¡ä»¶ãã¿ãããŠããŸãïŒ
- $i+j \leq 15$ ãªããã¹ãŠã®æ£æŽæ°ã®çµ $(i, j)$ ã«ã€ããŠ, $a_i+2^ia_j$ ã¯æ°åã®é
ãšããŠååšãã.
ãã®ãããªæ°åã®é
ã®ç·åãšããŠããããå€ã®ãã¡, $15$ çªç®ã«å°ãããã®ãæ±ããŠãã ãã. |
OMC089 | https://onlinemathcontest.com/contests/omc089 | https://onlinemathcontest.com/contests/omc089/tasks/257 | E | OMC089(E) | 500 | 46 | 148 | [
{
"content": "ã$T$ ã®äœç©ã $V$ãšããã° $r=\\dfrac{\\sqrt{3}}{8}V$ ãæç«ããããšãããããã, $V$ ã®æ倧åã«ã€ããŠèããã°ãã. çé¢åé¢äœã¯äžè¬ã«çŽæ¹äœã«åã蟌ãããã, ãã® $3$ 蟺ã®é·ãã $\\sqrt{x},\\sqrt{y},\\sqrt{z}$ ãšããã°, å€æ¥çã®ååŸ, è¡šé¢ç©, äœç©ãèšç®ããããšã§, 以äžã®åŒãæãç«ã€ããšã確èªã§ããïŒ\r\n$$x+y+z=20,\\quad xy+yz+zx=48,\\quad xyz=9V^2$$\r\nãããã£ãŠ, $t$ ã®æ¹çšåŒ $t^3-20t^2+48t=9V^2$ ãæ£ã®å®æ°è§£ã®ã¿ããã€ãã㪠$9V^2$ ã®æ倧å€ãæ±ããã°ãã, ããã¯ã°ã©ããæãã° $832\\/27$ ãšããã. ãã£ãŠ $r_M^2=(9V^2)\\/192=13\\/81$ ã§, 解çãã¹ãå€ã¯ $\\textbf{94}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc089/editorial/257"
}
] | ãè¡šé¢ç©ã $8\sqrt{3}$, å€æ¥çã®ååŸã $\sqrt{5}$ ã§ããçé¢åé¢äœ $T$ ã«ãããŠ, ãã®å
æ¥çã®ååŸ $r$ ãšããŠããåŸãæå€§å€ $r_{M}$ ãæ±ããŠãã ãã. ãã ã, $r_M$ ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\sqrt{\dfrac{a}{b}}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã.
ãããã§**çé¢åé¢äœ**ãšã¯, ãã¹ãŠã®é¢ãååã§ãããããªåé¢äœã®ããšããããŸã. |
OMC089 | https://onlinemathcontest.com/contests/omc089 | https://onlinemathcontest.com/contests/omc089/tasks/2176 | F | OMC089(F) | 500 | 30 | 95 | [
{
"content": "ãäžè¬ã« $4N = 240$ ãšãã. ãŸã, 以äžã®äžé£ã®æäœã«ãã£ãŠ, åºå¥ã§ããªã $4N-1$ åã®çœãç, $1$ åã®éãç, $2N$ åã®èµ€ãçãäžåã«äžŠã¹, æ°ãæžã蟌ãããšãèããïŒ\r\n\r\n- ã¯ããã« $2N+1$ åã®èµ€ãçã䞊ã¹, å·Šããå¶æ°çªç®ã«çœ®ããããã® $N$ åã®ãã¡ $1$ ã€ãéžãã§éã«å¡ãæ¿ãã.\r\n- 次ã«, èµ€ãçå士ãé£ãåãå Žæ $2N-2$ ç®æãš, å³ç«¯ $1$ ç®æã®èš $2N-1$ ç®æã« $1$ ã€ãã€çœãçã眮ã.\r\n- æ®ã£ã $2N$ åã®çœãçã奜ããªäœçœ®ã«çœ®ã.\r\n- æåŸã«, çœãçãšéãçã®åèš $4N$ åã«å¯Ÿã, $1$ ä»¥äž $4N$ 以äžã®æŽæ°ãéè€ãªã $1$ ã€ãã€æžã蟌ã.\r\n- ãã ã, å¥æ°ã¯èµ€ãçã®å³é£ã«, å¶æ°ã¯ãã®ä»ã®å Žæã«æžã蟌ããã®ãšãã. \r\n\r\nãã®ãããªå Žåã®æ°ã¯ä»¥äžã§äžããããããšã容æã«ãããïŒ\r\n$$\r\nN\\times\\binom{4N+1}{2N}\\times \\lbrace(2N)!\\rbrace^2 = \\frac{N}{(2N+1)} (4N+1)!\r\n$$\r\n以äž, ãã®å€ã $S$ ã«çããããšã瀺ã. 以äžã§äžããããæ°å\r\n$$\r\n0,\\~p_1,\\~p_1+p_2,\\~\\dots,\\~p_1+p_2+\\cdots+p_{4N}\r\n$$\r\nã«ãããŠ, 第 $i-1$ é
ãšç¬¬ $i$ é
ã®å¶å¥ãå転ããã®ã¯, $p_i$ ãå¥æ°ã®ãšãã§ãã. çœãçãšéãçã«æžãããæ°ãå·Šãã $p_1,p_2,\\dots,p_{4N}$ ãšãªããããªçã®äžŠã¹æ¹ãèãããš, èµ€ãçã¯å転ãèµ·ããç®æãšå¯Ÿå¿ããŠãã, éãçããå·Šã«ããèµ€ãçã®åæ°ã¯å¿
ãå¥æ°ã§ããããšãã, ãã®äžŠã¹æ¹ã¯é å $p_1,p_2,\\dots,p_{4N}$ ã®ã¹ã³ã¢ã®åæ°ã ãååšãã. ãã£ãŠ, 確ãã«ãã㯠$S$ ã«çããããšãããã. 以äžãã, $N=60$ ã®ãšã, ç¹ã« $S$ ã¯ä»¥äžã§äžããããïŒ\r\n$$S=\\frac{60}{121} \\times 241!$$\r\n$X, Y$ 㯠Legendre ã®å®çãããããã $238, 117$ ãšãªã, 解çãã¹ãå€ã¯ç¹ã« $238 \\times 117 = \\mathbf{27846}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc089/editorial/2176"
},
{
"content": "ã$4n=240$ ãšããïŒ$2n$ åãã€ã® $0$ ãš $1$ ã®äžŠã¹æ¿ã $(a_1,\\dots,a_{4n})$ ã«ã€ããŠã¹ã³ã¢ãåæ§ã«å®ãïŒãã®ç·åã $T$ ãšããã° $S=((2n)!)^2T$ ã§ããïŒ\\\r\nããã㧠$a_1+\\dots+a_i$ ãå¥æ°ãšãªãçµã®åæ°ã¯æ¬¡ã§äžããããïŒãã ã $0\\leq b\\leq a$ ã§ãªããšã $\\binom{a}{b}=0$ ãšããïŒ\r\n$$\\sum_{k:odd}\\binom{i}{k}\\binom{4n-i}{2n-k}$$\r\nããã¯æ¬¡ã®å€é
åŒã® $x^{2n}$ ã®ä¿æ°ãšäžèŽããïŒ\r\n$$\\frac{1}{4}\\bigl((1+x)^i-(1-x)^i\\bigr)\\bigl((1+x)^{4n-i}-(1-x)^{4n-i}\\bigr)$$\r\n\r\nãã£ãŠ $T$ ã¯æ¬¡ã®å€é
åŒã® $x^{2n}$ ã®ä¿æ°ãšäžèŽããïŒ\r\n$$\\begin{aligned}\r\n&\\quad\\frac{1}{4}\\sum_{i=0}^{4n}\\bigl((1+x)^i-(1-x)^i\\bigr)\\bigl((1+x)^{4n-i}-(1-x)^{4n-i}\\bigr)\\\\\\\\\r\n&=\\frac{1}{4}\\Bigl((4n+1)\\bigl((1+x)^{4n}+(1-x)^{4n}\\bigr)-\\frac{(1+x)^{4n+1}-(1-x)^{4n+1}}{x}\\Bigr)\r\n\\end{aligned}$$\r\nèšç®ããã° $T=\\dfrac{(4n+1)!}{2(2n+1)!(2n-1)!}$ ãã $S=\\dfrac{n(4n+1)!}{(2n+1)}$ ãåŸãããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc089/editorial/2176/56"
},
{
"content": "ãå¥æ°ãå·Šããé ã« $a_1,a_2,\\cdots,a_{120}$ çªç®ã«äžŠãã§ãããšãïŒã¹ã³ã¢ã¯ $-a_1+a_2-a_3+a_4-\\cdots-a_{119}+a_{120}$ ã§ããïŒ\\\r\n ãŸãïŒ$a_{k}$ ã®æåŸ
å€ã¯ $a_k=\\dfrac{241k}{121}$ ãšãªãïŒ(詳ããçç±ã¯OMC078(F)ã®ãŠãŒã¶ãŒè§£èª¬ãåç
§)\\\r\n ãã£ãŠïŒã¹ã³ã¢ã®æåŸ
å€ã¯ $\\dfrac{241}{121}(-1+2-3+4-\\cdots-119+120)=\\dfrac{241\\times60}{121}$ ã§ããããïŒ $S=\\dfrac{241\\times60}{121}\\times240!$ \\\r\nã«ãžã£ã³ãã«ã®å®çããïŒ $X=238,Y=117$ ãšãªãïŒ $XY=\\textbf{27846}$",
"text": "kçªç®ã«å°ããªå€ã®æåŸ
å€ã®å
¬åŒã®å©çš",
"url": "https://onlinemathcontest.com/contests/omc089/editorial/2176/57"
}
] | ã$1,2,\dots,240$ ã䞊ã¹æ¿ããŠã§ããé å $p_1,p_2,\dots,p_{240}$ ã«ã€ããŠïŒãã®**ã¹ã³ã¢**ãïŒ$p_1+p_2+\cdots+p_i$ ãå¥æ°ã§ãããã㪠$i$ ã®åæ°ãšå®ããŸãïŒ$240!$ éãã®é åãã¹ãŠã«ã€ããŠã®ã¹ã³ã¢ã®ç·åã $S$ ãšãããšãïŒ$S$ ã $2$ ã§å²ãåããåæ°ã®æå€§å€ $X$ ãšïŒ$S$ ã $3$ ã§å²ãåããåæ°ã®æå€§å€ $Y$ ã«ã€ããŠïŒãã®**ç©** $XY$ ã解çããŠãã ããïŒ |
OMC088 (for beginners) | https://onlinemathcontest.com/contests/omc088 | https://onlinemathcontest.com/contests/omc088/tasks/3054 | A | OMC088(A) | 100 | 306 | 319 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/Og-PqIWfusw\r\n \r\nã$m^\\prime$ æ¥å»¶æ»ããŠããïŒæ¬ã $n$ ååããŠãããšãããšïŒ\r\n$$10m ^\\prime n=330$$\r\n$m ^\\prime$ 㯠$33=3Ã11$ ã®æ£ã®çŽæ°ãšãªãããïŒæ±ããç·åã¯\r\n$$\\sum _{m ^\\prime\\mid 33}(14+m^\\prime)=\\textbf{104}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc088/editorial/3054"
}
] | ãOMCåã¯å³æžé€šã§åããæ¬ã $1$ åãè¿åŽããŠããªãã£ãã®ã§ïŒä»æ¥ $330$ åã®å»¶æ»æéãæ¯æã£ãŠãã¹ãŠè¿åŽããŸããïŒããã§ïŒæ¬ã®è²žåºã®èŠåã¯ä»¥äžã®ããã«å®ããããŠããŸãïŒ
* $1$ æ¥ã«äœåã§ãåãããã
* åããæ¥ã $0$ æ¥ç®ãšã㊠$14$ æ¥ç®ãŸã§ã¯ç¡æã§ãããïŒ$15$ æ¥ç®ãã㯠$1$ æ¥ããšã«ïŒ$1$ åããã $10$ åã®å»¶æ»æéãçºçãã
OMCåã¯ãã $1$ æ¥ã«ãããã®å³æžé€šã§æ¬ãåããŠããªããšãããšïŒæ¬ãåããã®ã¯ $m$ æ¥åã§ãïŒ$m$ ãšããŠããåŸãæ£æŽæ°ã®ç·åãæ±ããŠãã ããïŒ |
OMC088 (for beginners) | https://onlinemathcontest.com/contests/omc088 | https://onlinemathcontest.com/contests/omc088/tasks/3058 | B | OMC088(B) | 200 | 191 | 264 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/LuonRxLnfP4\r\n \r\nãæ蚌çªå·ã $y$ ãšãããšïŒ$0$ ã§ãªãæŽæ° $a$ ãçšããŠ\r\n$$f(x)=a(x-2)(x-3)(x-5)(x-7)(x-11)+y$$\r\nãšè¡šããããïŒå®æ°é
ãèããããšã§\r\n$$-(aÃ2Ã3Ã5Ã7Ã11)+y=2357\\implies y=2357+2310a$$\r\nãã®åœ¢åŒã§äžã€ç®ã®æ¡ä»¶ãã¿ãããã®ã¯ $a=3$ ã®ã¿ã§ããïŒãã®ãšã $\\textbf{9287}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc088/editorial/3058"
}
] | ãå³æžé€šã§æ¯æããæžãŸããOMCåã¯å®¶ã®åãŸã§åž°ã£ãŠããŸããïŒOMCåã¯ãµã ãçé¢ã®æã®æ蚌çªå·ãå
¥åããããã«ãŒãããŒãå©çšããŠããã®ã§ããïŒãã®æ¥ã¯ãã£ããã«ãŒãããŒãå¿ããŠããŸããŸããïŒããã以äžã®ããšãèŠããŠããã®ã§ïŒæ£ããæ蚌çªå·ãåãããŸããïŒ
- æ蚌çªå·ã¯å
šå¡ã«å
±éã§ããïŒ$4$ æ¡ã§ïŒã©ã®æ¡ã®æ°åãçžç°ãªãïŒ
- ã«ãŒãããŒãæã£ãŠããã®ã¯ $5$ 人å
åŒã®OMAåïŒOMBåïŒOMCåïŒOMDåïŒOMEåã®ã¿ã§ããïŒããããã®ã«ãŒãã«æžãããçªå·ã¯ $2,3,5,7,11$ ã§ããïŒ
- çªå· $t$ ã®ã«ãŒãããŒã䜿ããšæ蚌çªå·ãšã㊠$f(t)$ ãå
¥åãããïŒ
- ãã㧠$f(x)$ 㯠$x$ ã«ã€ããŠã®ããæŽæ°ä¿æ° $5$ 次å€é
åŒã§ïŒãã®å®æ°é
㯠$2357$ ã§ããïŒ
ããŠïŒæ£ããæ蚌çªå·ãå
¥åããŠãã ããïŒ |
OMC088 (for beginners) | https://onlinemathcontest.com/contests/omc088 | https://onlinemathcontest.com/contests/omc088/tasks/3082 | C | OMC088(C) | 200 | 181 | 210 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/BYsTFR1AnuU \r\n\r\nãåæ°ã¯ $9x+10(49-x)$ ãšè¡šããïŒãã®ãšãïŒä»åãã®å ãæ¹ã«ã€ããŠ\r\n$${}\\_{49}\\mathrm{C}\\_{x}=6499270398159.$$\r\näžåŒãæºãã $x$ ã®å€ã® $1$ ã€ã $t$ ãšããã°ïŒ$x=49-t \\neq t$ ã解ãšãªãïŒãŸã\r\n$${}\\_{49}\\mathrm{C}\\_{0}\r\n\\lt {}\\_{49}\\mathrm{C}\\_{1}\r\n\\lt \\cdots \\lt {}\\_{49}\\mathrm{C}\\_{24}\r\n= {}\\_{49}\\mathrm{C}\\_{25}\r\n\\gt {}\\_{49}\\mathrm{C}\\_{26}\r\n\\gt \\cdots \\gt {}\\_{49}\\mathrm{C}\\_{49}$$ \r\nãæç«ããããšããïŒ$t$ ãš $49-t$ ã®ã»ãã«äžåŒãã¿ãã $x$ ã¯ååšããïŒæ±ããç·åã¯\r\n$$(9+10)Ã49 = \\textbf{931}.$$\r\nããªãïŒå®éã«ä»¥äžãæç«ããïŒ\r\n$${}\\_{49}\\mathrm{C}\\_{17}= {}\\_{49}\\mathrm{C}\\_{32}=6499270398159$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc088/editorial/3082"
}
] | ãã©ãããŠãç¡æã§æ¬ãèªã¿ããOMCåã¯ïŒèªåã®å®¶ã§OMCå³æžé€šãçµå¶ããã°ããããšã«æ°ãã€ããŸããïŒãŸãOMCåã¯ïŒç®ç«ã€å Žæã«ããããã®æ¬ããã¹ãŠæšªäžåã«äžŠã¹ãã®ã§ããïŒãã®ãŸãŸã§ã¯äžå®å®ãªã®ã§ä»¥äžã®æ¡ä»¶ã«åŸã£ãŠã¡ããã© $50$ åã®ä»åããå ããããšã«ããŸããïŒ
* $2$ åã®ä»åãã®éã«ã¯ïŒæ¬ã $9$ åãŸã㯠$10$ å䞊ã¹ã
* ãã ãïŒå·Šå³ã®ç«¯ã«ã¯å¿
ã $1$ ã€ãã€ä»åããå ãããã®ãšããïŒ
ãã®ãšãïŒä»åãã®å ãæ¹ã¯å
šéšã§ $6499270398159$ éãã§ãããšåãããŸããïŒOMCåã®ããããã®æ¬ã®åæ°ãšããŠãããããã®ã®ç·åãæ±ããŠãã ããïŒ ãã ãïŒé©ããåæ°ã¯ååšããããšãä¿èšŒãããŸãïŒ |
OMC088 (for beginners) | https://onlinemathcontest.com/contests/omc088 | https://onlinemathcontest.com/contests/omc088/tasks/3048 | D | OMC088(D) | 300 | 221 | 254 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/te2E7al8Xho\r\n\r\n ãç¹ $A$ ããç¹ $P$ ãäžå³ã®ããã«å®ããïŒç¹ $E$ ããã³ $K$ ãæããããã«ã¯ïŒã«ã¡ã©ã¯çŽç· $EM$ ããäžåŽãšçŽç· $NK$ ããäžåŽã« $1$ ã€ãã€ãªããã°ãªããïŒããããç·å $HM,JN$ äžã«ãããšããŠãããïŒãã®ãšãã«ã¡ã©ã¯ãã®äœçœ®ã«ãããåè§åœ¢ $FPLO$ ã®å€éšãã¹ãŠãæããããïŒåè§åœ¢ $FPLO$ ã®ã¿ãèãããšïŒããããã®ã«ã¡ã©ãç¹ $M,N$ ã«è¿ã¥ãã»ã©æããé åã倧ãããªãïŒãã£ãŠïŒä»¥äžã«ã¡ã©ããã® $2$ ç¹ã«åºå®ããïŒ\\\r\nããã®ãšãïŒç·å $IL$ ($I$ ãé€ã) ãçŽç· $MG$ ãšäº€ç¹ããããïŒç·å $FG$ ($G$ ãé€ã) ãçŽç· $NI$ ãšäº€ç¹ããããªãããšãæ¡ä»¶ãšãªãïŒæ¬æ£ã®å¹
ã $x,y$ ãšããŠïŒãããæ°åŒã«è¡šçŸããã°ä»¥äžã®ããã«ãªãïŒ\r\n$$0\\lt x\\leq 5, \\quad 0\\lt y\\leq 5, \\quad x\\leq 10-2y, \\quad y\\leq 10-2x$$\r\nãããã§äžãããã $xy$ å¹³é¢äžã®é åãšçŽç· $x+y=k$ ãå
±æç¹ããã€ãããªæ倧㮠$k$ ã®å€ã¯ $20\\/3$ ã§ããããšã確èªã§ããããïŒæ±ããã¹ãå€ã¯ $20+3=\\textbf{23}$ ã§ããïŒ\r\n![figure 1](\\/images\\/y0Rmo07ybvJlQZ7eraC5dUwtJIMKz6A1IOwzpwEy)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc088/editorial/3048"
}
] | ãOMCåã¯OMCå³æžé€šãçµå¶ããããã«å°çšã®éšå±ãçšæããŠïŒæ¬æ£ãšç£èŠã«ã¡ã©ãèšçœ®ããããšã«ããŸããïŒããã§ïŒä»¥äžã®æ¡ä»¶ãã¿ããããã«ããŸãïŒ
- éšå±ã¯çäžããèŠãŠ $1$ 蟺ã®é·ãã $5 \ \mathrm{m}$ ã®æ£æ¹åœ¢ã§ããïŒ
- æ¬æ£ã¯çŽæ¹äœã§ãã®**奥è¡ã**㯠$1 \ \mathrm{m}$ ã§ããïŒäžå³ã®ããã«å·Šå³ããããã®å£ã«**åŽé¢ãæ¥è§ŠãããŠ**èš $2$ ã€èšçœ®ããïŒæ¥è§Šãããäœçœ®ã¯äžå³ã®éãïŒäžäžããããã« $1 \ \mathrm{m}$ ã®äœçœ®ïŒã§åºå®ã§ããïŒå¹
ã®ã¿èªç±ã«å€ããããïŒ
- ç£èŠã«ã¡ã©ã¯åšå² $360^\circ$ ã§ååé ããŸã§æãããããã®ã $2$ å°ïŒéšå±ã®ãã¹ãŠã®å Žæãæããããããèšçœ®ããïŒãã ãïŒã«ã¡ã©ã®å€§ããã¯ç¡èŠã§ãïŒæ¬æ£ã®å
éšã«ã¯èšçœ®ã§ããªããã®ãšããïŒ
ããšãã°äžå³ã®ããã«ã«ã¡ã©ãšæ¬æ£ãèšçœ®ããå ŽåïŒã«ã¡ã©ãæããç¯å²ã¯èµ€ãå¡ãããéšåã§ãïŒ\
ãOMCåã¯æ¬ãã§ããã ãå€ã眮ãããã®ã§ïŒæ¬æ£ã®å¹
ã®åãæ倧åãããã§ãïŒãã®æ倧å€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b} \ \mathrm{m}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ
![figure 1](\/images\/iwhjWcSCu4Fp2FWEJx2w79PtLHMTSKwbZEPXv6q4) |
OMC088 (for beginners) | https://onlinemathcontest.com/contests/omc088 | https://onlinemathcontest.com/contests/omc088/tasks/3326 | E | OMC088(E) | 400 | 8 | 93 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/Rha6JK_IwAc\r\n\r\n ãåã®æ¡ä»¶ãã¿ããé£æºã®æ§åã¯ïŒç¹å®ã® $2$ é ç¹ $X,Y$ ãå«ãäºãã«åºå¥å¯èœãª $30$ åã®é ç¹ã«ã€ããŠïŒ$X,Y$ ã«ã€ããŠã¯æ¬¡æ°ã $3$ ã«ïŒãã®ä»ã® $28$ é ç¹ã«ã€ããŠã¯æ¬¡æ°ã $2$ ã«ãªãããã«ïŒå
šäœãåçŽãã€é£çµãšãªãããç¡å蟺ã匵ã£ãã°ã©ããšã¿ãªããïŒ\r\nãã®ãšãïŒ$X$ ãåºçºããŠåäžã®é ç¹ã $2$ å以äžéãããšãªã $Y$ ãžç§»åããçµè·¯ (**è¯ãçµè·¯**ãšåŒã¶ããšã«ãã) 㯠$1$ éããŸã㯠$3$ éãããããšã確èªã§ããïŒ\\\r\nã次ã®ããã«å ŽååããããšïŒã°ã©ãã¯ããããå³ã®ãããªåœ¢ã«ãªã£ãŠããïŒããããèµ€ç¹ç·ã®åŒããã蟺ãé€ãã° $28$ é ç¹ãäžåã«äžŠã¹ãã®ã¡é©åã« $X,Y$ ãæ¿å
¥ããæäœã«å¯Ÿå¿ã¥ããããããïŒæ¬¡ã®ããã«èšç®ã§ããïŒ\r\n- (a)ïŒè¯ãçµè·¯ã $1$ éãã®ãšãïŒ$28!\\times{}\\_{26}\\mathrm{C}\\_{2}\\/2^2=27!\\times2275\\ (éã)$\r\n- (b)ïŒè¯ãçµè·¯ã $3$ éãã〠$X,Y$ éã«èŸºããããšãïŒ$28!\\times{}\\_{27}\\mathrm{C}\\_{1}\\/2=27!\\times378\\ (éã)$\r\n- (c)ïŒè¯ãçµè·¯ã $3$ éãã〠$X,Y$ éã«èŸºããªããšãïŒ$28!\\times{}\\_{27}\\mathrm{C}\\_{2}\\/3!=27!\\times1638\\ (éã)$\r\n\r\nã以äžããæ±ããã¹ãå€ã¯ $\\dfrac{M}{27!}=2275+378+1638=\\bf{4291}$ïŒ\r\n![figure 1](\\/images\\/hbUrp5D45EuPcjPXABV0smIqJPq6b5GOrMcHv0u7)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc088/editorial/3326"
}
] | ãOMCå³æžé€šãããå°åã«ã¯ïŒOMCå³æžé€šãåãããŠå
šéšã§ $30$ è»ã®å³æžé€šããããŸãïŒ$2$ ã€ã®å³æžé€šã**é£æº**ããŠãããšãïŒãããã¯çžäºã«æ¬ãè²æž¡ããããšãã§ããŸãïŒ\
ãããŸïŒ$30$ è»ã®ãã¡ $X$ å³æžé€šãš $Y$ å³æžé€šã¯ããããèªèº«ä»¥å€ã® $3$ è»ã®å³æžé€šãšé£æºããŠããïŒæ®ãã® $28$ è»ã®å³æžé€šã¯ããããèªèº«ä»¥å€ã® $2$ è»ã®å³æžé€šãšé£æºããŠããŸãïŒããã§ïŒ$X$ å³æžé€šãš $Y$ å³æžé€šã¯ãšãã«OMCå³æžé€šãšã¯ç°ãªããŸãïŒ\
ãåå³æžé€šãé©åœãªè²æž¡ãç¹°ãè¿ãè¡ãããšã§OMCå³æžé€šãã©ã®å³æžé€šã«ããæ¬ãè²æž¡ããŠãããããšãå¯èœã§ãããšãïŒ$30$ è»ã®å³æžé€šã®é£æºã®ä»æ¹ãšããŠèãããããã®ã¯ $M$ éããããŸãïŒ$\dfrac{M}{27!}$ ã解çããŠãã ããïŒ |
OMC088 (for beginners) | https://onlinemathcontest.com/contests/omc088 | https://onlinemathcontest.com/contests/omc088/tasks/3323 | F | OMC088(F) | 400 | 21 | 90 | [
{
"content": "ãåç»è§£èª¬ãhttps:\\/\\/youtu.be\\/fhjXRI0DdmI\r\n\r\n ãç°ãªãããŒã¿ã«ã€ããŠã¯äºçŽçªå·ãç°ãªãå€ãšãªããã㪠$a,b$ ã®çµã**è¯ãçµ**ãšåŒã¶ããšã«ããïŒ\r\n\r\nã$2$ ã€ã®ããŒã¿ $(m,n)\\neq (m^\\prime,n^\\prime)$ ã®äºçŽçªå·ãäžèŽãããšãïŒ$a+b=2357$ ã¯çŽ æ°ãã $a,b$ ã¯äºãã«çŽ ã§ããããšã«æ³šæããã°ïŒ$a(m-m^\\prime)=b(n^\\prime-n)$ ããããæŽæ° $k$ ãååšã㊠$m-m^\\prime=bk,n^\\prime-n=ak$ ãã¿ããïŒ\r\nãã£ãŠ $|m-m^\\prime|\\leq M-1$ ããã³ $|n-n^\\prime|\\leq N-1$ïŒãŸã $(m,n)\\neq(m^\\prime,n^\\prime)$ ãã $k\\neq 0$ ã§ããããšã«æ³šæããã°ïŒ$(a,b)$ ãè¯ãçµã§ããããã®å¿
èŠååæ¡ä»¶ã¯ $a\\geq N$ ãŸã㯠$b\\geq M$ ãšãããïŒ\r\n\r\nã$a,b$ 㯠$a+b=2357$ ãã¿ããæ£æŽæ°ã§ããããšã«æ³šæããã°ïŒè¯ãçµã $333$ åã§ããããã®å¿
èŠååæ¡ä»¶ã¯ç°¡åãªè°è«ã«ãã£ãŠ $\\min(M,2357)+\\min(N,2357)=4381$ ã§ããïŒãã®æ¡ä»¶äžã§ã® $MN$ ã®æå°å€ãæ±ããã«ã¯ $M,N\\leq 2357$ ã®å Žåãèããã°ååã§ããïŒãã®ãšã $M+N=4381$ ãã $MN\\geq 2357\\times 2024=\\bf{4770568}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc088/editorial/3323"
}
] | ãOMCå³æžé€šã«ããå
š $M(\geq 1)$ åã®æ¬ã«ã¯ $1$ ãã $M$ ãŸã§ã®çªå·ãå²ãåœãŠãããŠããŸãïŒãŸãïŒå
š $N(\geq 1)$ 人ã®å©çšè
ã«ã¯ $1$ ãã $N$ ãŸã§ã®çªå·ãå²ãåœãŠãããŠããŸãïŒOMCå³æžé€šã§ã¯ãçªå· $m$ ã®æ¬ãçªå· $n$ ã®å©çšè
ãäºçŽããŠãããããšãçµ $(m,n)$ ã«ãã£ãŠè¡šãïŒããã**ããŒã¿**ãšåŒãã§ããŸãïŒ\
ã$a+b=2357$ ãã¿ããæ£æŽæ° $a,b$ ãçšããŠããŒã¿ $(m,n)$ ã®**äºçŽçªå·**ã $am+bn$ ãšå®ãããšãïŒç°ãªãããŒã¿ã«ã€ããŠã¯äºçŽçªå·ãç°ãªãå€ãšãªããããªæ£æŽæ°ã®çµ $(a,b)$ ã¯ã¡ããã© $333$ åãããŸããïŒãã®ãšãïŒããåŸãããŒã¿ã®ç·æ° $(=MN)$ ã®æå°å€ãæ±ããŠãã ããïŒ \
ããã ãïŒ$2357$ ã¯çŽ æ°ã§ãïŒ |
OMC087 (Mathpediaæ¯) | https://onlinemathcontest.com/contests/omc087 | https://onlinemathcontest.com/contests/omc087/tasks/4120 | A | OMC087(A) | 300 | 138 | 195 | [
{
"content": "ãç·å $BD$ ã®åçŽäºçåç·ã«é¢ã㊠$C$ ãšå¯Ÿç§°ãªç¹ã $C^\\prime$ ãšãã. $A,B,C^\\prime,D$ ãå
±åã§ããããšã«æ°ãã€ããã°\r\n$$\\triangle ABC^\\prime = AB\\times BC^\\prime \\times \\sin \\angle ABC^\\prime = C^\\prime D\\times DA\\times\\sin\\angle C^\\prime DA = \\triangle C^\\prime DA$$\r\nã§ãããã, ç·å $AC^\\prime$ ãšç·å $BD$ ã®äº€ç¹ã¯ç·å $BD$ ã®äžç¹ã§ãã. ãã£ãŠæ¹ã¹ãã®å®çãã\r\n$$BM^2 = AM\\times C^\\prime M = AM\\times CM$$\r\nãåŸã. ãŸã, äžç·å®çãã\r\n$$\r\nAB^2 + AD^2 = 2(BM^2 + AM^2)\r\n$$\r\nãæç«ãã. äžã®äºåŒãããããŠè§£ãããšã§ $AM = \\bf{113}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/4120"
},
{
"content": "ãè£å©ç¹ãåããªãïŒèšç®ã¡ã€ã³ã®è§£æ³ã§ã\r\n\r\n----\r\n\r\nãäžç·å®çããã³äœåŒŠå®çïŒãŸãåè§åœ¢ $ABCD$ ã¯åã«å
æ¥ããããšãã次ãæãç«ã€ïŒ\r\n$$AB^2+AD^2=2(BM^2+AM^2),\\quad BC^2+CD^2=2(BM^2+CM^2),$$\r\n$$\\frac{AB^2+AD^2-BD^2}{2AB\\cdot AD}+\\frac{BC^2+CD^2-BD^2}{2BC\\cdot CD}=0$$\r\n$BC=127x,CD=129x,BM=y$ ãšããïŒ$127^2+129^2=2(128^2+1)$ ãçšããŠæŽçããã°æ¬¡ãåŸãïŒ\r\n$$AM^2=-y^2+128^2+1,\\quad (128^2+1)x^2=y^2+32^2,\\quad (128^2+1)x^2-(x^2+1)y^2=0$$\r\nåŸäºåŒãã $y^2=3616$ ã§ãããã $AM^2=12769={\\bf 113}^2$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/4120/46"
},
{
"content": "ã[å
¬åŒè§£èª¬](.\\/)ã® $C^\\prime$ ã«æ°ã¥ããªããŠã $BM^2 = AM \\times CM$ ãåŸãæ¹æ³ã§ãïŒ\r\n\r\n---\r\n\r\nããŸãïŒä»®å®ãã $BC : DC = AB : AD$ïŒ$M$ ãäžç¹é£çµå®çã§æŽ»ããããã®ã§ïŒ$AB$ ã®äžç¹ã $N$ ãšãããšïŒä»®å®ãšåãããŠ\r\n$$ AN : MN = \\frac{AB}2 : \\frac{AD}2 = AB : AD = BC : DC. $$\r\nãŸã $AD \\mathrel{\\/\\\\!\\/} NM$ ããã³åã«å
æ¥ããåè§åœ¢ã®æ§è³ªãçšããŠ\r\n$$ \\angle ANM = 180^\\circ - \\angle BNM = 180^\\circ - \\angle BAD = \\angle BCD. $$\r\nãã£ãŠäºèŸºæ¯å€Ÿè§çžçãã $\\triangle ANM$ ãš $\\triangle BCD$ ã¯çžäŒŒã§ãã\r\n$$\\angle BAM = \\angle NAM = \\angle CBD = \\angle CBM. $$\r\nåæ§ã®è°è«ã§ $\\angle ABM = \\angle BCM$ ãåããã®ã§ïŒäºè§çžçãã $\\triangle ABM$ ãš $\\triangle BCM$ ãçžäŒŒïŒãããã£ãŠ $AM : BM = BM : CM$ ãã $BM^2 = AM \\times CM$ïŒ",
"text": "察称ç¹ãåããªãæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/4120/47"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ 㯠$AB\times CD = AD\times BC$ ãæºãããŸã. ç·å $BD$ ã®äžç¹ã $M$ ãšããŸã.
$$\begin{aligned}
AB = 127,&& AD = 129,&& CM = 32
\end{aligned}$$
ã§ãããšã $AM$ ã®é·ããæ±ããŠäžãã. |
OMC087 (Mathpediaæ¯) | https://onlinemathcontest.com/contests/omc087 | https://onlinemathcontest.com/contests/omc087/tasks/2335 | B | OMC087(B) | 400 | 92 | 201 | [
{
"content": "ãããŸã¿ã€ã«åŒµããç¡éã«ç¶ããŠãããšããŠïŒããã¿ã€ã«ã®é ç¹ã«ãããç¹ã**è¯ãç¹**ãšåŒã¶ããšãšããïŒ\\\r\nã$2$ é ç¹ãè¯ãç¹ã§ããæ£äžè§åœ¢ã«ã€ããŠïŒãã $1$ é ç¹ãè¯ãç¹ã§ããããšããããããïŒããæ£å
è§åœ¢ã®é ç¹ãå
šãŠè¯ãç¹ã§ãããšãïŒãã®äžå¿ãè¯ãç¹ã§ããïŒ\\\r\nãéã«ïŒäžå¿ãš $1$ é ç¹ãè¯ãç¹ã«å®ãããšãïŒæ®ãã® $5$ é ç¹ãè¯ãç¹ã§ãããããªæ£å
è§åœ¢ãå®ãŸãïŒ\\\r\nãäžè¬ã« $300$ ã $3N$ ãšãïŒäžèŸº $3N$ ã®æ£äžè§åœ¢ã® $3$ é ç¹ã $A,B,C$ ãšããïŒè¯ãç¹ $P$ ã«ã€ããŠïŒ$P$ ãéã $CA$ ã«å¹³è¡ãªçŽç·ãšç·å $AB$ ã®äº€ç¹ã $X_P$ ãšãïŒåæ§ã« $Y_P,Z_P$ ãå®ããïŒãã®ãšãïŒç¹ $P$ ãäžå¿ãšããè¯ãç¹ãããªãæ£å
è§åœ¢ã®åæ°ã¯ïŒäžèŸºã $\\min(PX_P, PY_P, PZ_P)$ ã®æ£äžè§åœ¢ãã $1$ é ç¹ãéžã¶æ¹æ³ã«å¯Ÿå¿ããããïŒ\r\n$$\\frac{1}{2}\\min(PX_P, PY_P, PZ_P)(\\min(PX_P, PY_P, PZ_P) + 1)$$\r\nã§è¡šããïŒ$P$ ã«ããã $PX_P + PY_P + PZ_P = 3N$ ã§ããããšã«çæããŠïŒæ±ããçãã¯\r\n$$\r\n\\begin{aligned}\r\n&~~~~\\frac{1}{2}\\sum_{a + b + c = 3N}\\min(a,b,c)(\\min(a,b,c) + 1) \\\\\\\\\r\n&= \\frac{1}{2} \\left( 3\\sum_{k = 0}^{N-1}k(k+1)(3N - 3k) + N(N + 1) \\right) \\\\\\\\\r\n&= \\frac{1}{2} \\left(\\frac{3}{4}(N-1)N(N+1)(N+2) + N(N+1) \\right) \\\\\\\\\r\n&= \\frac{1}{8}N(N+1)(3N^2+3N-2) \\\\\\\\\r\n&= \\bf{38251225}\r\n\\end{aligned}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/2335"
},
{
"content": "ã[å
¬åŒè§£èª¬](.\\/)ãšåæ§ïŒ$300$ ãäžè¬ã« $3N$ ãšããïŒã¿ã€ã«å
šäœã®å€§ããªæ£äžè§åœ¢ãšåãåãã§ïŒããã¿ã€ã«ã®é ç¹ã«ãããç¹ $3$ ã€ãé ç¹ã«ãã€æ£äžè§åœ¢ã«ã€ããŠïŒäžèŸºã®é·ãã $3$ ã®åæ°ã§ã¯ãªããšãã¯æ£å
è§åœ¢ã¯å
æ¥ããïŒäžèŸºã®é·ãã $3n\\ (n = 1, \\ldots, N)$ ã§ãããšãïŒä»®å®ã®æ£å
è§åœ¢ã¯ $n$ åå
æ¥ããïŒå
æ¥ããäžèŸº $n$ ã®æ£å
è§åœ¢ãšïŒããã«å
æ¥ããæ£å
è§åœ¢ãèãããšè¯ãïŒïŒãã®ããã«ïŒãã®æ£äžè§åœ¢ãã¹ãŠã«ã€ããŠïŒå¯Ÿå¿ããæ£å
è§åœ¢ãèããã°ïŒä»®å®ã®æ£å
è§åœ¢ã¯éäžè¶³ãªãçŸããïŒãã®æ£äžè§åœ¢ã®åæ°ã¯ïŒäžèŸº $3n$ ã®ãšã\r\n$$ 1 + \\cdots + (3N - 3n + 1) = \\frac{\\left(3N - 3n + 1\\right) \\left(3N - 3n + 2\\right)}2 $$\r\nã§ããããïŒæ±ããåæ°ã¯\r\n$$\\begin{aligned}\r\n\\sum\\_{n=1}^N \\frac{n \\left(3N - 3n + 1\\right) \\left(3N - 3n + 2\\right)}2 &= \\sum\\_{n=1}^N \\frac{9n \\left(N - n\\right) \\left(N - n + 1\\right) + 2n}2 \\\\\\\\\r\n&= 9\\sum\\_{n=1}^{N-1} \\mathinner{{}\\_n\\mathrm C_1} \\mathinner{{}\\_{N-n+1}\\mathrm C_2} + \\sum\\_{n=1}^N n \\\\\\\\\r\n&= 9\\mathinner{{}\\_{N+2}\\mathrm C_4} + \\frac{N \\left(N + 1\\right)}2 \\\\\\\\\r\n&= \\frac{N \\left(N + 1\\right) \\left(3N^2 + 3N - 2\\right)}8 \\\\\\\\\r\n&= \\mathbf{38251225}.\r\n\\end{aligned}$$",
"text": "æ£äžè§åœ¢ãšã®å¯Ÿå¿",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/2335/48"
}
] | ãäžèŸº $1$ ã®æ£äžè§åœ¢ã®ã¿ã€ã«ã $300^2$ åããïŒããããçµã¿åãããŠäžèŸº $300$ ã®å€§ããªæ£äžè§åœ¢ãäœããŸããïŒ\
ããã®å€§ããªæ£äžè§åœ¢ã«ãããŠïŒããã¿ã€ã«ã®é ç¹ã«ãããç¹ $6$ ã€ãé ç¹ã«ãã€æ£å
è§åœ¢ã¯ããã€ãããŸããïŒ |
OMC087 (Mathpediaæ¯) | https://onlinemathcontest.com/contests/omc087 | https://onlinemathcontest.com/contests/omc087/tasks/1458 | C | OMC087(C) | 500 | 61 | 108 | [
{
"content": "ãäžåŒãã $x_1x_2=x_2x_3-1=x_3x_4-2=\\cdots=x_8x_1-7=kx_1x_2-8$ ã§ãããã,\r\n$$(x_1x_2)(x_3x_4)(x_5x_6)(x_7x_8)=(x_2x_3)(x_4x_5)(x_6x_7)(x_8x_1)$$\r\nã $x_1x_2$ ã®ã¿ã®åŒã§è¡šãããšã§\r\n$$(x_1x_2)(x_1x_2+2)(x_1x_2+4)(x_1x_2+6)=(x_1x_2+1)(x_1x_2+3)(x_1x_2+5)(x_1x_2+7)$$\r\nããã解ã㊠$x_1x_2=-\\dfrac{7}{2},\\dfrac{-7\\pm\\sqrt{19}}{2}$ ãåŸããã,\r\n$$k=1+\\dfrac{8}{x_1x_2}=-\\dfrac{9}{7},\\dfrac{-41\\pm8\\sqrt{19}}{15}$$\r\nãéã« $k$ ããããã®å€ã®ãšã, æ¡ä»¶ãã¿ããå®æ°ã®çµã¯ååšãã.\\\r\nããããã®ç·å㯠$-\\dfrac{709}{105}$ ã§ãããã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{814}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/1458"
}
] | ã以äžã® $8$ ã€ã®åŒããã¹ãŠã¿ããå®æ°ã®çµ $(x_1,x_2,\ldots,x_8)$ ãååšãããããª, å®æ° $k$ ã®ç·åãæ±ããŠãã ããïŒ
$$\begin{aligned}
x_1+\frac{1}{x_2}=x_3,&&
x_2+\frac{1}{x_3}=x_4,
&&\cdots,
&&x_7+\frac{1}{x_8}=x_1,
&& x_8+\frac{1}{x_1}=kx_2
\end{aligned}$$
ãã ã,ãæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $-\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC087 (Mathpediaæ¯) | https://onlinemathcontest.com/contests/omc087 | https://onlinemathcontest.com/contests/omc087/tasks/2804 | D | OMC087(D) | 600 | 27 | 81 | [
{
"content": "ãã¯ããã®é
眮㧠$5$ ã€ã®ã°ã«ãŒãã $A,B,C,D,E$ ãšåœåããïŒãã®ãšãïŒä»¥äžã®ãããªè¡šãèããïŒ\r\n$$\\begin{array}{|c|c|c|c|c|}\r\n\\hline\r\n\\\\{D,E\\\\} & \\\\{C,E\\\\} & \\\\{A,B\\\\} & \\\\{A,B\\\\} & \\\\{C,D\\\\} \\\\\\\\\r\n\\hline \\hline\r\n\\\\{B,C\\\\} & \\\\{A,D\\\\} & \\\\{D,E\\\\} & \\\\{C,E\\\\} & \\\\{A,B\\\\} \\\\\\\\\r\n\\hline\r\n\\end{array}$$\r\nååãå
¥ãæ¿ãåŸã®ã°ã«ãŒãã®æ§æã§ããïŒäžäžãããããã®å€§åŠã«å¯Ÿå¿ããŠããïŒãããã£ãŠïŒæåã®é
眮ã®å¶çŽã¯\r\n- ååã«ã¯çžç°ãªãæå $4$ çš®é¡ãå
¥ãïŒ\r\n- äžäžããããã«åæåã $2$ åãã€çŸããïŒ\r\n\r\nãããã«äžè¬æ§ã倱ããïŒååã«çŸããªãå¯äžã®æåãå·Šãã $A,B,C,D,E$ ã§ãããšããŠïŒãã®ãããªè¡šãäœéããããèããã°ããïŒãã ãïŒã¯ããã«å倧åŠã§åã°ã«ãŒãã ã£ãåŠçãåºå¥ããŠããªãããšããïŒæåŸã« $2^{10}$ åããå¿
èŠãããããšã«æ³šæããïŒäž $10$ æåã®é
眮ã決ããã°æ®ãã¯äžæã«æ±ºãŸãããïŒä»¥äžã®åé¡ã«åž°çãããïŒ\r\n\r\n- $5$ ã€ã®ç®± $1,2,3,4,5$ ãšïŒ$10$ åã®ããŒã«ãããïŒåããŒã«ã«ã¯ $A,A,B,B,C,C,D,D,E,E$ ãæžãããŠããïŒä»¥äžã®æ¡ä»¶ãã¿ããããã«ïŒåç®±ã«ããŒã«ã $2$ ã€å
¥ããæ¹æ³ã¯äœéããããïŒ\r\n\t- åãç®±ã«åãæåãæžãããããŒã«ã¯å
¥ããªãïŒ\r\n\t- $A$ ãæžãããããŒã«ã¯ç®± $1$ ã«å
¥ããªãïŒ\r\n\t- $B$ ãæžãããããŒã«ã¯ç®± $2$ ã«å
¥ããªãïŒ\r\n\t- $C$ ãæžãããããŒã«ã¯ç®± $3$ ã«å
¥ããªãïŒ\r\n\t- $D$ ãæžãããããŒã«ã¯ç®± $4$ ã«å
¥ããªãïŒ\r\n\t- $E$ ãæžãããããŒã«ã¯ç®± $5$ ã«å
¥ããªãïŒ\r\n\r\nãããã§ïŒé ç¹ $1,2,3,4,5$ ãçšæãïŒäŸãã° $A$ ãšæžãããããŒã«ãç®± $i$ ãš $j$ ã«å
¥ãããšãé ç¹ $i$ ãš $j$ ã®éã« $A$ ãšæžããã蟺ã匵ãèŠé ã§ïŒ$5$ é ç¹ $5$ 蟺ã®ç¡åã°ã©ããæ§æããïŒãã®ãšãïŒã°ã©ãå
šäœã®æ§é ã¯\r\n\r\n- é·ã $5$ ã®ãµã€ã¯ã«äžã€ãããªãïŒ\r\n- é·ã $3$ ã®ãµã€ã¯ã«äžã€ãšïŒé·ã $2$ ã®ãµã€ã¯ã«äžã€ (ïŒå€é蟺 $1$ æ¬) ãããªãïŒ\r\n\r\nã®ããããã§ããïŒããããã«ã€ããŠèŸºã®åŒµãæ¹ã¯ $12$ éãããã³ $10$ éãã§ããïŒäžã€ã®åŒµãæ¹ã«å¯ŸããŠã©ãã«ã®å²ãæ¯ãæ¹ããããã $13$ éãããã³ $6$ éãã§ããããšã確èªã§ããããïŒå
šäœã§æ±ããå Žåã®æ°ã¯\r\n$$(12\\times 13+10\\times 6)\\times 2^{10}=\\textbf{221184}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/2804"
},
{
"content": "$2$ã€ã®å€§åŠããããã$A$倧åŠïŒ$B$倧åŠãšãïŒããããã®å€§åŠã®åŠçã$A_1,A_2,\\ldots A_{10}$åã³$B_1,B_2,\\ldots B_{10}$ãšããŸãïŒ\\\r\nããã«ïŒæåã«æ¯ãåããããã°ã«ãŒããã°ã«ãŒã$1$ïœ$5$ãšããŠïŒã°ã«ãŒã$1$ã«ã¯$A_1,A_2,B_1,B_2$ïŒã°ã«ãŒã$2$ã«ã¯$A_3,A_4,B_3,B_4$ïŒ$\\ldots $ïŒã°ã«ãŒã$5$ã«ã¯$A_9,A_{10},B_9,B_{10}$ãæå±ããŠãããšããŸãïŒ\\\r\nçµã¿æãåŸã®ã°ã«ãŒããèãããšïŒã°ã«ãŒã$1$ã«æå±ããŠãã人ã ããããªãã°ã«ãŒãïŒã°ã«ãŒã$2$ã«æå±ããŠãã人ã ããããªãã°ã«ãŒãïŒ$\\ldots $ïŒã°ã«ãŒã$5$ã«æå±ããŠãã人ã ããããªãã°ã«ãŒãã®$5$ã€ã®ã°ã«ãŒããã§ããã®ã§ããããã°ã«ãŒã$1^{\\prime}$ïœ$5^{\\prime}$ãšããŸãïŒ\\\r\nããã§ïŒçµã¿æãåŸã«ãããŠ$A_1,A_2,B_1,B_2$ã¯ããããå¥ã®ã°ã«ãŒãã«æå±ããããšã«ãªãïŒããããã°ã«ãŒã$2^{\\prime}$,$3^{\\prime}$,$4^{\\prime}$,$5^{\\prime}$ã«æå±ããããšã«ããã°å¯Ÿç§°æ§ãããã®å Žåã®$4!$åãçãã«ãªããŸãïŒ\\\r\nãã®ææ®ãåŠçã®æ¯ãåãã«ã€ããŠèãããšïŒã°ã«ãŒã$1^{\\prime}$ã®$4$人ã¯å
ã
ã°ã«ãŒã$2,3,4,5$ã§ãã®ãã¡$2$人ã$A$倧åŠåºèº«ïŒã°ã«ãŒã$2^{\\prime}$ã®$3$人ã¯å
ã
ã°ã«ãŒã$3,4,5$ã§ãã®ãã¡$1$人ã$A$倧åŠåºèº«ïŒ$\\ldots $ïŒã°ã«ãŒã$5^{\\prime}$ã®$3$人ã¯å
ã
ã°ã«ãŒã$2,3,4$ã§ãã®ãã¡$2$人ã$A$倧åŠåºèº«ïŒãšãªããŸãïŒ\\\r\nå
ã
ã®ã°ã«ãŒããšåºèº«å€§åŠã®å¯Ÿå¿ä»ã(ã°ã«ãŒã$1^{\\prime}$ãé€ã)$81$éããå
šãŠæžãåºããšïŒå
šäœã§åäžã°ã«ãŒãã«æå±ããŠãã$A$倧åŠåºèº«è
ã$2$人ãã€ã«ãªãããã«ã°ã«ãŒã$1^{\\prime}$ã®å¯Ÿå¿ä»ããã§ããã®ã¯ãã®ãã¡$36$éãã§ãïŒ\\\r\næåŸã«$A_3$ãš$A_4$ïŒ$A_5$ãš$A_6$ïŒ$\\ldots $ïŒ$B_9$ãš$B_{10}$ãåºå¥ããŠèããŠããªãã£ãã®ã§ãããããå
¥ãæ¿ãããã¿ãŒã³ãèã$2^8$åããå¿
èŠããããŸãïŒ\\\r\nãããã£ãŠæ±ããå Žåã®æ°ã¯\\\r\n$$4!Ã36Ã2^8=\\mathbf{221184}.$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/2804/55"
}
] | ã$2$ ã€ã®å€§åŠãããïŒãããããã $10$ 人ã®åŠçãåå ããŠããŒãã£ãŒãå¬ããŸãïŒã¯ããïŒåå è
㯠$4$ åã〠$5$ ã€ã®ã°ã«ãŒãã«é
眮ãããŸããïŒããã§ïŒããããã®ã°ã«ãŒãã«ã¯å倧åŠã®åŠçã $2$ 人ãã€é
眮ãããŠããŸãïŒ\
ãããŸïŒåå è
ã®èŠªçŠãããæ·±ããããïŒã°ã«ãŒããçµã¿æ¿ããããšã«ããŸããïŒãã®ãšãïŒåæ§ã«åã°ã«ãŒãã«ããããã®å€§åŠã®åŠçã $2$ 人ãã€é
眮ãïŒãã€ä»¥äžã®æ¡ä»¶ãã¿ããããã«ããŸãïŒ
- å
¥ãæ¿ãã®ååŸã§ïŒãšãã«åãã°ã«ãŒãã«é
眮ããã $2$ 人çµãååšããªãïŒ$2$ 人ã®å€§åŠã®äžèŽã«ãããªãïŒïŒ
ã¯ããã®é
眮ãåºå®ãããšãïŒãããã®æ¡ä»¶ãã¿ããããã«ã°ã«ãŒããçµã¿æ¿ããæ¹æ³ã¯äœéããããŸããïŒ\
ããã ãïŒããããã®ã°ã«ãŒãã¯åºå¥ããªããã®ãšããŸãïŒããªãã¡ïŒåŠçã®åãæ¹ã®ã¿ãèããŸãïŒïŒ |
OMC087 (Mathpediaæ¯) | https://onlinemathcontest.com/contests/omc087 | https://onlinemathcontest.com/contests/omc087/tasks/2472 | E | OMC087(E) | 800 | 3 | 20 | [
{
"content": "ãåé²è¡šèšãããšãã«ã©ã®æ¡ã«ã $9$ ãçŸããªã $n$ æ¡ä»¥äžã®éè² æŽæ°ã®ãã¡ïŒ$7$ ã®åæ°ã§ãããã®ã®åæ°ã $f(n)$ ãšããïŒ\r\nãã ãããã§ã¯ $0$ 㯠$0$ æ¡ã§ãããšããïŒãã®ãšãæ±ããç·å $S$ ã¯æ¬¡ã®ããã«è¡šããïŒ\r\n$$S= 5^{2022^{2022}} f(5^{2022^{2022}})-\\sum_{n=0}^{5^{2022^{2022}}-1}f(n)$$\r\n\r\nã$f(n)$ ãæ±ãããïŒåé²è¡šèšã§ã©ã®æ¡ã«ã $9$ ãçŸããªã $n$ æ¡ä»¥äžã®éè² æŽæ° $K$ 㯠$x_i\\in\\\\{0,1,\\dots,8\\\\}$ ãçšããŠ\r\n$$K=x_0+10x_1+\\dots+10^{n-2}x_{n-2}+10^{n-1}x_{n-1}$$\r\nãšè¡šããŠïŒãã®ãšã次ãæãç«ã€ïŒ\r\n$$K\\equiv 10^{n-1}((-9)^{n-1}x_0+(-9)^{n-2}x_1+\\dots+(-9)x_{n-2}+x_{n-1})\\pmod{7}$$\r\nããªãã¡ïŒæ¬¡ãã¿ããçµ $(x_0,\\dots,x_{n-1})\\in\\\\{0,1,\\dots,8\\\\}^n$ ã®åæ°ã $f(n)$ ã§ããïŒ\r\n$$(-9)^{n-1}x_0+(-9)^{n-2}x_1+\\dots+(-9)x_{n-2}+x_{n-1}\\equiv 0\\pmod{7}$$\r\nãããŸïŒå·ŠèŸºã®ãããªè¡šç€ºã $n$ **æ¡ä»¥äžã®ãã€ãã¹ä¹é²è¡šèš** ãšåŒã¶ïŒãã ã $n=0$ ã§ã¯ $0$ ãšããïŒïŒ$n$ æ¡ä»¥äžã®ãã€ãã¹ä¹é²è¡šèšãå¯èœãªæŽæ°ã®æå°å€ $m_n$ ããã³æå€§å€ $M_n$ ã¯\r\n$$m_n=\\begin{cases}\r\n-\\frac{9(9^n-1)}{10}&(n:å¶æ°)\\\\\\\\\r\n-\\frac{9(9^{n-1}-1)}{10}&(n:å¥æ°)\\end{cases},\\quad \r\nM_n=\\begin{cases}\r\n\\frac{9^n-1}{10}&(n:å¶æ°)\\\\\\\\\r\n\\frac{9^{n+1}-1}{10}&(n:å¥æ°)\\end{cases}$$\r\nã§ããããšã容æã«ãããïŒäžæ¹ã§ïŒ$9^1,9^2,\\dots$ ã§å²ã£ãäœããèããããšã§ïŒä»»æã®æŽæ°ã«å¯ŸãïŒãã® $n$ æ¡ä»¥äžã®ãã€ãã¹ä¹é²è¡šèšã¯å¯èœãªãã°äžæã§ããïŒãããããïŒ$n$ æ¡ä»¥äžã®ãã€ãã¹ä¹é²è¡šèšãå¯èœãªæŽæ°å
šäœã®éå㯠$m_n$ ä»¥äž $M_n$ 以äžã®æŽæ°å
šäœã®éåãšäžèŽãïŒ$f(n)$ 㯠$n$ æ¡ä»¥äžã®ãã€ãã¹ä¹é²è¡šèšãå¯èœãª $7$ ã®åæ°ã®åæ°ã ããïŒ\r\n$$f(n)=\\left\\lfloor\\dfrac{-m_n}{7}\\right\\rfloor+\\left\\lfloor\\dfrac{M_n}{7}\\right\\rfloor+1$$\r\nãããŠïŒ $5^{2022^{2022}}=6N+1$ ãšããã°ïŒä»¥äžãæ±ããã®ã§ãã£ãïŒ\r\n$$S=(6N+1)f(6N+1)-\\sum_{n=0}^{6N}f(n)$$\r\n$m_n,M_n$ ã $7$ ã§å²ã£ãããŸãã®åšææ§ãèæ
®ããŠèšç®ããã°ïŒæ¬¡ã確èªã§ããïŒ\r\n$$\\begin{gathered}f(6k+1)=\\dfrac{9^{6k+1}+5}{7},\\quad f(6k)=\\dfrac{9^{6k}+6}{7},\\\\\\\\ f(6k)+\\dots+f(6k+5)=\\dfrac{1}{7}(9^{6k}+9^{6k+1}+\\cdots+9^{6k+5})+2\\end{gathered}$$\r\nåŸã£ãŠ $N\\equiv 0 \\pmod{9^7}$ ãã次ãåŸãããïŒ\r\n$$\\begin{aligned}\r\nS&=(6N+1)\\times\\dfrac{9^{6N+1}+5}{7}-\\left(\\sum_{n=0}^{6N}\\dfrac{9^n}{7}+2N+\\dfrac67\\right)\\\\\\\\\r\n&\\equiv \\dfrac57-\\dfrac17\\times\\dfrac{-1}{9-1}-\\dfrac67 \\pmod{9^7}\\\\\\\\\r\n&\\equiv -\\dfrac18\\pmod{9^7}\\\\\\\\\r\n&\\equiv \\dfrac{9^7-1}8\\pmod{9^7}\\\\\\\\\r\n&\\equiv \\bm{597871}\\pmod{9^7}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/2472"
}
] | ã次ã®æ¡ä»¶ãã¿ããæ£æŽæ°ãã¹ãŠã«ã€ããŠïŒåé²æ³è¡šèšã§ã®**æ¡æ°ã®ç·å**ã $9^7$ ã§å²ã£ãããŸããæ±ããŠãã ããïŒ
- åé²è¡šèšã§ã®æ¡æ°ã $5^{2022^{2022}}$ æ¡ä»¥äžã§ããïŒ
- $7$ ã®åæ°ã§ããïŒ
- åé²è¡šèšãããšãã«ïŒã©ã®æ¡ã«ã $9$ ãçŸããªãïŒ
äŸãã°ïŒæ¡ä»¶ãã¿ããæ£æŽæ°ã $3,14,15$ ã® $3$ ã€ã§ãã£ããšãïŒæ±ããå€ã¯ $1+2+2=5$ ã§ãïŒãŸãïŒ$5^{2022^{2022}}=5^{(2022^{2022})}$ ã§ãïŒ |
OMC087 (Mathpediaæ¯) | https://onlinemathcontest.com/contests/omc087 | https://onlinemathcontest.com/contests/omc087/tasks/3553 | F | OMC087(F) | 800 | 5 | 38 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®é¢ç©ã $S$ ãšãããš, \r\n\r\n$$AM = \\dfrac{2S}{BC} = \\dfrac{2S}{AB + BC - CA} = DI$$\r\n\r\nãåãã. ãŸã, äžè§åœ¢ $ABC$ ã® $A$ ã«å¯Ÿããåæ¥åãšèŸº $BC$ ã®æ¥ç¹ã $M$ ã§ããããšã«æ°ãã€ãããš, $AD = CM$ ãåŸã. åŸã£ãŠ, äžè§åœ¢ $ADI$ ãšäžè§åœ¢ $CMA$ ã¯ååã§ãããã, $AB = AC = AI$ ãåãã. ãŸã, \r\n\r\n$$\\angle PAM = \\angle PDI, \\quad \\angle PMA = \\angle PID$$\r\n\r\nã§ãããã, äžè§åœ¢ $PAM$ ãšäžè§åœ¢ $PDI$ ã¯åå. ãã£ãŠ $PA = PD = 7, PI = PM = 9$ ã§ãã, äžè§åœ¢ $PAD$ ãšäžè§åœ¢ $PIM$ ã¯çžäŒŒã§ããããšãåãã. ããã§, $MI = x, AM = DI = y$ ãšçœ®ããš, äžå¹³æ¹ã®å®çãã\r\n\r\n$$x^2 - y^2 = AI^2 = \\bigg(\\frac{DP}{MP}x\\bigg)^2 + y^2$$\r\n\r\nã§ãããã $y = \\dfrac{4x}{9}, \\ AI = \\dfrac{\\sqrt{65}x}{9}$ ãåŸã. ãŸã, $\\angle AMC = \\angle ADE = 90^\\circ$ ããåç¹ $C, D, E, M$ ã¯åäžååšäžã«ããã®ã§, \r\n\r\n$$\\angle DAP = \\frac{1}{2}(180^\\circ - \\angle APD) = 90^\\circ - \\frac{1}{2}\\angle MED = 90^\\circ - \\frac{1}{2}(180^\\circ - \\angle ACB) = \\frac{1}{2}\\angle DAI$$\r\n\r\nãã, $\\angle DAP = \\angle PAI$ ã§ãããã\r\n\r\n$$\\cos \\angle PAI = \\cos \\angle DAP = \\cos \\angle PMI = \\frac{x}{18}.$$\r\n\r\nåŸã£ãŠ, äœåŒŠå®çãã\r\n\r\n$$\\bigg(\\frac{\\sqrt{65}x}{9}\\bigg)^2 + 7^2 - 2 \\times 7 \\times \\frac{\\sqrt{65}x}{9} \\times \\frac{x}{18} = 9^2$$\r\n\r\nã§ãããã $x^2 = 81\\bigg(2 + \\dfrac{14}{\\sqrt{65}}\\bigg)$ ãåãã. ãã£ãŠ, \r\n\r\n$$S = CM \\times AM = AD \\times \\frac{4x}{9} = \\frac{DP}{MP}x \\times \\frac{4x}{9} = \\frac{28x^2}{81} = 56 + \\frac{392}{\\sqrt{65}}$$\r\n\r\nãã解çãã¹ã㯠$\\bf{513}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/3553"
},
{
"content": "ã$I$ ãäžå¿ $A$ïŒååŸ $AB$ ã®ååšãš$A$ ãéã $BC$ ã«å¹³è¡ãªçŽç·ã®äº€ç¹(ã®äžã€)ã§ããããšã«æ³šæããŠåç¹ã®åº§æšãããã°ïŒæ¬¡ã®ããã«åº§æšèšç®ã«ãã£ãŠè§£ãããšãã§ããŸãïŒ\r\n\r\n----\r\n\r\nã$r\\gt 0,\\theta\\in(0,\\pi\\/2)$ ã«ãã£ãŠ $A(0,0),B(-r\\cos\\theta,r\\sin\\theta),C(r\\cos\\theta,r\\sin\\theta)$ ãšãããšïŒæ¬¡ã®ããã«åç¹ã®åº§æšãèšç®ã§ããïŒ\r\n$$M(0,r\\sin\\theta),\\quad I(r,0),\\quad D(r\\cos^2\\theta,r\\sin\\theta\\cos\\theta),\\quad E(0,r\\cot\\theta)$$\r\nãã®ãšã $\\triangle ADE,\\triangle EIM$ ã®å€æ¥åã®æ¹çšåŒã¯ãããã次ã®ããã«ãªãïŒ\r\n$$x^2+y(y-r\\cot\\theta)=0,\\quad x\\bigl(x-r(\\cos\\theta+1)\\bigr)+y\\bigl(y-r(\\sin\\theta+\\cot\\theta)\\bigr)+r^2\\cos\\theta=0$$\r\nããããã $P\\Bigl(\\dfrac{r}{2}\\cos\\theta,\\dfrac{r}{2}\\cot\\theta(1-\\cos\\theta)\\Bigr)$ ãåŸãããïŒãã£ãŠæ¬¡ãæãç«ã€ïŒ\r\n$$DP^2=\\dfrac{r^2}{2}(1-\\cos\\theta)\\cot^2\\theta=49,\\quad MP^2=\\dfrac{r^2}{2}(1-\\cos\\theta)(\\cot^2\\theta+2)=81$$\r\nèšç®ããã° $\\cot\\theta=\\dfrac{7}{4},r^2=130+14\\sqrt{65}$ ãåŸããïŒ$\\triangle ABC$ ã®é¢ç©ã¯ $r^2\\sin\\theta\\cos\\theta=56+\\dfrac{392}{\\sqrt{65}}$ ãšèšç®ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc087/editorial/3553/54"
}
] | ã$AB = AC$ ãæºããäžè§åœ¢ $ABC$ ã«ã€ããŠ, 蟺 $BC$ ã®äžç¹ã $M$ ãšã, $B$ ã«å¯Ÿããåå¿ã $I$ ãšããŸã. $I$ ãéã蟺 $AC$ ã«åçŽãªçŽç·ãçŽç· $AC, AM$ ãšäº€ããç¹ããããã $D, E$ ãšããŸã. äžè§åœ¢ $ADE$ ã®å€æ¥åãšäžè§åœ¢ $EIM$ ã®å€æ¥åã® $E$ ã§ãªã亀ç¹ã $P$ ãšããŸã.
$$DP = 7, \quad MP = 9$$
ã§ãããšã, äžè§åœ¢ $ABC$ ã®é¢ç©ãæ±ããŠäžãã. \
ããã ã, æ±ããçãã¯äžã€ã®æ£ã®æŽæ° $a, b, c$ ïŒ $b$ ã¯å¹³æ¹å åãæããªãïŒãçšã㊠$a + \dfrac{c}{\sqrt{b}}$ ãšè¡šããŸã. $a + b + c$ ã解çããŠäžãã. |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3872 | A | 第25åçäžå
¥è©Šæš¡è©Š(A) | 100 | 114 | 134 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3872"
},
{
"content": "ã $(E,I,N,R,T,U,V)=(6,1,7,9,3,4,2)$ (ããªãã¡ïŒ $3497\\div13=269$ )ãšãã解ãè©Šè¡é¯èª€ããŠé 匵ã£ãŠã¿ã€ãããïŒ\\\r\n 解çãã¹ãæ°å€ã¯ $\\textbf{3497}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3872/50"
}
] | äœåïŒèç¢
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãåŸãæŽæ°ãå
šãŠæ±ã, ãã®ç·åã解çããŠäžãã.
***
ã$\text{E, I, N, R, T, U, V}$ ã® $7$ æåã«ã¯ $0$ ïœ $9$ ã®æŽæ°ã®ãããããåœãŠã¯ãŸã, åãæåã«ã¯åãæŽæ°ã, ç°ãªãæåã«ã¯ç°ãªãæŽæ°ãåœãŠã¯ãŸã. $\square$ ã«ã¯ $0$
ïœ $9$ ã®æŽæ°ã®ãããããåœãŠã¯ãŸã, å
šãŠåãæŽæ°ãåœãŠã¯ãŸããšã¯éããªã. 以äžã®çç®ãæãç«ã€ãšã, $\text{TURN}=\boxed{\phantom{nada}}$ ã§ãã. ãã ãæäžäœã® $\square$ ã«ã¯ $0$ ã¯åœãŠã¯ãŸããªã.
![figure 1](\/images\/D4wrSWux8u4LPhpBGt8faJmP2DUBDrq8Y55Kxs4u) |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3873 | B | 第25åçäžå
¥è©Šæš¡è©Š(B) | 100 | 36 | 79 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3873"
},
{
"content": "ã(ããã§ã¯è§£çéå ±ãç®çãšããŠïŒè©³ããè«èšŒã¯ããã«ïŒçµæãåºãæ¹æ³ã®ã¿ãè¿°ã¹ãããšã«ããïŒ)\r\n\r\nã $987654321$ ã $14$ å䞊ã¹ãŠåºæ¥ã $126$ æ¡ã®æ°ãã $2$ æ¡åãé€ããŠåŸããã $124$ æ¡ã®æ°ãæ¡ä»¶ãæºãã $n$ ã§ããïŒ\\\r\nãã£ãŠïŒåãé€ã $2$ æ°ã®éžã³æ¹ãèããŠïŒæ±ããåæ°ã¯ ${}\\_{126}\\mathrm{C}\\_{2}=\\textbf{7875}$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3873/53"
}
] | äœåïŒå é
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠäžãã.
***
ã以äžã®æ¡ä»¶ãã¿ãã $1$ 以äžã®æŽæ° $n$ ã«ã€ããŠ, æãå°ããæ¡æ°ã®ãã®ã¯ $\boxed{\phantom{nada}}$ åãã.
- $9\times n$ ã®åäœã®å㯠$999$ .
- $n$ ã¯ã©ã®äœã $0$ ã§ãªã, ãã€é£ãåãäœã®æ°åã¯å
šãŠç°ãªã. |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3874 | C | 第25åçäžå
¥è©Šæš¡è©Š(C) | 100 | 115 | 142 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3874"
}
] | äœåïŒå®®æ
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠäžãã.
***
ã以äžã®æ¡ä»¶ãã¿ãã $1$ 以äžã®æŽæ° $n$ ã®ãã¡, $2022$ çªç®ã«å°ãããã®ã¯ $\boxed{\phantom{nada}}$ æ¡ã§ãã.
- $7\times n$ ã®åäœã®æ°ã¯ $1$ ã®äœããé ã« $3,9,2,1,1,2$ ã®äžŠã³ãç¹°ãè¿ã.
äŸãã°, $7\times13315899=93211293$ ã¯ãã®æ¡ä»¶ãã¿ãã. |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3875 | D | 第25åçäžå
¥è©Šæš¡è©Š(D) | 100 | 13 | 43 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3875"
},
{
"content": "ã $9$ æ°ã®æ倧å
¬çŽæ°ã $g$ ãšãããšïŒ $9$ æ°ã®åäœã®å㯠$30$ ãªã®ã§ïŒã©ãã $9$ ã§å²ã£ãŠ $3$ äœãæ°ã ããïŒ \\\r\n(i) $g$ 㯠$9$ ã§å²ã£ãŠ $3$ äœãæ°ã§ $9$ æ°ã¯ $g,4g,7g,10g,\\cdots$ ã®ãããã\\\r\n(ii) $g$ 㯠$9$ ã§å²ã£ãŠ $6$ äœãæ°ã§ $9$ æ°ã¯ $2g,5g,8g,11g,\\cdots$ ã®ãããã\\\r\nã® $2$ ãã¿ãŒã³ã«éãããïŒ\r\n\r\n(i)ã®ãšã\\\r\n $9$ æ°ãšã㊠$g,4g,7g,\\cdots,25g$ ãéžãã ãšãããšïŒ $25g\\leq950000$ ãã $g\\leqq38000$ 㧠$g$ ã $6$ æ¡ã§ããããšã«ççŸïŒ\\\r\n $9$ æ°ã®æ倧å€ã $28g$ ãšãããšïŒ $28g\\leq950000$ ãã $g\\leq33928$ ã§ïŒéžãã $9$ æ°ã¯ $4g,7g,\\cdots,28g$ ãšãªãïŒ\\\r\n $10g$ ã®åäœã®åã $30$ ã§ããããšãã $g$ ã®åäœã®åã $30$ ãªã®ã§ïŒ $g=33897,33888,33879,33798,33789,33699,32997,\\cdots$ ã§ããïŒæ°åãå
¥ããŠèª¿ã¹ãŠãããšïŒãã®äžã§æ¡ä»¶ãæºããæ倧ã®ãã®ã¯ $32997$ ã§ããïŒ\\\r\nãŸãïŒ $32997\\times31$ ã $7$ æ¡ãªã®ã§ïŒ $9$ æ°ã®æ倧å€ã $31g$ 以äžã§æ¡ä»¶ãæºãããã®ã¯ $g\\lt32997$ ãæºããïŒ\r\n\r\n(ii)ã®ãšã\\\r\n $9$ æ°ãšã㊠$2g,5g,8g,\\cdots,26g$ ãéžãã ãšãããšïŒ $26g\\leq950000$ ãã $g\\leqq36538$ 㧠$2g$ ã $6$ æ¡ã§ããããšã«ççŸïŒ\\\r\nãŸãïŒ $32997\\times29=956913$ ãäžäžã®äœãåæšäºå
¥ãããš $100000$ ãšãªãã®ã§ïŒ $9$ æ°ã®æ倧å€ã $29g$ 以äžã§æ¡ä»¶ãæºãããã®ã¯ $g\\lt32997$ ãæºããïŒ\r\n\r\n以äžããïŒæ±ãã $g$ ã®æ倧å€ã¯ $\\textbf{32997}$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3875/52"
}
] | äœåïŒæ²
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠäžãã.
***
ãé»æ¿ã« $9$ ã€ã® $6$ æ¡ã®æŽæ°ãæžãããŠãã. é»æ¿ã«æžãããã©ã®æŽæ°ãåäœã®å㯠$30$ ã§, åæŽæ°ãäžäžã®äœã§åæšäºå
¥ããŠåäžã®äœãŸã§ã®æŠæ°ã«ãããš, ãããã $10$ äž, $20$ äž, $30$ äž, $40$ äž, $50$ äž, $60$ äž, $70$ äž, $80$ äž, $90$ äžã«ãªããšã, é»æ¿ã«æžãããæ°ã®æ倧å
¬çŽæ°ã¯æ倧㧠$\boxed{\phantom{nada}}$ ã§ãã. |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3876 | E | 第25åçäžå
¥è©Šæš¡è©Š(E) | 100 | 5 | 34 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3876"
}
] | äœåïŒèç¢ã»äžžå²¡
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ倧ã®æ°ã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæŽæ°
$m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸã. $m\times n\times n$ ã解çããŠäžãã. ãã ã, $n$ 㯠$1$ 以äžãšããŸã.
***
ããã°ãåã¯, ãã $2$ ã€ã®äœã®åã $11$ ã§ãã, ãã€ãã $2$ ã€ã®äœã®åã $13$ ãšãªã $4$ æ¡ã®æŽæ°ãéžã³, ã¿ã€ã°ã¡åã¯ãã®ããšãç¥ã£ãŠãã. ã¿ã€ã°ã¡åã¯åãã« $100$ ç¹ãäžããããŠãã. $2$ 人ã¯æ¬¡ã®ãããªè¡åã $14$ åç¹°ãè¿ã.
- ã¿ã€ã°ã¡åã¯ãã¯ããããããããã§çãããã質åãããŠ, $0$ ç¹ä»¥äžçŸåšã®ç¹æ°ä»¥äžã®ç¹æ°ã (å®æ°å€ã§) 宣èšãã. ãã®åŸ, ãã°ãåã¯ãã¯ããããããããã§è³ªåã«çããŠ, ãã®è¿çããã¯ããã®ãšã, ã¿ã€ã°ã¡åã¯å®£èšããç¹æ°ãåŸãŠ, ãããããã®ãšã, ã¿ã€ã°ã¡åã¯å®£èšããç¹æ°ã倱ã.
ãã® $14$ åã®è¡åã®åŸ, ã¿ã€ã°ã¡åã¯ãã°ãåã®éžãã æ°ãäºæ³ã, ãã®çããééã£ãŠããã°ç¹æ°ã¯ $0$ ç¹ãšãªã. ã¿ã€ã°ã¡åã¯, ãã°ãåãéžãã æ°ã«ããã, æçµçãªç¹æ°ã $\boxed{\phantom{nada}}$ ç¹ä»¥äžã«ããããšãã§ãã. |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3877 | F | 第25åçäžå
¥è©Šæš¡è©Š(F) | 100 | 13 | 33 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3877"
}
] | äœåïŒäžç°æ
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠäžãã.
***
ã$1$ 以äžã®æŽæ° $m,n$ ã«ã€ããŠ, äžèŸº $1\text{cm}$ ã®æ£æ¹åœ¢ã瞊㫠$m$ å, 暪ã«
$n$ åããã€ããŠã§ããé·æ¹åœ¢ã® $1$ æ¬ã®å¯Ÿè§ç·ã§æ£æ¹åœ¢ãåå²ã, ã§ããäžè§åœ¢ã®é¢ç©ã®ç·åã $\lbrace m,n\rbrace\text{cm}^2$ ãšè¡šãããšã«ãã. äŸãã° $\lbrace 1,3\rbrace\text{cm}^2$ ã¯äžå³äžã®æç·éšã®äžè§åœ¢ã®é¢ç©ã®åã§ãããã, $\lbrace 1,3\rbrace=\dfrac{1}{3}$ ã§ãã. ãã®ãšã, $a\times2022\times\lbrace a,2022\rbrace$ ã $13$ ã§å²ããš $1$ äœãæŽæ°ãšãªããã㪠$1$ ä»¥äž $10000$ 以äžã®æŽæ° $a$ 㯠$\boxed{\phantom{nada}}$ åãã.
![figure 1](\/images\/5vmoy4PsHA2aVGy2K3YuhDuRcgb0Kac95AEUgpQZ) |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3878 | G | 第25åçäžå
¥è©Šæš¡è©Š(G) | 100 | 42 | 71 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3878"
}
] | äœåïŒé£¯æ²¢
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠäžãã.
***
ã瞊ã®ãã¹ã®æ°ã $1$ ïœ $10$ , 暪ã®ãã¹ã®æ°ã $1$ ïœ $10$ ã®ãã¹ãŠã®çµã¿åããã§èš $100$ çš®é¡ã®ãã¹ç®ã $1$ ã€ãã€ãã, ãããã®èš $3025$ åã®ãã¹ã«å°æ£ã®é§ã§ãããè§ãã眮ã. 次ã®æ¡ä»¶ãã¿ãããªãã眮ãããšã®ã§ããé§ã®æ°ã¯æ倧㧠$\boxed{\phantom{nada}}$ åã§ãã.
- ã©ã®ãã¹ã $2$ ã€ä»¥äžã®é§ã眮ãããŠããªã.
- ã©ã®é§ãä»ã®é§ã®è¡ãå
ã«ãªã.
ãã ã, é§ã¯ååå€ãçšæãããŠãããã®ãšãã. ãªã, ãè§ãã¯äžå³ã®ããã«ïŒåããã¹ç®ã®äžã§ïŒæãã«ã©ããŸã§ãåãããšãã§ãã.
![figure 1](\/images\/CzSkgZBGoDNvO3aDuseBCX4P3NucnqQ02aSLuovW) |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3879 | H | 第25åçäžå
¥è©Šæš¡è©Š(H) | 100 | 21 | 35 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3879"
}
] | äœåïŒå é
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæŽæ°
$m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸã. $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãåŸãæ°ãå
šãŠæ±ã, ããããã«ã€ã㊠$m\times n\times n$ ãèšç®ã, ãã®å€ã®ç·åã解çããŠäžãã. ãã ã, $n$ 㯠$1$ 以äžãšããŸã.
***
ãäžå³ã«ãã㊠$\angle ADC$ 㯠$30^{\circ}$ ããå°ãã,
$$\begin{aligned}
AD:BD=11:13, && AB=BC, && FD=1\text{cm}
\end{aligned}$$
ã®ãšã, $ED=\boxed{\phantom{nada}}\ \text{cm}$ ã§ãã.
![figure 1](\/images\/2NhCV6HxNF1vODCpMMWQkNlydG0gpbQGM4TPbB2S) |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3880 | I | 第25åçäžå
¥è©Šæš¡è©Š(I) | 100 | 4 | 18 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3880"
},
{
"content": "ã泚ã»ä»¥äžã®è§£çã§ã¯åäœã® $\\rm{cm}$ ã¯çç¥ããŠããŸãïŒ\r\n\r\nãæ£æ¹åœ¢ $ADEB$, $BFGC$, $CHIA$ ã®äžå¿ããããã $P$, $Q$, $R$ ãšãããŸãïŒãã®ãšãïŒäžè§åœ¢ $AHE$ ã¯äžè§åœ¢ $ARP$ ãç¹ $A$ ãäžå¿ã« $2$ åã«çžäŒŒæ¡å€§ãããã®ã«ãªã£ãŠããŠïŒãšãã«çŽç· $HE$ ãš $RP$ ã¯å¹³è¡ã§ãïŒåæ§ã«çŽç· $DG$, $FI$ ã¯ãããã $PQ$, $QR$ ãšå¹³è¡ãªã®ã§ïŒäžè§åœ¢ $JKL$ ãšäžè§åœ¢ $QRP$ ã¯çžäŒŒã§ãïŒããã§ïŒäžè§åœ¢ $ARP$, $BPQ$, $CQR$ ããã³ $QRP$ ã®é¢ç©ããããã $S_1$, $S_2$, $S_3$, $S$ ãšãããšïŒçžäŒŒæ¯ãèããããšã§äžè§åœ¢ $JKL$ ã®é¢ç© $T$ ã¯ä»¥äžã®ããã«è¡šããŸãïŒ\r\n\r\n$$\r\nT = S \\times \\Biggr(\\frac{S-S_1-S_2-S_3}{S}\\Biggl)^2\r\n$$\r\n\r\nã以äžïŒããããã®é¢ç©ã«ã€ããŠèããŸãïŒãŸã $S$ ã«ã€ããŠïŒ$RP$ = $\\dfrac{1}{2}HE = \\dfrac{15}{2}$ ã§ïŒ åæ§ã« $PQ = \\dfrac{13}{2}$, $QR = 7$ ã§ããããšããïŒäžè§åœ¢ $PQR$ ã¯äžèŸºã®é·ãã $13$, $14$, $15$ ã®äžè§åœ¢ã $\\dfrac{1}{2}$ åãããã®ã§ïŒãã®é¢ç©ã¯ $\\dfrac{84}{4} = 21$ ã§ãïŒ\r\n\r\nã次㫠$S_1$ ã«ã€ããŠèããŸãïŒç¹ $X$ ãïŒåè§åœ¢ $APBX$ ãæ£æ¹åœ¢ãšãªãããã«ãšããšïŒäžè§åœ¢ $ABX$ ãš $CBQ$ ãå
±ã«çŽè§äºç蟺äžè§åœ¢ãªã®ã§ïŒäžè§åœ¢ $ABC$ ãš $XBQ$ ã¯çžäŒŒã§ãïŒãŸãçžäŒŒæ¯ãèããããšã§ $XQ = AR$ ãšããããŸãïŒãŸã $AP = AX$, $\\angle RAP = \\angle BAC + 90^{\\circ} = \\angle QXA$ ãšãªãã®ã§ïŒ äžè§åœ¢ $ARP$ ãš $XQA$ ã¯ååã§ïŒãšãã«ããã㯠$90^{\\circ}$ å転ãã圢ã«ãªã£ãŠããŸãïŒãããã£ãŠïŒç·å $RQ$ ãš $QA$ ã¯é·ããçããïŒãã€åçŽã«äº€ãããŸãïŒãã£ãŠïŒåè§åœ¢ $APQR$ ã®é¢ç© $S_1+S$ 㯠$\\dfrac{1}{2}RP^{2} = \\dfrac{225}{8}$ ãšãããïŒ$S_1 = \\dfrac{57}{8}$ ãšãªããŸãïŒåæ§ã®è°è«ã§ $S_2 = \\dfrac{1}{8}$, $S_3 = \\dfrac{7}{2}$ ãšèšç®ã§ããŸãïŒ\r\n\r\n 以äžããïŒæ±ããã¹ãé¢ç© $T$ ãèšç®ãããš $21\\times \\Biggr(\\dfrac{41}{84}\\Biggr)^2 = \\dfrac{1681}{336}$ ãšãªããŸãïŒåçãã¹ãå€ã¯ $\\mathbf{189778176}$ ã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3880/51"
}
] | äœåïŒæŸç°
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæŽæ°
$m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸã. $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ãå
šãŠæ±ã, ããããã«ã€ã㊠$m\times n\times n$ ãèšç®ã, ãã®å€ã®ç·åã解çããŠäžãã. ãã ã, $n$ 㯠$1$ 以äžãšããŸã.
***
ãäžå³ã«ãããŠåè§åœ¢ $ADEB$ , $BFGC$, $CHIA$ ã¯ããããäžè§åœ¢ $ABC$ ã®å€åŽã«ããæ£æ¹åœ¢ã§ãã.
$$\begin{aligned}
DG=13\text{cm}, && FI=14\text{cm}, && HE=15\text{cm}
\end{aligned}$$
ã®ãšã, äžè§åœ¢ $JKL$ ã®é¢ç©ã¯ $\boxed{\phantom{nada}}\ \text{cm}^2$ ã§ãã.\
ããªã, äžèŸºã®é·ãããããã $13\text{cm}, 14\text{cm}, 15\text{cm}$ ã®äžè§åœ¢ã®é¢ç©ã¯ $84\text{cm}^2$ ã§ãã.
![figure 1](\/images\/QFbqCzGbzgZjUyHzAaB64pQYZBOijyOiqc4HKxh4) |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3881 | J | 第25åçäžå
¥è©Šæš¡è©Š(J) | 100 | 64 | 98 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3881"
},
{
"content": "ã $ADGH$ ã¯çèå°åœ¢ãªã®ã§ $HD=AG=HB$ ãšãªãïŒ $H$ 㯠$EG$ ã®äžç¹ãšãªãïŒãã£ãŠïŒ $AD=GH=HE=\\frac{3}{2}$\\\r\n ããã§ïŒ$AF$ ãš $BD$ ã®äº€ç¹ã $P$ ãšãããšïŒ $AP=HF=\\frac{3}{2}$ ã§ããããïŒ $â³ABP=â³FHB$\\\r\n ãã£ãŠïŒ $(ABHFCGã®é¢ç©)=(APBCã®é¢ç©)+(ACGã®é¢ç©)ã§ããïŒ$ \\\r\n $â³ABD$ ã $D$ ãäžå¿ã« $60^\\circ$ å転ãããã®ã $â³PCD$ ã§ããïŒ $PC=AB=4$ ãšãªãïŒ $PC$ ãš $AB$ ã®ãªãè§ã $60^\\circ$ ãšãªãã®ã§ïŒåè§åœ¢ $APBC$ ã®é¢ç©ã¯äžèŸº $1$ ã®æ£äžè§åœ¢ã®é¢ç©ã® $4^2=16$ åïŒ\\\r\nãŸãïŒ $â³ACG=â³FCG$ ã®é¢ç©ã¯äžèŸº $1$ ã®æ£äžè§åœ¢ã®é¢ç©ã® $3\\times\\frac{3}{2}=\\frac{9}{2}$ åïŒ\\\r\n以äžããïŒå
è§åœ¢ $ABHFCG$ ã®é¢ç©ã¯äžèŸº $1$ ã®æ£äžè§åœ¢ã®é¢ç©ã® $16+\\frac{9}{2}=\\frac{41}{2}$ åãšãªãã®ã§ïŒçããã¹ãæ°å€ã¯ $41\\times2\\times2=\\textbf{164}$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3881/49"
}
] | äœåïŒå æ
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæŽæ°
$m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸã. $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãåŸãæ°ãå
šãŠæ±ã, ããããã«ã€ã㊠$m\times n\times n$ ãèšç®ã, ãã®å€ã®ç·åã解çããŠäžãã. ãã ã, $n$ 㯠$1$ 以äžãšããŸã.
***
ãäžå³ã«ãã㊠$AD$ ãš $BC$ ã¯å¹³è¡ã§, äžè§åœ¢ $DBC$ ãšäžè§åœ¢ $HEF$ ã¯ãšãã«æ£äžè§åœ¢ã§ãã.
$$\begin{aligned}
AG=BH, && AB=4\text{cm}, && GC=3\text{cm}
\end{aligned}$$
ã®ãšã, å
è§åœ¢ $ABHFCG$ ã®é¢ç©ã¯äžèŸº $1\text{cm}$ ã®æ£äžè§åœ¢ã®é¢ç©ã® $\boxed{\phantom{nada}}$ åã§ãã.
![figure 1](\/images\/swymx6xtpb6bog1y34eHOEF0T3tCLBjrqFaeunBw) |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3882 | K | 第25åçäžå
¥è©Šæš¡è©Š(K) | 100 | 8 | 61 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3882"
}
] | äœåïŒæ²
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸã $0$ ãã倧ãã $180$ ããå°ããæ°ã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæŽæ°
$m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸã. $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãåŸãæ°ãå
šãŠæ±ã, ããããã«ã€ã㊠$m\times n\times n$ ãèšç®ã, ãã®å€ã®ç·åã解çããŠäžãã. ãã ã, $n$ 㯠$1$ 以äžãšããŸã.
***
ãäžå³ã«ãããŠ
$$\begin{aligned}
BC+CE=AE=AD, && \angle BCE=\angle CBE=\angle CDE
\end{aligned}$$
ã®ãšã, $\angle ADC=\boxed{\phantom{nada}}^{\ \circ}$ ã§ãã.
![figure 1](\/images\/juyYGK1hA1KwSMfjUACFEoWcEgtL6g1yesLi6fXL) |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3883 | L | 第25åçäžå
¥è©Šæš¡è©Š(L) | 100 | 9 | 31 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3883"
}
] | äœåïŒå é
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸã $0$ ãã倧ãã $180$ ããå°ããæ°ã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæŽæ°
$m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸã. $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãåŸãæ°ãå
šãŠæ±ã, ããããã«ã€ã㊠$m\times n\times n$ ãèšç®ã, ãã®å€ã®ç·åã解çããŠäžãã. ãã ã, $n$ 㯠$1$ 以äžãšããŸã.
***
ãäžå³ã«ãã㊠$AP=DQ$, $CP=AQ$ ã®ãšã, $\angle ADC=\boxed{\phantom{nada}}^{\ \circ}$ ã§ãã.
![figure 1](\/images\/O8PCUnKStMYjbboxee74I90nZTqVHCXt01S6FBwI) |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3884 | M | 第25åçäžå
¥è©Šæš¡è©Š(M) | 100 | 7 | 21 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3884"
}
] | äœåïŒæ²
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸã $0$ ãã倧ãã $180$ ããå°ããæ°ã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæŽæ°
$m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸã. $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãåŸãæ°ãå
šãŠæ±ã, ããããã«ã€ã㊠$m\times n\times n$ ãèšç®ã, ãã®å€ã®ç·åã解çããŠäžãã. ãã ã, $n$ 㯠$1$ 以äžãšããŸã.
***
ãäžå³ã«ãã㊠$AB=BD$, $AE=EF$, $BF=EC$ ã®ãšã, $\angle ADC=\boxed{\phantom{nada}}^{\ \circ}$ ã§ãã.
![figure 1](\/images\/CVVVSJXFsdQJyRArLjOqq6b4XPUQnese4W8s7cro) |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3885 | N | 第25åçäžå
¥è©Šæš¡è©Š(N) | 100 | 39 | 45 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3885"
}
] | äœåïŒå±±å£
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæŽæ°
$m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸã. $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãåŸãæ°ãå
šãŠæ±ã, ããããã«ã€ã㊠$m\times n\times n$ ãèšç®ã, ãã®å€ã®ç·åã解çããŠäžãã. ãã ã, $n$ 㯠$1$ 以äžãšããŸã.
***
ãäžå³ã®æ£å
«é¢äœ $ABCDEF$ ã®äœç©ã¯ $36000\text{cm}^3$ ã§ãã. ãã®æ£å
«é¢äœã«ãããŠ, ç¹ $P,Q$ ã¯ãããã蟺 $AC, EF$ äžã®ç¹ã§, $CP:EQ:FQ=1:5:4$ ã®ãšã, $3$ ç¹ $B,P,Q$ ãéãå¹³é¢ã«ãããã®æ£å
«é¢äœã®åæé¢ã®é¢ç©ã¯ $\boxed{\phantom{nada}}\ \text{cm}^2$ ã§ãã.
![figure 1](\/images\/HqnEfJ3JdD9ikVf7SQSXVF4EN02i3LBT7N113tnh) |
第25åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/nadachu2022 | https://onlinemathcontest.com/contests/nadachu2022/tasks/3886 | O | 第25åçäžå
¥è©Šæš¡è©Š(O) | 100 | 43 | 62 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2022/editorial/3886"
}
] | äœåïŒäœè€
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæŽæ°
$m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸã. $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãåŸãæ°ãå
šãŠæ±ã, ããããã«ã€ã㊠$m\times n\times n$ ãèšç®ã, ãã®å€ã®ç·åã解çããŠäžãã. ãã ã, $n$ 㯠$1$ 以äžãšããŸã.
***
ãäžå³ã¯ããç«äœã®å±éå³ã§, äºç蟺äžè§åœ¢ $6$ ã€, ã²ã圢 $6$ ã€, æ£å
è§åœ¢ $1$ ã€ãããªã. åãèšå·ã¯åãé·ããè¡šã, $6$ ã€ã®ã²ã圢ã¯å
šãŠ $1\text{cm}$ ãš $3\text{cm}$ ã®å¯Ÿè§ç·ããã€. ãã®å±éå³ãçµã¿ç«ãŠãŠã§ããç«äœã®äœç©ã¯äžèŸº $1\text{cm}$ ã®æ£åé¢äœã®äœç©ã® $\boxed{\phantom{nada}}$ åã§ãã.
![figure 1](\/images\/s26Vuk9asEk0gXoq4hwDBJ3VLh4xwwsTNc5ZKMIM) |
OMC086 (for beginners) | https://onlinemathcontest.com/contests/omc086 | https://onlinemathcontest.com/contests/omc086/tasks/2822 | A | OMC086(A) | 100 | 328 | 334 | [
{
"content": "ãæ£ããèšç®çµæã $57+a$ ã§ãããšãããšïŒèª€ã£ãèšç®çµæ㯠$57-a$ ã§ããïŒ\\\r\nããã£ãŠ $a=-34$ ã§ããïŒæ±ããå€ã¯ $57+a=\\textbf{23}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc086/editorial/2822"
}
] | ãæ£ã®æŽæ°ãšæŒç®å ($+$ ãŸã㯠$-$) ã亀äºã«äžŠãã§æ§æãããåŒããã, ãã®åŒã®å
é 㯠$57$ ã§ã. OMCåã¯ãã®åŒãèšç®ããããšããŠ, 誀ã£ãŠ $+$ ã $-$ ã«, $-$ ã $+$ ã«ãã¹ãŠèªã¿ééããŠããŸã£ããã, èšç®çµæã $91$ ã«ãªããŸãã. æ£ããèšç®çµæãæ±ããŠãã ãã. |
OMC086 (for beginners) | https://onlinemathcontest.com/contests/omc086 | https://onlinemathcontest.com/contests/omc086/tasks/3102 | B | OMC086(B) | 200 | 303 | 316 | [
{
"content": "ã$BD=30-DE=CE$ ãæç«ããïŒããã§ïŒåè§åœ¢ $DBCE$ ãåã«å€æ¥ããããšãã\r\n$$DE+30=DE+BC=BD+CE=2(30-DE)$$\r\nãæãç«ã€ããïŒä»¥äžãã $DE=\\bf{10}$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc086/editorial/3102"
}
] | ãäžèŸºã $30$ ã§ããæ£äžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $AB,AC$ äžã«ããããç¹ $D,E$ ããšã£ããšããïŒ$AD=AE$ ã§ããïŒãã€åè§åœ¢ $DBCE$ ã¯åã«å€æ¥ããŸããïŒãã®ãšãïŒ$DE$ ã®é·ããæ±ããŠãã ãã. |
OMC086 (for beginners) | https://onlinemathcontest.com/contests/omc086 | https://onlinemathcontest.com/contests/omc086/tasks/2345 | C | OMC086(C) | 200 | 167 | 267 | [
{
"content": "ãäŸãã°, ã©ã®éåã $1$ ãå«ãã§ãããã¯, $2$ ã $A \\cup B \\cup C \\cup D$ ã«å«ãŸãããã $A \\cap B \\cap C \\cap D$ ã«å«ãŸããªããã«åœ±é¿ãåãŒããªã. ããªãã¡, å $1,2,3,4$ ã«ã€ããŠç¬ç«ã«èããããšãã§ãã.\\\r\nã$A \\cup B \\cup C \\cup D$ ã $1$ ãå«ãããšãã, $A,B,C,D$ ã®ãã¡å°ãªããšã $1$ ã€ã¯ $1$ ãå«ã¿, éã« $A \\cap B \\cap C \\cap D$ ã $1$ ãå«ãŸãªãããšãã, $A,B,C,D$ ã®ãã¡å°ãªããšã $1$ ã€ã¯ $1$ ãå«ãŸãªã. ãããã£ãŠ, $1$ ãã©ã®éåã«å«ãŸããã㯠$14$ éãèããã, ä»ã®èŠçŽ ã«ã€ããŠãåæ§ã«èããããšã§, 解ç㯠$14^4=\\textbf{38416}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc086/editorial/2345"
}
] | ã以äžã®æ¡ä»¶ãã¿ãã, $4$ ã€ã®éåã®é åºä»ããçµ $(A,B,C,D)$ ã¯ããã€ãããŸããïŒ
- åéå $A \cup B \cup C \cup D$ ã $\lbrace 1,2,3,4 \rbrace$ ã«äžèŽãã.
- ç©éå $A \cap B \cap C \cap D$ ã空éåã§ãã.
ãã ã, $A,B,C,D$ ã®ãã¡ã«ç©ºéåãå«ãããšãèªããŸã. |
OMC086 (for beginners) | https://onlinemathcontest.com/contests/omc086 | https://onlinemathcontest.com/contests/omc086/tasks/2068 | D | OMC086(D) | 300 | 63 | 194 | [
{
"content": "ã$N=2^p3^q5^r$ ãšè¡šã, ãã®ãšãåçŽ å æ°ã®åé
ãèããã° $\\textrm{lcm}(a,b)=N$ ãªãçµ $a\\lt b$ ã®åæ°ã¯\r\n$$\\dfrac{1}{2}\\left((2p+1)(2q+1)(2r+1)-1\\right)=2^9$$\r\nãã£ãŠç©ã $1025=5^2\\times 41$ ãšãªã $3$ ã€ã®å¥æ°ã®é åºä»ããçµãæ°ãäžããããšã«åž°çãã, ãã㯠$\\textbf{18}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc086/editorial/2068"
}
] | ã$7$ 以äžã®çŽ å æ°ããããªãæ£æŽæ° $N$ ã§ãã£ãŠ, æå°å
¬åæ°ã $N$ ãšãªãããã«çžç°ãªã $2$ ã€ã®æ£æŽæ°ãéžã¶æ¹æ³ãã¡ããã© $2^9$ éãååšãããã®ã¯ããã€ãããŸããïŒããã§, $2$ ã€ã®æ£æŽæ°ã®é åºã¯èæ
®ããŸãã. |
OMC086 (for beginners) | https://onlinemathcontest.com/contests/omc086 | https://onlinemathcontest.com/contests/omc086/tasks/2748 | E | OMC086(E) | 300 | 138 | 186 | [
{
"content": "ã$DE$ äžã« $AF \\parallel BC$ ãªãç¹ $F$ ããšãã°, $\\triangle FAD$ ãš $\\triangle AED$ ã¯çžäŒŒã§ãããã,\r\n$$AE=FE=22-\\dfrac{20^2}{22}=\\dfrac{42}{11}$$\r\nãšæ±ããã, 解çãã¹ãå€ã¯ $\\bf{53}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc086/editorial/2748"
},
{
"content": "ãäžè§é¢æ°ãçšãã解æ³ã§ã\r\n\r\n----\r\n\r\nã$3$ ç¹ $E,A,B$ ã¯ãã®é ã«çŽç· $AB$ äžã«äžŠã¶ããïŒ$\\angle A=\\theta$ ãšããã° $\\triangle ADE$ ã«ãããæ£åŒŠå®çãã次ãæãç«ã€ïŒ\r\n$$\\frac{20}{\\sin(\\pi-2\\theta)}=\\frac{22}{\\sin(\\pi-\\theta)}=\\frac{DE}{\\sin(3\\theta-\\pi)}$$\r\næŽçããã°æ¬¡ã®ããã«ãªãïŒ\r\n$$\\frac{10}{\\sin\\theta\\cos\\theta}=\\frac{22}{\\sin\\theta}=\\frac{DE}{-\\sin 3\\theta}$$\r\nå $2$ é
ãã $\\cos\\theta=\\dfrac{5}{11}$ ã§ããããïŒåŸ $2$ é
ãã次ã®ããã«èšç®ã§ããïŒ\r\n$$DE=22\\cdot\\dfrac{-\\sin 3\\theta}{\\sin\\theta}=22(4\\sin^2\\theta-3)=22(1-4\\cos^2\\theta)=\\dfrac{42}{11}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc086/editorial/2748/44"
}
] | ã$\angle A = \angle B = \angle C\lt 90^\circ$ ãªãåžåè§åœ¢ $ABCD$ ã«ãããŠ, çŽç· $AB$ ãšçŽç· $CD$ ã®äº€ç¹ã $E$ ãšããŸã.
$$AD=20, \quad DE=22$$
ã®ãšã, $AE$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle\frac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC086 (for beginners) | https://onlinemathcontest.com/contests/omc086 | https://onlinemathcontest.com/contests/omc086/tasks/1449 | F | OMC086(F) | 400 | 45 | 105 | [
{
"content": "ãä»»æã®å®æ° $a$ ã«å¯Ÿã㊠$ a-1\\lt\\\\left\\lfloor a\\right\\rfloor \\leq a $ ãæãç«ã€ããšãã,\r\n$$x^3+7x^2+4x-12\\lt\\left\\lfloor x^3\\right\\rfloor +7\\left\\lfloor x^2\\right\\rfloor +4\\left\\lfloor x\\right\\rfloor\\leq x^3+7x^2+4x$$\r\nãæç«ãã. ãããã, $x$ ã¯ä»¥äžã®ç¯å²ã«å«ãŸããããšãå¿
èŠã§ããïŒ\r\n$$\\Big[-6,-2-2\\sqrt{3}\\Big)\\bigcup \\Big(-3,-2\\Big]\\bigcup \\Big[1,-2+2\\sqrt{3}\\Big)$$\r\n$-2-2\\sqrt{3}\\lt -5$ ã§ãããã, $\\left(-3,-2\\right]\\bigcup \\left[1,-2+2\\sqrt{3}\\right)$ ã«å«ãŸãã解ã®ã¿ãèããã°ãã. \r\n\r\n(ã€)ã$1\\leq x\\lt -2+2\\sqrt{3}$ ã®ãšã, $\\left\\lfloor x\\right\\rfloor=\\left\\lfloor x^2\\right\\rfloor=\\left\\lfloor x^3\\right\\rfloor=1$ ãšãªãã»ããªã. ããªãã¡ $1\\leq x\\lt\\sqrt[3]{2}$ ãåŸã.\r\n\r\n(ã)ã$x=-2$ ã®ãšã, ããã¯äžåŒãã¿ãã.\r\n\r\n(ã)ã$-3\\lt x\\lt -2$ ã®ãšã, $\\left\\lfloor x\\right\\rfloor =-3$ ãã $\\left\\lfloor x^3\\right\\rfloor +7\\left\\lfloor x^2\\right\\rfloor =24$ ã§ãããã, $\\left\\lfloor x^3\\right\\rfloor$ ããã³ $\\left\\lfloor x^2\\right\\rfloor$ ã®ãšãåŸãå€ã®ç¯å²ãèããã°, ãããã®çµãšããŠããåŸããã®ã¯\r\n$$\\left(\\left\\lfloor x^3\\right\\rfloor ,\\left\\lfloor x^2\\right\\rfloor\\right)=(-11,5),(-18,6),(-25,7)$$ \r\nããã«ãã®ãã¡ $(-18,6)$ ã®ã¿ãé©ããããšãããã, ãã®ãšã $-\\sqrt[3]{18}\\leq x\\lt -\\sqrt[3]{17}$ ã§ãã.\r\n\r\nã以äžãã, æ±ããå€ã¯ $(-18)^2+(-17)^2+(-2)^6+1^6+2^2=\\textbf{682}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc086/editorial/1449"
},
{
"content": "ãã®åé¡ã§ã¯è§£ã®åœ¢åŒãäžããããŠããã®ã§ããã䜿ã£ãŠ$solverç®ç·$ã®è§£èª¬ãæžããŠã¿ãŸãïŒ\r\n\r\nãŸãïŒã¬ãŠã¹èšå·ã«èããèªæãªè§£(æŽæ°è§£)ãæ±ããŠã¿ãŸãïŒ\\\r\n$x^3+7x^2+4x=12$ ããïŒ $x=1,-2,-6$ ã§ãïŒ\\\r\n$x=1$ 㯠$[x^3]=[x^2]=[x]=1$ ã«å¯Ÿå¿ããã®ã§ïŒè§£ã®ãã¡ $x=1$ ãå«ãéšå㯠$1\\leq x\\lt\\sqrt[3]{2}$ ãšãªããŸãïŒ(ãã®ç¯å²ããã»ãã®å°ãã ãã¯ã¿åºããš$[x^3],7[x^2],4[x]$ã¯ãããã$1,7,4$ããããå€ãããªãããªã®ã§ãããåã³è§£ãšãªãããšã¯ãªãã§ã)\\\r\n$x=-2$ 㯠$[x^3]=-8,[x^2]=4,[x]=-2$ ã«å¯Ÿå¿ããã®ã§è§£ã®ãã¡ $x=-2$ ãå«ãéšå㯠$x=-2$ ã®ã¿ãšãªããŸãïŒ\r\n\r\nãã㧠$c=-2,d=1,e=\\sqrt[3]{2}$ ãæ±ãŸã£ãã®ã§ããšã¯ $a,b$ ãæ±ããã ãã§ãïŒ\\\r\n$a\\lt b\\lt c\\lt d\\lt e$ ãšäžããããŠãã®ã§ $x\\lt-2$ ã®ç¯å²ã§æ¢çŽ¢ããã°ããã§ãïŒ\\\r\nããã§ã¡ãã£ãšãã工倫ãããã®ã§ããïŒ$[x^2]$ã決ãããš$[x]$ã決ãŸãïŒ$[x^3]+7[x^2]+4[x]=12$ ãã $[x^3]$ ãæ±ãŸãã®ã§ $[x^2]$ ã®å€ã§å Žååãããããšããã§ãïŒ($x$ãæŽæ°ã®ãšãã¯äŸå€ãšãªããŸãããã®å Žåã¯èå¯æžã¿ãªã®ã§å®å¿ã§ã)\r\n\r\nè¡šãæžããŠã¿ãŸãïŒ\r\n\r\n$[x^2]$ $[x]$ $[x^3]$\\\r\n$4\\ \\ -3\\ \\ -4$\\\r\n$5\\ \\ -3\\ \\ -11$\\\r\n$6\\ \\ -3\\ \\ -18$\\\r\n$7\\ \\ -3\\ \\ -25$\\\r\n$8\\ \\ -3\\ \\ -32$\\\r\n...\r\n\r\næžããšé¢åãªã®ã§éçšã¯çããŸããïŒäžãã調ã¹ããš $3$ è¡ç®ã§ãããã¿ãã $x$ ãååšãïŒãã®ç¯å²ã¯ $-\\sqrt[3]{18}\\leq x\\lt-\\sqrt[3]{17}$ ãšãªãã®ã§ $a=-\\sqrt[3]{18},b=-\\sqrt[3]{17}$ ãæ±ãŸãçã㯠$324+289+64+1+4=\\bf{682}$ ã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc086/editorial/1449/45"
}
] | ãå®æ° $x$ ã«ã€ããŠã®æ¹çšåŒ
$$ \left\lfloor x^3\right\rfloor +7\left\lfloor x^2\right\rfloor +4\left\lfloor x\right\rfloor =12$$
ã® $x\geq -5$ ã«ããã解ã¯, å®æ° $a\lt b\lt c\lt d\lt e$ ã«ãã£ãŠ
$$\begin{aligned}
a \leq x\lt b,&& x=c,&& d\leq x\lt e
\end{aligned}$$
ãšè¡šãããŸã. $a^6+b^6+c^6+d^6+e^6$ ã解çããŠãã ãã.\
ããã ã, å®æ° $x$ ã«å¯Ÿã, $\left\lfloor x\right\rfloor $ 㧠$x$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šããŸã. |
OMC085 | https://onlinemathcontest.com/contests/omc085 | https://onlinemathcontest.com/contests/omc085/tasks/2384 | A | OMC085(A) | 100 | 290 | 299 | [
{
"content": "ãåºãç®ã®ãã¡, ã¡ããã©äžã€ãçŽ æ°ã§æ®ãã $1$ ã§ããã°ãã. ãµã€ã³ãã®ç®ã§çŽ æ°ã§ãããã®ã¯ $2,3,5$ ã§ãããã,\r\n$$\\frac{3}{6}Ã\\Bigl(\\frac{1}{6}\\Bigr)^2Ã3=\\frac{1}{24}$$\r\nãæ±ãã確çã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{25}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc085/editorial/2384"
}
] | ãã©ã®ç®ãç確çã§åºããããª, äžè¬çãªå
é¢äœã®ãµã€ã³ãã $3$ ã€åæã«æ¯ããŸã. ãã®ãšã, åºãç®ã®ç©ãçŽ æ°ãšãªã確çã¯, äºãã«çŽ ãªæ£æŽæ° $x,y$ ãçšã㊠$\dfrac{x}{y}$ ãšè¡šããã®ã§, $x+y$ ã解çããŠãã ãã. |
OMC085 | https://onlinemathcontest.com/contests/omc085 | https://onlinemathcontest.com/contests/omc085/tasks/2371 | B | OMC085(B) | 200 | 207 | 263 | [
{
"content": "ãäžè¬ã«åž $n$ è§åœ¢ã«å¯ŸããŠç·å $A_n$ ãèãã. ãã㯠$2\\leq b-a\\leq n-2$ ã〠$b\\leq n$ ãªãæ£æŽæ°ã®çµ $(a,b)$ ã«ã€ã㊠$ab$ ã足ãåããããã®ã§ãã. ãããã£ãŠ, 以äžã®æç«ã確ããããã.\r\n$$A_n=\\frac{1}{2}\\Bigl((1+\\cdots+n)^2-(1^2+\\cdots+n^2)\\Bigr) -(1\\times 2+\\cdots+(n-1)\\times n+n\\times 1)$$\r\nããã§\r\n$$1\\times 2+\\cdots+(n-1)\\times n+n\\times 1=\\big(1^2+\\cdots+(n-1)^2\\big)+(1+\\cdots+n)$$\r\nãæç«ããããšã«æ³šæããã°, æ±ããç·åã¯\r\n$$\\begin{aligned}\r\n A_n&=\\frac{1}{2}\\left(\\frac{n(n+1)}{2}\\right)^2-\\frac{n(n+1)(2n+1)}{12}-\\frac{(n-1)n(2n-1)}{6}-\\frac{n(n+1)}{2}\\\\\\\\\r\n &=\\frac{1}{8}n(n-3)(n^2+n+2)\r\n\\end{aligned}$$\r\nç¹ã« $n=100$ ã®ãšããã㯠$\\textbf{12248675}$ ãšèšç®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc085/editorial/2371"
},
{
"content": "ãäžè¬ã«åž $N$ è§åœ¢ãšããŠïŒæ¬¡ã®ããã«æçŽã«èšç®ããããšãã§ããŸãïŒ\r\n$$\\begin{aligned}\r\n&\\quad\\Biggl(\\sum_{j=3}^{N}\\sum_{i=1}^{j-2}ij\\Biggr)-1\\times N\\\\\\\\\r\n&=\\Biggl(\\sum_{j=3}^{N}\\frac{(j-2)(j-1)}{2}\\times j\\Biggr)-N\\\\\\\\\r\n&=\\Biggl(\\sum_{j=3}^{N}\\frac{1}{8}\\bigl((j-2)(j-1)j(j+1)-(j-3)(j-2)(j-1)j\\bigr)\\Biggr)-N\\\\\\\\\r\n&=\\frac{1}{8}(N-2)(N-1)N(N+1)-N\r\n\\end{aligned}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc085/editorial/2371/43"
}
] | ãåž $100$ è§åœ¢ã®åé ç¹ã«, æèšåãã« $1$ ãã $100$ ãŸã§ã®æŽæ°ãæ¯ãããŠããŸã. ãã¹ãŠã®å¯Ÿè§ç·ã«å¯Ÿã, ãã®äž¡ç«¯ã® $2$ æ°ã®ç©ãèšç®ã, ãããã®ç·åãæ±ããŠãã ãã. ãã ã, 察è§ç·ã«ã¯èŸºãå«ãŸãªãããšãšããŸã. |
OMC085 | https://onlinemathcontest.com/contests/omc085 | https://onlinemathcontest.com/contests/omc085/tasks/2388 | C | OMC085(C) | 200 | 214 | 249 | [
{
"content": "ã$S_n=\\dfrac{n(n+1)}{100}$ ãšãã. $n\\leq 50$ ã®ãšã $S_{n+1}-S_{n}\\leq 1$ ãã, $S_n$ ã®æŽæ°éšå㯠$S_{50}=25.5$ 以äžã®éè² æŽæ°å€ããã¹ãŠãšã. éã« $n\\geq 51$ ã®ãšã $S_{n+1}-S_{n}\\gt 1$ ãã, $S_{51},S_{52},\\cdots,S_{10000}$ ã®æŽæ°éšåã¯çžç°ãªã.\\\r\nã以äžãã, æ±ããåæ°ã¯ $26+9950=\\textbf{9976}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc085/editorial/2388"
}
] | ã$10000$ 以äžã®æ£æŽæ° $n$ ã«å¯Ÿã, $\dfrac{n(n+1)}{100}$ ã®æŽæ°éšåãšããŠããåŸããã®ã¯ããã€ãããŸããïŒ |
OMC085 | https://onlinemathcontest.com/contests/omc085 | https://onlinemathcontest.com/contests/omc085/tasks/2051 | D | OMC085(D) | 300 | 163 | 225 | [
{
"content": "ãçžå ã»çžä¹å¹³åã®é¢ä¿ãã,\r\n$$x+\\left(2y^2+\\frac{1}{8}\\right)+\\left(3z^3+\\frac{1}{9}+\\frac{1}{9}\\right)\\geq x+2\\sqrt{\\frac{y^2}{4}}+3\\sqrt[3]{\\frac{z^3}{27}}\\geq x+y+z=1$$\r\néã« $(x,y,z)=\\left(\\dfrac{5}{12},\\dfrac{1}{4},\\dfrac{1}{3}\\right)$ ã§çå·ãæç«ãããã, 解çãã¹ãå€ã¯ $47+72=\\textbf{119}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc085/editorial/2051"
},
{
"content": "ã $x+2y^2+3z^2=(1-y-z)+2y^2+3z^3=2(y-\\dfrac{1}{4})^2+3z^3-z+\\dfrac{7}{8}$ ã§ããïŒ\\\r\n ããã§ïŒ $3z^3-z$ ã® $0\\lt z\\lt1$ ã®ç¯å²ã§ã®æå°å€ã¯åŸ®åæ³ã«ãã $-\\dfrac{2}{9}$ ( \r\n$z=\\dfrac{1}{3}$ ã®ãšã)ã§ããããšããããïŒ\\\r\n ãã£ãŠïŒæ±ããæå°å€ã¯ $(x,y,z)=(\\dfrac{5}{12},\\dfrac{1}{4},\\dfrac{1}{3})$ ã®ãšãã®å€ã§ $\\dfrac{47}{72}$ ã§ãã解çãã¹ãæ°å€ã¯ $47+72=\\textbf{119}$ ã§ããïŒ",
"text": "埮åã¯äœ¿ããçŽ çŽãªæ¹é",
"url": "https://onlinemathcontest.com/contests/omc085/editorial/2051/142"
}
] | ãæ£ã®å®æ° $x,y,z$ ã $x+y+z=1$ ãã¿ãããšã, $x+2y^2+3z^3$ ã®ãšãåŸãæå°å€ãæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC085 | https://onlinemathcontest.com/contests/omc085 | https://onlinemathcontest.com/contests/omc085/tasks/2383 | E | OMC085(E) | 400 | 86 | 160 | [
{
"content": "ãããããç·å $BC,BE$ äžã«ç¹ $F,G$ ã, $DBF$ ããã³ $GBC$ ãæ£äžè§åœ¢ãšãªãããã«ãšããš, $DFC$ ãš $EGC$ ã¯çžäŒŒã§ãã, ç¹ã«ä»¥äžãæãç«ã€ïŒ\r\n$$BC:FC=GC:FC=EC:DC=10:DC$$\r\nãŸã, $D$ ãã $BF$ ã«ããããåç·ã®è¶³ã $H$ ãšãããš, \r\n$$(7-DC):7=AD:AC=BH:BC=(BC-FC):2BC$$\r\nããããé£ç«ãããããšã§ $DC=70\\/13$ ãåŸããããã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{83}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc085/editorial/2383"
}
] | ãè§ $B$ ãçŽè§ã§ããäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $AC$ äžã®ç¹ $D$ ããã³çŽç· $BD$ ã® $D$ åŽã®å»¶é·ç·äžã®ç¹ $E$ ã以äžã®æ¡ä»¶ãã¿ãããŠããŸãïŒ
$$AC=7,\quad CE=10,\quad \angle DBC=\angle ECD=60^\circ$$
ãã®ãšã, $CD$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $x,y$ ã«ãã£ãŠ $\dfrac{x}{y}$ ãšè¡šãããã®ã§, $x+y$ ã解çããŠãã ãã. |
OMC085 | https://onlinemathcontest.com/contests/omc085 | https://onlinemathcontest.com/contests/omc085/tasks/2593 | F | OMC085(F) | 500 | 17 | 86 | [
{
"content": "ãäžæ¹çšåŒã® $3$ 解ã $0\\lt x\\lt y\\lt z$ ãšããã°, 解ãšä¿æ°ã®é¢ä¿ãã\r\n$$x+y+z=a,\\quad xy+yz+zx=\\dfrac{a^2}{4}$$\r\nãããã $a$ ãæ¶å»ããã°, $x,y,z$ ã®å€§å°é¢ä¿ãã\r\n$$x^2+y^2+z^2-2xy-2yz-2zx=0 \\implies z=(\\sqrt{x}+\\sqrt{y})^2=x+y+2\\sqrt{xy}$$\r\nãããŸ, $\\gcd(x,y)=g$ ãšããã°, $x=gs^2,y=gt^2$ ãšãã, $z=g(s+t)^2$ ã§ãã. ãããã£ãŠ, $x,y,z$ ã®æ倧å
¬çŽæ°ã $g$ ã§ãããã, ãããå¹³æ¹æ°ã§ããããšãã $x,y,z$ ã¯ãã¹ãŠå¹³æ¹æ°ã§ãã. $x=X^2,y=Y^2$ ãšããã°\r\n$$a=X^2+Y^2+(X+Y)^2=2(X^2+XY+Y^2)$$\r\nã以äžãã, åé¡ã¯ $X^2+XY+Y^2\\leq 150$ ãªãæ£æŽæ°ã®çµ $X\\lt Y$ ãæ°ãäžããããšã«åž°çããã. $X\\leq 6$ ã§ããããšã«æ³šæããŠèšç®ããããšã§, ãã®ãããªçµã¯ $\\textbf{36}$ åååšããããšã確èªã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc085/editorial/2593"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæ£æŽæ°ã®çµ $(a,b)$ ã®ãã¡, $a\leq 300$ ãªããã®ã¯ããã€ãããŸããïŒ
- $t$ ã«ã€ããŠã®æ¹çšåŒ $t(2t-a)^2=b$ ãçžç°ãªã $3$ ã€ã®æ£æŽæ°è§£ããã¡, ãããã®æ倧å
¬çŽæ°ã¯å¹³æ¹æ°ã§ãã. |
OMC084 (for beginners) | https://onlinemathcontest.com/contests/omc084 | https://onlinemathcontest.com/contests/omc084/tasks/2812 | A | OMC084(A) | 100 | 325 | 327 | [
{
"content": "ãåè§åœ¢ $ABCD$ ãšååãªåè§åœ¢ãå³ã®ããã« $4$ ã€çµã¿åããããšæ£æ¹åœ¢ãã§ãïŒç¹ã« $C$ ã¯ãã®æ£æ¹åœ¢ã®äžå¿ãšãªãïŒãããã $\\angle CAD=45^\\circ$ ã§ããããïŒæ±ããè§ã®å€§ãã㯠$90^\\circ-45^\\circ=\\bf{45}^\\circ$ ãšãããïŒ\\\r\nããªã $A,B,C,D$ ã¯å
±åã§ãã $BC=CD$ ã§ããããšããã $\\angle CAD=45^\\circ$ ã¯åŸãïŒ\r\n![figure 1](\\/images\\/PHNaqK0GUBxMGKFnXjaaUE9xKyWtdwnqxHVexZNO)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc084/editorial/2812"
}
] | ãåžåè§åœ¢ $ABCD$ ã¯æ¬¡ãã¿ãããŸãïŒ
$$BC=CD,\quad \angle A=\angle C=90^\circ$$
ç·å $AC$ ã®åçŽäºçåç·ãšçŽç· $AD$ ãæãè§ã®å€§ããã床æ°æ³ã§æ±ããŠãã ããïŒ |
OMC084 (for beginners) | https://onlinemathcontest.com/contests/omc084 | https://onlinemathcontest.com/contests/omc084/tasks/2528 | B | OMC084(B) | 200 | 327 | 331 | [
{
"content": "ãäž $4$ æ¡ã®æ°ãå®ããããšã§, äžæã«æ¡ä»¶ãã¿ããåææ°ãæ§æã§ããããšã«æ³šæãã. ããããã®äœãšãªãåŸãæ°ã¯, äžã®äœã§ã¯ $1, 2$ ã® $2$ éã, ãã以å€ã®äœã§ã¯ $0, 1, 2$ ã® $3$ éãããããšãã, 解çãã¹ãå€ã¯ $2\\times 3^3=\\mathbf{54}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc084/editorial/2528"
}
] | ã$20211202$ ã®ããã«, åäœã®æ°ã $0, 1, 2$ ã®ããããã§ãã $8$ æ¡ã®åææ°ã¯ããã€ãããŸããïŒ\
ããã ã, æ£æŽæ°ã**åææ°**ã§ãããšã¯, äžã®äœã $0$ ã§ãªã, äžã®äœããéé ã«èªãã å Žåã§ãå
ã®æ°ãšäžèŽããããšãæããŸã. ãŸã, æ¡æ°ãèããå Žåã«, å
é ã®äœã¯ $0$ ã§ãªããã®ãšããŸã. |
OMC084 (for beginners) | https://onlinemathcontest.com/contests/omc084 | https://onlinemathcontest.com/contests/omc084/tasks/1955 | C | OMC084(C) | 200 | 280 | 317 | [
{
"content": "ãç¹ã« $20301+n$ ã $n$ ã§å²ãåããããšãã, $n$ 㯠$20301=3\\times 67\\times101$ ã®çŽæ°ã§ãã. ãŸãæ¡ä»¶ãã\r\n$$20301+n\\geq n^2 \\implies n\\leq 142$$\r\nããããããåŸã $n$ ã調ã¹ãã°, $n=1,3,101$ ãé©ãããã, æ±ããå€ã¯ $1+3+101=\\bold{105}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc084/editorial/1955"
}
] | ã$20301+n$ ã $n^2$ ã®åæ°ã§ãããããªæ£æŽæ° $n$ ã®ç·åãæ±ããŠãã ãã. |
OMC084 (for beginners) | https://onlinemathcontest.com/contests/omc084 | https://onlinemathcontest.com/contests/omc084/tasks/294 | D | OMC084(D) | 300 | 142 | 168 | [
{
"content": "ãå $C_1,C_2$ ã®æ¹çšåŒã¯ãããã\r\n$$(x-a^2)^2+(y-b^2)^2=a^3b,\\quad (x-b^2)^2+(y-a^2)^2=ab^3$$\r\nãããã, çŽç· $AB$ (æ ¹è»ž) ã®æ¹çšåŒã¯\r\n$$((x-a^2)^2+(y-b^2)^2)-((x-b^2)^2+(y-a^2)^2)=a^3b-ab^3$$\r\nãããã $a^2-b^2$ ãæ¬ãã ãããšã§ $y-x=ab\\/2$ ãåŸã.\\\r\nãäžæ¹ã§çŽç· $PQ$ ã®æ¹çšåŒã¯ $x+y=a^2+b^2$ ã§ããããšãã,\r\n$$ab=\\dfrac{21}{8},\\quad a+b=\\sqrt{(a^2+b^2)+2ab}=\\dfrac{13}{4}$$\r\nãã£ãŠ $(a,b)=\\left(\\dfrac{7}{4},\\dfrac{3}{2}\\right)$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{168}$ ã§ãã.\\\r\nããªã, ãã㯠$C_1,C_2$ ãå®éã« $2$ ç¹ã§äº€ãããšããæ¡ä»¶ã«åèŽãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc084/editorial/294"
}
] | ã$a\gt b$ ãªãæ£ã®å®æ°ã«ã€ããŠ, çŽäº€åº§æšå¹³é¢å
ã«ç¹ $P:(a^2,b^2)$ ããã³ $Q:(b^2,a^2)$ ããããŸã. ãŸã $P$ ãäžå¿ãšããååŸ $a\sqrt{ab}$ ã®åã $C_1$, $Q$ ãäžå¿ãšããååŸ $b\sqrt{ab}$ ã®åã $C_2$ ãšããŸã.\
ãããŸ, $C_1$ ãš $C_2$ ã¯çžç°ãªã $2$ ç¹ $A,B$ ã§äº€ãã£ãŠãã, çŽç· $AB$ ãšçŽç· $PQ$ ã®äº€ç¹ã¯ $\left(2,\dfrac{53}{16}\right)$ ã§ãã. ãã®ãšã, $a,b$ ã¯ããããæ¢çŽåæ°ãšã㊠$\dfrac{p}{q},\dfrac{r}{s}$ ãšè¡šãããã®ã§ (ãã ã $p,q,r,s$ ã¯æ£æŽæ°), $pqrs$ ãæ±ããŠãã ãã. |
OMC084 (for beginners) | https://onlinemathcontest.com/contests/omc084 | https://onlinemathcontest.com/contests/omc084/tasks/1932 | E | OMC084(E) | 300 | 149 | 203 | [
{
"content": "ãååšè§ã®å®çãã $ABCD$ ã¯åã«å
æ¥ãããã, $DP=x$ ãšããã°æ¹ã¹ãã®å®çãã $BP=24\\/x$ ã§ãã. ããã§è§ã®äºçåç·ãã $AB=BC$ ããã³ $AD:CD=AP:PC=3:8$ ã§ãããã, Ptolemyã®å®çãã\r\n$$80\\times\\left(1+\\dfrac{3}{8}\\right)=AB\\times CD+AD\\times BC=AC\\times BD=11\\times\\left(x+\\dfrac{24}{x}\\right)$$\r\nããã解ã㊠$x=4,6$ ãåŸã. äŸãã° $x=4$ ã®ãšã, $AB:CD=3:4$ ãã $AB=2\\sqrt{15}$ ã§ãã, åæ§ã« $x=6$ ã®ãšã $AB=2\\sqrt{10}$ ã§ãããã, 解çãã¹ãå€ã¯ $60+40=\\textbf{100}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc084/editorial/1932"
}
] | ãåžåè§åœ¢ $ABCD$ ã«ãããŠ, 察è§ç·ã®äº€ç¹ã $P$ ãšããã°, 以äžã®æ¡ä»¶ãæç«ããŸããïŒ
$$\angle ADB=\angle BAC=\angle ACB,\quad AB\times CD=80,\quad AP=3,\quad PC=8$$
ãã®ãšã, $AB^2$ ãšããŠããåŸãå€ã®ç·åãæ±ããŠãã ãã. |
OMC084 (for beginners) | https://onlinemathcontest.com/contests/omc084 | https://onlinemathcontest.com/contests/omc084/tasks/2169 | F | OMC084(F) | 300 | 106 | 158 | [
{
"content": "ã$X$ ã®éšåéåã§ãã£ãŠ, ããèŠçŽ $a$ ãå«ã¿èŠçŽ ã $n$ åã§ãããã®ã¯ ${}\\_{15}\\mathrm{C}\\_{n-1}$ åãã. ãã£ãŠ, $a$ ã¯ç·åã«å¯ŸããŠ\r\n$$\\sum^{16}\\_{n=1} \\frac{a}{n} {}\\_{15}\\mathrm{C}\\_{n-1} = \\frac{a}{16} \\sum^{16}\\_{n=1} {}\\_{16}\\mathrm{C}\\_{n} = \\frac{a}{16}(2^{16}-1)$$\r\nã ãå¯äžãã. ãããã£ãŠ, æ±ããç·åã¯\r\n$$\\sum^{16}\\_{a=1} \\frac{a}{16}(2^{16}-1) = \\frac{1114095}{2}$$\r\nãšãªã, ç¹ã«è§£çãã¹ãå€ã¯ $1114095 + 2 = \\bm{1114097}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc084/editorial/2169"
}
] | ãæééå $A$ ã«å¯ŸããŠ, $S(A)$ ã $A$ ã®èŠçŽ ã®ç·å, $|A|$ ã $A$ ã®èŠçŽ ã®åæ°ãšããŸã. ãã®ãšã, éå
$$X=\\{1, 2, \cdots, 16 \\}$$
ã®ç©ºã§ãªãéšåéå $A$ ãã¹ãŠã«ã€ããŠ, $\dfrac{S(A)}{|A|}$ ã®ç·åãæ±ããŠãã ãã.\
ããã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\displaystyle \frac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC083 | https://onlinemathcontest.com/contests/omc083 | https://onlinemathcontest.com/contests/omc083/tasks/2514 | A | OMC083(A) | 200 | 254 | 261 | [
{
"content": "ã$(x+1)^2+2(x+1)+6=x^2+4x+9$ ãã,\r\n$$\\prod_{x=1}^{500} \\frac{x^2+4x+9}{x^2+2x+6} = \\frac{500^2+4\\times 500 + 9}{1^2 + 2 \\times 1 + 6} = \\bf{28001}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc083/editorial/2514"
}
] | ã$\displaystyle\prod_{x=1}^{500} \displaystyle\frac{x^2+4x+9}{x^2+2x+6}$ ãèšç®ããŠãã ãã. |
OMC083 | https://onlinemathcontest.com/contests/omc083 | https://onlinemathcontest.com/contests/omc083/tasks/2459 | B | OMC083(B) | 300 | 215 | 245 | [
{
"content": "ãæ¡ä»¶ã¯ä»¥äžã®ããã«èªã¿æ¿ããããããšããããïŒ\r\n- $f_2(X)$ 㯠$2$ ã§å²ã£ãŠ $1$ äœã, $3$ ãš $5$ ã§å²ã£ãŠ $2$ äœã.\r\n\r\nãããã£ãŠ, æ±ããæå°å€ã¯ $\\bf{17}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc083/editorial/2459"
}
] | ãæ£æŽæ° $m$, $2$ 以äžã®æŽæ° $n$ ã«ã€ããŠ, $f_n(m)$ ã $m$ ã $n$ ã§å²ãåããæ倧ã®åæ°ãšããŠå®çŸ©ããŸã.\
ã以äžãã¿ããæ£æŽæ° $X$ ã«ã€ããŠ, $f_2(X)$ ãšããŠããåŸãæå°å€ã解çããŠãã ãã.
$$f_2\left(\frac{X}{4^{f_4(X)}}\right)=1,\quad f_2\left(\frac{X}{8^{f_8(X)}}\right)=f_2\left(\frac{X}{32^{f_{32}(X)}}\right)=2$$ |
OMC083 | https://onlinemathcontest.com/contests/omc083 | https://onlinemathcontest.com/contests/omc083/tasks/2692 | C | OMC083(C) | 400 | 160 | 208 | [
{
"content": "**解æ³1.** $F$ ã $BC$ ã®äžç¹ãšã, $G$ ã $F$ ãã $AB$ ã«äžãããåç·ã®è¶³ãšãã. ãŸã $FG$ ãš $AD$ ã®äº€ç¹ã $H$ ãšãããš,\r\n$$\\angle CAE =\\angle FAH,\\quad\\angle EAF = \\angle HAG,\\quad\\angle AFC = \\angle AGF = 90^\\circ$$\r\nãã $GH:HF = FE:EC = 7:32$ ã§ãã, Menelausã®å®çãã $AG:GB = 7:9$ ãåãã. \\\r\nã$\\triangle ABF\\sim \\triangle FBG$ ãã $AB:BF=BF:BG$ ããªãã¡\r\n$$AB:39=39:\\frac{9}{16}AB$$\r\nã§ãããã, æ±ããå€ã¯ $\\bf{52}$ ã§ãã. \r\n----\r\n **解æ³2.** $F$ ã $BC$ ã®äžç¹ãšã, $AF=x$, $\\angle DAF=\\alpha$, $\\angle FAE=\\beta$ãšãããš, \r\n$$\\tan\\alpha=\\frac{26}{x},\\quad\\tan\\beta=\\frac{7}{x},\\quad\\tan(\\alpha+\\beta)=\\frac{39}{x}$$\r\nã§ãããã, å æ³å®çãã\r\n$$\\frac{39}{x}=\\frac{\\frac{26}{x}+\\frac{7}{x}}{1-\\frac{26}{x}\\cdot\\frac{7}{x}}$$\r\nãåŸã. ããã解ããš $x=13\\sqrt{7}$ ãšãªããã, äžå¹³æ¹ã®å®çãã $AB=\\bf{52}$ ãåŸããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc083/editorial/2692"
},
{
"content": "ã蟺 $BC$ ã®äžç¹ã $M$ ãšãããšïŒ$\\angle BAD=\\angle MAE$, $\\angle CAE=\\angle MAD$ ãæç«ããïŒãŸãïŒ$DM=26$, $ME=7$ ã§ããïŒ$\\triangle XYZ$ ã§äžè§åœ¢ $XYZ$ ã®é¢ç©ãè¡šããšããã°ïŒ\r\n$$\r\n\\frac{BD}{ME}=\\frac{\\triangle BAD}{\\triangle MAE}=\\frac{AB\\cdot AD\\cdot \\sin\\angle BAD}{AM\\cdot AE\\cdot \\sin\\angle MAE}=\\frac{13}{7}, \\quad \r\n\\frac{CE}{MD}=\\frac{\\triangle CAE}{\\triangle MAD}=\\frac{AC\\cdot AE\\cdot \\sin\\angle CAE}{AM\\cdot AD\\cdot \\sin\\angle MAD}=\\frac{32}{26}\r\n$$\r\nãšãªãïŒèŸºã
ããã㊠$\\biggl(\\dfrac{AB}{AM}\\biggr)^2=\\dfrac{16}{7}$ ãåŸãïŒäžå¹³æ¹ã®å®çããïŒ$BM=\\dfrac{3}{4} AB$ ãåŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc083/editorial/2692/35"
}
] | ã$AB=AC$ ãªãäžè§åœ¢ $ABC$ ã®èŸº $BC$ äžã« $B$ ã«è¿ãé ã«ç¹ $D, E$ ããšããš, 以äžãæç«ããŸãã.
$$BD=13,ãDE=33,ãEC=32,ã\angle DAE = \frac12 \angle BAC$$
ãã®ãšã, $AB$ ã®é·ããæ±ããŠãã ãã. |
OMC083 | https://onlinemathcontest.com/contests/omc083 | https://onlinemathcontest.com/contests/omc083/tasks/2770 | D | OMC083(D) | 500 | 33 | 78 | [
{
"content": "ã$c=1,2,\\ldots,P-1$ ãåºå®ãããšã, **[OMC033(B)](https:\\/\\/onlinemathcontest.com\\/contests\\/omc033\\/editorial\\/240)** ã®èŠé 㧠$p_1=p_2$ ã§ãã. ãã£ãŠ, ä»¥äž $c=P$ ã®å Žåãèãã. $p_2$ ã«ã€ããŠãåæ§ã«, $1\\/P$ ã§ãã. $p_1$ ã«ã€ããŠ, $(P-1)! \\equiv -1 \\pmod P$ ãã $(P-1)!$ 以äžã®æ£æŽæ°ã«\r\n- $x \\equiv 1,2,\\cdots,P-1 \\pmod P$ ãªã $x$ ã¯ãããã $\\displaystyle\\frac{(P-1)!+1}{P}$ å\r\n- $x\\equiv 0 \\pmod P$ ãªã $x$ 㯠$\\displaystyle\\frac{(P-1)!-(P-1)}{P}$ å\r\n\r\nååšãã. ãããã£ãŠ, ãã®ç¢ºçã¯\r\n$$(P-1) \\left(\\displaystyle\\frac{(P-1)!+1}{P!} \\right)^2 + \\left(\\displaystyle\\frac{(P-1)!-(P-1)}{P!} \\right)^2$$\r\nãšæ±ãããã.$\\\\\\\\$\r\nã以äžãã, æ¡ä»¶ $c=P$ ã«ããå å $1\\/P$ ã«çæããŠ\r\n$$\r\n\\begin{aligned}\r\n|p_1 - p_2| &= \\frac1P \\left( (P-1) \\left(\\displaystyle\\frac{(P-1)!+1}{P!} \\right)^2 + \\left(\\displaystyle\\frac{(P-1)!-(P-1)}{P!} \\right)^2 - \\frac1P \\right)\\\\\\\\\r\n&= \\frac1P \\left(\\frac{(P-1)\\\\{(P-1)!+1 \\\\}^2 + \\\\{(P-1)! - (P-1) \\\\}^2 - P(P-1)!^2}{P!^2} \\right)\\\\\\\\\r\n&= \\frac1P \\left(\\frac{P(P-1)}{P!^2} \\right)\\\\\\\\\r\n&= \\frac{1}{P(P-2)!P!}\r\n\\end{aligned}\r\n$$\r\nãã£ãŠ, $N=82589933$ ã«ã€ããŠ\r\n$$\r\nM = (2^N-3-(N-1)) + (2^N-1-N) = 2^{N+1}-2N-3\r\n$$\r\næããã« $2^N\\lt M$ ã§ãããã, 解çãã¹ãå€ã¯ $3N+4=\\bf{247769803}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc083/editorial/2770"
}
] | ãçŽ æ° $P=2^{82589933}-1$ ã«ã€ããŠ, 以äžã®åè©Šè¡ã§ $a+b$ ã $c$ ã®åæ°ãšãªã確çããããã $p_1,p_2$ ãšããŸã.
- $(P-1)!$ 以äžã®æ£æŽæ°ããç確çã« $a,b$ ã, $P$ 以äžã®æ£æŽæ°ããç確çã« $c$ ãéžãã ãšã.
- $(P-1)!$ 以äžã®æ£æŽæ°ããç確çã« $a$ ã, $P$ 以äžã®æ£æŽæ°ããç確çã« $b,c$ ãéžãã ãšã.
ãã ã, åãç¯å²ããäºã€ã®æ£æŽæ°ãéžã¶ãšãã¯, äžã€ãã€é ã«ç¬ç«ã«éžã¶ããšãšããŸã. \
ããã®ãšã, $|p_1-p_2|$ ã®éæ°ã¯æ£æŽæ° $n$ ã«ãªããŸã. $n$ ã $2$ ã§å²ãåããæ倧åæ°ã $M$ ãšãããšã, $M=2^x-y$ ãªãæ£æŽæ°ã®çµ $(x,y)$ ã®ãã¡ $x$ ãæå°ã®ãã®ã«ã€ããŠ, $x+y$ ãæ±ããŠãã ãã. |
OMC083 | https://onlinemathcontest.com/contests/omc083 | https://onlinemathcontest.com/contests/omc083/tasks/3123 | E | OMC083(E) | 500 | 77 | 144 | [
{
"content": "ãäžè¬ã« $a_0, a_1, \\ldots, a_n$ ã«ã€ããŠïŒä»¥äžã® $2^n$ çš®é¡ã®å€ã®å¹³åãèããïŒ\r\n$$(a_0 \\pm a_1 \\pm \\cdots \\pm a_n)^2$$\r\nçžç°ãªã $i,j$ ã«ã€ããŠïŒå±éããæã® $a_ia_j$ ã®ä¿æ°ã $2$ ã§ãããããªç¬Šå·ã®éžã³æ¹ãšïŒ$-2$ ã§ãããããªç¬Šå·ã®éžã³æ¹ãåæ°ãã€ååšããããšããïŒãã®å¹³å㯠$a_0,a_1, \\ldots, a_n$ ã® $2$ ä¹ã®ç·åã«çããïŒ\\\r\nãæ¬å㯠$n=3123$ ãã€\r\n$$a_0=\\overbrace{66\\cdots6}^{næ¡}=\\frac{2(10^n-1)}{3},\\quad a_1=2,\\quad a_2=20,\\quad\\dots,\\quad a_n=2\\overbrace{00\\cdots0}^{n-1æ¡}=2\\times 10^{n-1}$$\r\nã®å Žåã§ããããïŒæ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\nM&= {\\overbrace{666\\cdots6^2}^{3123æ¡}}+\\overbrace{4040\\cdots4}^{6245æ¡} \\\\\\\\\r\n&= \\overbrace{444\\cdots4}^{3122æ¡}3\\overbrace{555\\cdots5}^{3122æ¡}6+\\overbrace{4040\\cdots4}^{6245æ¡} \\\\\\\\\r\n&=\\overbrace{4848\\cdots48}^{3122æ¡}3\\overbrace{9595\\cdots95}^{3120æ¡}960\r\n\\end{aligned}$$\r\nãã£ãŠæ±ããå€ã¯ $\\bf{40590}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc083/editorial/3123"
},
{
"content": "æ¡æ°ã $n$ ã§ãã£ããšãã®, æ±ããå€ $M$ ã $M_n$ ãšã, $M_n$ ã«é¢ãã挞ååŒãç«ãŠãŠæ±ããã.\\\r\n$n$ ãåºå®ã, $n$ æ¡ã®æ£æŽæ°ã§åæ¡ã®æ°åã $4$ ãŸã㯠$8$ ã§ãããããªãã®ã $x_1,x_2\\ldots x_{2^n}$ ãšã, $ S_n=\\sum_{i=1}^{2^n} x_i^2 =2^nM_n$ ãšãã.\r\n\r\n$S_{n+1}$ ã¯, æäžäœã $4$ ã®ãã®ãš $8$ ã®ãã®ã«åããŠä»¥äžã®ããã«æ±ãããã.\r\n$$\\begin{aligned}\r\nS_{n+1} & = \\sum_{i=1}^{2^n} (4\\cdot 10^n+x_i)^2+(8\\cdot 10^n+x_i)^2 \\\\\\\\\r\n& = \\sum_{i=1}^{2^n} 2 x_i^2 + 24\\cdot 10^nx_i + 8\\cdot 10^{2n+1} \\\\\\\\\r\n& = 2 S_n + 2^{n+1} \\cdot 12\\cdot 10^n \\cdot \\frac{2}{3}(10^n-1) + 2^{n+1}\\cdot 4\\cdot 10^{2n+1}\r\n\\end{aligned}$$\r\nãã ã $x_i$ ã®çžå å¹³å㯠$\\dfrac{2}{3}(10^n-1) $ ã§ãã. $S_n=2^nM_n$ ã代å
¥ãããš, ææã®æŒžååŒ $$\r\nM_{n+1} = M_n + 48\\cdot 10^{2n} - 8\\cdot 10^n\r\n$$\r\nãåŸã. $M_1=40$ ãªã©ãçšã㊠$M_n$ ã $10$ é²è¡šèšã§æ±ãããã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc083/editorial/3123/40"
},
{
"content": "â» $\\mathrm P,\\\\, \\mathrm E,\\\\, \\mathrm V$ ã¯ãããã確çïŒæåŸ
å€ïŒåæ£ãè¡šãïŒ\r\n\r\nã$3123$ ãäžè¬ã« $n$ ãšããïŒå $i$ ã«å¯Ÿã確çå€æ° $X_i$ ãïŒããããç¬ç«ã«\r\n$$ \\mathrm P[X_i = 4] = \\mathrm P[X_i = 8] = \\frac12 $$\r\nãšãªãããã«å®ãïŒãŸã $X$ ã\r\n$$ X := \\sum_{i=0}^{n-1} 10^i\\\\, X_i $$\r\nã§å®ããïŒãã®ãšã\r\n$$ M = \\mathrm E\\mathopen{}\\left[X^2\\right] = \\mathrm V[X] + \\mathrm E[X]^2 $$\r\nãšãªããïŒå $X_i$ ãç¬ç«ã§ããããšãã\r\n$$ \\mathrm V[X] = \\mathrm V\\mathopen{}\\left[\\sum_{i=0}^{n-1} 10^i\\\\, X_i\\right] = \\sum_{i=0}^{n-1} \\mathrm V\\mathopen{}\\left[10^i\\\\, X_i\\right] = \\sum_{i=0}^{n-1} 10^{2i}\\\\, \\mathrm V\\mathopen{}\\left[X_i\\right] = 4\\sum_{i=0}^{n-1} 10^{2i} = \\frac4{99} \\times \\left(10^{2n} - 1\\right)\\mathclose{}, $$\r\nãŸã\r\n$$ \\mathrm E[X] = \\mathrm E\\mathopen{}\\left[\\sum_{i=0}^{n-1} 10^i\\\\, X_i\\right] = \\sum_{i=0}^{n-1} 10^i\\\\, \\mathrm E\\mathopen{}\\left[X_i\\right] = 6\\sum_{i=0}^{n-1} 10^i = \\frac23 \\times \\left(10^n - 1\\right) $$\r\nãã\r\n$$ M = \\frac4{99} \\times \\left(10^{2n} - 1\\right) + \\left(\\frac23 \\times \\left(10^n - 1\\right)\\right)^2 = 48 \\times \\frac{10^{2n} - 1}{10^2 - 1} - 8 \\times \\frac{10^n - 1}{10 - 1} = \\overbrace{4848 \\cdots 48}^{2n\\text{æ¡}} - \\overbrace{88 \\cdots 8}^{n\\text{æ¡}} $$\r\nãåŸãïŒåŸã¯ $n = 3123$ ãå
¥ããããšã§ïŒ$M$ ã®æ¡åã $\\mathbf{40590}$ ãšæ±ãŸãïŒ\r\n\r\nãæ¡ã®æ°åã®åè£ãå¢ããããïŒæ¡ã®æ°åã«éã¿ãä»ããå Žåã§ãïŒåæ§ã« $M$ ãæ±ããããšãã§ããïŒ",
"text": "確çè«",
"url": "https://onlinemathcontest.com/contests/omc083/editorial/3123/41"
}
] | ã$3123$ æ¡ã®æ£æŽæ°ã§ãã£ãŠïŒã©ã®æ¡ã®æ°åã $4$ ãŸã㯠$8$ ã§ãããããªãã®ãã¹ãŠã«ã€ããŠïŒããããã® $2$ ä¹ã®ïŒçžå ïŒå¹³åã¯æ£æŽæ° $M$ ã«ãªãããšã蚌æã§ããŸãïŒ$M$ ã®åæ¡ã®åã解çããŠãã ããïŒ |
OMC083 | https://onlinemathcontest.com/contests/omc083 | https://onlinemathcontest.com/contests/omc083/tasks/2992 | F | OMC083(F) | 600 | 21 | 70 | [
{
"content": "ã以äžã $4$ é ç¹ãšããæ£æ¹åœ¢ã«å¹³è¡ç§»åã®ã¿ã§äžèŽãããããæ Œåæ£æ¹åœ¢ã $S(x,y)$ ã§è¡šãïŒ\r\n$$(x,0),ã(0,y),ã(x+y,x),ã(y,x+y)$$\r\nãã ãïŒ$x\\geq0,y\\gt 0$ ãšããïŒãŸãïŒæ Œåæ£æ¹åœ¢ã®**ã¬ãã«**ã以äžã§å®çŸ©ããïŒ\r\n\r\n- $x=0$ ã®ãšãïŒ$S(x,y)$ ã®ã¬ãã«ã $y$ ã§å®ããïŒ\r\n- $x\\neq 0$ ã®ãšãïŒ$S(x,y)$ ã®ã¬ãã«ã $x+y-1$ ã§å®ããïŒ\r\n\r\nããã®ãšãïŒã¬ãã« $L$ ã®æ Œåæ£æ¹åœ¢ã«å«ãŸããæ Œåæ£æ¹åœ¢ã®ã¬ãã«ã¯ $L$ æªæºã§ããããšã容æã«ç¢ºèªã§ããïŒç¹ã«ïŒã¬ãã« $L$ ã®æ Œåæ£æ¹åœ¢ã«ã¬ãã« $L-1$ ã®æ Œåæ£æ¹åœ¢ãå«ãŸããã®ã¯ïŒä»¥äžã®ãããªã±ãŒã¹ã«éãããïŒ\r\n\r\n- $S(0,y)$ ã«å«ãŸãã $S(0,y-1)$ ãŸã㯠$S(k,y-k)~(k=1,2,\\ldots,n-1)$\r\n- $x=1$ ãŸã㯠$y=1$ (ããäžæ¹ã¯ $2$ 以äž) ã«ã€ã㊠$S(x,y)$ ã«å«ãŸãã $S(0,x+y-2)$\r\n- $S(2,2)$ ã«å«ãŸãã $S(0,2)$\r\n\r\nããã£ãŠ $n$ ã®æ倧å€ã¯ $N$ ã§ããïŒ$M_1=1, M_2=5$ ããã³ä»¥äžã®æŒžååŒã®æç«ãåãã.\r\n$$M_{N+2}=4M_{N+1}+2M_N$$\r\nãã ãïŒ$N=2$ ã®ãšãã®ã¿ $M_N$ ã®ä¿æ°ã $3$ ãšãªãïŒ$M_N$ ã $2$ ã§å²ããæ倧ã®åæ°ã $a_N$ ãšããã°ïŒ\r\n$$a_{4k+1}\\geq 2k+1,\\quad a_{4k+2}=2k-1,\\quad a_{4k+3}=2k+1,\\quad a_{4k+4}=2k\\quad (k=1,2,\\ldots)$$\r\nãæç«ããïŒãããã£ãŠ $N=\\bf{24694}$ ã®ãšãã« $a_N=12345$ ãšãªãïŒãããæ±ããæ倧ã®ãã®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc083/editorial/2992"
}
] | ã$N$ ãæ£æŽæ°ãšããŸã. $xy$ 座æšå¹³é¢äžã«æ£æ¹åœ¢ $S_1, S_2, \ldots, S_n$ ããã, 以äžã®æ¡ä»¶ãæºãããŠããŸã.
- å
šãŠã®æ£æ¹åœ¢ã®é ç¹ã¯æ Œåç¹ã§ãã.
- $S_1$ 㯠$(0,0), (0,N), (N,0), (N,N)$ ãé ç¹ãšãã.
- ä»»æã® $1\leq k \leq n-1$ ã«ã€ããŠ, $S_{k+1}$ 㯠$S_k$ ã®èŸºäžãå«ãå
éšã«ãã, ãã€äžèŽããªã.
ãã®ãã㪠$(S_1, S_2, \ldots, S_n)$ ã®ãã¡, $n$ ãæ倧å€ããšããã®ã®åæ°ã $M_N$ ã§è¡šããŸã.\
ã$M_N$ ã $2$ ã§å²ãåããåæ°ãã¡ããã© $12345$ åã§ãããããªæ倧㮠$N$ ãæ±ããŠãã ãã. |
OMC082 (for beginners) | https://onlinemathcontest.com/contests/omc082 | https://onlinemathcontest.com/contests/omc082/tasks/2112 | A | OMC082(A) | 100 | 253 | 255 | [
{
"content": "ãååãéããŠ, çéã $1$ åšããéã«é·éã $12$ åšãããã, ããã㯠$11$ åéãªã. ãã®ãã¡ $1$ å㯠$0$ æã¡ããã©ã§ããããšã«çæããã°, æ±ããåæ°ã¯ $\\textbf{10}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc082/editorial/2112"
}
] | ãäžè¬çãªã¢ããã°æèšã«ãããŠ, åå $0$ æ $1$ åããåå $11$ æ $59$ åãŸã§ã«, é·éãšçéãéãªãã®ã¯äœåã§ããïŒ |
OMC082 (for beginners) | https://onlinemathcontest.com/contests/omc082 | https://onlinemathcontest.com/contests/omc082/tasks/1981 | B | OMC082(B) | 200 | 206 | 251 | [
{
"content": "ãäžè¬ã«, æ£æŽæ° $n$ ã $n=p_1^{e_1}\\times p_2^{e_2}\\times \\ldots p_m^{e_m}$ ãšçŽ å æ°å解ããããšã, $n$ ãšäºãã«çŽ 㪠$1$ ä»¥äž $n$ 以äžã®æŽæ°ã®åæ° $\\phi(n)$ ã«ã€ããŠ\r\n$$\\phi(n)=n\\times \\left(1-\\frac{1}{p_1}\\right)\\times \\left(1-\\frac{1}{p_2}\\right)\\times \\ldots \\times \\left(1-\\frac{1}{p_m}\\right)=n\\prod _{k=1}^m \\left(1-\\frac{1}{p_i}\\right)$$ \r\nãæãç«ã€. ãã㧠$\\phi(n)$ 㯠Euler ã® totient é¢æ°ãšåŒã°ãããã®ã§ãã. ç¥ããªãã£ãæ¹ã¯æ¯é調ã¹ãŠã¿ãŸããã. \r\n----\r\n ã$420ïŒ2^2\\times3\\times5\\times7$ ãšçŽ å æ°å解ãããããšã«çæããã°, æ±ããåæ°ã¯\r\n$$\\phi(420)=420\\times\\left(1-\\dfrac{1}{2}\\right)\\times\\left(1-\\dfrac{1}{3}\\right)\\times\\left(1-\\dfrac{1}{5}\\right)\\times\\left(1-\\dfrac{1}{7}\\right)=\\textbf{96}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc082/editorial/1981"
}
] | ã$420$ ãšäºãã«çŽ 㪠$420$ 以äžã®æ£æŽæ°ã¯ããã€ãããŸããïŒ |
OMC082 (for beginners) | https://onlinemathcontest.com/contests/omc082 | https://onlinemathcontest.com/contests/omc082/tasks/286 | C | OMC082(C) | 200 | 167 | 195 | [
{
"content": "$$2S=AB\\times BC\\times \\sin\\angle B+CD\\times DA\\times \\sin\\angle D\\leq AB\\times BC+CD\\times DA$$\r\nã§ãã. éã« $AB^2+BC^2=CD^2+DA^2$ ããçå·ãæç«ããããããã, æ±ããæ倧å€ã¯ \r\n$$\\dfrac{AB\\times BC+CD\\times DA}{2}=\\dfrac{5\\sqrt{19}+2\\sqrt{589}}{2}$$\r\nããªãã¡è§£çãã¹ãå€ã¯ $475+2356=\\textbf{2831}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc082/editorial/286"
},
{
"content": "ãïŒ$AB^2 + BC^2 = CD^2 + DA^2$ ãªã®ã§ãªããšãªãäžå¹³æ¹ã®å®çã䜿ããããªãïŒããã§äœ¿ããããã«ç¹ãåãïŒ\\\r\nãç·å $BD$ ã®åçŽäºçåç·ã«é¢ã㊠$C$ ãšå¯Ÿç§°ãªç¹ã $C^\\prime$ ãšããïŒ\r\nåè§åœ¢ $ABC^\\prime D$ ã®é¢ç© $S^\\prime$ 㯠$S$ ãšçãããã $S^\\prime$ ã®æ倧å€ãæ±ããã°ããïŒ\r\n$$AB^2 - C^\\prime B^2 = AD^2 - C^\\prime D^2$$\r\nããïŒäžå¹³æ¹ã®å®çãã察è§ç· $AC^\\prime$ ãš $BD$ ã¯çŽäº€ããïŒãã£ãŠ $2S^\\prime = AC^\\prime\\times BD$ ãªã®ã§Ptolemyãåºãããã ïŒïŒ\\\r\nãåŸã£ãŠïŒPtolemyã®äžçåŒãã以äžãæç«ããïŒ\r\n$$2S^\\prime = AC^\\prime\\times BD \\le AB\\times C^\\prime D + BC^\\prime\\times DA = \\sqrt{475} + \\sqrt{2356}.$$\r\nçå·ãæç«ããå³ã¯ååšããã®ã§ïŒè§£çãã¹ã㯠$475 + 2356 = \\bf{2831}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc082/editorial/286/38"
}
] | ã以äžã®æ¡ä»¶ãã¿ããåžåè§åœ¢ $ABCD$ ã«ã€ããŠ, ãã®é¢ç©ã $S$ ãšããŸã.
$$AB=\sqrt{5},\ \ BC=\sqrt{95},\ \ CD=\sqrt{38},\ \ DA=\sqrt{62}$$
ãã®ãšã, $S$ ãšããŠããåŸãæ倧å€ãæ±ããŠãã ãã. ãã ã, çãã¯æ£æŽæ° $p\lt q$ ã«ãã£ãŠ $\dfrac{\sqrt{p}+\sqrt{q}}{2}$ ãšäžæã«è¡šããã®ã§, $p+q$ ã解çããŠãã ãã. |
OMC082 (for beginners) | https://onlinemathcontest.com/contests/omc082 | https://onlinemathcontest.com/contests/omc082/tasks/2582 | D | OMC082(D) | 300 | 152 | 188 | [
{
"content": "ãæããã« $S_2=2$ ã§ãããã, ä»¥äž $n\\geq 3$ ãšãã.\\\r\nããŸã $1$ ãæžã蟌ãå Žæã®æ±ºãæ¹ã¯ $n$ éããã. $1$ ã®äž¡é£ã㯠$2,3$ ãšãªããã, ãããã®æ±ºãæ¹ã $2$ éããã. ãã®ãšã, $k=2,3,\\ldots,n-2$ ã«ã€ããŠé çªã«, $k$ ã®é£ã«ã¯ $k+2$ ãæžã蟌ãã»ããªããªã, å
šäœãäžæã«å®ãŸã.\\\r\nã以äžãã, æ±ããå€ã¯ $2+2\\times3+2\\times4+\\cdots+2\\times2022=\\textbf{4090502}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc082/editorial/2582"
}
] | ãååšäžã« $n$ åã®ç¹ããã, ããããã« $1$ ãã $n$ ãŸã§ã®æ°åãã¡ããã©äžåºŠãã€, 以äžãã¿ããããã«æžã蟌ã¿ãŸã.
- é£ãåã $2$ ç¹ã«ãããŠ, æžã蟌ãŸãã $2$ æ°ã®å·®ïŒã®çµ¶å¯Ÿå€ïŒã¯åžžã« $2$ 以äžã§ãã.
ãã®ãããªæ¹æ³ã $S_n$ éãã§ãããšãããšã, $S_{2}+S_{3}+\cdots+S_{2022}$ ãæ±ããŠãã ãã.\
ããã ã, å転ãå転ã«ãã£ãŠäžèŽãããã®ãåºå¥ããŠèãããã®ãšããŸã. |
OMC082 (for beginners) | https://onlinemathcontest.com/contests/omc082 | https://onlinemathcontest.com/contests/omc082/tasks/2214 | E | OMC082(E) | 300 | 108 | 155 | [
{
"content": "ã$1$ ãã $2021$ ã®æå°å
¬åæ°ã $L$ ãšããã°, ãã¹ãŠã®ç¹ãåããŠåæã« $A$ ãžæ»ã£ãŠããã®ã¯ $2L$ ç§ã§ãã, ãããŸã§ã«åé¡ã®ç¶æ³ãèµ·ãããšããã° $L$ ç§åŸã§ãã. ãã®ãšã, æ¡ä»¶ã¯ $L\\/x$ ãå¥æ°ã§ãããšèšãæããã, ãããã $2021$ 以äžã§ $2$ ã§å²ãåããåæ°ãæãå€ã $x=\\textbf{1024}$ ãé©ããå¯äžã®ãã®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc082/editorial/2214"
}
] | ã$2021$ åã®ç¹ $P_1,P_2,\cdots,P_{2021}$ ã, åæã«ç¹ $A$ ããåºçºã, ç¹ $B$ ãšã®éãåŸåŸ©ãç¶ããŸã. ç¹ $P_n$ ãçéãé²ãã®ã«ãããæé㯠$n$ ç§ã§ã. ãã®ãšã, ããäžã€ã®ç¹ $P_x$ ã®ã¿ãç¹ $B$ ã«ãã, æ®ãã®ãã¹ãŠã®ç¹ãç¹ $A$ ã«ãããããªç¬éãååšããŸãã. $x$ ãšããŠããåŸãå€ã®ç·åãæ±ããŠãã ãã. |
OMC082 (for beginners) | https://onlinemathcontest.com/contests/omc082 | https://onlinemathcontest.com/contests/omc082/tasks/1475 | F | OMC082(F) | 400 | 71 | 123 | [
{
"content": "ãäžè¬ã« $OG:GH=1:2$ ã§ããããšãã $OG=GI$ ãæç«ãã. $BC$ ã®äžç¹ $M$ ã«ã€ã㊠$BM=MC=1$ ãšããŠãã, $AB=AC=a(\\neq 2),AM=h$ ãšãããšä»¥äžã®æç«ããããïŒ\r\n$$AG=\\frac{2}{3}h,\\quad AI=h - \\frac{2|\\triangle ABC|}{AB + BC + CA} = h - \\frac{2h}{2a+2} = \\frac{ah}{a+1} = \\frac{a(a-1)}{h}$$\r\nãŸã, $AO = BO$ ã«æ°ãã€ããã°\r\n$$AO^2 = BO^2 = (h - AO)^2 + 1^2$$\r\nãã $AO = \\dfrac{h^2 + 1}{2h} = \\dfrac{a^2}{2h}$ ãåŸã. \r\n以äžã $AO+AI=2AG$ ã«ä»£å
¥ã, $h^2 = a^2 - 1$ ãçšããŠæŽçããããšã§ $(a,h)=(4,\\sqrt{15})$ ãåŸã. ãã®ãšãå€æ¥åååŸã¯ $AO=8\\/\\sqrt{15}$, å
æ¥åååŸã¯ $h-AI=3\\/\\sqrt{15}$ ã§ãããã, æ±ããå€ã¯ $8+3=\\textbf{11}$ ã§ãã.\r\n\r\nããªã, Eulerã®å®çãçšããŠããã. å
·äœçã«ã¯,\r\n$$2:1=AG:GM=\\dfrac{OI}{2}+R:\\dfrac{OI}{2}+r$$\r\nããåŸããã $OI=2R-4r$ ã $OI^2=R^2-2Rr$ ã«ä»£å
¥ããããšã§, $R\\/r$ ã®äºæ¬¡æ¹çšåŒãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc082/editorial/1475"
},
{
"content": "è€çŽ 座æšã䜿ã£ã解æ³ãæžããŠãããŸãïŒ(é·ããªã£ãã®ã§èšç®ã®éšåã ãèªã¿ãã人ã¯åŸåããèªãã§ãã ãã)\r\n\r\nwell-known fact ãšããŠä»¥äžãæãç«ã¡ãŸãïŒ\r\n\r\n$3$ç¹$A(a^2),B(b^2),C(c^2)$ãåäœåäžã«ãããšãéå¿$G$ïŒå
å¿$I$ïŒåå¿$H$ã«ã€ããŠ\r\n\r\n- $G$ã®è€çŽ 座æšã¯$\\dfrac{a^2+b^2+c^2}{3}$\r\n- $H$ã®è€çŽ 座æšã¯$a^2+b^2+c^2$\r\n- $I$ã®è€çŽ 座æšã¯$-ab-bc-ca$\r\n\r\n($a,b,c$ã®ç¬Šå·ã¯é©åã«å®ãããšãã)\r\n\r\nããã䜿ããšåé¡ã®æ¡ä»¶ãã\\\r\n$\\dfrac{2}{3}(a^2+b^2+c^2)=-ab-bc-ca$\\\r\nãšãªãïŒãããããã®2次æ¹çšåŒã解ããŠãããã®ã§ãã(ãã®å Žåã¯$AB=AC$ã®æ¡ä»¶ã$a^2=bc$ãšçŽããŠèšç®ãé²ããŸã)ïŒ$AB=AC$ãã$A,O,G,I,H$ã¯ã©ãã$BC$ã®åçŽäºçåç·äžã«ããããšããããïŒ$A$ãå®è»žäžã«åããšãããã¯å
šãŠå®è»žäžã«ããããšã«ãªãå®éšã ããèŠãã°ããããšãããããŸãïŒ\\\r\nããã§ïŒå€æ¥åã®ååŸã¯$1$ã§ããïŒ$OI$ã®é·ãããããã° Chapple-Euler ã®å®çããå
æ¥åã®ååŸãããããšããããšãé ã«å
¥ããŠãããŸãïŒ\r\n\r\n次ã®ããã«åº§æšããããŸãïŒ\\\r\n$a=1,b=-\\cos\\theta-i\\sin\\theta,c=-\\cos\\theta+i\\sin\\theta$\\\r\n$I$ã®å
å¿ã®åº§æšã®ãšããã§$a,b,c$ã®åº§æšãé©åã«å®ããå¿
èŠããããšèšã£ãŠããããã«ïŒãã®èŸºããèæ
®ãããš $0\\lt\\theta\\lt\\dfrac{\\pi}{2}$ ãšãªããŸãïŒ\r\n\r\n$\\\\ $\r\n\r\nãããŸã§ãå眮ãã§ããããèšç®ã®ããŒãã«å
¥ããŸãïŒ\r\n\r\n$\\Re\\left(\\dfrac{2}{3}(a^2+b^2+c^2)\\right)=\\dfrac{2}{3}(2\\cos2\\theta+1)$\r\n$\\Re(-ab-bc-ca)=2\\cos\\theta-1$\r\n\r\nããããçããã®ã§ $2$次æ¹çšåŒã解ããš $\\cos\\theta=\\dfrac{1}{2},\\dfrac{1}{4}$ ãšãªãïŒ$\\cos\\theta=\\dfrac{1}{2}$ ã®ãšã㯠$ABC$ ãæ£äžè§åœ¢ã«ãªã£ãŠããŸãã®ã§ $\\cos\\theta=\\dfrac{1}{4}$ ãšãªããŸãïŒ\r\n\r\nãããã$I$ã®åº§æšã¯ $-\\dfrac{1}{2}$ ãšãªãïŒ Chapple-Euler ã®å®çãã $\\sqrt{R^2-2Rr}=OI=\\dfrac{1}{2}$ ãšãªãïŒ$r=\\dfrac{3}{8}$ ããããã®ã§çã㯠$11$ ã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc082/editorial/1475/39"
},
{
"content": "$\\angle OBI=\\angle IBH$ ãã $$OB:HB=OI:HI=2:1.$$ ãããã£ãŠ $OB=2, HB=1$ ãšããã. $AC$ ã®äžç¹ã $M$ ãšãããšïŒ$BH=2OM$ ã§ããïŒãããã£ãŠ $OM=\\dfrac{1}{2}$. ãã£ãŠ $$AC=2AM=2\\sqrt{AO^2-OM^2}=\\sqrt{15}$$\r\nã§ãã. ããã§ïŒ$BC$ ã®äžç¹ã $N$ ãšãããšïŒ$\\angle OMC=\\angle ONC=90^{\\circ}$ ãã $O, M, C, N$ ã¯å
±å. ãã£ãŠïŒ$AOÃAN=AMÃAC$ ã ããïŒ$AN=\\dfrac{15}{4}$. \r\nãšããã§ïŒ$\\angle HBN=\\angle OAM$ ããïŒäžè§åœ¢ $HBN$ ãš $OAM$ ã¯çžäŒŒã ããïŒ$$HN=HBÃ\\dfrac{OM}{AO}=\\dfrac{1}{4}.$$\r\nããã§ïŒ$IH=\\dfrac{OH}{3}=\\dfrac{1}{2}$ ã ããïŒ$IN=\\dfrac{3}{4}$ ãªã®ã§ïŒæ±ããæ¯ã¯ $OB:IN=2:\\dfrac{3}{4}=8:3$. 解çãã¹ãå€ã¯ $\\textbf{11}$ ã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc082/editorial/1475/204"
}
] | ã$AB=AC\neq BC$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, ãã®å€å¿ $O$, éå¿ $G$, å
å¿ $I$, åå¿ $H$ ããã®é ã«çééã«äžŠãã§ãããšã, ãã®å€æ¥åã®ååŸãšå
æ¥åã®ååŸã®æ¯ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ãçšã㊠$p:q$ ãšè¡šãããŸã. $p+q$ ã解çããŠãã ãã. |
OMC081 (for experts) | https://onlinemathcontest.com/contests/omc081 | https://onlinemathcontest.com/contests/omc081/tasks/2499 | A | OMC081(A) | 300 | 181 | 198 | [
{
"content": "ãå€é¢äœã®é ç¹ã®åæ°ã $v$ïŒèŸºã®æ¬æ°ã $e$ïŒé¢ã®åæ°ã $f$ ãšè¡šãããšã«ããïŒä»»æã®å€é¢äœã«å¯ŸããŠïŒé ç¹å
šäœãåäžã®å¹³é¢äžã«ãªãããšãã $v \\geq 4$ïŒå€é¢äœã®å
éšãéãã空éã§ããããšãã $f \\geq 4$ ãåŸãïŒ \r\nã$f = 4$ ãŸã㯠$v = 4$ ã®ãšãïŒã©ã¡ããåé¢äœã«ãªãïŒ$e = 6$ïŒãŸã $f \\geq 5$ ã〠$v \\geq 5$ ã®ãšãïŒEuler ã®å€é¢äœå®çãã $e \\geq 8$ ã§ããïŒããã§åè§éïŒäºè§éã¯ãããã $e = 8, 10$ ã§ããããšã«çæããïŒ \r\nãããã§ïŒåžå€é¢äœã«ãã㊠$3$ æ¬ã®èŸºã®éãŸãé ç¹ã«ãããåé ãèãããšïŒ$e$ ã $3$ å¢ãïŒ$3$ æ¬ã®èŸºã®éãŸãé ç¹ã $2$ ã€å¢ããåžå€é¢äœã«ãªãïŒåé¢äœïŒåè§éïŒäºè§éã«ãããããã®åæãç¹°ãè¿ãããšã§ïŒ$e$ ãšããŠ**èãããã**æ°ã¯ $8$ 以äžã®æŽæ°ããã³ $6$ ã§ããããšãåããïŒæ±ããç·ç©ã¯ $\\mathbf{840}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc081/editorial/2499"
}
] | ãåžå€é¢äœã®èŸºã®æ¬æ°ã«**ãªãåŸãªã**æ£æŽæ°ã®**ç·ç©**ãæ±ããŠãã ããïŒãã ãïŒãã¹ãŠã®é ç¹ãåäžã®å¹³é¢ã«ãããã®ã¯å€é¢äœãšã¯ã¿ãªããïŒãŸãå€é¢äœãåžã§ãããšã¯ä»¥äžã®æ¡ä»¶ãã¿ããããšãæããŸãïŒ
- ãã¹ãŠã®èŸºã«ãããŠ, ããã蟺ã«ã〠$2$ é¢ã®ãªãè§ã $180^\circ$ æªæºã§ãã
- èªå·±äº€å·®ããããªã |
OMC081 (for experts) | https://onlinemathcontest.com/contests/omc081 | https://onlinemathcontest.com/contests/omc081/tasks/1265 | B | OMC081(B) | 500 | 136 | 170 | [
{
"content": "ã$n=1$ ã¯é©ããäžæ¹ã§, $n=2,3$ ã¯é©ããªãããšã容æã«ããã. ä»¥äž $n\\geq 4$ ã§èãã.\\\r\nã$n$ ãçŽ æ°ã§ãããšã, Wilsonã®å®çãã $(n-2)!-1$ 㯠$n$ ã§å²ãåãããã, ç¹ã«æ¡ä»¶ãã¿ãã. \\\r\nããã㧠$n\\leq 120$ ãçŽ æ°ã§ãªããšã, ãã㯠$2,3,5,7$ ã®å°ãªããšãäžã€ã§å²ãåãã. äžæ¹ã§ $m\\geq 6$ ã«ã€ã㊠$m!-1$ 㯠$2,3,5,7$ ã®ãããã§ãå²ãåããªãããšãã, 以äžã® $4$ æ°ã«ã€ããŠèŠãã°ååã§ãã.\r\n$$2!-1=1,\\quad3!-1=5,\\quad4!-1=23,\\quad5!-1=119=7\\times17$$\r\n以äžã®è°è«ãã, $n\\leq 120$ ã§æ¡ä»¶ãã¿ããã®ã¯, $2,3$ ãé€ãçŽ æ°ããã³ $1,119$ ã§ãã. ãããã§ã¡ããã© $30$ åã§ãããã, ç¹ã«æ±ããç©ã¯ $31\\times73\\times119=\\textbf{269297}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc081/editorial/1265"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæ£æŽæ° $n$ ã®ãã¡, $10,20,30$ çªç®ã«å°ãããã®ã®**ç©**ãæ±ããŠäžããïŒ
- ããæŽæ° $m\ge2$ ãååšããŠ, $m!-1$ ã $n$ ã®åæ°ã§ãã. |
OMC081 (for experts) | https://onlinemathcontest.com/contests/omc081 | https://onlinemathcontest.com/contests/omc081/tasks/2530 | C | OMC081(C) | 500 | 56 | 124 | [
{
"content": "ãçœãç¢ç³ã $1$ ã«ïŒé»ãç¢ç³ã $0$ ã«å¯Ÿå¿ããïŒååŽã $1$ ã®äœãšãªãããã« $2$ é²æ³è¡šç€ºããéè² æŽæ°ã«å¯Ÿå¿ãããããšãèããïŒç¢ç³ã®è²ãšéè² æŽæ°ã¯äžå¯Ÿäžã«å¯Ÿå¿ããïŒãã®ãšãïŒ**æäœ**ã¯æäœåã®æ£æŽæ°ãè¶
ããªããã㪠$2$ ã¹ããæžããããšã«å¯Ÿå¿ããïŒããã $0$ ã«ããæ¹ãè² ãã§ããïŒå¯Ÿå¿ããéè² æŽæ°ã¯å¿
ãæžå°ããããïŒç¹ã«åæãå¿
ã決ããïŒ\\\r\nã$n=1,\\ldots,32767$ ã«å¯Ÿãé¢æ° $f(n)$ ãïŒæåã®æ£æŽæ°ã $n$ ã§å
æ»ãåã€ãªãã° $1$ïŒåŸæ»ãåã€ãªãã° $0$ ãšããŠå®ãããšïŒ$f(1) = 0$ ããã³ $f(2)=f(3)=1$ ãçŽã¡ã«åããïŒãŸãä»»æã® $n$ ã«å¯ŸãïŒ$f(n) = 0$ ãšïŒ$2^k \\lt n$ ãªãä»»æã®éè² æŽæ° $k$ ã«å¯Ÿã㊠$f(n-2^k) = 1$ ãæãç«ã€ããšã¯åå€ã§ããããšãåããïŒ\\\r\nã以äžïŒ$f(n)$ ã®å€ã $n\\bmod3$ ã§å®ãŸãããšãåž°çŽçã«ç€ºããïŒããæ£æŽæ° $m$ ã«ã€ã㊠$n \\le 3m$ ã§æç«ãããšä»®å®ããïŒ$f(n\\_0) = 0$ ãšãªãä»»æã® $n\\_0 \\le 3m$ ã«å¯ŸããŠïŒããæ£æŽæ° $m\\_0$ ãååšã㊠$n\\_0 = 3m\\_0 + 1$ ãšè¡šããããã\r\n$$ 3m + 1 - n\\_0 = 3m + 1 - \\left(3m\\_0 + 1\\right) = 3\\left(m - m\\_0\\right) $$\r\nãšãªãïŒãã㯠$2$ ã®ã¹ãã«ãªãåŸãªããã $f(3m + 1) = 0$ ãåããïŒäžæ¹ã§\r\n$$ 3m + 1 = 3m + 2 - 2^0 = 3m + 3 - 2^1 $$\r\nãã $f(3m + 2) = f(3m + 3) = 1$ ãåããããïŒç€ºãããïŒ \r\nããããã£ãŠæ±ããå€ã¯ïŒ$1,\\ldots,32767$ ã®ãã¡ $3$ ã§å²ã£ãããŸãã $1$ ã§ã¯ãªããã®ã®åæ° $\\mathbf{21844}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc081/editorial/2530"
}
] | ãååäžåã« $15$ åã®ç¢ç³ã䞊ãã§ããŸãïŒããããã®ç¢ç³ã¯çœè²ãŸãã¯é»è²ã§ããïŒãã¹ãŠé»è²ã§ã¯ãããŸããïŒ\
ã$2$ 人ã®ãã¬ã€ã€ãŒãããããçšããŠã²ãŒã ãè¡ããŸãïŒå
æ»ããå§ããŠïŒä»¥äžã®**æäœ**ã亀äºã«è¡ããŸãïŒ
- **æäœ**ïŒ$0$ å以äžã®é»ãç¢ç³ãš $1$ åã®çœã®ç¢ç³ãïŒ**åããé ã«**é£ç¶ããŠãé»é»$\ldots$é»çœãã®ããã«çœ®ãããŠããç®æãäžã€éžã³ïŒããã«å«ãŸããç¢ç³ã®è²ããã¹ãŠå
¥ãæ¿ããïŒ
ãäŸãã°ïŒ$4$ åã®ç¢ç³ãåããé ã«ãçœé»é»çœããšäžŠãã§ãããšãïŒäžåºŠã®æäœã«ãã£ãŠãé»é»é»çœããçœé»é»é»ããçœé»çœé»ããçœçœçœé»ãã®ããããã«å€åããŸãïŒå
ã«ãã¹ãŠã®ç¢ç³ãé»è²ã«ãã人ã**è² ã**ãšãªããŸãïŒ\
ãã¯ããã®ç¢ç³ã®é
眮㯠$2^{15}-1=32767$ éããããŸããïŒäž¡è
ãèªèº«ã®åã¡ãç®æããŠæé©ã«è¡åãç¶ãããšä»®å®ãããšãïŒæéåã§æ±ºçãä»ãïŒãã€å
æ»ãåã€é
眮ã¯ãã®ãã¡ããã€ãããŸããïŒ |
OMC081 (for experts) | https://onlinemathcontest.com/contests/omc081 | https://onlinemathcontest.com/contests/omc081/tasks/2500 | D | OMC081(D) | 600 | 24 | 83 | [
{
"content": "ãäžè¬ã« $10000$ ã $N$ ãšããïŒå $r = 0, \\ldots, N$ ã«å¯ŸãïŒ$M \\ge r$ ãšãªã $A,B$ ã®äžŠã¹æ¿ãã®ç·æ°ã¯ïŒã«ã¿ã©ã³æ°ãšåæ§ã®é¡åæ³ã«ãã£ãŠ ${}\\_{2N}\\mathrm C\\_{N-r}$ ãšåããïŒãã£ãŠæ±ããç·å $S$ ã¯\r\n$$ S = \\sum\\_{r=0}^{N-1} r^2 \\left( {}\\_{2N}\\mathrm C\\_{N-r} - {}\\_{2N}\\mathrm C\\_{N-(r+1)} \\right) + N^2 {}\\_{2N}\\mathrm C\\_0 = \\sum\\_{r=0}^{N-1} \\mathopen{}\\left( 2N - 1 - 2r \\right) {}\\_{2N}\\mathrm C\\_r. $$\r\nããã§\r\n$$ \\sum\\_{r=0}^{N-1} {}\\_{2N}\\mathrm C\\_r = \\frac12 \\left( \\sum\\_{r=0}^{2N} {}\\_{2N}\\mathrm C\\_r - {}\\_{2N}\\mathrm C\\_N \\right) = 2^{2N-1} - \\frac{{}\\_{2N}\\mathrm C\\_N}2, $$\r\nãŸãåæ§ã«ããŠ\r\n$$ \\sum\\_{r=0}^{N-1} r\\\\,{}\\_{2N}\\mathrm C\\_r = 2N \\sum\\_{r=1}^{N-1} {}\\_{2N-1}\\mathrm C\\_{r-1} = N \\left(2^{2N-1} - {}\\_{2N}\\mathrm C\\_N\\right)$$\r\nãæç«ããããïŒãããã代å
¥ããŠ\r\n$$ S = \\frac{2N + 1}2 \\times {}\\_{2N}\\mathrm C\\_N - 2^{2N-1} = 20001 \\times \\dfrac{{}\\_{20000}\\mathrm C\\_{10000}}2 - 2^{19999}. $$\r\nã${}\\_{20000}\\mathrm C\\_{10000}$ ã $2^5$ ã®åæ°ã§ããããšãã $\\dfrac{{}\\_{20000}\\mathrm C\\_{10000}}2 \\equiv 8320\\pmod{10^4}$ïŒãŸã Euler ã®å®çãã\r\n$$2^{19999}=2^{-1}\\times 2^{40\\times\\varphi (5^4)} \\equiv 2^{-1}\\equiv \\dfrac{1+15\\times 5^4}{2}\\equiv 4688 \\pmod{5^4}.$$\r\n$4688$ 㯠$2^4$ ã®åæ°ã§ãããã, $2^{19999}$ ã $10^4$ ã§å²ã£ãäœãã $4688$ ã§ãã. 以äžãã,\r\n$$S \\equiv 20001 \\times 8320 - 4688 \\equiv \\textbf{3632} \\pmod{10^4}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc081/editorial/2500"
}
] | ãé»æ¿ã« $0$ ãäžã€ã ãæžãããŠããŸãïŒãããžä»¥äžã®æäœ $A,B$ ããããã $10000$ åãã€é©åœãªé åºã§æœããŸãïŒ
- æäœ $A$ïŒé»æ¿ã«æžãããŠããæ°ã $n$ ã®ãšãïŒããã $n+1$ ã«æžãæããïŒ
- æäœ $B$ïŒé»æ¿ã«æžãããŠããæ°ã $n$ ã®ãšãïŒããã $n-1$ ã«æžãæããïŒ
ãã®éçšã§é»æ¿ã«æžããããã¹ãŠã®æ°ã«ã€ããŠïŒãã®æ倧å€ã $M$ ãšããŸãïŒ\
ãæäœ $A,B$ ãè¡ãé åºã¯å
šéšã§ ${}\_{20000}\mathrm C\_{10000}$ éããããŸããïŒãã¹ãŠã«ã€ã㊠$M^2$ ã®ç·åãæ±ãïŒããã $10000$ ã§å²ã£ãäœããæ±ããŠãã ããïŒãã ãïŒ${}\_{20000}\mathrm C\_{10000}$ ã $10000$ ã§å²ã£ãäœã㯠$6640$ ã§ãïŒ |
OMC081 (for experts) | https://onlinemathcontest.com/contests/omc081 | https://onlinemathcontest.com/contests/omc081/tasks/2524 | E | OMC081(E) | 700 | 8 | 45 | [
{
"content": "ã$Q, T, U$ ãéãåã $\\Gamma^\\prime$ ãšãïŒçŽç· $IT, IU$ ã«ã€ããŠïŒ$\\Gamma^\\prime$ ãšã® $T,U$ ã§ã¯ãªã亀ç¹ããããã $T^\\prime, U^\\prime$ ãšãããšïŒ\r\n$$ \\angle PTU = \\angle DTU = \\angle DEU = \\angle QUU^\\prime = \\angle QT^\\prime U^\\prime. $$\r\nåæ§ã« $\\angle PUT = \\angle QU^\\prime T^\\prime$ ããïŒ$\\triangle PTU$ ãš $\\triangle QT^\\prime U^\\prime$ ã¯çžäŒŒïŒãŸã $IT = IU$ ãã\r\n$$ \\angle T^\\prime TU = \\angle ITU = \\angle IUT = \\angle U^\\prime UT = \\angle U^\\prime T^\\prime T $$\r\nãšãªãïŒ$TU \\mathrel{\\/\\\\!\\/} U^\\prime T^\\prime$ ãåŸãïŒ \r\nããã£ãŠ $\\triangle PTU$ ãš $\\triangle QT^\\prime U^\\prime$ ã¯ïŒ$TT^\\prime$ ãš $UU^\\prime$ ã®äº€ç¹ $I$ ãäžå¿ãšããçžäŒŒæ¡å€§ã®é¢ä¿ã«ããïŒç¹ã« $P, I, Q$ ã¯å
±ç·ïŒããã« $IP = IQ$ ãã $\\triangle PTU \\equiv \\triangle QT^\\prime U^\\prime$ ã§ããããïŒåè§åœ¢ $TUT^\\prime U^\\prime$ ã¯é·æ¹åœ¢ïŒãããã£ãŠ $I$ ã $\\Gamma^\\prime$ ã®äžå¿ã§ãã£ãŠïŒ$P$ 㯠$\\Gamma^\\prime$ ã®ååšäžã«ããïŒãããã以äžã®ãããããçŽè§ã§ããããšãé 次ãããïŒ\r\n$$ \\angle PTQ,\\qquad \\angle PTE = \\angle DTE,\\qquad \\angle DAE = \\angle BAC $$\r\nã$I$ 㯠$\\triangle ABC$ ã®å
å¿ãã $\\angle TIU = \\angle BIC = \\dfrac{3\\pi}4$ ã§ïŒ$\\Gamma$ ã®äžå¿ã $O$ ãšã㊠$\\angle OIT = \\angle OIU = \\dfrac{3\\pi}8$ïŒãã£ãŠ\r\n$$ x^2 = IT^2 = \\left(OT\\tan\\frac\\pi8\\right)^2 = (\\sqrt{2}-1)^2\\left(\\dfrac{DE}{2}\\right)^2 = \\frac{3 - 2\\sqrt2}4 \\times \\left(20^2 + 22^2\\right) = 663 - 442\\sqrt2 $$\r\nãšãªãïŒæ±ããçã㯠$\\mathbf{1107}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc081/editorial/2524"
},
{
"content": "ãè€çŽ ãåºãã£ãã®ã§è€çŽ ã§è§£ã解æ³ãæžããŸãïŒãããã£ãŠãã®è§£èª¬ã§ã¯åç幟äœãè€çŽ 座æšã§ã®èšç®ã§è§£ãã®ã«å¿
èŠãªç¥èã¯ä»®å®ããŸãïŒïŒ\\\r\nããŸãïŒPascalã®å®çãã $P,I,Q$ ã®å
±ç·ãããããŸãïŒãããããã¯äœ¿ããŸããã§ããïŒïŒ$IP=IQ$ ãããŸãèšãæããããªãããªãšæãç«ã£ãŠè€çŽ 座æšã§èšç®ããããšã«ããŸããïŒ\\\r\nã$\\Gamma$ ãåäœåãšä»®å®ããŸãïŒé·ãã®æ¡ä»¶ã«åãããã«ããšãã調ç¯ããã°è¯ãã§ãïŒïŒ\\\r\nã$U,T,D,E,I,P,Q$ ã®è€çŽ 座æšããããã $u,t,d,e,i,p,q$ ãšããŸãïŒ$I$ 㯠$U,T$ ããåŒããæ¥ç·ã®äº€ç¹ãªã®ã§\r\n$$i=\\dfrac{2tu}{t+u}$$\r\nãšãªããŸãïŒ$P$ 㯠$DT$ ãš $EU$ ã®äº€ç¹ãªã®ã§\r\n$$p=\\dfrac{dt(e+u)-eu(d+t)}{dt-eu}$$\r\nãšãªãïŒé 匵ã£ãŠèšç®ãããš\r\n$$i-p=\\dfrac{(t-u)\\bigl(tu(d+e)-de(t+u)\\bigr)}{(t+u)(dt-eu)}$$\r\nãšãªããŸãïŒ$i-q$ ã«é¢ããŠã¯ $D$ãš$E$ ãå
¥ãæ¿ããã ãã§ããã®ã§\\\r\n$$i-q=\\dfrac{(t-u)\\bigl(tu(d+e)-de(t+u)\\bigr)}{(t+u)(et-du)}$$\r\nãšãªããŸãïŒ\\\r\nã$IP=IQ$ ãã $|i-p|=|i-q|$ ãšãªãã®ã§ $|dt-eu|=|du-et|$ ãšãªããŸãïŒãããã $\\dfrac{dt}{eu}=\\dfrac{du}{et}$ ãš $\\dfrac{dt}{eu}=\\dfrac{et}{du}$ ã®ã©ã¡ãããæãç«ã¡ãŸãïŒããªãã¡ïŒ$DE$ ãš $TU$ ã®ã©ã¡ããã¯çŽåŸã§ãïŒ$TU$ ãçŽåŸã ãšãããš $I$ ãç¡éé ç¹ã«ãªã£ãŠããŸããã $DE$ ã¯çŽåŸã§ãïŒ\\\r\nã$\\angle DAE=90^\\circ, ~ AD=20,~ AE=22$ ãã $\\Gamma$ ã®ååŸã $\\sqrt{221}$ ã§ããããšãããããŸãïŒ$\\sqrt{884}$ ãšåéãããŠ1ããããŸããïŒïŒ$\\angle BAC=90^\\circ$ ãã $\\angle BIC=135^\\circ$ ãããããŸãïŒ\\\r\nã$DE$ ãçŽåŸãªã®ã§ $e=-d$ ã§ããïŒå
ã»ã©æ±ããåŒã«ä»£å
¥ãããš\r\n$$x=|i-p|=\\left|\\dfrac{t-u}{t+u}\\right|$$\r\nãšãªããŸãïŒ$\\Gamma$ ãåäœåã«ãªãããã«é·ããå€åãããããšã®å³ã§ããããšã«æ³šæïŒïŒ\\\r\nã$\\angle UIT=135^\\circ$ ãã $u$ ãš $t$ ã®åè§ã®å·®ã¯ $45^\\circ$ ã§ããããšããããïŒå³ãæããš $x=\\tan22.5^\\circ$ ãšãªããŸãïŒ\r\n$\\Gamma$ ã®ååŸã¯ $\\sqrt{221}$ ãªã®ã§å³ãå
ã®é·ãã«æ»ããš $x^2=221(3-2\\sqrt{2})$ ãšãªãïŒçã㯠$663+442+2=1107$ ã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc081/editorial/2524/36"
}
] | ã$I$ ãå
å¿ãšããäžè§åœ¢ $ABC$ ã«ãããŠïŒå $\Gamma$ ã¯ç¹ $A$ ãéãïŒçŽç· $BI, CI$ ã«ããããç¹ $T, U$ ã§æ¥ããŸãïŒãã®ãšãç·å $AB, AC$ ã«ã€ããŠïŒãããã $\Gamma$ ãšã® $A$ ã§ãªãäº€ç¹ $D, E$ ãååšããŸããïŒããã«çŽç· $DT, EU$ ãç¹ $P$ ã§ïŒçŽç· $DU, ET$ ãç¹ $Q$ ã§äº€ãããŸããïŒããå®æ° $x$ ã«ã€ããŠ
$$ AD = 20,\qquad AE = 22,\qquad IP = IQ = x $$
ãšãªããšãïŒ$x^2$ ã¯å¹³æ¹å åãæããªãæ£æŽæ° $c$ ããã³æ£æŽæ° $a$, $b$ ãçšã㊠$a - b \sqrt c$ ãšè¡šãããã®ã§ïŒ$a + b + c$ ã解çããŠãã ããïŒ |
OMC081 (for experts) | https://onlinemathcontest.com/contests/omc081 | https://onlinemathcontest.com/contests/omc081/tasks/2518 | F | OMC081(F) | 700 | 6 | 24 | [
{
"content": "**è£é¡.**ã$k$ ãæ£æŽæ°ãšããïŒä»»æã® $0$ ã§ãªãè€çŽ æ° $e\\_1,\\ldots,e\\_k$ ããã³ $0$ ã§ãªãçžç°ãªãè€çŽ æ° $z\\_1,\\ldots, z\\_k$ ã«å¯ŸãïŒ$\\displaystyle S(x) := \\sum\\_{i=1}^k e\\_i{z\\_i}^x$ ã¯æ£æŽæ° $x$ ã«å¯ŸããŠæççã« $0$ ã«ãªãããšã¯ãªãïŒ\\\r\n**蚌æ.**ã$S(x+1) - z\\_k S(x)$ ãèããã°ïŒ$k$ ã«é¢ããåž°çŽæ³ã§ç€ºãããïŒ\r\n___\r\nãéè² æŽæ° $k$ ã«å¯ŸãïŒæ°å $\\left\\\\{ t\\_k \\right\\\\}$ ã\r\n$$ t\\_k := \\begin{cases} 0 & (k = 0,1) \\\\\\\\ 1 & (k = 2) \\\\\\\\ t\\_{k-1} + t\\_{k-2} + t\\_{k-3} & (k \\ge 3) \\end{cases} $$\r\nã§å®ããïŒãã㧠$3$ 次æ¹çšåŒ $x^3 = x^2 + x + 1$ ãèãããšïŒããã¯å®æ°è§£ã $1$ ã€ãš $1$ çµã®å
±åœ¹ãªè€çŽ æ°è§£ãæã€ïŒãããã $x=z\\_1, z\\_2, z\\_3$ïŒãã ã $z\\_1 \\in \\mathbb R$ïŒãšãããšïŒãã $b\\_1, b\\_2, b\\_3\\in\\mathbb C$ ãååšããŠïŒä»»æã®éè² æŽæ° $k$ ã§\r\n$$t\\_k = b\\_1{z\\_1}^k + b\\_2{z\\_2}^k + b\\_3{z\\_3}^k$$\r\nãšè¡šããïŒããã§ïŒ$b\\_1, b\\_2, b\\_3$ ã¯ãããã $0$ ã§ãªãïŒ\\\r\nã$\\left\\\\{ t\\_k \\right\\\\}$ ã®å®çŸ©ããïŒ$k = 0, \\ldots, n$ ã«ã€ã㊠$P\\_n(k) = t\\_k$ ãšãªãããïŒLagrangeè£éãã $P\\_n(x)$ ã¯\r\n$$\r\n\\begin{aligned}\r\nP\\_n(x) &= \\sum\\_{i=0}^n \\mathopen{}\\left( t\\_i \\times \\frac{\\left(x - 0\\right) \\times\\cdots\\times \\left(x - (i - 1)\\right)}{i!} \\times \\frac{\\left((i + 1) - x\\right) \\times\\cdots\\times \\left(n - x\\right)}{\\left(n - i\\right) !} \\right) \\\\\\\\\r\n&= \\sum\\_{j=1}^3 \\mathopen{}\\left( b\\_j \\sum\\_{i=0}^n \\mathopen{}\\left( {z\\_j}^i \\times \\frac{\\left(x - 0\\right) \\times\\cdots\\times \\left(x - (i - 1)\\right)}{i!} \\times \\frac{\\left((i + 1) - x\\right) \\times\\cdots\\times \\left(n - x\\right)}{\\left(n - i\\right) !} \\right) \\right)\r\n\\end{aligned}\r\n$$\r\nãšäžæã«è¡šãããïŒãã£ãŠäºé
å®çãã\r\n$$\r\n\\begin{aligned}\r\na\\_n &= \\sum\\_{j=1}^3 \\mathopen{}\\left( b\\_j \\sum\\_{i=0}^n \\mathopen{}\\left( {z\\_j}^i \\times \\frac{\\left(n + 1\\right) \\times\\cdots\\times \\left(n - i + 2\\right)}{i!} \\times \\frac{\\left(i - n\\right) \\times\\cdots\\times \\left(-1\\right)}{\\left(n - i\\right) !} \\right) \\right) \\\\\\\\\r\n&= \\sum\\_{j=1}^3 \\mathopen{}\\left( b\\_j \\sum\\_{i=0}^n {z\\_j}^i {}\\_{n+1}\\mathrm C\\_i \\left(-1\\right)^{n-i} \\right) = \\sum\\_{j=1}^3 b\\_j \\left( {z\\_j}^{n+1} - \\left(z\\_j - 1\\right)^{n+1} \\right)\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒ$k = 1, 2, 3$ ã«å¯Ÿã㊠$z\\_{k+3} = z\\_k - 1,\\\\, d\\_k = b\\_kz\\_k,\\\\, d\\_{k+3} = -b\\_{k}z\\_{k+3}$ ãšããã°ïŒä»¥äžãæç«ããïŒ\r\n$$\\displaystyle a\\_n = \\sum\\_{i=1}^6 d\\_i{z\\_i}^n$$\r\n$z\\_1,\\ldots,z\\_6$ ã¯éãŒãã§çžç°ãªãããïŒ$d\\_1,\\ldots,d\\_6 \\ne 0$ ãåŸãïŒ\r\nããã$$\\displaystyle a\\_{n+m} = \\sum\\_{i=0}^{m-1} c\\_i a\\_{n+i}$$ãã¿ãããšãããšïŒ$g(x)=x^m-\\sum\\limits\\_{i=0}^{m-1} c\\_ix^i$ ãšããã°ïŒä»£å
¥ããããšã§\r\n$$\\displaystyle \\sum\\_{i=1}^6 d\\_ig(z\\_i)z_i^n=0$$\r\nãåŸãïŒãããšè£é¡ããïŒä»»æã® $i=1,2,\\dots,6$ ã«ãã㊠$g(z_i)=0$ ãšãªãããïŒ$g$ ã¯å°ãªããšã $6$ 次ã§ããïŒ$6$ 次ã®ãšã $g$ ã¯äžæã«æ±ºãŸãïŒãããã£ãŠïŒ$m=6$ ã§ããïŒ\r\n$\\left(x - z\\_1 \\right)\\left(x - z\\_2 \\right)\\left(x - z\\_3 \\right) = x^3 - x^2 - x - 1$ ãã\r\n$$\r\n\\begin{aligned}\r\ng(x) &= \\left(x - z\\_1 \\right)\\left(x - z\\_2 \\right)\\cdots\\left(x - z\\_6 \\right) \\\\\\\\\r\n&= \\left( x^3 - x^2 - x - 1 \\right) \\left( \\left(x + 1\\right)^3 - \\left(x + 1\\right)^2 - \\left(x + 1\\right) - 1 \\right) \\\\\\\\\r\n&= x^6 + x^5 - 3x^4 -5x^3 + 2x + 2\r\n\\end{aligned}\r\n$$\r\nãšãªãããïŒæ±ããå€ã¯ $\\mathbf{135022}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc081/editorial/2518"
},
{
"content": "Lagrangeè£éã䜿ããªãããæ¹ïŒ\r\n\r\n---\r\n**è£é¡2ïŒ** $n$ ãéè² æŽæ°ïŒ$\\alpha$ ã $1$ ã§ãªãè€çŽ æ°ãšããïŒ$n$ 次以äžã®å®ä¿æ°å€é
åŒ $P_n(x)$ ã $P_n(k)=\\alpha^k$ ($k=0,1,\\dots,n$) ãã¿ãããšãïŒä»¥äžãæãç«ã€ïŒ$$P_n(n+1)=\\alpha^{n+1}-(\\alpha-1)^{n+1}.$$\r\n\r\n**蚌æïŒ** $n$ ã«ã€ããŠã®åž°çŽæ³ã§ç€ºãïŒ$n=0$ ã®å Žåã¯æããïŒ$n\\geq 1$ ã®ãšãïŒ$$Q_{n-1}(x)=\\frac{P_n(x+1)-P_n(x)}{\\alpha-1}$$ 㯠$n-1$ 次以äžã®å€é
åŒã§ããïŒå $k=0,1,\\dots,n-1$ ã«å¯Ÿã $Q_{n-1}(\\alpha)=\\alpha^k$ ãã¿ããããïŒ$Q_{n-1}(x)=P_{n-1}(x)$ ã§ããïŒãããã£ãŠ\r\n$$\\\\begin{aligned}\r\nP_{n-1}(n)&=\\frac{P_n(n+1)-P_n(n)}{\\alpha-1},\\\\\\\\\r\nP_n(n+1)&=(\\alpha-1)(\\alpha^{n}-(\\alpha-1)^{n})+\\alpha^n\\\\\\\\\r\n&=\\alpha^{n+1}-(\\alpha-1)^{n+1}\r\n\\\\end{aligned}$$\r\nãšãªãïŒç€ºãããïŒ\r\n\r\n---\r\n\r\nåé¡ã®å€é
åŒã¯ïŒ$x^3+x^2+x+1$ ã®æ ¹ã«ã€ããŠè£é¡2ã®å€é
åŒãé©åœã«ïŒ$0$ ã§ãªãä¿æ°ã§ïŒç·åœ¢çµåããããšã§åŸãããããïŒ$a_n$ ã $n$ ãçšããŠè¡šããïŒããšã¯æ¬è§£èª¬ãšåæ§ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc081/editorial/2518/37"
}
] | ã$n\geq 3$ ãæŽæ°ãšããŸãïŒ$n$ 次以äžã®å®æ°ä¿æ°å€é
åŒ $P\_n(x)$ ã
$$P\_n(0) = P\_n(1) = 0,\quad P\_n(2) = 1$$
ããã³
$$ P\_n(k + 3) = P\_n(k + 2) + P\_n(k + 1) + P\_n(k) \qquad (k = 0, 1, \ldots , n - 3) $$
ãã¿ãããšãïŒå $n$ ã«å¯Ÿã㊠$P\_n(x)$ ãäžæã«å®ãŸããŸãïŒ\
ãããŸïŒæ°å $\left\\{ a\_n \right\\}\_{n=3,4,\ldots}$ ã $a\_n = P\_n(n + 1)$ ã§å®ããŸãïŒãã®ãšãïŒä»»æã® $n=3, 4, \ldots$ ã«å¯ŸããŠ
$$\displaystyle a\_{n+m} = \sum\_{i=0}^{m-1} c\_i a\_{n+i}$$
ãã¿ããå®æ°å $c\_0, c\_1,\ldots, c\_{m-1}$ ãäžæã«ååšãããããªæå°ã®æ£æŽæ° $m$ ã«ã€ããŠïŒä»¥äžã®å€ãæ±ããŠäžããïŒ
$$\displaystyle\sum\_{i=0}^{m-1} 10^i \left|c\_i\right|$$ |
OMC080 (for beginners) | https://onlinemathcontest.com/contests/omc080 | https://onlinemathcontest.com/contests/omc080/tasks/2917 | A | OMC080(A) | 100 | 358 | 360 | [
{
"content": "ãé ç¹ã蚪ããé çªãèããã°è¯ã, æ¡ä»¶ãæºãããã®ã¯æ¬¡ã® $\\mathbf 4$ éãã®ã¿ã§ãã: \r\n- $A \\rightarrow B \\rightarrow C$\r\n- $A \\rightarrow D \\rightarrow C$\r\n- $A \\rightarrow B \\rightarrow D \\rightarrow C$\r\n- $A \\rightarrow D \\rightarrow B \\rightarrow C$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc080/editorial/2917"
}
] | ãæ£æ¹åœ¢ $ABCD$ ã«ç·å $BD$ ãåŒãããŠããŸã.\
ãç·ã®äžã®ã¿ããã©ã£ãŠ $A$ ãã $C$ ãžè¡ãæ¹æ³ã§ãã£ãŠ, åãå Žæãäºåéããªããã®ã¯ããã€ãããŸãã. |
OMC080 (for beginners) | https://onlinemathcontest.com/contests/omc080 | https://onlinemathcontest.com/contests/omc080/tasks/200 | B | OMC080(B) | 200 | 293 | 323 | [
{
"content": "ãæ¹ã¹ãã®å®çãã $PA^2=PB\\times PC$ ã§ãããã $PC=24$ ã§ãã. ãã㧠$BC$ ã®äžç¹ã $M$, $ABC$ ã®å€å¿ã $O$ ãšããã° $OAPM$ ã¯é·æ¹åœ¢ã§ãããã, æ±ããååŸã¯\r\n$$OA=PM=\\dfrac{PB+PC}{2}=\\textbf{15}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc080/editorial/200"
}
] | ãå€æ¥åã $\Omega$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠ, $A$ ã«ããã $\Omega$ ã®æ¥ç·ãš $BC$ ã®äº€ç¹ã $P$ ãšããŸã. 以äžã®æ¡ä»¶ãæç«ãããšã, $\Omega$ ã®ååŸãæ±ããŠãã ãã.
$$\angle APB=90^\circ,\ \ PA=12,\ \ PB=6$$ |
OMC080 (for beginners) | https://onlinemathcontest.com/contests/omc080 | https://onlinemathcontest.com/contests/omc080/tasks/1900 | C | OMC080(C) | 200 | 273 | 287 | [
{
"content": "ãæ±ããæ£æŽæ° $n$ ã«ã€ããŠ, ãã®æ£ã®çŽæ°ãå°ããé ã« $a_{1}, a_{2},\\cdots, a_{m}$ ãšããã°,\r\n$$1170=a_{1}+a_{2}+\\cdots a_{m}=\\frac{n}{a_m}+\\frac{n}{a_{m-1}}+\\cdots+\\frac{n}{a_1}=3.25n$$\r\nãããã£ãŠ $n=\\textbf{360}$ ãå¿
èŠã§ãã, éã«ãã®ãšãæ¡ä»¶ãã¿ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc080/editorial/1900"
}
] | ããã¹ãŠã®æ£ã®çŽæ°ã«ã€ããŠ, ãããã®ç·åã $1170$ ã§ãã, ãããã®éæ°åã $3.25$ ã§ãããããªæ£æŽæ°ããã¹ãŠæ±ã, ãããã®ç·åã解çããŠãã ãã. |
OMC080 (for beginners) | https://onlinemathcontest.com/contests/omc080 | https://onlinemathcontest.com/contests/omc080/tasks/2095 | D | OMC080(D) | 300 | 105 | 170 | [
{
"content": "$$AB:BC:CA=\\dfrac{1}{CH_C}:\\dfrac{1}{AH_A}:\\dfrac{1}{BH_B}=13:14:15$$\r\nãã㧠$PQ=13,QR=14,RP=15$ ãªãäžè§åœ¢ $PQR$ ã«ãããŠ, $P$ ãã察蟺ã«ããããåç·ã®é·ã㯠$12$ ã§ããããšãããããã, $ABC$ ãš $PQR$ ã®çžäŒŒæ¯ã¯ $780:12=65:1$ ã§ãã, æ±ããå€ã¯\r\n$$AB+BC+CA=65(13+14+15)=\\textbf{2730}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc080/editorial/2095"
}
] | ãäžè§åœ¢ $ABC$ ã«ã€ããŠ, $A$ ãã察蟺ã«ããããåç·ã®è¶³ã $H_A$ ãªã©ãšããã°, 以äžãæç«ããŸããïŒ
$$AH_A=780,\quad BH_B=728,\quad CH_C=840$$
ãã®ãšã, $AB+BC+CA$ ãæ±ããŠãã ãã. |
OMC080 (for beginners) | https://onlinemathcontest.com/contests/omc080 | https://onlinemathcontest.com/contests/omc080/tasks/3196 | E | OMC080(E) | 300 | 130 | 233 | [
{
"content": "ãå¿
èŠååæ¡ä»¶ãšããŠä»¥äžã®ããã«è¡šçŸã§ããããšã¯å®¹æã«ç¢ºèªã§ãã. \r\n\r\n- å·Šäž $4\\times4$ ãã¹ã¯åé¡æã®æ¡ä»¶ãæºãã\r\n- äžãã $i$ è¡ç®, å·Šãã $j$ åç®ã®è²ã $c_{i,j}$ ãšãããšã $c_{i,j}=c_{i-4,j}=c_{i,j-4}$\r\n\r\nããªãã¡, $10\\times10$ ãã¹ã®å¡ãæ¹ã¯ å·Šäž $4\\times4$ ãã¹ã®å¡ãæ¹ãšäžå¯Ÿäžå¯Ÿå¿ãããã, $4\\times4$ ã®å¡ãæ¹ã®ç·æ°ãæ±ããã°ãã. äžäžè¡ãšå·Šäžåã®å¡ãæ¹ãåºå®ãããš, æ®ãã® $3\\times3$ ãã¹ã®å¡ãæ¹ã¯ä»¥äžã® $4$ éãååšãã.\r\n\r\n$$\\begin{matrix}\r\n0123 & & 0123 & & 0123 & & 0123 \\\\\\\\\r\n1230 & & 1032 & & 1032 & & 1302 \\\\\\\\\r\n2301 & & 2310 & & 2301 & & 2031 \\\\\\\\\r\n3012 & & 3201 & & 3210 & & 3210\r\n\\end{matrix}$$\r\n\r\näžäžè¡ãšå·Šäžåã®å¡ãæ¹ã¯ $4!\\times3!$ éãååšãããã, æ±ããå¡ãæ¹ã®ç·æ°ã¯ $4\\times4!\\times3!=\\bf{576}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc080/editorial/3196"
}
] | ã$10\times10$ ã®ãã¹ç®ã®åãã¹ãèµ€, é, é», ç·ã®ããããäžè²ã§å¡ãæ¹æ³ã®ãã¡, 次ã®æ¡ä»¶ãæºãããã®ã¯äœéããããŸãã.
- ä»»æã®é£ç¶ãã暪 $4$ ãã¹ã«å¡ãããè²ã¯çžç°ãªã
- ä»»æã®é£ç¶ãã瞊 $4$ ãã¹ã«å¡ãããè²ã¯çžç°ãªã |
OMC080 (for beginners) | https://onlinemathcontest.com/contests/omc080 | https://onlinemathcontest.com/contests/omc080/tasks/1606 | F | OMC080(F) | 400 | 100 | 172 | [
{
"content": "ã$N$ ã®çŽ å æ°å解ã $2^x3^y5^z7^wp_1^{a_1}p_2^{a_2}\\cdots p_n^{a_n}\\ (p_i\\geq 11)$ ãšãããš, \r\n$$d(N)=(x+1)(y+1)(z+1)(w+1)(a_1+1)(a_2+1)\\cdots(a_n+1)$$\r\n$M=(a_1+1)(a_2+1)\\cdots(a_n+1)$ ãšããã°\r\n$$d(N)=(x+1)(y+1)(z+1)(w+1)M$$\r\n$$d(2N)=(x+2)(y+1)(z+1)(w+1)M$$\r\n$$d(3N)=(x+1)(y+2)(z+1)(w+1)M$$\r\n$$d(5N)=(x+1)(y+1)(z+2)(w+1)M$$\r\n$$d(7N)=(x+1)(y+1)(z+1)(w+2)M$$\r\nãããçšããŠæ¡ä»¶ãæŽçããã°\r\n$$(y+1)(z+1)(w+1)M=120$$\r\n$$(x+1)(z+1)(w+1)M=240$$\r\n$$(x+1)(y+1)(w+1)M=144$$\r\n$$(x+1)(y+1)(z+1)M=360$$\r\nãããã蟺ã
æãåããããš\r\n$$(x+1)^3(y+1)^3(z+1)^3(w+1)^3=\\frac{2^{14}3^65^3}{M^4}$$\r\n巊蟺ã¯ç«æ¹æ°ã§ããããšãã, $M=4$ ãšäžæã«å®ãŸã, ãããäžã®ååŒã«ä»£å
¥ããããšã§\r\n$$(x,y,z,w)=(5,2,4,1)$$\r\nããã« $N$ ãæå°ã«ãªãã®ã¯ $(p_1,a_1,p_2,a_2)=(11,1,13,1)$ ã®ãšãã§ãã. \\\r\nã以äžãã, æ±ãã $N$ ã®æå°å€ã¯ $2^53^25^47^111^113^1=\\textbf{180180000}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc080/editorial/1606"
}
] | ãæ£æŽæ° $n$ ã«å¯Ÿã, $d(n)$ 㧠$n$ ã®æ£ã®çŽæ°ã®åæ°ãè¡šããã®ãšããŸã. ãã®ãšã,
$$ d(N)=d(2N)-120=d(3N)-240=d(5N)-144=d(7N)-360$$
ãæãç«ã€æå°ã®æ£æŽæ° $N$ ãæ±ããŠãã ãã. |
OMC079 | https://onlinemathcontest.com/contests/omc079 | https://onlinemathcontest.com/contests/omc079/tasks/1872 | A | OMC079(A) | 100 | 317 | 327 | [
{
"content": "ãé·éã»çéã¯ãããã $1$ åé㧠$6^\\circ$ ããã³ $0.5^\\circ$ é²ã. $11$ æã®æç¹ã§é·éãšçéã®ãªãè§ã¯ $30^\\circ$ ã§ãããã,\r\n$$6M=30-0.5M$$\r\nããªãã¡ $M=60\\/13$ ãåŸã. ãã£ãŠ, 解çãã¹ãå€ã¯ $\\textbf{73}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc079/editorial/1872"
}
] | ãäžè¬çãªã¢ããã°æèšã«ãããŠ, $11$ æãéããŠåããŠé·éãšçéã $12$ ãš $6$ ã®ç®çããçµãã çŽç·ã«å¯ŸããŠç·å¯Ÿç§°ãšãªãã®ã¯, $11$ æ $M$ åã§ã. ãã®ãšã, äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $M=\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC079 | https://onlinemathcontest.com/contests/omc079 | https://onlinemathcontest.com/contests/omc079/tasks/2959 | B | OMC079(B) | 200 | 283 | 295 | [
{
"content": "ãåçŽç· $AB$ äžã« $BE=9$ ãªãç¹ $E$ ããšããšïŒåè§åœ¢ $BECD$ ã¯å¹³è¡å蟺圢ã§ããïŒ\r\n$$AE=17,\\quad CE=6,\\quad \\angle AEC=60^\\circ$$\r\nãã£ãŠäžè§åœ¢ $ACE$ ã«å¯ŸããŠäœåŒŠå®çãçšããããšã§ $AC=\\sqrt{\\textbf{223}}$ ãåŸãããã",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc079/editorial/2959"
}
] | ãåžåè§åœ¢ $ABCD$ ã¯
$$AB=8,\quad BD=6,\quad CD=9,\quad \angle ABD=\angle BDC=60^\circ$$
ãæºãããŠããŸãïŒãã®ãšãïŒå¯Ÿè§ç· $AC$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC079 | https://onlinemathcontest.com/contests/omc079 | https://onlinemathcontest.com/contests/omc079/tasks/1276 | C | OMC079(C) | 300 | 207 | 283 | [
{
"content": "ã$2022^{999}$ ã®æ£ã®çŽæ°ã¯, $999$ 以äžã®éè² æŽæ° $a,b,c$ ãçšã㊠$2^a3^b337^c$ ãšè¡šãã, ç¹ã« $1$ ã®äœã $6$ ã§ããããšãã $a\\neq0$ ã«æ³šæãã. ãŸãå $b,c$ ã«ã€ã㊠$3^b$ ã $337^c$ ã® $1$ ã®äœã調ã¹ããš, $1,3,7,9$ ã§ãããã®ããããã $250$ åãã€ãã. ãããã£ãŠ, $a\\geq 1$ ã®ãšã, $b,c$ãã©ã³ãã ã«éžã¶ãšç¢ºç $1\\/4$ 㧠$1$ ã®äœã $6$ ã«ãªã. 以äžãã, 解çãã¹ãå€ã¯ $999\\times 1000^2\\/4=\\textbf{249750000}$ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc079/editorial/1276"
}
] | ã$2022^{999}$ ã®æ£ã®çŽæ°ã§ãã£ãŠ, ãã® $1$ ã®äœã $6$ ã§ãããã®ã¯ããã€ãããŸããïŒ |
OMC079 | https://onlinemathcontest.com/contests/omc079 | https://onlinemathcontest.com/contests/omc079/tasks/2671 | D | OMC079(D) | 400 | 125 | 186 | [
{
"content": "ãæ±ããç·åãžã® $p\\times 10^k$ ã®å¯äžãèããïŒ$p\\times 10^k$ ãå ç®ãããã®ã¯ïŒ$1$ ä»¥äž $p-1$ 以äžããä»»æã«çšããŠïŒ$p+1$ ä»¥äž $9$ 以äžããã¡ããã© $k$ åãçšãããšãã§ããããïŒ$2^{p-1}\\times{}\\_{9-p}\\mathrm{C}\\_{k}$ åå ç®ãããïŒãã£ãŠïŒ$p$ ãåºå®ããã°\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k=0}^{9-p} \\bigl(2^{p-1}\\times{}\\_{9-p}\\mathrm{C}\\_{k}\\times(p\\times10^k)\\bigr)&=p2^{p-1}\\times\\sum_{k=0}^{9-p} {} _ {9-p}\\mathrm{C} _ {k}10 ^ k\\\\\\\\\r\n&=p2 ^ {p-1}\\times 11 ^ {9-p}\\\\\\\\\r\n&=\\frac{11 ^ 9}{2}\\times p\\left(\\frac{2}{11}\\right) ^ {p}\r\n\\end{aligned}\r\n$$\r\nãããã£ãŠïŒ$S=\\displaystyle \\sum _ {p=1} ^ {9} p\\left(\\frac{2}{11}\\right) ^ {p}$ ãæ±ããã°è¯ãïŒ\r\n$$\r\n\\begin{aligned}\r\nS-\\frac{2}{11}S&=\\sum _ {p=1} ^ {9} p\\left(\\frac{2}{11}\\right) ^ {p}-\\sum _ {p=1} ^ {10} (p-1)\\left(\\frac{2}{11}\\right) ^ {p}\\\\\\\\\r\n&=\\sum _ {p=1} ^ {9} \\left(\\frac{2}{11}\\right) ^ {p}-9\\left(\\frac{2}{11} \\right)^{10}\\\\\\\\\r\n\\implies S&=\\frac{22}{81}\\left(1-\\left(\\frac{2}{11}\\right)^9\\right)-11\\left(\\frac{2}{11} \\right)^{10}\r\n\\end{aligned}\r\n$$\r\n以äžããïŒæ±ããç·å㯠$\\displaystyle\\frac{11 ^ 9}{2}S=\\frac{11}{81}\\left(11^9-2^9\\right)-2^9=\\textbf{320214537}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc079/editorial/2671"
},
{
"content": "ãä»ã®åé¡ã®writerã ã£ãã®ã§ïŒwriteræš©éã§testerããã£ãŠããã®ã§ããïŒãã®ãšãã«æãã€ãã解æ³ã玹ä»ããŸãïŒ\r\n\r\n---\r\n\r\nã䟿å®äžïŒ$0$ ãå¢å çãªæ°ãšããïŒä»¥äžã®ããã«å®çŸ©ããïŒ\r\n\r\n- éå $A,B$ ã«å¯ŸããŠïŒ$A$ ã®èŠçŽ ã§ãããïŒ$B$ ã®èŠçŽ ã§ãªããã®å
šäœã®éåã $A\\setminus B$ ãšè¡šãïŒ\r\n- æééå $C$ ã«å¯ŸããŠïŒ$C$ ã®æã€å
ã®åæ°ã $\\lvert C\\rvert$ ãšè¡šãïŒãã® $\\lvert C\\rvert$ åã®å
ã®ç·åã $S(C)$ ãšè¡šãïŒ\r\n- $K=1,2,\\ldots,9$ ã«å¯ŸããŠïŒéå $Z_{K}$ ã $1$ ã®äœã $K$ 以äžã§ããå¢å çãªæ°å
šäœã§å®ããïŒ\r\n\r\nãããŸïŒå¢å çãªæ°ã¯éå $ \\lbrace 1,2,\\ldots,9 \\rbrace $ ã®éšåéåãšäžå¯Ÿäžã«å¯Ÿå¿ããããšããïŒ$\\lvert Z_{K}\\rvert =2^K$ ã§ããïŒããã«ïŒå®çŸ©ããïŒ$9$ 以äžã®æ£ã®æŽæ° $a,b$ ã«å¯ŸããŠïŒ$a \\lt b \\iff Z_{a}\\subset Z_{b}$ ãæç«ããããšã«çæããïŒããŸæ±ããããã®ã¯ $S(Z_{9})$ ãšè¡šããïŒ\\\r\nã$K \\geq 2$ ãåºå®ããŠéå $Z_{K}\\setminus Z_{K-1}$ ã®å
$M$ ã«ã€ããŠèå¯ããŠã¿ããïŒ$M$ ã¯å¢å çãªæ°ã§ããããïŒ$M$ ã®æ«å°Ÿ $1$ æ¡ãåãé€ããæ° $\\dfrac{M-K}{10}$ ãå¢å çãªæ°ã§ããïŒãã® $1$ ã®äœã¯ $K-1$ 以äžã§ããã®ã§ïŒ$\\dfrac{M-K}{10} \\in Z_{K-1}$ ã§ããïŒ$\\lvert Z_{K}\\setminus Z_{K-1}\\rvert=\\lvert Z_{K-1}\\rvert$ ã§ããããšããïŒ$\\dfrac{M-K}{10}$ ãšããŠèããããæ°å
šäœã®éåã $Z_{K-1}$ ãšäžèŽããã®ã§ïŒ\r\n$$S(Z_{K}\\setminus Z_{K-1})=10S(Z_{K-1})+K\\lvert Z_{K-1}\\rvert=10S(Z_{K-1})+K2^{K-1}$$\r\nã§ããïŒãã®ããšããïŒ$S(Z_{K})=11S(Z_{K-1})+K2^{K-1}$ ããããïŒ$S(Z_{1})=1$ ã§ããããïŒåŸãããåŒãç¹°ãè¿ãçšããŠèšç®ããããšã§ïŒçè
ã¯ããã§OMCé»åãçšããïŒïŒ$S(Z_{9})=\\bm{320214537}$ ã§ããããšããããïŒ\r\n\r\n---\r\n\r\nãè£è¶³1ãããã§åŸããã $S(Z_{K})=11S(Z_{K-1})+K2^{K-1}$ ãšãã挞ååŒã解ã㊠$K$ ã«å¯Ÿããäžè¬é
ãåŸãããšãã§ãããïŒ$sum(Z_{9})$ ãæ±ãããããããã°ããã§ããæ¬é¡ã§ã¯ïŒãããããæšå³ã¯ã»ãšãã©ãªãïŒ\r\n\r\nãè£è¶³2ãæåºããã¹ãå€ã¯ïŒ$123456789Ã511 \\lt 10^9Ã10^3=10^{12}$ ãã $10^{12}$ æªæºã§ããã®ã§ïŒOMCé»åã§ããã°äœè£ããã£ãŠè¡šç€ºããããšãã§ããïŒãããã£ãŠOMCé»åãçšã㊠$511$ åã®æŽæ°ã足ãåãããããšã§ãæ£è§£ãåŸãããã¯ãã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc079/editorial/2671/31"
}
] | ãæ£æŽæ° $N$ ã**å¢å ç**ã§ãããšã¯ïŒ$N$ ã $10$ é²æ³ã§è¡šèšããéã«åäœã®æ°ãäžäœããç矩å調å¢å ãšãªãããšããããŸãïŒäŸãã°ïŒ$157$ ã $5$ ã¯å¢å çã§ããïŒ$804$ ã $421$ ã $334$ ã¯å¢å çã§ã¯ãããŸããïŒ\
ãå¢å çãªæ£æŽæ°ã¯æéåããååšããŸããïŒããããã¹ãŠã«ã€ããŠç·åãæ±ããŠãã ããïŒ |
OMC079 | https://onlinemathcontest.com/contests/omc079 | https://onlinemathcontest.com/contests/omc079/tasks/2672 | E | OMC079(E) | 500 | 79 | 141 | [
{
"content": "ã以äž, åååŒã¯ãã¹ãŠ $3$ ãæ³ãšãã. ãã¹ç®ã®å
äžãã $i$ åç®, å·Šãã $j$ è¡ç®ã®ãã¹ã $(i,j)$ ãšè¡šã. \\\r\nã$mn\\equiv 1$ ãã, $m\\equiv n\\equiv 1$ ãŸã㯠$m\\equiv n\\equiv 2$ ãå¿
èŠã§ãã.\\\r\nããŸã $m\\equiv n\\equiv 2$ ã®æãèãã. $m=3p+2,n=3q+2\\ $ ($p,q$ ã¯éè² æŽæ°) ãšãã. \r\n\r\n----\r\n**è£é¡.**ããã¹ $(i,j)$ ã空ããã¹ãšãªãããã®å¿
èŠååæ¡ä»¶ã¯, $i\\equiv j\\equiv 0$ ã§ãã.\\\r\n**蚌æ.**ããã¹ $(i,j)$ ã« $(i+j)\\bmod 3$ ãæžã蟌ãããšãèãã. $1\\times 3$ ã®ãããã¯ã $1$ ã€çœ®ããšã, ãããã¯ãèŠããã¹ç®ã«ã¯ $0,1,2$ ãäžåºŠ $1$ ã€ãã€æžãããŠãã. ããã§, $(3p+2)\\times (3q+2)$ ã®ãã¹ç®ã«ãã㊠$0$ ãšæžããããã¹ã®ã¿ $1$ ãã¹åå€ãããšãã空ããã¹ã¯ $0$ ã§ãã. ããªãã¡ $i+j\\equiv 0$ ã§ããå¿
èŠããã. ããã«, ãã¹å
šäœãå転ã»å転ããããšããåæ§ã®æ¡ä»¶ãæºããå¿
èŠãããããšãã, $i\\equiv j\\equiv 0$ ãå¿
èŠã§ãã. \\\r\nãéã« $i\\equiv j\\equiv 0$ ãæãç«ã€ãšã, ãã¹ $(i,j)$ ã空ãããããã¯ã®çœ®ãæ¹ãååšããããšã瀺ã. $(i,j)$ ãäžå¿ãšãã $5\\times5$ ã®ãã¹ç®ãåãé€ãããšãå¯èœã§ãã. ãããš, æ®ããã¹ã¯å
šãŠçžŠãŸãã¯æšªã $3$ ã®åæ°ã§ãããããªé·æ¹åœ¢ã«åå²ããããšãã§ãã. ãŸã, äžå¿ã空ããã¹ãšãªããã㪠$5\\times 5$ ã®ãã¹ç®ã®ãããã¯ãæ·ãè©°ãå¯èœãªããšã¯å®¹æã«ç¢ºããããã. 以äžããè£é¡ã¯ç€ºããã. \r\n \r\n----\r\nãè£é¡ããæ¡ä»¶ã¯ä»¥äžã®ããã«è¡šãã. ããªãã¡, $(m,n)=(50,14),(14,50)$ ã§ãã.\r\n$$pq=(3p+2)+(3q+2)\\iff (p-3)(q-3)=13\\iff (p,q)=(16,4),(4,16)$$\r\nã$m\\equiv n\\equiv 1$ ã®æã, åæ§ã®èå¯ã«ãã£ãŠå¿
èŠååæ¡ä»¶ã¯ $i\\equiv j\\equiv 1$ ã§ãã. $m=3p-2,n=3q-2$ ($p,q$ ã¯æ£æŽæ°) ãšããã°, æ¡ä»¶ã¯ä»¥äžã®ããã«è¡šãã. ããªãã¡, $(m,n)=(22,10),(10,22)$ ã§ãã.\r\n$$pq=(3p-2)+(3q-2)\\iff(p-3)(q-3)=5\\iff (p,q)=(8,4),(4,8)$$\r\nã以äžãã, 解çãã¹ãå€ã¯ $2\\times(14\\times50+ 10 \\times 22)=\\textbf{1840}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc079/editorial/2672"
}
] | ã$m$ è¡ $n$ åã®ãã¹ç®ãããïŒããã«ïŒ$1\times 3$ ã®ãããã¯ãäºãã«éãªããªãããã«ïŒãã€ãã¹ç®ããã¯ã¿åºããªãããã«çœ®ããŸãïŒããã§å転ãèš±ããã®ãšããŸãïŒãã®ãšãïŒ$mn$ ãã¹ã®ãã¡ã¡ããã© $1$ ãã¹ã®ã¿ã空ããã¹ãšãªããããªçœ®ãæ¹ãååšãïŒç©ºããã¹ãšããŠããåŸããã¹ã¯ã¡ããã© $m+n$ ãæã§ããïŒãã®ãããªããšãèµ·ããæ£æŽæ°ã®é åºä»ããçµ $(m,n)$ ããã¹ãŠæ±ãïŒãããã«ã€ã㊠$mn$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC079 | https://onlinemathcontest.com/contests/omc079 | https://onlinemathcontest.com/contests/omc079/tasks/1581 | F | OMC079(F) | 600 | 21 | 104 | [
{
"content": "ã挞ååŒãã $\\\\{a_n\\\\}$ ã¯(ç矩)å調å¢å ã§ãããã, $a_{M}\\leq 10001$ ãªãæ倧㮠$M$ ãæ±ããã°ãã.\\\r\nããã㧠$b_n=a_n^4$ ãšãããš, ããã¯ä»¥äžã®æŒžååŒã§è¡šçŸãããïŒ\r\n$$b_{n+1}=b_n+4+\\dfrac{6}{b_n}+\\dfrac{4}{b_n^{2}}+\\dfrac{1}{b_n^{3}}$$\r\nããã§åžžã« $b_n\\geq 10000^4$ ã§ããããšã«çæããã°,\r\n$$4\\lt b_{n+1}-b_n\\lt 4+\\dfrac{11}{10000^{4}}$$\r\nãããçšããã°,\r\n$$b_{1000150010001}\\lt 10000^{4}+\\left(4+\\dfrac{11}{10000^{4}}\\right)\\times1000150010000\\lt 10001^{4}$$\r\nããã³\r\n$$b_{1000150010002}\\gt 10000^{4}+4\\times 1000150010001\\gt 10001^{4}$$\r\nãšè©äŸ¡ã§ãããã, $M=\\textbf{1000150010001}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc079/editorial/1581"
},
{
"content": "ãäœåãã®æ¹ããã®æ¹æ³ã§è§£ããŠããããã«å³å¯æ§ãæ¬ ãã°åŸ®åã䜿ãæ¹æ³ãæå¹ã§ãïŒ\\\r\nã**以äžã®è§£èª¬ã¯å³å¯ãªãã®ã§ã¯ãããŸãã**ïŒ\r\n----\r\nãæ°å $\\\\{a_n\\\\}$ ã $f(n)=a_{n+1}$ ãã¿ããããã«éè² å®æ°ããå®æ°ãžã®é¢æ° $f$ ã«å¯Ÿå¿ãããïŒ\r\nãã®ãšãïŒ$f$ ã®å·®åã埮åãšããŠãšãããããšã§åŸ®åæ¹çšåŒ\r\n$$f^\\prime(x)=\\frac1{f(x)^3}$$\r\nããã€ïŒããã解ããšïŒ$C$ ãéè² å®æ°ã®å®æ°ãšã\r\n$$f(x)=\\sqrt[4]{4x+C}$$\r\nãåããïŒ$f(0)=10000$ ã®æ¡ä»¶ãã\r\n$$f(x)=\\sqrt[4]{4x+10000^4}$$\r\nãšãªãïŒå調æ§ããæ±ããã¹ã㯠$f(n)\\gt10001$ ãªãæå°ã®éè² æŽæ° $n$ ã§ããããšã«çæããã°ïŒ\r\n$$\\sqrt[4]{4n+10000^4}\\gt10001\\iff n\\gt\\frac14 (10001^4-10000^4)=1000150010000.25$$\r\nããïŒæ±ããã¹ã $n$ 㯠$\\mathbf{10001500100001}$ ãšãªãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc079/editorial/1581/33"
}
] | ãæ°å $\\{a_n\\}\_{n=1,2,\cdots}$ ã以äžã§å®ãããšã, $a_n\leq 10001$ ãªãæ£æŽæ° $n$ ã¯ããã€ãããŸããïŒ
$$a_1=10000,\quad a\_{n+1}=a_n+\dfrac{1}{a_n^3}\quad (n=1,2,\cdots)$$ |
OMC078 (for beginners) | https://onlinemathcontest.com/contests/omc078 | https://onlinemathcontest.com/contests/omc078/tasks/2915 | A | OMC078(A) | 100 | 339 | 339 | [
{
"content": "ãæ, ãºãã³ã¯ãããã $3$ éãã®éžã³æ¹ããããã, ãããã®çµåããšã㊠$9$ éãèãããã.\\\r\nããã®ãã¡ $3$ éãã¯åãè²ã®çµåãã§ãããã, æ±ããå Žåã®æ°ã¯ $9-3=\\textbf6$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc078/editorial/2915"
}
] | ãOMCåã¯èµ€è², éè², é»è²ã®æãšèµ€è², éè², é»è²ã®ãºãã³ãããããäžçãã€æã£ãŠããŸã.\
ããããã®æãšãºãã³ãäžã€éžãã§çãæ¹æ³ã§ãã£ãŠ, æãšãºãã³ãç°ãªãè²ã«ãªããã®ã¯äœéããããŸããïŒ |
OMC078 (for beginners) | https://onlinemathcontest.com/contests/omc078 | https://onlinemathcontest.com/contests/omc078/tasks/2920 | B | OMC078(B) | 100 | 330 | 334 | [
{
"content": "ãäžå¹³æ¹ã®å®çãã $BH=3$ ã§ããïŒãã㧠$ABH$ ãš $CAH$ ã¯çžäŒŒã§ããããïŒ$AC=\\dfrac{20}{3}$ ã§ããïŒæ±ããé¢ç©ã¯\r\n$$\\frac{1}{2}\\times AB\\times AC=\\frac{50}{3}$$\r\nã§ããããïŒè§£çãã¹ãå€ã¯ $\\textbf{53}$ ã§ããïŒãªãïŒäžè¬ã«ä»¥äžãæãç«ã€ïŒ\r\n$$\\frac1{AB^2} + \\frac1{AC^2} = \\frac1{AH^2}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc078/editorial/2920"
}
] | ã$\angle A=90^\circ$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, $A$ ãã $BC$ ãžããããåç·ã®è¶³ã $H$ ãšããŸã.
$$AB=5, \quad AH=4$$
ã®ãšã, $ABC$ ã®é¢ç©ã¯äºãã«çŽ ãªæŽæ° $a,b$ ãçšã㊠$\dfrac ab$ ãšè¡šããã®ã§, $a+b$ ã解çããŠäžãã. |
OMC078 (for beginners) | https://onlinemathcontest.com/contests/omc078 | https://onlinemathcontest.com/contests/omc078/tasks/2415 | C | OMC078(C) | 200 | 162 | 285 | [
{
"content": "ãéã« $20x \\lt y$ ãŸã㯠$22y \\lt x$ ãªãçµãæ°ããã°ãã (ãããã¯éè€ããªã)ïŒ\\\r\nã$20x\\lt y$ ãªãçµã®åæ°ã¯ïŒ$x$ ãåºå®ããããšã§\r\n$$\\sum_{x=1}^{101}(2022-20x)=101202$$\r\nåæ§ã«ããŠïŒ$22y\\lt x$ ãªãçµã®åæ°ã¯ïŒ$y$ ãåºå®ããããšã§\r\n$$\\sum_{y=1}^{91}(2022-22y)=91910$$\r\n以äžããïŒæ±ããå Žåã®æ°ã¯ $2022^2-101202-91910=\\textbf{3895372}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc078/editorial/2415"
}
] | ã$1$ ä»¥äž $2022$ 以äžã®æŽæ°ã®çµ $(x,y)$ ã§ãã£ãŠïŒ $20x \geq y$ ã〠$22y \geq x$ ãã¿ãããã®ã¯ããã€ãããŸããïŒ |
OMC078 (for beginners) | https://onlinemathcontest.com/contests/omc078 | https://onlinemathcontest.com/contests/omc078/tasks/1498 | D | OMC078(D) | 200 | 295 | 302 | [
{
"content": "ã第 $1$ åŒããå
¬æ¯ã $1$ ãŸã㯠$2$ ã§ããããšã容æã«ããã. ããã« $2^{4950}\\times 3^{100}$ 㯠$100$ ä¹æ°ã§ãªããã, å
¬æ¯ã¯ $2$ ã«éãã, ãã®ãšãåé
㯠$3$ ã§ãã, $x\\times 2^y-z=3\\times 2^{100}-3$ ã§ãã. ãã£ãŠ $x+y+z=3+100+3=\\textbf{106}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc078/editorial/1498"
}
] | ãåé
ãšå
¬æ¯ããšãã«æ£æŽæ°ã§ããçæ¯æ°å $\\{a_i\\}\_{i=1,2,\cdots,100}$ ã以äžã®çåŒ
$$a_1\times a_2\times \cdots\times a_{100}=2^{4950}\times 3^{100}$$
ãã¿ãããŸããïŒãã®ãšãïŒ
$$a_1+a_2+\cdots+a_{100}$$
ã¯æ£ã®æŽæ° $x,y,z$ ïŒãã ã $x$ 㯠$1$ æ¡ã®å¥æ°ïŒ$z$ 㯠$1$ æ¡ã®æ£æŽæ°ïŒãçšã㊠$x\times 2^y-z$ ãšäžæã«è¡šãããšãã§ããã®ã§ïŒ$x+y+z$ ãæ±ããŠãã ããïŒ |
OMC078 (for beginners) | https://onlinemathcontest.com/contests/omc078 | https://onlinemathcontest.com/contests/omc078/tasks/2743 | E | OMC078(E) | 300 | 117 | 207 | [
{
"content": "ãå
±éã®éå¿ã $G$ ãšãïŒ$AM$ ãš $DF$ ã®äº€ç¹ã $H$ ïŒ$AC=x$ ãšãããšïŒ\r\n$$AG:GM=EG:GH=2:1$$\r\nããã³Menelausã®å®çãã $AE:EM=12:(x-6)$ ããïŒ\r\n$$AH : HG : GE : EM = 3x : (12-x) : (24-2x) : (3x-18)$$\r\näžæ¹ïŒCevaã®å®çãã $BC\\parallel DF$ ãåŸãããïŒä»¥äžãã\r\n$$x:6=AH:HM=AF:FC=6:x-6$$\r\nããã解ã㊠$x=3+3\\sqrt{5}$ ãåŸãããïŒè§£çãã¹ãå€ã¯ $3+45=\\textbf{48}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc078/editorial/2743"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒ$BC$ ã®äžç¹ã $M$ ãšããŸãïŒç·å $AB$ äžã®ç¹ $D$ ã«ã€ããŠïŒç·å $AM$ ãšç·å $CD$ ã®äº€ç¹ã $E$ ãšãïŒç·å $AC$ ãšçŽç· $BE$ ã®äº€ç¹ã $F$ ãšãããšïŒäžè§åœ¢ $ABC$ ãš $DEF$ ã®éå¿ãäžèŽããŸããïŒããã« $AF=6$ ã§ãããšãïŒ$AC$ ã®é·ãã¯æ£æŽæ° $a,b$ ã«ãã£ãŠ $a+\sqrt{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC078 (for beginners) | https://onlinemathcontest.com/contests/omc078 | https://onlinemathcontest.com/contests/omc078/tasks/1870 | F | OMC078(F) | 400 | 16 | 99 | [
{
"content": "ããŸã, $P(i,j)$ ã¯ä»¥äžã®ããã«èšç®ã§ããããšã容æã«ããã. ããã§, $l$ ã¯æœéžãè¡ãããåæ°ã«å¯Ÿå¿ãã.\r\n$$P(i,j)=\\frac{1}{{}\\_{ij}\\mathrm{C}\\_i}\\sum_{l=i}^{ij}\\left(l\\times{}\\_{l-1}\\mathrm{C}\\_{i-1}\\right)\r\n=\\frac{i}{{}\\_{ij}\\mathrm{C}\\_i}\\sum_{l=i}^{ij}{}\\_{l}\\mathrm{C}\\_{i}\r\n=\\frac{i}{{}\\_{ij}\\mathrm{C}\\_i}\\times{}\\_{ij+1}\\mathrm{C}\\_{i+1}=\\dfrac{i(ij+1)}{i+1}$$\r\nã$i=n$ ãåºå®ã, ãŸããããæŽæ°ãšãªãæ¡ä»¶ãèãã. $n$ ãš $n+1$ ãäºãã«çŽ ã§ããããšãã, $\\dfrac{jn+1}{n+1}=m$ ã¯æŽæ°ã§ãã, ãã㯠$j=m+\\dfrac{m-1}{n}$ ãšè¡šãããã, $m$ ã $kn+1$ ãšæžãæããŠãã ($k$ ã¯éè² æŽæ°), ãã®ãšã\r\n$$P(i,j)=n(kn+1)$$\r\nã§ãã, ããã $210$ ãšãªããããªçµ $(n,k)$ ã¯\r\n$$(1,209),(2,52),(3,23),(10,2),(14,1),(210,0)$$\r\nãããçµ $(i,j)$ ã«æžãæããã°ä»¥äžã®ããã«ãªããã, æ±ããç·å㯠$\\textbf{949}$ ã§ãã.\r\n$$(1,419),(2,157),(3,93),(10,23),(14,16),(210,1)$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc078/editorial/1870"
},
{
"content": "**è£é¡.**ã$1,2,\\ldots,n$ ããç°ãªã $m$ åãç¡äœçºã«éžã¶ãšãïŒ $m$ åã®ãã¡ $k$ çªç®ã«å°ããå€ã®æåŸ
å€ã¯ $\\dfrac{k(n+1)}{m+1}$ ã§ããïŒ\\\r\n**蚌æ.**ãéžãã $m$ åã®æ°ãå°ããæ¹ããé ã« $x_1,x_2,\\ldots,x_m$ ãšãïŒ $i=0,1,\\ldots,m$ ã«å¯ŸãïŒ $y_i=x_{i+1}-x_i$\r\nãšããïŒãã ãïŒ $x_0=0,~ x_{m+1}=n+1$ ãšããïŒãããšïŒ $y_0,y_1,\\ldots,y_m$ ã¯åã $n+1$ ã§ããïŒ $y_0,y_1,\\ldots,y_m$ ããããã®æåŸ
å€ã¯å¯Ÿç§°æ§ããçãããã $\\dfrac{n+1}{m+1}$ ã§ããïŒæ
ã«ïŒ $x_k=y_0+y_1+\\cdots+y_{k-1}$ ã®æåŸ
å€ã¯ $\\dfrac{k(n+1)}{m+1}$ ãšãªãïŒ\r\n\r\n---\r\n\r\nãæ¬åã«ããã $P(i,j)$ ã¯**è£é¡**ã«ãã㊠$n=ij, ~ m=i, ~ k=i$ ãšãããã®ã§ããããïŒ $P(i,j)=\\dfrac{i(ij+1)}{i+1}$ ãšãªãïŒããšã¯å
¬åŒè§£çãšåæ§ã«ããŠçãåŸãïŒïŒ\\\r\nãã¡ãªã¿ã«ïŒä»¥äžã®è£é¡ãçšããããšã§èŠéããã解ããOMCã®åé¡ãšããŠãç§ãäœåããOMC067Dãæããããã®ã§ïŒèå³ããã人ã¯èããŠã¿ãŠãã ããïŒ",
"text": "kçªç®ã«å°ããªå€ã®æåŸ
å€ã®å
¬åŒã®å©çš",
"url": "https://onlinemathcontest.com/contests/omc078/editorial/1870/32"
}
] | ãæ£æŽæ° $i,j$ ã«ã€ããŠ, $j$ çš®é¡ã®çããããã $i$ åãã€å
¥ã£ãŠãã, ããããäžã€ãã€ã©ã³ãã ã«æåºããæœéžæ©ããããŸã. $j$ çš®é¡ã®äžããã©ã³ãã ã« $1$ çš®é¡ãéžãã ãšã, ãã®çã $i$ åãã¹ãŠåºãŠãããŸã§ã«, æœéžãè¡ãããåæ°ã®æåŸ
å€ã $P(i,j)$ ãšããŸã. ãã ã, äžåºŠæåºãããçã¯æ»ããªããã®ãšããŸã.\
ã$P(i,j)=210$ ãªãçµ $(i,j)$ ãã¹ãŠã«ã€ããŠ, $i+j$ ã®ç·åãæ±ããŠãã ãã. |
OMC077 | https://onlinemathcontest.com/contests/omc077 | https://onlinemathcontest.com/contests/omc077/tasks/2043 | A | OMC077(A) | 200 | 199 | 219 | [
{
"content": "ãæ£æŽæ° $m$ ã«å¯Ÿã㊠$6^m$ ã®äž $2$ æ¡ãèšç®ãããš $6,36,16,96,76,56,36,\\cdots$ ãšãªã, $m=2$ 以éã¯åšæ $5$ ã§åŸªç°ãã. å¹³æ¹æ°ã $5$ ã§å²ã£ãäœã㯠$0,1,4$ ã®ããããã§ãããã, æ±ããç·å㯠$6+56+96+76=\\textbf{234}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc077/editorial/2043"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸããŠ, $6^{(n^2)}$ ã®äž $2$ æ¡ ($100$ ã§å²ã£ãäœã) ãšããŠããåŸãæ°ã®ç·åãæ±ããŠãã ãã. |
OMC077 | https://onlinemathcontest.com/contests/omc077 | https://onlinemathcontest.com/contests/omc077/tasks/2047 | B | OMC077(B) | 300 | 84 | 117 | [
{
"content": "ã$f(x)=x^4+ax^3+bx^2$ ã«ã€ããŠ, $f^\\prime(x)=x(4x^2+3ax+2b)$ ã§ããããšãã, æ¡ä»¶ã¯ $x$ ã®äºæ¬¡æ¹çšåŒ\r\n$$4x^2+3ax+2b=0$$\r\nã $0$ ã§ãªãçžç°ãªãå®æ°è§£ $x=s,t$ ããã¡, ãã€ä»¥äžãã¿ããããšãšåå€ã§ããïŒ\r\n$$\\dfrac{f(s)}{s}\\times\\dfrac{f(t)}{t}=-1$$\r\n解ãšä¿æ°ã®é¢ä¿ãã $s+t=-\\dfrac{3}{4}a$ ããã³ $st=\\dfrac{b}{2}$ ã§, ãããçšããŠæ¡ä»¶ãæžãæããã°\r\n$$b^2(a^2-4b)=32$$\r\nããã®æ£æŽæ°è§£ã¯ $(6,1),(4,2)$ ã§ãã, ãããã $s,t$ ã®æ¡ä»¶ã«éåããªããã, æ±ããç·å㯠$\\textbf{13}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc077/editorial/2047"
}
] | ãæ£æŽæ° $a,b$ ã«å¯ŸããŠ, 以äžã§äžããããã°ã©ã
$$y=x^4+ax^3+bx^2$$
ã«æ¥µå€§å€ãŸãã¯æ¥µå°å€ããšãç¹ãåç¹ $(0,0)$ ãå«ãã¡ããã© $3$ ã€ãã, ããããé ç¹ãšããäžè§åœ¢ã¯åç¹ãçŽè§ãšããçŽè§äžè§åœ¢ã§ã. ãã®ãšã, çµ $(a,b)$ ãšããŠããåŸããã®ãã¹ãŠã«ã€ããŠ, $a+b$ ã®ç·åãæ±ããŠãã ãã. |
OMC077 | https://onlinemathcontest.com/contests/omc077 | https://onlinemathcontest.com/contests/omc077/tasks/2397 | C | OMC077(C) | 300 | 65 | 120 | [
{
"content": "ã$f(x)$ ã¯åžžã« $x=100$ ã§å®çŸ©ãããããšã«æ³šæããïŒåºã®å€æå
¬åŒãçšãããš\r\n$$\r\nf(x)= \\log_a{x}+1+\\frac{\\log_a{b}}{\\log_a{x}+1} -1 \\geq 2\\sqrt{ \\log_a{b}} -1\r\n$$\r\nãšãªãïŒæåŸã®äžçåŒã¯çžå ã»çžä¹å¹³åã®é¢ä¿ããåŸãïŒçå·ã¯\r\n$$x=a^{\\sqrt{\\log_a{b}}-1}\\gt\\frac{1}{a}$$\r\nã§æç«ããïŒ\\\r\nãããŸïŒ$x=100$ ã§çå·ãæç«ãïŒ$f(100)$ ãæŽæ°ãšãªãããã«ã¯ïŒ\r\n$$(\\log_a{100}+1)^2=\\log_a{b}$$\r\nã〠$\\log_a{100}$ ãåæŽæ°ã§ãªããã°ãªããªãïŒåŸåã®æ¡ä»¶ãã $a=10,100,10^4$ ãé©ãïŒãã®ãšããããã $b=10^9,10^8,10^9$ ãšãªãïŒä»¥äžããæ±ããå€ã¯ $2\\times 10^9+10^8+10^4+100+10= \\bf{2100010110}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc077/editorial/2397"
}
] | ã$2$ 以äžã®æŽæ° $a,b$ ã«ã€ããŠïŒ$x \gt 1\/a$ ã§å®çŸ©ãããé¢æ°
$$f(x)=\log_a{x}+\log_{ax}b$$
ã $x=100$ ã§æå°å€ããšãïŒãã®æå°å€ããŸãæŽæ°å€ã«ãªããŸããïŒ$a+b$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããã |
OMC077 | https://onlinemathcontest.com/contests/omc077 | https://onlinemathcontest.com/contests/omc077/tasks/2044 | D | OMC077(D) | 300 | 91 | 125 | [
{
"content": "ã$OP=x$ ãšããïŒç°¡åãªè§åºŠèšç®ããïŒ$QP=QS=1$ïŒ$PO=PR=PS=x$ ã§ããïŒãŸãæ¹ã¹ãã®å®çãã $OQ\\cdot OR=OP^2=x^2$ ã§ãããã $QR=x^2-1$ ã§ããïŒãããã£ãŠPtolemyã®å®çãã\r\n$$\\begin{aligned}\r\nPQ\\cdot SR+QS\\cdot RP&=QR\\cdot PS\\\\\\\\\r\n1\\cdot \\frac{3}{2}x+1\\cdot x&=(x^2-1)\\cdot x.\r\n\\end{aligned}$$\r\nããã解ã㊠$x^2=7\\/2$ ãåŸãããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{9}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc077/editorial/2044"
}
] | ãå $\Gamma$ äžã« $2$ ç¹ $P,Q$ ã, $\Gamma$ ã®å€éšã«ç¹ $O$ ããã, $OQ=PQ=1$ ã〠$OP$ 㯠$\Gamma$ ã«æ¥ããŠããŸã. ç·å $OQ$ ã® $Q$ åŽã®å»¶é·ç·ãš $\Gamma$ ã亀ãã£ãã®ã§ãã®äº€ç¹ã $R$ ãšã, $\Gamma$ äžã« $\angle OPQ=\angle SPQ$ ãªãç¹ $S$ ããšã£ããšã, $OP:RS=2:3$ ãæç«ããŸãã. ãã®ãšã, $OP$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\sqrt{\dfrac{a}{b}}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC077 | https://onlinemathcontest.com/contests/omc077 | https://onlinemathcontest.com/contests/omc077/tasks/2320 | E | OMC077(E) | 400 | 34 | 91 | [
{
"content": "ããŸãåæããããã§ã³ã¬ãŒãã®åæ°ãæ°ããïŒ $n, 1000-n$ ã®æ倧å
¬çŽæ°ã $g$ ãšãïŒçžŠã®é·ã $p=n\\/g$ ïŒæšªã®é·ã $q=(1000-n)\\/g$ ã®é·æ¹åœ¢ã**å°é·æ¹åœ¢**ãšåŒã¶ããšã«ããïŒå°é·æ¹åœ¢ãåæããå Žå $p+q-1$ åã®ãã§ã³ã¬ãŒããåæãããããšã容æã«ãããããïŒå
šäœã§ã¯ããã $g$ åãã $1000-g$ åã®ãã§ã³ã¬ãŒããåæãããïŒ\\\r\nãããã«ïŒ$p,q$ ãããããå¥æ°ã§ãããšãã«éãïŒåå°é·æ¹åœ¢ã®äžå€®ã«ãããã§ã³ã¬ãŒããã¡ããã©é¢ç© $1\\/2$ ãã€ã«åæãããã®ã§ïŒ$p,q$ ãå¥æ°ã§ããã°é¢ç© $1\\/2$ 以äžã®æç㯠$1000$ åïŒããã§ãªããã° $1000-g$ åçæãããïŒ\\\r\nã $p,q$ ãããããå¶æ°ãšãªããªãããšã«çæããã°ïŒåŸè
㯠$p+q=1000\\/g$ ãå¥æ°ã§ããããšãšåå€ã§ããããïŒãã®ãšã $g$ ãšããŠããåŸãå€ã¯ $8,40,200$ ã®ããããã§ïŒãããã $n=8,40,200$ ãšããããšã§éæã§ããïŒ\\\r\nãçµå± $m$ ãšããŠããããå€ã¯ $800, 960, 992, 1000$ ã® $4$ éãã§ïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bm{3752}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc077/editorial/2320"
}
] | ã$999$ 以äžã®æ£æŽæ° $n$ ã«å¯ŸãïŒèŸºã®é·ãã $1$ ã®æ£æ¹åœ¢ã®ãã§ã³ã¬ãŒãã瞊㫠$n$ åïŒæšªã« $1000-n$ åïŒããéãªã䞊ã¹ãŠåšé· $2000$ ã®é·æ¹åœ¢ãäœãïŒååé·ããã€ãã§ãã®é·æ¹åœ¢ã® $1$ æ¬ã®å¯Ÿè§ç·ã«æ²¿ã£ãŠãã§ã³ã¬ãŒããã¡ãåæããŸãïŒãã®ãšãïŒé¢ç©ã $1\/2$ 以äžã§ãããã§ã³ã¬ãŒãã®æçã $m$ åæ®ããŸããïŒ$m$ ãšããŠããããéè² æŽæ°å€ã®ç·åã解çããŠãã ããïŒãã ãïŒãã€ãã®å¹
ã¯èããªããã®ãšããŸãïŒ |
OMC077 | https://onlinemathcontest.com/contests/omc077 | https://onlinemathcontest.com/contests/omc077/tasks/2048 | F | OMC077(F) | 500 | 9 | 28 | [
{
"content": "ã$\\\\{h_k\\\\},\\\\{v_l\\\\}$ ãããããã $p-1,q-1$ æ¬ã®ç·åãéžæãããšãã. ãã®ãšã, ãã¹ç®ã¯ $pq$ åã®é åã«åãã, ããã $27$ ãå²ãåãå¿
èŠããããã, $(p,q)=(3,3),(3,9),(9,3)$ ã§ãã. ãã®ãšã, æ£è§£ãåŸãã«ã¯çžŠã $p$ çå, 暪ã $q$ çåããããã«ç·åãéžæããå¿
èŠããã. ããã¯äžäžã»å·Šå³ã«é£æ¥ããç·åã§å²ãŸããé åãèããã°ããã.\\\r\nãããã§, $(p,q)=(3,9)$ ãŸã㯠$(9,3)$ ã§æ£è§£ãšãªãç€é¢ã¯ $(3,3)$ ã§ãæ£è§£ã§ãããã, äžè¬æ§ã倱ãã $(3,9)$ ã§æ£è§£ãšãªãç€é¢ãæ°ãäžããã°ãã. äžãã $i$ çªç®, å·Šãã $j$ çªç®ã®é åã $A_{ij}$ ãšè¡šã, äžã®è¡ããå·Šå³ã«é ã«æ±ºããŠãã. $A_{11}$ ã«ã¯ $9 \\times 3$ éã, $A_{12}$ ã«ã¯è¡ã®è¢«ããèæ
®ã㊠$8 \\times 3$ éã, $\\cdots$, ã®æžã蟌ã¿æ¹ããã. ç¶ã㊠$A_{21}$ ã«ã¯åã®è¢«ããèæ
®ã㊠$9 \\times 2$ éã, $A_{22}$ ã«ã¯ $8 \\times 2$ éã $\\cdots$, ã®æžã蟌ã¿æ¹ããã. $A_{31},A_{32},\\cdots$ ã«ã€ããŠãåæ§ã§ãã, å
šäœã§ç·æ¬ããã° $(9!)^3(3!)^9$ éãã®æžã蟌ã¿æ¹ããã.\\\r\nããã㧠$(3,9)$ ã§ã $(9,3)$ ã§ãæ£è§£ãšãªãç€é¢ã«æ³šæãã. ããã¯åæ§ã« $(3!)^{27}$ éãååšããããšãããããã,\r\n$$N=2\\times(9!)^3(3!)^9-(3!)^{27}.$$\r\n$N$ 㯠$2$ 㧠$27$ å, $3$ 㧠$21$ åå²ãåã, $5$ ã§ã $7$ ã§ãå²ãåããªããã, æ±ããã¹ãå€ã¯ $\\bm{48}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc077/editorial/2048"
}
] | ã$27\times 27$ ã®ãã¹ç®ããã, $k=1,2,\cdots,26$ ã«å¯ŸããŠ, 第 $k$ è¡ãš $k+1$ è¡ã®å¢ç®ããªã暪æ¹åã®ç·åã $h_k$ ïŒç¬¬ $k$ åãš $k+1$ åã®å¢ç®ããªã瞊æ¹åã®ç·åã $v_k$ ãšããŸã. ãŸã, ã¡ããã© $27$ åã®ãã¹ã« $1$ ãæžãããŠãã, åãè¡ããã³åãåã« $2$ ã€ä»¥äžã® $1$ ãæžãããŠããããšã¯ç¡ããã®ãšããŸã.\
ãOMCå㯠$\\{h\_k\\}\_{1 \leq k\leq 26} ,\\{v\_k\\}\_{1 \leq k\leq 26} $ ãã**ããããäžã€ä»¥äž**ã®ç·åãéžã³, 以äžã®æ¡ä»¶ãã¿ããããã«ãããã§ãïŒ
- éžãã ç·åãã¡ã«ãã£ãŠåå²ãããåé åã«ã€ããŠ, æžãããŠãã $1$ ã®åæ°ããã¹ãŠçãã.
ããã®ãããªç·åã®éžã³æ¹ã**æ£è§£**ãšåŒã¶ãã®ãšããŸã.\
ãåãã« $1$ ã®æžãããŠãããã¹ç®ã®çµã¿åãããšããŠããåŸããã®ã¯ $27!$ éããããŸãã, ãã®ãã¡æ£è§£ã $2$ ã€ä»¥äžååšãããã®ã®åæ°ã $N$ ãšããŸã. $N$ ã $7$ 以äžã®çŽ æ°ã§å²ãåããåæ°ãæ±ããŠãã ãã. äŸãã° $N=2^3\times 5^2\times 11$ ã®å Žå, $5$ ã解çããŠãã ãã. |
OMC076 (for beginners) | https://onlinemathcontest.com/contests/omc076 | https://onlinemathcontest.com/contests/omc076/tasks/1602 | A | OMC076(A) | 100 | 351 | 352 | [
{
"content": "ã$1$ ã®äœãšããŠããåŸããã®ã¯ $0,1,5,6$ ã§ãã, $\\sqrt{999}\\approx 31.6$ ãšäœµããã°åè£ãšãªããã®ã¯ååå°ãªããã, ãããã¯è©Šãã°ãã. å
·äœçã«ã¯, $\\textbf{625}$ ã®ã¿ã§ããããšã容æã«ããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc076/editorial/1602"
}
] | ã$3$ æ¡ã®å¹³æ¹æ° $n$ ã§ãã£ãŠ, ãã®äž $2$ æ¡ã $\sqrt{n}$ ã«äžèŽãããã㪠$n$ ãæ±ããŠãã ãã. |
OMC076 (for beginners) | https://onlinemathcontest.com/contests/omc076 | https://onlinemathcontest.com/contests/omc076/tasks/2749 | B | OMC076(B) | 200 | 284 | 324 | [
{
"content": "ã$C$ ãæ£çãã $3$ 人ããããã $A,B$ ãæ£çã§ããªãã£ãå Žåãèããã°, æ®ãå
šå¡ã $A$ ãæ£çããŠããããšãã, $100$ ç¹ã $2$ å, $300$ ç¹ã $8$ åãšãªã. ãããã£ãŠ, CMOå㯠$1$ äœãã $8$ äœã®ãã¹ãŠããšãåŸã.\\\r\nãäžæ¹ã§, å
šå¡ã®ç²åŸããç¹æ°ãåèšã§ $2600$ ç¹ã§ããããšãã, $300$ ç¹ä»¥äžç²åŸãã人ã¯é«ã
$8$ åã§ãã.\\\r\nã以äžãã, 解çãã¹ãå€ã¯ $1+2+\\cdots+8=\\textbf{36}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc076/editorial/2749"
}
] | ãCMOåã¯OMCã®ããã³ã³ãã¹ãã«åå ããŸãã. ãã®ã³ã³ãã¹ã㯠$A,B,C$ ã® $3$ ã€ã®åé¡ã§æ§æãã, é
ç¹ã¯ãããã $100,200,300$ ç¹ã§ãã. ãŸãåå è
㯠$10$ åã§, $A,B,C$ ã®æ£çè
ã¯ãããã $7,5,3$ åã§ãã. CMOåã $A$ ãš $B$ ã® $2$ åã®ã¿æ£çãããšã, CMOåã®ãšãåŸãé äœãšããŠããåŸããã®ã®ç·åãæ±ããŠãã ãã. \
ããã ã, é äœã¯ $1$ ä»¥äž $10$ 以äžã®æŽæ°å€ãšããŠè¡šçŸãã, åçã¯ãªãã£ããã®ãšããŸã. ãŸã, åŸç¹ã®ç·åã倧ããæ¹ãäžäœãšãªãïŒåç¹ã®å Žåã«ã¯æåŸã®æ£çã®æ©ãæ¹ãäžäœãšãªããŸã. ãŸã, 誀çã«ããããã«ãã£ã¯ãªããã®ãšããŸã. |
OMC076 (for beginners) | https://onlinemathcontest.com/contests/omc076 | https://onlinemathcontest.com/contests/omc076/tasks/2932 | C | OMC076(C) | 200 | 289 | 308 | [
{
"content": "ã$n$ å $31$ ç§åŸã«æ®ã£ãŠããæ ãŸããã
ãã®åæ° $a_n$ ã«ã€ããŠïŒ$a_0=3$ ããã³ $n=1,2,\\ldots$ 㧠$a_n=2a_{n-1}-n$\r\nãæç«ãïŒããã解ããš $a_n=2^n+n+2$ ã§ããïŒãã£ãŠ $a_n=2061$ ã®ãšã $n=11$ ã§ããïŒãããŸã§ã«OMCåãé£ã¹ãæ ãŸããã
ã㯠$1+2+\\cdots+11=\\textbf{66}$ åã§ããïŒ \\\r\nããŸãïŒ$n$ å $1$ ç§åŸã«æ®ã£ãŠããæ ãŸããã
ãã®åæ° $b_n$ ã«ã€ããŠïŒ$b_n=a_n+n=2^n+2n+2$ ã§ãããïŒ$b_n=2061$ ãæºãã $n$ ã¯ååšããªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc076/editorial/2932"
}
] | ãæ ãŸããã
ãã $3$ åããïŒä»ãã $1$ åãçµéããããšã«æ®ã£ãŠãããã®ã¯ãã¹ãŠ $2$ ã€ã«åè£ããŸãïŒããªãã¡ïŒä»ãã $1$ ååŸã«ã¯ $6$ åã«ãªããŸãïŒOMCåã¯ãã®æ ãŸããã
ããïŒä»¥äžã®æ¡ä»¶ãã¿ããããã«é£ã¹ãŠãããŸãïŒ
- $n=1,2,\ldots$ ã«ã€ããŠïŒä»ãã $n$ å $30$ ç§åŸã«ã¡ããã© $n$ åã®æ ãŸããã
ããé£ã¹ãïŒ
ããæç¹ã§æ®ã£ãŠããæ ãŸããã
ãã $2061$ åãã£ããšãïŒãããŸã§ã«OMCåãé£ã¹ãæ ãŸããã
ãã¯ããã€ã§ããïŒ\
ããã ãïŒOMCåãæ ãŸããã
ããé£ã¹ãã®ã«èŠããæéã¯èæ
®ããªããã®ãšããŸãïŒ |
OMC076 (for beginners) | https://onlinemathcontest.com/contests/omc076 | https://onlinemathcontest.com/contests/omc076/tasks/1794 | D | OMC076(D) | 300 | 117 | 169 | [
{
"content": "äžè§åœ¢ $ABC$ ã®å
æ¥åã®ååŸã $r$ ãšãããšã, 以äžã®æç«ã容æã«ããã.\r\n$$\\begin{aligned}r=\\frac{AB+AC-BC}{2}\r\n\\end{aligned}$$\r\nããã§\r\n$$DE=DF=AB+AC-BC$$\r\nã§ãããã, $BFGC$ ã®é¢ç©ã«ã€ããŠ\r\n$$\\begin{aligned}\r\n\\frac{1}{2}(BC+GF)DF=(AB+AC)r\r\n\\end{aligned}$$\r\nãããš $ABC$ ãšã®é¢ç©ã®å·®ãèšç®ããã°,\r\n$$\\begin{aligned}\r\n(AB+AC)r-\\frac{1}{2}(AB+BC+AC)r = \\frac{AB+AC-BC}{2}r = r^2\r\n\\end{aligned}$$\r\nãã£ãŠ, $r^2=\\textbf{72}$ ã§ãã. ãªã, $AB=20 \\sqrt{2}, AC=21 \\sqrt{2}$ ãªã©ãåé¡ã®æ¡ä»¶ãå®éã«ã¿ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc076/editorial/1794"
}
] | ãè§ $A$ ãçŽè§ã§ãããããªé¢ç© $420$ ã®çŽè§äžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC$ äžã« $D, E$ ã
$$AC=CD,\quad AB=BE$$
ãšãªãããã«ãšããŸã. ãŸã, 蟺 $BC$ ã«é¢ã㊠$A$ ãšå察åŽã«åè§åœ¢ $DFGE$ ãæ£æ¹åœ¢ã«ãªããã㪠$F, G$ ããšã£ããšãã, åè§åœ¢ $BFGC$ ã®é¢ç©ã $492$ ãšãªããŸãã. ãã®ãšã, äžè§åœ¢ $ABC$ ã®å
æ¥åã®ååŸã® $2$ ä¹ãæ±ããŠãã ãã. |
OMC076 (for beginners) | https://onlinemathcontest.com/contests/omc076 | https://onlinemathcontest.com/contests/omc076/tasks/1746 | E | OMC076(E) | 300 | 116 | 219 | [
{
"content": "ã声ãè£è¿ããªãæŽæ°, ããªãã¡ã$3$ ã®åæ°ã§ãªã, ã〠$3$ ãä»ããªãããã®ãæ°ãäžããã°ãã. ããã«, $3$ ã®åæ°ã§ãªãããšã¯, åäœã®æ°ã®åã $3$ ã®åæ°ãšãªããªãããšã§ãã, $3$ ãé€ã $0$ ãã $9$ ã®æ°åã, 以äžã®ããã«åé¡ãã.\r\n$$A:\\\\{0,6,9\\\\},\\quad B:\\\\{1,4,7\\\\},\\quad C:\\\\{2,5,8\\\\}$$\r\n\r\n(i) $999$ 以äžã®å ŽåïŒåæ¡ã®çµã¿åãããšããŠããåŸããã®ã¯ä»¥äžã§ãã, ${}_3\\mathrm{C}_1Ã3^3Ã6=486$ åãã.\r\n$$(A,A,B),(A,A,C),(A,B,B),(A,C,C),(B,B,C),(B,C,C)$$\r\n\r\n(ii) $1000$ ä»¥äž $1999$ 以äžã®å ŽåïŒäž $3$ æ¡ã®çµã¿åãããšããŠããåŸããã®ã¯ä»¥äžã§ãã.\r\n$$(A,A,A),(A,A,B),(A,B,C),(A,C,C),(B,B,B),(B,B,C),(C,C,C)$$\r\nãã®ç·æ°ã¯ $3^3\\times3+{}_3\\mathrm{C}_1Ã3^3Ã3+3!Ã3^3\\times 1=486$ åãšèšç®ã§ãã.\r\n\r\nã$2000$ ä»¥äž $2021$ 以äžã§ã¯ $14$ åã§ãããã, æ±ããå Žåã®æ°ã¯ $2021-(486+486+14)=\\textbf{1035}$ ã§ãã. \\\r\nããªãïŒ(i) (ii) ããããã®æ°ãäžãã«ã€ããŠã¯, 空ããŠãã $3$ æ¡ã®å
$2$ æ¡ã $3$ 以å€ã®æ°åã§èªç±ã«æ±ºã, æ®ã $1$ æ¡ã¯åã $3$ ã®åæ°ã«ãªããªãæ§ã« $6$ åããéžã¶ãšèããŠ, $9\\times9\\times6=486$ ãšèšç®ããããšã§ãæ±ãããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc076/editorial/1746"
},
{
"content": "ãåé²æ³è¡šèšã§æ¡ã®æ°åã« $3$ ãæã€æ£æŽæ°ãïŒæé ã§äžŠã¹ãæ°åã $\\left\\\\{a\\_n\\right\\\\}\\_{n=0,1,...}$ ãšããïŒãã®ãšã以äžã®è£é¡ã瀺ããïŒ\r\n\r\n---\r\n\r\n**ãªã¢ããŒã®è£é¡**\\*ïŒä»»æã® $n$ ã«å¯Ÿã㊠$a\\_n \\equiv n \\pmod3$ ãæç«ããïŒ\r\n\r\n**蚌æ**ïŒ$3$ ãæ³ãšããïŒä»»æã® $n$ ã«å¯ŸããŠïŒ$a\\_{n+1} - a\\_n$ 㯠$1, 4, 7, 10$ ã®ã©ããã§ããïŒãããã®å Žåã $1$ ãšååïŒãŸã $a\\_0 = 3 \\equiv 0$ ã§ããããïŒåž°çŽçã«äž»åŒµãåŸãïŒ\r\n\r\n---\r\n\r\nã$\\left\\\\{a\\_n\\right\\\\}$ ã«çŸããªãæ£æŽæ°ãæé ã§äžŠã¹ãæ°å $\\left\\\\{b\\_n\\right\\\\}\\_{n=0,1,...}$ ã«ã€ããŠïŒåé²æ³è¡šèšã§ã® $b_n$ ã®åæ¡ã®æ°åã\r\n$$ k \\to \\begin{cases} k & (k = 0, 1, 2) \\\\\\\\ k - 1 & (k = 4,\\ldots, 9) \\end{cases} $$\r\nãšçœ®ãæããŠä¹é²æ³ã§è§£éãããã®ã¯ïŒçªå· $n$ ã«äžèŽïŒ$2021$ 㯠$\\left\\\\{a\\_n\\right\\\\}$ ã«çŸããïŒãŸã $2021\\_{(10)} - 2021\\_{(9)} = 544\\_{(10)}$ ããïŒ$1,\\ldots,2021$ ã®ãã¡ $\\left\\\\{a\\_n\\right\\\\}$ ã«çŸãããã®ã¯ $544$ åïŒ \r\nãããã§ãªã¢ããŒã®è£é¡ããïŒ$\\left\\\\{a\\_n\\right\\\\}$ ã«çŸãã $544$ åã®ãã¡ $3$ ã®åæ°**ã§ãªã**ã®ã¯ $362$ åïŒ$1,\\ldots, 2021$ ã®äžã« $3$ ã®åæ°ã¯ $673$ åããããïŒæ±ããåæ°ã¯ $362 + 673 = \\mathbf{1035}$ïŒ\r\n\r\nããªãïŒ$2021$ ãäžè¬ã« $N \\ge 1$ ãšãããšïŒ $\\left\\\\{b\\_n\\right\\\\}$ ã«çŸãã $N$ 以äžã®æ倧ã®æŽæ°ã $b\\_m$ïŒäžãšåæ§ã®è°è«ã§ç°¡åã« $m$ ãæ±ãŸãïŒãšãããšãïŒæ±ããåæ°ã¯\r\n$$ \\left\\lfloor\\frac{2 \\left(N - m - 1\\right)}3\\right\\rfloor + \\left\\lfloor\\frac N3\\right\\rfloor\\mathclose{}. $$\r\n\r\n---\r\n*ãããã ãã®åŒç§°ã§ããïŒ",
"text": "ãªã¢ããŒã®è£é¡",
"url": "https://onlinemathcontest.com/contests/omc076/editorial/1746/30"
}
] | ãOMCåã¯æ°ãæ°ãããšã, ããã $3$ ã®åæ°ã§ãããšã, ãŸãã¯åé²æ³è¡šèšã§ $3$ ãçŸãããšãã«å£°ãè£è¿ã£ãŠããŸããŸã. OMCåã $1$ ãã $2021$ ãŸã§æŽæ°ãé ã«æ°ãããšã, 声ãè£è¿ã£ãŠããŸãæŽæ°ã¯ããã€ãããŸããïŒ |
OMC076 (for beginners) | https://onlinemathcontest.com/contests/omc076 | https://onlinemathcontest.com/contests/omc076/tasks/2669 | F | OMC076(F) | 400 | 105 | 159 | [
{
"content": "ãä»»æã® $N \\geq 2$ ã«å¯ŸãïŒ\r\n$$\\sum\\limits_{n = 2^{N - 1} + 1}^{2^{N}}a_n =\r\n \\sum\\limits_{n = 2^{N - 2}+1}^{2^{N - 1}}(a_{2n - 1} + a_{2n}) =\r\n \\sum\\limits_{n = 2^{N - 2} + 1}^{2^{N - 1}}(n +a_n) $$\r\nã§ããããšããïŒåž°çŽçã« $N\\geq 2$ ã«å¯Ÿã\r\n$$\\sum\\limits_{n = 2^{N - 1} + 1}^{2^{N}}a_n = a_1+\\sum\\limits_{n = 2}^{2^{N - 1}} n = 2^{2N - 3} + 2^{N - 2}$$\r\nã§ããããšãããã (ãã㯠$N=1$ ã§ãæ£ãã)ïŒãã£ãŠïŒ\r\n $$\\sum_{n=1}^{512}a_n = a_1 + \\sum\\limits_{N = 1}^{9}(2^{2N - 3} + 2^{N - 2}) = \\frac{1}{3}(2^{8} + 1)(2^{9} + 1)=43947$$ \r\nã§ããïŒãããã $a_{501}+a_{502}+\\ldots+a_{512}=1999$ ãåŒãã°ïŒ$S=\\textbf{41948}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc076/editorial/2669"
}
] | ãæ°å $\\{a_n\\}_{n=1,2,\ldots}$ ã以äžã§å®ããŸãïŒ
$$a_n =
\begin{cases}
\dfrac{n+1}{2} & (n ãå¥æ°ã®ãšã) \\\\
a\_{(n\/2)} & (n ãå¶æ°ã®ãšã)
\end{cases}
$$
ãã®ãšãïŒç·å $S = \displaystyle\sum _{n=1}^{500} a _{n}$ ãæ±ããŠäžããïŒ |
OMC075 (for beginners) | https://onlinemathcontest.com/contests/omc075 | https://onlinemathcontest.com/contests/omc075/tasks/3465 | A | OMC075(A) | 100 | 257 | 260 | [
{
"content": "ã$m=n$ ãæºããçµ $(m,n)$ 㯠$9$ éãã§ããïŒãŸãïŒ$m\\gt n$ ãæºããçµ $(m,n)$ ãš $m\\lt n$ ãæºããçµ $(m,n)$ ã¯åæ°ã§ããïŒãããã $\\left(9^2-9\\right)\\div2=36$ éãã§ããïŒåŸã£ãŠïŒè§£çãã¹ãå€ã¯ $9+36=\\textbf{45}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc075/editorial/3465"
}
] | ã$1$ ä»¥äž $9$ 以äžã®æŽæ°ã®çµ $(m,n)$ ã§ãã£ãŠã $m\ge n$ ãæºãããã®ã¯äœéããããŸããïŒ |
OMC075 (for beginners) | https://onlinemathcontest.com/contests/omc075 | https://onlinemathcontest.com/contests/omc075/tasks/2900 | B | OMC075(B) | 200 | 238 | 253 | [
{
"content": "ã$m-n \\lt m+n\\le 20$ ã〠$m-n$ ãš $m+n$ ã®å¶å¥ãäžèŽããããšããïŒ$(m-n,m+n)$ ã®çµãšããŠã¯\r\n$$(m-n,m+n)=(0,4),(0,16),(4,16),(1,9)$$\r\nãããåŸãïŒããããã«ã€ããŠ\r\n$$(m,n)=(2,2),(8,8),(10,6),(5,4)$$\r\nã§ããããïŒè§£çãã¹ãå€ã¯ $\\textbf{148}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc075/editorial/2900"
}
] | ã以äžã®æ¡ä»¶ãã¿ãã $1$ ä»¥äž $10$ 以äžã®æŽæ°ã®çµ $(m,n)$ ãã¹ãŠã«ã€ããŠïŒ$mn$ ã®ç·åãæ±ããŠãã ããïŒ
- $m+n$ ãš $m-n$ ããšãã«å¹³æ¹æ°ã§ããïŒ
ãããã§ïŒå¹³æ¹æ°ãšã¯ïŒããæŽæ°ã®äºä¹ã®åœ¢ã§è¡šãããéè² æŽæ°ã®ããšã§ïŒç¹ã« $0$ ãå«ã¿ãŸãïŒ |