Datasets:
name
stringlengths 15
44
| language
stringclasses 1
value | prompt
stringlengths 311
1.97k
| doctests
stringclasses 1
value | original
stringlengths 108
137
| prompt_terminology
stringclasses 1
value | tests
stringlengths 300
2.15k
| stop_tokens
sequencelengths 1
1
|
---|---|---|---|---|---|---|---|
HumanEval_0_has_close_elements | adb | pragma Ada_2022;
package Placeholder is
type Float_Array is array (Positive range <>) of Float;
function Has_Close_Elements (Numbers : Float_Array; Threshold : Float) return Boolean;
-- Check if in given Vector of numbers, are any two numbers closer to each other than
-- given threshold.
-- >>> Has_Close_Elements ([1.0, 2.0, 3.0], 0.5)
-- False
-- >>> Has_Close_Elements ([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
-- True
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Has_Close_Elements (Numbers : Float_Array; Threshold : Float) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_0_has_close_elements.py | reworded |
end Has_Close_Elements;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Numbers : Float_Array; Threshold : Float) return Boolean renames Placeholder.Has_Close_Elements;
begin
pragma Assert (Candidate ([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) = True);
pragma Assert (Candidate ([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) = False);
pragma Assert (Candidate ([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) = True);
pragma Assert (Candidate ([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) = False);
pragma Assert (Candidate ([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) = True);
pragma Assert (Candidate ([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) = True);
pragma Assert (Candidate ([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) = False);
end Main; | [
"\n end "
] |
HumanEval_1_separate_paren_groups | adb | pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Placeholder is
type Unbounded_String_Array is array (Positive range <>) of Unbounded_String;
function Separate_Paren_Groups (Paren_String : String) return Unbounded_String_Array;
-- Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
-- separate those group into separate strings and return the Vector of those.
-- Separate groups are balanced (each open brace is properly closed) and not nested within each other
-- Ignore any spaces in the input string.
-- >>> Separate_Paren_Groups ("( ) (( )) (( )( ))")
-- [To_Unbounded_String ("()"), To_Unbounded_String ("(())"), To_Unbounded_String ("(()())")]
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package body Placeholder is
function Separate_Paren_Groups (Paren_String : String) return Unbounded_String_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_1_separate_paren_groups.py | reworded |
end Separate_Paren_Groups;
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Paren_String : String) return Unbounded_String_Array renames Placeholder.Separate_Paren_Groups;
begin
pragma Assert (Candidate ("(()()) ((())) () ((())()())") = [To_Unbounded_String ("(()())"), To_Unbounded_String ("((()))"), To_Unbounded_String ("()"), To_Unbounded_String ("((())()())")]);
pragma Assert (Candidate ("() (()) ((())) (((())))") = [To_Unbounded_String ("()"), To_Unbounded_String ("(())"), To_Unbounded_String ("((()))"), To_Unbounded_String ("(((())))")]);
pragma Assert (Candidate ("(()(())((())))") = [To_Unbounded_String ("(()(())((())))")]);
pragma Assert (Candidate ("( ) (( )) (( )( ))") = [To_Unbounded_String ("()"), To_Unbounded_String ("(())"), To_Unbounded_String ("(()())")]);
end Main; | [
"\n end "
] |
HumanEval_2_truncate_number | adb | pragma Ada_2022;
package Placeholder is
function Truncate_Number (Number : Float) return Float;
-- Given a positive floating point number, it can be decomposed into
-- and integer part (largest integer smaller than given number) and decimals
-- (leftover part always smaller than 1).
-- Return the decimal part of the number.
-- >>> Truncate_Number (3.5)
-- 0.5
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Truncate_Number (Number : Float) return Float | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_2_truncate_number.py | reworded |
end Truncate_Number;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Number : Float) return Float renames Placeholder.Truncate_Number;
begin
pragma Assert (Candidate (3.5) = 0.5);
pragma Assert (Candidate (1.25) = 0.25);
pragma Assert (Candidate (123.0) = 0.0);
end Main; | [
"\n end "
] |
HumanEval_3_below_zero | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Below_Zero (Operations : Integer_Array) return Boolean;
-- You're given a Vector of deposit and withdrawal operations on a bank account that starts with
-- zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
-- at that point function should return True. Otherwise it should return False.
-- >>> Below_Zero ([1, 2, 3])
-- False
-- >>> Below_Zero ([1, 2, -4, 5])
-- True
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Below_Zero (Operations : Integer_Array) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_3_below_zero.py | reworded |
end Below_Zero;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Operations : Integer_Array) return Boolean renames Placeholder.Below_Zero;
begin
pragma Assert (Candidate ([]) = False);
pragma Assert (Candidate ([1, 2, -3, 1, 2, -3]) = False);
pragma Assert (Candidate ([1, 2, -4, 5, 6]) = True);
pragma Assert (Candidate ([1, -1, 2, -2, 5, -5, 4, -4]) = False);
pragma Assert (Candidate ([1, -1, 2, -2, 5, -5, 4, -5]) = True);
pragma Assert (Candidate ([1, -2, 2, -2, 5, -5, 4, -4]) = True);
end Main; | [
"\n end "
] |
HumanEval_4_mean_absolute_deviation | adb | pragma Ada_2022;
package Placeholder is
type Float_Array is array (Positive range <>) of Float;
function Mean_Absolute_Deviation (Numbers : Float_Array) return Float;
-- For a given Vector of input numbers, calculate Mean Absolute Deviation
-- around the mean of this dataset.
-- Mean Absolute Deviation is the average absolute difference between each
-- element and a centerpoint (mean in this case):
-- MAD = average | x - x_mean |
-- >>> Mean_Absolute_Deviation ([1.0, 2.0, 3.0, 4.0])
-- 1.0
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Mean_Absolute_Deviation (Numbers : Float_Array) return Float | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_4_mean_absolute_deviation.py | reworded |
end Mean_Absolute_Deviation;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Numbers : Float_Array) return Float renames Placeholder.Mean_Absolute_Deviation;
begin
pragma Assert (Candidate ([1.0, 2.0]) = 0.5);
pragma Assert (Candidate ([1.0, 2.0, 3.0, 4.0]) = 1.0);
pragma Assert (Candidate ([1.0, 2.0, 3.0, 4.0, 5.0]) = 1.2);
end Main; | [
"\n end "
] |
HumanEval_5_intersperse | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Intersperse (Numbers : Integer_Array; Delimeter : Integer) return Integer_Array;
-- Insert a number 'delimeter' between every two consecutive elements of input Vector `numbers'
-- >>> Intersperse ([], 4)
-- []
-- >>> Intersperse ([1, 2, 3], 4)
-- [1, 4, 2, 4, 3]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Intersperse (Numbers : Integer_Array; Delimeter : Integer) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_5_intersperse.py | reworded |
end Intersperse;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Numbers : Integer_Array; Delimeter : Integer) return Integer_Array renames Placeholder.Intersperse;
begin
pragma Assert (Candidate ([], 7) = []);
pragma Assert (Candidate ([5, 6, 3, 2], 8) = [5, 8, 6, 8, 3, 8, 2]);
pragma Assert (Candidate ([2, 2, 2], 2) = [2, 2, 2, 2, 2]);
end Main; | [
"\n end "
] |
HumanEval_6_parse_nested_parens | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Parse_Nested_Parens (Paren_String : String) return Integer_Array;
-- Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
-- For each of the group, output the deepest level of nesting of parentheses.
-- E.g. (()()) has maximum two levels of nesting while ((())) has three.
-- >>> Parse_Nested_Parens ("(()()) ((())) () ((())()())")
-- [2, 3, 1, 3]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Parse_Nested_Parens (Paren_String : String) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_6_parse_nested_parens.py | reworded |
end Parse_Nested_Parens;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Paren_String : String) return Integer_Array renames Placeholder.Parse_Nested_Parens;
begin
pragma Assert (Candidate ("(()()) ((())) () ((())()())") = [2, 3, 1, 3]);
pragma Assert (Candidate ("() (()) ((())) (((())))") = [1, 2, 3, 4]);
pragma Assert (Candidate ("(()(())((())))") = [4]);
end Main; | [
"\n end "
] |
HumanEval_7_filter_by_substring | adb | pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Placeholder is
type Unbounded_String_Array is array (Positive range <>) of Unbounded_String;
function Filter_By_Substring (Strings : Unbounded_String_Array; Substring : String) return Unbounded_String_Array;
-- Filter an input Vector of strings only for ones that contain given substring
-- >>> Filter_By_Substring ([], "a")
-- []
-- >>> Filter_By_Substring ([To_Unbounded_String ("abc"), To_Unbounded_String ("bacd"), To_Unbounded_String ("cde"), To_Unbounded_String ("array")], "a")
-- [To_Unbounded_String ("abc"), To_Unbounded_String ("bacd"), To_Unbounded_String ("array")]
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package body Placeholder is
function Filter_By_Substring (Strings : Unbounded_String_Array; Substring : String) return Unbounded_String_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_7_filter_by_substring.py | reworded |
end Filter_By_Substring;
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Strings : Unbounded_String_Array; Substring : String) return Unbounded_String_Array renames Placeholder.Filter_By_Substring;
begin
pragma Assert (Candidate ([], "john") = []);
pragma Assert (Candidate ([To_Unbounded_String ("xxx"), To_Unbounded_String ("asd"), To_Unbounded_String ("xxy"), To_Unbounded_String ("john doe"), To_Unbounded_String ("xxxAAA"), To_Unbounded_String ("xxx")], "xxx") = [To_Unbounded_String ("xxx"), To_Unbounded_String ("xxxAAA"), To_Unbounded_String ("xxx")]);
pragma Assert (Candidate ([To_Unbounded_String ("xxx"), To_Unbounded_String ("asd"), To_Unbounded_String ("aaaxxy"), To_Unbounded_String ("john doe"), To_Unbounded_String ("xxxAAA"), To_Unbounded_String ("xxx")], "xx") = [To_Unbounded_String ("xxx"), To_Unbounded_String ("aaaxxy"), To_Unbounded_String ("xxxAAA"), To_Unbounded_String ("xxx")]);
pragma Assert (Candidate ([To_Unbounded_String ("grunt"), To_Unbounded_String ("trumpet"), To_Unbounded_String ("prune"), To_Unbounded_String ("gruesome")], "run") = [To_Unbounded_String ("grunt"), To_Unbounded_String ("prune")]);
end Main; | [
"\n end "
] |
HumanEval_8_sum_product | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
type Integer_Integer_Tuple is record
Integer_1 : Integer;
Integer_2 : Integer;
end record;
function Sum_Product (Numbers : Integer_Array) return Integer_Integer_Tuple;
-- For a given Vector of integers, return a record consisting of a sum and a product of all the integers in a Vector.
-- Empty sum should be equal to 0 and empty product should be equal to 1.
-- >>> Sum_Product ([])
-- (0, 1)
-- >>> Sum_Product ([1, 2, 3, 4])
-- (10, 24)
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Sum_Product (Numbers : Integer_Array) return Integer_Integer_Tuple | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_8_sum_product.py | reworded |
end Sum_Product;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Numbers : Integer_Array) return Integer_Integer_Tuple renames Placeholder.Sum_Product;
begin
pragma Assert (Candidate ([]) = (0, 1));
pragma Assert (Candidate ([1, 1, 1]) = (3, 1));
pragma Assert (Candidate ([100, 0]) = (100, 0));
pragma Assert (Candidate ([3, 5, 7]) = (15, 105));
pragma Assert (Candidate ([10]) = (10, 10));
end Main; | [
"\n end "
] |
HumanEval_9_rolling_max | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Rolling_Max (Numbers : Integer_Array) return Integer_Array;
-- From a given Vector of integers, generate a Vector of rolling maximum element found until given moment
-- in the sequence.
-- >>> Rolling_Max ([1, 2, 3, 2, 3, 4, 2])
-- [1, 2, 3, 3, 3, 4, 4]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Rolling_Max (Numbers : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_9_rolling_max.py | reworded |
end Rolling_Max;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Numbers : Integer_Array) return Integer_Array renames Placeholder.Rolling_Max;
begin
pragma Assert (Candidate ([]) = []);
pragma Assert (Candidate ([1, 2, 3, 4]) = [1, 2, 3, 4]);
pragma Assert (Candidate ([4, 3, 2, 1]) = [4, 4, 4, 4]);
pragma Assert (Candidate ([3, 2, 3, 100, 3]) = [3, 3, 3, 100, 100]);
end Main; | [
"\n end "
] |
HumanEval_10_make_palindrome | adb | pragma Ada_2022;
package Placeholder is
function Make_Palindrome (My_String : String) return String;
-- Find the shortest palindrome that begins with a supplied string.
-- Algorithm idea is simple:
-- - Find the longest postfix of supplied string that is a palindrome.
-- - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
-- >>> Make_Palindrome ("")
-- ""
-- >>> Make_Palindrome ("cat")
-- "catac"
-- >>> Make_Palindrome ("cata")
-- "catac"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Make_Palindrome (My_String : String) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_10_make_palindrome.py | reworded |
end Make_Palindrome;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (My_String : String) return String renames Placeholder.Make_Palindrome;
begin
pragma Assert (Candidate ("") = "");
pragma Assert (Candidate ("x") = "x");
pragma Assert (Candidate ("xyz") = "xyzyx");
pragma Assert (Candidate ("xyx") = "xyx");
pragma Assert (Candidate ("jerry") = "jerryrrej");
end Main; | [
"\n end "
] |
HumanEval_11_string_xor | adb | pragma Ada_2022;
package Placeholder is
function String_Xor (A : String; B : String) return String;
-- Input are two strings a and b consisting only of 1s and 0s.
-- Perform binary XOR on these inputs and return result also as a string.
-- >>> String_Xor ("010", "110")
-- "100"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function String_Xor (A : String; B : String) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_11_string_xor.py | reworded |
end String_Xor;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (A : String; B : String) return String renames Placeholder.String_Xor;
begin
pragma Assert (Candidate ("111000", "101010") = "010010");
pragma Assert (Candidate ("1", "1") = "0");
pragma Assert (Candidate ("0101", "0000") = "0101");
end Main; | [
"\n end "
] |
HumanEval_12_longest | adb | pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Placeholder is
type Unbounded_String_Array is array (Positive range <>) of Unbounded_String;
type Unbounded_String_Option (Valid : Boolean := False) is record
case Valid is
when True =>
Value : Unbounded_String;
when False =>
null;
end case;
end record;
function Longest (Strings : Unbounded_String_Array) return Unbounded_String_Option;
-- Out of Vector of strings, return the longest one. Return the first one in case of multiple
-- strings of the same length. Return null in case the input Vector is empty.
-- >>> Longest ([])
-- (Valid => False)
-- >>> Longest ([To_Unbounded_String ("a"), To_Unbounded_String ("b"), To_Unbounded_String ("c")])
-- (Valid => True, Value => To_Unbounded_String ("a"))
-- >>> Longest ([To_Unbounded_String ("a"), To_Unbounded_String ("bb"), To_Unbounded_String ("ccc")])
-- (Valid => True, Value => To_Unbounded_String ("ccc"))
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package body Placeholder is
function Longest (Strings : Unbounded_String_Array) return Unbounded_String_Option | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_12_longest.py | reworded |
end Longest;
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Strings : Unbounded_String_Array) return Unbounded_String_Option renames Placeholder.Longest;
begin
pragma Assert (Candidate ([]) = (Valid => False));
pragma Assert (Candidate ([To_Unbounded_String ("x"), To_Unbounded_String ("y"), To_Unbounded_String ("z")]) = (Valid => True, Value => To_Unbounded_String ("x")));
pragma Assert (Candidate ([To_Unbounded_String ("x"), To_Unbounded_String ("yyy"), To_Unbounded_String ("zzzz"), To_Unbounded_String ("www"), To_Unbounded_String ("kkkk"), To_Unbounded_String ("abc")]) = (Valid => True, Value => To_Unbounded_String ("zzzz")));
end Main; | [
"\n end "
] |
HumanEval_13_greatest_common_divisor | adb | pragma Ada_2022;
package Placeholder is
function Greatest_Common_Divisor (A : Integer; B : Integer) return Integer;
-- Return a greatest common divisor of two integers a and b
-- >>> Greatest_Common_Divisor (3, 5)
-- 1
-- >>> Greatest_Common_Divisor (25, 15)
-- 5
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Greatest_Common_Divisor (A : Integer; B : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_13_greatest_common_divisor.py | reworded |
end Greatest_Common_Divisor;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (A : Integer; B : Integer) return Integer renames Placeholder.Greatest_Common_Divisor;
begin
pragma Assert (Candidate (3, 7) = 1);
pragma Assert (Candidate (10, 15) = 5);
pragma Assert (Candidate (49, 14) = 7);
pragma Assert (Candidate (144, 60) = 12);
end Main; | [
"\n end "
] |
HumanEval_14_all_prefixes | adb | pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Placeholder is
type Unbounded_String_Array is array (Positive range <>) of Unbounded_String;
function All_Prefixes (My_String : String) return Unbounded_String_Array;
-- Return Vector of all prefixes from shortest to longest of the input string
-- >>> All_Prefixes ("abc")
-- [To_Unbounded_String ("a"), To_Unbounded_String ("ab"), To_Unbounded_String ("abc")]
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package body Placeholder is
function All_Prefixes (My_String : String) return Unbounded_String_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_14_all_prefixes.py | reworded |
end All_Prefixes;
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (My_String : String) return Unbounded_String_Array renames Placeholder.All_Prefixes;
begin
pragma Assert (Candidate ("") = []);
pragma Assert (Candidate ("asdfgh") = [To_Unbounded_String ("a"), To_Unbounded_String ("as"), To_Unbounded_String ("asd"), To_Unbounded_String ("asdf"), To_Unbounded_String ("asdfg"), To_Unbounded_String ("asdfgh")]);
pragma Assert (Candidate ("WWW") = [To_Unbounded_String ("W"), To_Unbounded_String ("WW"), To_Unbounded_String ("WWW")]);
end Main; | [
"\n end "
] |
HumanEval_15_string_sequence | adb | pragma Ada_2022;
package Placeholder is
function String_Sequence (N : Integer) return String;
-- Return a string containing space-delimited numbers starting from 0 upto n inclusive.
-- >>> String_Sequence (0)
-- "0"
-- >>> String_Sequence (5)
-- "0 1 2 3 4 5"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function String_Sequence (N : Integer) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_15_string_sequence.py | reworded |
end String_Sequence;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return String renames Placeholder.String_Sequence;
begin
pragma Assert (Candidate (0) = "0");
pragma Assert (Candidate (3) = "0 1 2 3");
pragma Assert (Candidate (10) = "0 1 2 3 4 5 6 7 8 9 10");
end Main; | [
"\n end "
] |
HumanEval_16_count_distinct_characters | adb | pragma Ada_2022;
package Placeholder is
function Count_Distinct_Characters (My_String : String) return Integer;
-- Given a string, find out how many distinct characters (regardless of case) does it consist of
-- >>> Count_Distinct_Characters ("xyzXYZ")
-- 3
-- >>> Count_Distinct_Characters ("Jerry")
-- 4
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Count_Distinct_Characters (My_String : String) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_16_count_distinct_characters.py | reworded |
end Count_Distinct_Characters;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (My_String : String) return Integer renames Placeholder.Count_Distinct_Characters;
begin
pragma Assert (Candidate ("") = 0);
pragma Assert (Candidate ("abcde") = 5);
pragma Assert (Candidate ("abcdecadeCADE") = 5);
pragma Assert (Candidate ("aaaaAAAAaaaa") = 1);
pragma Assert (Candidate ("Jerry jERRY JeRRRY") = 5);
end Main; | [
"\n end "
] |
HumanEval_17_parse_music | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Parse_Music (Music_String : String) return Integer_Array;
-- Input to this function is a string representing musical notes in a special ASCII format.
-- Your task is to parse this string and return Vector of integers corresponding to how many beats does each
-- not last.
-- Here is a legend:
-- 'o' - whole note, lasts four beats
-- 'o|' - half note, lasts two beats
-- '.|' - quater note, lasts one beat
-- >>> Parse_Music ("o o| .| o| o| .| .| .| .| o o")
-- [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Parse_Music (Music_String : String) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_17_parse_music.py | reworded |
end Parse_Music;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Music_String : String) return Integer_Array renames Placeholder.Parse_Music;
begin
pragma Assert (Candidate ("") = []);
pragma Assert (Candidate ("o o o o") = [4, 4, 4, 4]);
pragma Assert (Candidate (".| .| .| .|") = [1, 1, 1, 1]);
pragma Assert (Candidate ("o| o| .| .| o o o o") = [2, 2, 1, 1, 4, 4, 4, 4]);
pragma Assert (Candidate ("o| .| o| .| o o| o o|") = [2, 1, 2, 1, 4, 2, 4, 2]);
end Main; | [
"\n end "
] |
HumanEval_18_how_many_times | adb | pragma Ada_2022;
package Placeholder is
function How_Many_Times (My_String : String; Substring : String) return Integer;
-- Find how many times a given substring can be found in the original string. Count overlaping cases.
-- >>> How_Many_Times ("", "a")
-- 0
-- >>> How_Many_Times ("aaa", "a")
-- 3
-- >>> How_Many_Times ("aaaa", "aa")
-- 3
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function How_Many_Times (My_String : String; Substring : String) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_18_how_many_times.py | reworded |
end How_Many_Times;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (My_String : String; Substring : String) return Integer renames Placeholder.How_Many_Times;
begin
pragma Assert (Candidate ("", "x") = 0);
pragma Assert (Candidate ("xyxyxyx", "x") = 4);
pragma Assert (Candidate ("cacacacac", "cac") = 4);
pragma Assert (Candidate ("john doe", "john") = 1);
end Main; | [
"\n end "
] |
HumanEval_19_sort_numbers | adb | pragma Ada_2022;
package Placeholder is
function Sort_Numbers (Numbers : String) return String;
-- Input is a space-delimited string of numberals from 'zero' to 'nine'.
-- Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
-- Return the string with numbers sorted from smallest to largest
-- >>> Sort_Numbers ("three one five")
-- "one three five"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Sort_Numbers (Numbers : String) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_19_sort_numbers.py | reworded |
end Sort_Numbers;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Numbers : String) return String renames Placeholder.Sort_Numbers;
begin
pragma Assert (Candidate ("") = "");
pragma Assert (Candidate ("three") = "three");
pragma Assert (Candidate ("three five nine") = "three five nine");
pragma Assert (Candidate ("five zero four seven nine eight") = "zero four five seven eight nine");
pragma Assert (Candidate ("six five four three two one zero") = "zero one two three four five six");
end Main; | [
"\n end "
] |
HumanEval_20_find_closest_elements | adb | pragma Ada_2022;
package Placeholder is
type Float_Array is array (Positive range <>) of Float;
type Float_Float_Tuple is record
Float_1 : Float;
Float_2 : Float;
end record;
function Find_Closest_Elements (Numbers : Float_Array) return Float_Float_Tuple;
-- From a supplied Vector of numbers (of length at least two) select and return two that are the closest to each
-- other and return them in order (smaller number, larger number).
-- >>> Find_Closest_Elements ([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
-- (2.0, 2.2)
-- >>> Find_Closest_Elements ([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
-- (2.0, 2.0)
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Find_Closest_Elements (Numbers : Float_Array) return Float_Float_Tuple | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_20_find_closest_elements.py | reworded |
end Find_Closest_Elements;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Numbers : Float_Array) return Float_Float_Tuple renames Placeholder.Find_Closest_Elements;
begin
pragma Assert (Candidate ([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) = (3.9, 4.0));
pragma Assert (Candidate ([1.0, 2.0, 5.9, 4.0, 5.0]) = (5.0, 5.9));
pragma Assert (Candidate ([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) = (2.0, 2.2));
pragma Assert (Candidate ([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) = (2.0, 2.0));
pragma Assert (Candidate ([1.1, 2.2, 3.1, 4.1, 5.1]) = (2.2, 3.1));
end Main; | [
"\n end "
] |
HumanEval_21_rescale_to_unit | adb | pragma Ada_2022;
package Placeholder is
type Float_Array is array (Positive range <>) of Float;
function Rescale_To_Unit (Numbers : Float_Array) return Float_Array;
-- Given Vector of numbers (of at least two elements), apply a linear transform to that Vector,
-- such that the smallest number will become 0 and the largest will become 1
-- >>> Rescale_To_Unit ([1.0, 2.0, 3.0, 4.0, 5.0])
-- [0.0, 0.25, 0.5, 0.75, 1.0]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Rescale_To_Unit (Numbers : Float_Array) return Float_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_21_rescale_to_unit.py | reworded |
end Rescale_To_Unit;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Numbers : Float_Array) return Float_Array renames Placeholder.Rescale_To_Unit;
begin
pragma Assert (Candidate ([2.0, 49.9]) = [0.0, 1.0]);
pragma Assert (Candidate ([100.0, 49.9]) = [1.0, 0.0]);
pragma Assert (Candidate ([1.0, 2.0, 3.0, 4.0, 5.0]) = [0.0, 0.25, 0.5, 0.75, 1.0]);
pragma Assert (Candidate ([2.0, 1.0, 5.0, 3.0, 4.0]) = [0.25, 0.0, 1.0, 0.5, 0.75]);
pragma Assert (Candidate ([12.0, 11.0, 15.0, 13.0, 14.0]) = [0.25, 0.0, 1.0, 0.5, 0.75]);
end Main; | [
"\n end "
] |
HumanEval_23_strlen | adb | pragma Ada_2022;
package Placeholder is
function Strlen (My_String : String) return Integer;
-- Return length of given string
-- >>> Strlen ("")
-- 0
-- >>> Strlen ("abc")
-- 3
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Strlen (My_String : String) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_23_strlen.py | reworded |
end Strlen;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (My_String : String) return Integer renames Placeholder.Strlen;
begin
pragma Assert (Candidate ("") = 0);
pragma Assert (Candidate ("x") = 1);
pragma Assert (Candidate ("asdasnakj") = 9);
end Main; | [
"\n end "
] |
HumanEval_24_largest_divisor | adb | pragma Ada_2022;
package Placeholder is
function Largest_Divisor (N : Integer) return Integer;
-- For a given number n, find the largest number that divides n evenly, smaller than n
-- >>> Largest_Divisor (15)
-- 5
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Largest_Divisor (N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_24_largest_divisor.py | reworded |
end Largest_Divisor;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer renames Placeholder.Largest_Divisor;
begin
pragma Assert (Candidate (3) = 1);
pragma Assert (Candidate (7) = 1);
pragma Assert (Candidate (10) = 5);
pragma Assert (Candidate (100) = 50);
pragma Assert (Candidate (49) = 7);
end Main; | [
"\n end "
] |
HumanEval_25_factorize | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Factorize (N : Integer) return Integer_Array;
-- Return Vector of prime factors of given integer in the order from smallest to largest.
-- Each of the factors should be Vectored number of times corresponding to how many times it appeares in factorization.
-- Input number should be equal to the product of all factors
-- >>> Factorize (8)
-- [2, 2, 2]
-- >>> Factorize (25)
-- [5, 5]
-- >>> Factorize (70)
-- [2, 5, 7]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Factorize (N : Integer) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_25_factorize.py | reworded |
end Factorize;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer_Array renames Placeholder.Factorize;
begin
pragma Assert (Candidate (2) = [2]);
pragma Assert (Candidate (4) = [2, 2]);
pragma Assert (Candidate (8) = [2, 2, 2]);
pragma Assert (Candidate (57) = [3, 19]);
pragma Assert (Candidate (3249) = [3, 3, 19, 19]);
pragma Assert (Candidate (185193) = [3, 3, 3, 19, 19, 19]);
pragma Assert (Candidate (20577) = [3, 19, 19, 19]);
pragma Assert (Candidate (18) = [2, 3, 3]);
end Main; | [
"\n end "
] |
HumanEval_26_remove_duplicates | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Remove_Duplicates (Numbers : Integer_Array) return Integer_Array;
-- From a Vector of integers, remove all elements that occur more than once.
-- Keep order of elements left the same as in the input.
-- >>> Remove_Duplicates ([1, 2, 3, 2, 4])
-- [1, 3, 4]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Remove_Duplicates (Numbers : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_26_remove_duplicates.py | reworded |
end Remove_Duplicates;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Numbers : Integer_Array) return Integer_Array renames Placeholder.Remove_Duplicates;
begin
pragma Assert (Candidate ([]) = []);
pragma Assert (Candidate ([1, 2, 3, 4]) = [1, 2, 3, 4]);
pragma Assert (Candidate ([1, 2, 3, 2, 4, 3, 5]) = [1, 4, 5]);
end Main; | [
"\n end "
] |
HumanEval_27_flip_case | adb | pragma Ada_2022;
package Placeholder is
function Flip_Case (My_String : String) return String;
-- For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
-- >>> Flip_Case ("Hello")
-- "hELLO"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Flip_Case (My_String : String) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_27_flip_case.py | reworded |
end Flip_Case;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (My_String : String) return String renames Placeholder.Flip_Case;
begin
pragma Assert (Candidate ("") = "");
pragma Assert (Candidate ("Hello!") = "hELLO!");
pragma Assert (Candidate ("These violent delights have violent ends") = "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS");
end Main; | [
"\n end "
] |
HumanEval_28_concatenate | adb | pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Placeholder is
type Unbounded_String_Array is array (Positive range <>) of Unbounded_String;
function Concatenate (Strings : Unbounded_String_Array) return String;
-- Concatenate Vector of strings into a single string
-- >>> Concatenate ([])
-- ""
-- >>> Concatenate ([To_Unbounded_String ("a"), To_Unbounded_String ("b"), To_Unbounded_String ("c")])
-- "abc"
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package body Placeholder is
function Concatenate (Strings : Unbounded_String_Array) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_28_concatenate.py | reworded |
end Concatenate;
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Strings : Unbounded_String_Array) return String renames Placeholder.Concatenate;
begin
pragma Assert (Candidate ([]) = "");
pragma Assert (Candidate ([To_Unbounded_String ("x"), To_Unbounded_String ("y"), To_Unbounded_String ("z")]) = "xyz");
pragma Assert (Candidate ([To_Unbounded_String ("x"), To_Unbounded_String ("y"), To_Unbounded_String ("z"), To_Unbounded_String ("w"), To_Unbounded_String ("k")]) = "xyzwk");
end Main; | [
"\n end "
] |
HumanEval_29_filter_by_prefix | adb | pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Placeholder is
type Unbounded_String_Array is array (Positive range <>) of Unbounded_String;
function Filter_By_Prefix (Strings : Unbounded_String_Array; Prefix : String) return Unbounded_String_Array;
-- Filter an input Vector of strings only for ones that start with a given prefix.
-- >>> Filter_By_Prefix ([], "a")
-- []
-- >>> Filter_By_Prefix ([To_Unbounded_String ("abc"), To_Unbounded_String ("bcd"), To_Unbounded_String ("cde"), To_Unbounded_String ("array")], "a")
-- [To_Unbounded_String ("abc"), To_Unbounded_String ("array")]
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package body Placeholder is
function Filter_By_Prefix (Strings : Unbounded_String_Array; Prefix : String) return Unbounded_String_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_29_filter_by_prefix.py | reworded |
end Filter_By_Prefix;
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Strings : Unbounded_String_Array; Prefix : String) return Unbounded_String_Array renames Placeholder.Filter_By_Prefix;
begin
pragma Assert (Candidate ([], "john") = []);
pragma Assert (Candidate ([To_Unbounded_String ("xxx"), To_Unbounded_String ("asd"), To_Unbounded_String ("xxy"), To_Unbounded_String ("john doe"), To_Unbounded_String ("xxxAAA"), To_Unbounded_String ("xxx")], "xxx") = [To_Unbounded_String ("xxx"), To_Unbounded_String ("xxxAAA"), To_Unbounded_String ("xxx")]);
end Main; | [
"\n end "
] |
HumanEval_30_get_positive | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Get_Positive (L : Integer_Array) return Integer_Array;
-- Return only positive numbers in the Vector.
-- >>> Get_Positive ([-1, 2, -4, 5, 6])
-- [2, 5, 6]
-- >>> Get_Positive ([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
-- [5, 3, 2, 3, 9, 123, 1]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Get_Positive (L : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_30_get_positive.py | reworded |
end Get_Positive;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array) return Integer_Array renames Placeholder.Get_Positive;
begin
pragma Assert (Candidate ([-1, -2, 4, 5, 6]) = [4, 5, 6]);
pragma Assert (Candidate ([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) = [5, 3, 2, 3, 3, 9, 123, 1]);
pragma Assert (Candidate ([-1, -2]) = []);
pragma Assert (Candidate ([]) = []);
end Main; | [
"\n end "
] |
HumanEval_31_is_prime | adb | pragma Ada_2022;
package Placeholder is
function Is_Prime (N : Integer) return Boolean;
-- Return true if a given number is prime, and false otherwise.
-- >>> Is_Prime (6)
-- False
-- >>> Is_Prime (101)
-- True
-- >>> Is_Prime (11)
-- True
-- >>> Is_Prime (13441)
-- True
-- >>> Is_Prime (61)
-- True
-- >>> Is_Prime (4)
-- False
-- >>> Is_Prime (1)
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Is_Prime (N : Integer) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_31_is_prime.py | reworded |
end Is_Prime;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Boolean renames Placeholder.Is_Prime;
begin
pragma Assert (Candidate (6) = False);
pragma Assert (Candidate (101) = True);
pragma Assert (Candidate (11) = True);
pragma Assert (Candidate (13441) = True);
pragma Assert (Candidate (61) = True);
pragma Assert (Candidate (4) = False);
pragma Assert (Candidate (1) = False);
pragma Assert (Candidate (5) = True);
pragma Assert (Candidate (11) = True);
pragma Assert (Candidate (17) = True);
pragma Assert (Candidate (85) = False);
pragma Assert (Candidate (77) = False);
pragma Assert (Candidate (255379) = False);
end Main; | [
"\n end "
] |
HumanEval_33_sort_third | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Sort_Third (L : Integer_Array) return Integer_Array;
-- This function takes a Vector l and returns a Vector l' such that
-- l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
-- to the values of the corresponding indicies of l, but sorted.
-- >>> Sort_Third ([1, 2, 3])
-- [1, 2, 3]
-- >>> Sort_Third ([5, 6, 3, 4, 8, 9, 2])
-- [2, 6, 3, 4, 8, 9, 5]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Sort_Third (L : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_33_sort_third.py | reworded |
end Sort_Third;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array) return Integer_Array renames Placeholder.Sort_Third;
begin
pragma Assert (Candidate ([5, 6, 3, 4, 8, 9, 2]) = [2, 6, 3, 4, 8, 9, 5]);
pragma Assert (Candidate ([5, 8, 3, 4, 6, 9, 2]) = [2, 8, 3, 4, 6, 9, 5]);
pragma Assert (Candidate ([5, 6, 9, 4, 8, 3, 2]) = [2, 6, 9, 4, 8, 3, 5]);
pragma Assert (Candidate ([5, 6, 3, 4, 8, 9, 2, 1]) = [2, 6, 3, 4, 8, 9, 5, 1]);
end Main; | [
"\n end "
] |
HumanEval_34_unique | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Unique (L : Integer_Array) return Integer_Array;
-- Return sorted unique elements in a Vector
-- >>> Unique ([5, 3, 5, 2, 3, 3, 9, 0, 123])
-- [0, 2, 3, 5, 9, 123]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Unique (L : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_34_unique.py | reworded |
end Unique;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array) return Integer_Array renames Placeholder.Unique;
begin
pragma Assert (Candidate ([5, 3, 5, 2, 3, 3, 9, 0, 123]) = [0, 2, 3, 5, 9, 123]);
end Main; | [
"\n end "
] |
HumanEval_35_max_element | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Max_Element (L : Integer_Array) return Integer;
-- Return maximum element in the Vector.
-- >>> Max_Element ([1, 2, 3])
-- 3
-- >>> Max_Element ([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
-- 123
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Max_Element (L : Integer_Array) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_35_max_element.py | reworded |
end Max_Element;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array) return Integer renames Placeholder.Max_Element;
begin
pragma Assert (Candidate ([1, 2, 3]) = 3);
pragma Assert (Candidate ([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) = 124);
end Main; | [
"\n end "
] |
HumanEval_36_fizz_buzz | adb | pragma Ada_2022;
package Placeholder is
function Fizz_Buzz (N : Integer) return Integer;
-- Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
-- >>> Fizz_Buzz (50)
-- 0
-- >>> Fizz_Buzz (78)
-- 2
-- >>> Fizz_Buzz (79)
-- 3
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Fizz_Buzz (N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_36_fizz_buzz.py | reworded |
end Fizz_Buzz;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer renames Placeholder.Fizz_Buzz;
begin
pragma Assert (Candidate (50) = 0);
pragma Assert (Candidate (78) = 2);
pragma Assert (Candidate (79) = 3);
pragma Assert (Candidate (100) = 3);
pragma Assert (Candidate (200) = 6);
pragma Assert (Candidate (4000) = 192);
pragma Assert (Candidate (10000) = 639);
pragma Assert (Candidate (100000) = 8026);
end Main; | [
"\n end "
] |
HumanEval_37_sort_even | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Sort_Even (L : Integer_Array) return Integer_Array;
-- This function takes a Vector l and returns a Vector l' such that
-- l' is identical to l in the odd indicies, while its values at the even indicies are equal
-- to the values of the even indicies of l, but sorted.
-- >>> Sort_Even ([1, 2, 3])
-- [1, 2, 3]
-- >>> Sort_Even ([5, 6, 3, 4])
-- [3, 6, 5, 4]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Sort_Even (L : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_37_sort_even.py | reworded |
end Sort_Even;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array) return Integer_Array renames Placeholder.Sort_Even;
begin
pragma Assert (Candidate ([1, 2, 3]) = [1, 2, 3]);
pragma Assert (Candidate ([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) = [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]);
pragma Assert (Candidate ([5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) = [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]);
end Main; | [
"\n end "
] |
HumanEval_39_prime_fib | adb | pragma Ada_2022;
package Placeholder is
function Prime_Fib (N : Integer) return Integer;
-- prime_fib returns n-th number that is a Fibonacci number and it's also prime.
-- >>> Prime_Fib (1)
-- 2
-- >>> Prime_Fib (2)
-- 3
-- >>> Prime_Fib (3)
-- 5
-- >>> Prime_Fib (4)
-- 13
-- >>> Prime_Fib (5)
-- 89
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Prime_Fib (N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_39_prime_fib.py | reworded |
end Prime_Fib;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer renames Placeholder.Prime_Fib;
begin
pragma Assert (Candidate (1) = 2);
pragma Assert (Candidate (2) = 3);
pragma Assert (Candidate (3) = 5);
pragma Assert (Candidate (4) = 13);
pragma Assert (Candidate (5) = 89);
pragma Assert (Candidate (6) = 233);
pragma Assert (Candidate (7) = 1597);
pragma Assert (Candidate (8) = 28657);
pragma Assert (Candidate (9) = 514229);
pragma Assert (Candidate (10) = 433494437);
end Main; | [
"\n end "
] |
HumanEval_40_triples_sum_to_zero | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Triples_Sum_To_Zero (L : Integer_Array) return Boolean;
-- triples_sum_to_zero takes a Vector of integers as an input.
-- it returns True if there are three distinct elements in the Vector that
-- sum to zero, and False otherwise.
-- >>> Triples_Sum_To_Zero ([1, 3, 5, 0])
-- False
-- >>> Triples_Sum_To_Zero ([1, 3, -2, 1])
-- True
-- >>> Triples_Sum_To_Zero ([1, 2, 3, 7])
-- False
-- >>> Triples_Sum_To_Zero ([2, 4, -5, 3, 9, 7])
-- True
-- >>> Triples_Sum_To_Zero ([1])
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Triples_Sum_To_Zero (L : Integer_Array) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_40_triples_sum_to_zero.py | reworded |
end Triples_Sum_To_Zero;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array) return Boolean renames Placeholder.Triples_Sum_To_Zero;
begin
pragma Assert (Candidate ([1, 3, 5, 0]) = False);
pragma Assert (Candidate ([1, 3, 5, -1]) = False);
pragma Assert (Candidate ([1, 3, -2, 1]) = True);
pragma Assert (Candidate ([1, 2, 3, 7]) = False);
pragma Assert (Candidate ([1, 2, 5, 7]) = False);
pragma Assert (Candidate ([2, 4, -5, 3, 9, 7]) = True);
pragma Assert (Candidate ([1]) = False);
pragma Assert (Candidate ([1, 3, 5, -100]) = False);
pragma Assert (Candidate ([100, 3, 5, -100]) = False);
end Main; | [
"\n end "
] |
HumanEval_41_car_race_collision | adb | pragma Ada_2022;
package Placeholder is
function Car_Race_Collision (N : Integer) return Integer;
-- Imagine a road that's a perfectly straight infinitely long line.
-- n cars are driving left to right; simultaneously, a different set of n cars
-- are driving right to left. The two sets of cars start out being very far from
-- each other. All cars move in the same speed. Two cars are said to collide
-- when a car that's moving left to right hits a car that's moving right to left.
-- However, the cars are infinitely sturdy and strong; as a result, they continue moving
-- in their trajectory as if they did not collide.
-- This function outputs the number of such collisions.
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Car_Race_Collision (N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_41_car_race_collision.py | reworded |
end Car_Race_Collision;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer renames Placeholder.Car_Race_Collision;
begin
pragma Assert (Candidate (2) = 4);
pragma Assert (Candidate (3) = 9);
pragma Assert (Candidate (4) = 16);
pragma Assert (Candidate (8) = 64);
pragma Assert (Candidate (10) = 100);
end Main; | [
"\n end "
] |
HumanEval_42_incr_list | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Incr_List (L : Integer_Array) return Integer_Array;
-- Return Vector with elements incremented by 1.
-- >>> Incr_List ([1, 2, 3])
-- [2, 3, 4]
-- >>> Incr_List ([5, 3, 5, 2, 3, 3, 9, 0, 123])
-- [6, 4, 6, 3, 4, 4, 10, 1, 124]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Incr_List (L : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_42_incr_list.py | reworded |
end Incr_List;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array) return Integer_Array renames Placeholder.Incr_List;
begin
pragma Assert (Candidate ([]) = []);
pragma Assert (Candidate ([3, 2, 1]) = [4, 3, 2]);
pragma Assert (Candidate ([5, 2, 5, 2, 3, 3, 9, 0, 123]) = [6, 3, 6, 3, 4, 4, 10, 1, 124]);
end Main; | [
"\n end "
] |
HumanEval_43_pairs_sum_to_zero | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Pairs_Sum_To_Zero (L : Integer_Array) return Boolean;
-- pairs_sum_to_zero takes a Vector of integers as an input.
-- it returns True if there are two distinct elements in the Vector that
-- sum to zero, and False otherwise.
-- >>> Pairs_Sum_To_Zero ([1, 3, 5, 0])
-- False
-- >>> Pairs_Sum_To_Zero ([1, 3, -2, 1])
-- False
-- >>> Pairs_Sum_To_Zero ([1, 2, 3, 7])
-- False
-- >>> Pairs_Sum_To_Zero ([2, 4, -5, 3, 5, 7])
-- True
-- >>> Pairs_Sum_To_Zero ([1])
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Pairs_Sum_To_Zero (L : Integer_Array) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_43_pairs_sum_to_zero.py | reworded |
end Pairs_Sum_To_Zero;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array) return Boolean renames Placeholder.Pairs_Sum_To_Zero;
begin
pragma Assert (Candidate ([1, 3, 5, 0]) = False);
pragma Assert (Candidate ([1, 3, -2, 1]) = False);
pragma Assert (Candidate ([1, 2, 3, 7]) = False);
pragma Assert (Candidate ([2, 4, -5, 3, 5, 7]) = True);
pragma Assert (Candidate ([1]) = False);
pragma Assert (Candidate ([-3, 9, -1, 3, 2, 30]) = True);
pragma Assert (Candidate ([-3, 9, -1, 3, 2, 31]) = True);
pragma Assert (Candidate ([-3, 9, -1, 4, 2, 30]) = False);
pragma Assert (Candidate ([-3, 9, -1, 4, 2, 31]) = False);
end Main; | [
"\n end "
] |
HumanEval_44_change_base | adb | pragma Ada_2022;
package Placeholder is
function Change_Base (X : Integer; Base : Integer) return String;
-- Change numerical base of input number x to base.
-- return string representation after the conversion.
-- base numbers are less than 10.
-- >>> Change_Base (8, 3)
-- "22"
-- >>> Change_Base (8, 2)
-- "1000"
-- >>> Change_Base (7, 2)
-- "111"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Change_Base (X : Integer; Base : Integer) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_44_change_base.py | reworded |
end Change_Base;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (X : Integer; Base : Integer) return String renames Placeholder.Change_Base;
begin
pragma Assert (Candidate (8, 3) = "22");
pragma Assert (Candidate (9, 3) = "100");
pragma Assert (Candidate (234, 2) = "11101010");
pragma Assert (Candidate (16, 2) = "10000");
pragma Assert (Candidate (8, 2) = "1000");
pragma Assert (Candidate (7, 2) = "111");
pragma Assert (Candidate (2, 3) = "2");
pragma Assert (Candidate (3, 4) = "3");
pragma Assert (Candidate (4, 5) = "4");
pragma Assert (Candidate (5, 6) = "5");
pragma Assert (Candidate (6, 7) = "6");
pragma Assert (Candidate (7, 8) = "7");
end Main; | [
"\n end "
] |
HumanEval_45_triangle_area | adb | pragma Ada_2022;
package Placeholder is
function Triangle_Area (A : Integer; H : Integer) return Float;
-- Given length of a side and high return area for a triangle.
-- >>> Triangle_Area (5, 3)
-- 7.5
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Triangle_Area (A : Integer; H : Integer) return Float | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_45_triangle_area.py | reworded |
end Triangle_Area;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (A : Integer; H : Integer) return Float renames Placeholder.Triangle_Area;
begin
pragma Assert (Candidate (5, 3) = 7.5);
pragma Assert (Candidate (2, 2) = 2.0);
pragma Assert (Candidate (10, 8) = 40.0);
end Main; | [
"\n end "
] |
HumanEval_46_fib4 | adb | pragma Ada_2022;
package Placeholder is
function Fib4 (N : Integer) return Integer;
-- The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
-- fib4(0) -> 0
-- fib4(1) -> 0
-- fib4(2) -> 2
-- fib4(3) -> 0
-- fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
-- Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
-- >>> Fib4 (5)
-- 4
-- >>> Fib4 (6)
-- 8
-- >>> Fib4 (7)
-- 14
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Fib4 (N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_46_fib4.py | reworded |
end Fib4;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer renames Placeholder.Fib4;
begin
pragma Assert (Candidate (5) = 4);
pragma Assert (Candidate (8) = 28);
pragma Assert (Candidate (10) = 104);
pragma Assert (Candidate (12) = 386);
end Main; | [
"\n end "
] |
HumanEval_47_median | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Median (L : Integer_Array) return Float;
-- Return median of elements in the Vector l.
-- >>> Median ([3, 1, 2, 4, 5])
-- 3
-- >>> Median ([-10, 4, 6, 1000, 10, 20])
-- 15.0
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Median (L : Integer_Array) return Float | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_47_median.py | reworded |
end Median;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array) return Float renames Placeholder.Median;
begin
pragma Assert (Candidate ([3, 1, 2, 4, 5]) = 3);
pragma Assert (Candidate ([-10, 4, 6, 1000, 10, 20]) = 8.0);
pragma Assert (Candidate ([5]) = 5);
pragma Assert (Candidate ([6, 5]) = 5.5);
pragma Assert (Candidate ([8, 1, 3, 9, 9, 2, 7]) = 7);
end Main; | [
"\n end "
] |
HumanEval_48_is_palindrome | adb | pragma Ada_2022;
package Placeholder is
function Is_Palindrome (Text : String) return Boolean;
-- Checks if given string is a palindrome
-- >>> Is_Palindrome ("")
-- True
-- >>> Is_Palindrome ("aba")
-- True
-- >>> Is_Palindrome ("aaaaa")
-- True
-- >>> Is_Palindrome ("zbcd")
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Is_Palindrome (Text : String) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_48_is_palindrome.py | reworded |
end Is_Palindrome;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Text : String) return Boolean renames Placeholder.Is_Palindrome;
begin
pragma Assert (Candidate ("") = True);
pragma Assert (Candidate ("aba") = True);
pragma Assert (Candidate ("aaaaa") = True);
pragma Assert (Candidate ("zbcd") = False);
pragma Assert (Candidate ("xywyx") = True);
pragma Assert (Candidate ("xywyz") = False);
pragma Assert (Candidate ("xywzx") = False);
end Main; | [
"\n end "
] |
HumanEval_49_modp | adb | pragma Ada_2022;
package Placeholder is
function Modp (N : Integer; P : Integer) return Integer;
-- Return 2^n modulo p (be aware of numerics).
-- >>> Modp (3, 5)
-- 3
-- >>> Modp (1101, 101)
-- 2
-- >>> Modp (0, 101)
-- 1
-- >>> Modp (3, 11)
-- 8
-- >>> Modp (100, 101)
-- 1
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Modp (N : Integer; P : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_49_modp.py | reworded |
end Modp;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer; P : Integer) return Integer renames Placeholder.Modp;
begin
pragma Assert (Candidate (3, 5) = 3);
pragma Assert (Candidate (1101, 101) = 2);
pragma Assert (Candidate (0, 101) = 1);
pragma Assert (Candidate (3, 11) = 8);
pragma Assert (Candidate (100, 101) = 1);
pragma Assert (Candidate (30, 5) = 4);
pragma Assert (Candidate (31, 5) = 3);
end Main; | [
"\n end "
] |
HumanEval_51_remove_vowels | adb | pragma Ada_2022;
package Placeholder is
function Remove_Vowels (Text : String) return String;
-- remove_vowels is a function that takes string and returns string without vowels.
-- >>> Remove_Vowels ("")
-- ""
-- >>> Remove_Vowels ("abcdef")
-- "bcdf"
-- >>> Remove_Vowels ("aaaaa")
-- ""
-- >>> Remove_Vowels ("aaBAA")
-- "B"
-- >>> Remove_Vowels ("zbcd")
-- "zbcd"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Remove_Vowels (Text : String) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_51_remove_vowels.py | reworded |
end Remove_Vowels;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Text : String) return String renames Placeholder.Remove_Vowels;
begin
pragma Assert (Candidate ("") = "");
pragma Assert (Candidate ("abcdef
ghijklm") = "bcdf
ghjklm");
pragma Assert (Candidate ("fedcba") = "fdcb");
pragma Assert (Candidate ("eeeee") = "");
pragma Assert (Candidate ("acBAA") = "cB");
pragma Assert (Candidate ("EcBOO") = "cB");
pragma Assert (Candidate ("ybcd") = "ybcd");
end Main; | [
"\n end "
] |
HumanEval_52_below_threshold | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Below_Threshold (L : Integer_Array; T : Integer) return Boolean;
-- Return True if all numbers in the Vector l are below threshold t.
-- >>> Below_Threshold ([1, 2, 4, 10], 100)
-- True
-- >>> Below_Threshold ([1, 20, 4, 10], 5)
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Below_Threshold (L : Integer_Array; T : Integer) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_52_below_threshold.py | reworded |
end Below_Threshold;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array; T : Integer) return Boolean renames Placeholder.Below_Threshold;
begin
pragma Assert (Candidate ([1, 2, 4, 10], 100) = True);
pragma Assert (Candidate ([1, 20, 4, 10], 5) = False);
pragma Assert (Candidate ([1, 20, 4, 10], 21) = True);
pragma Assert (Candidate ([1, 20, 4, 10], 22) = True);
pragma Assert (Candidate ([1, 8, 4, 10], 11) = True);
pragma Assert (Candidate ([1, 8, 4, 10], 10) = False);
end Main; | [
"\n end "
] |
HumanEval_53_add | adb | pragma Ada_2022;
package Placeholder is
function Add (X : Integer; Y : Integer) return Integer;
-- Add two numbers x and y
-- >>> Add (2, 3)
-- 5
-- >>> Add (5, 7)
-- 12
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Add (X : Integer; Y : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_53_add.py | reworded |
end Add;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (X : Integer; Y : Integer) return Integer renames Placeholder.Add;
begin
pragma Assert (Candidate (0, 1) = 1);
pragma Assert (Candidate (1, 0) = 1);
pragma Assert (Candidate (2, 3) = 5);
pragma Assert (Candidate (5, 7) = 12);
pragma Assert (Candidate (7, 5) = 12);
end Main; | [
"\n end "
] |
HumanEval_54_same_chars | adb | pragma Ada_2022;
package Placeholder is
function Same_Chars (S0 : String; S1 : String) return Boolean;
-- Check if two words have the same characters.
-- >>> Same_Chars ("eabcdzzzz", "dddzzzzzzzddeddabc")
-- True
-- >>> Same_Chars ("abcd", "dddddddabc")
-- True
-- >>> Same_Chars ("dddddddabc", "abcd")
-- True
-- >>> Same_Chars ("eabcd", "dddddddabc")
-- False
-- >>> Same_Chars ("abcd", "dddddddabce")
-- False
-- >>> Same_Chars ("eabcdzzzz", "dddzzzzzzzddddabc")
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Same_Chars (S0 : String; S1 : String) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_54_same_chars.py | reworded |
end Same_Chars;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (S0 : String; S1 : String) return Boolean renames Placeholder.Same_Chars;
begin
pragma Assert (Candidate ("eabcdzzzz", "dddzzzzzzzddeddabc") = True);
pragma Assert (Candidate ("abcd", "dddddddabc") = True);
pragma Assert (Candidate ("dddddddabc", "abcd") = True);
pragma Assert (Candidate ("eabcd", "dddddddabc") = False);
pragma Assert (Candidate ("abcd", "dddddddabcf") = False);
pragma Assert (Candidate ("eabcdzzzz", "dddzzzzzzzddddabc") = False);
pragma Assert (Candidate ("aabb", "aaccc") = False);
end Main; | [
"\n end "
] |
HumanEval_55_fib | adb | pragma Ada_2022;
package Placeholder is
function Fib (N : Integer) return Integer;
-- Return n-th Fibonacci number.
-- >>> Fib (10)
-- 55
-- >>> Fib (1)
-- 1
-- >>> Fib (8)
-- 21
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Fib (N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_55_fib.py | reworded |
end Fib;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer renames Placeholder.Fib;
begin
pragma Assert (Candidate (10) = 55);
pragma Assert (Candidate (1) = 1);
pragma Assert (Candidate (8) = 21);
pragma Assert (Candidate (11) = 89);
pragma Assert (Candidate (12) = 144);
end Main; | [
"\n end "
] |
HumanEval_56_correct_bracketing | adb | pragma Ada_2022;
package Placeholder is
function Correct_Bracketing (Brackets : String) return Boolean;
-- brackets is a string of "<" and ">".
-- return True if every opening bracket has a corresponding closing bracket.
-- >>> Correct_Bracketing ("<")
-- False
-- >>> Correct_Bracketing ("<>")
-- True
-- >>> Correct_Bracketing ("<<><>>")
-- True
-- >>> Correct_Bracketing ("><<>")
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Correct_Bracketing (Brackets : String) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_56_correct_bracketing.py | reworded |
end Correct_Bracketing;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Brackets : String) return Boolean renames Placeholder.Correct_Bracketing;
begin
pragma Assert (Candidate ("<>") = True);
pragma Assert (Candidate ("<<><>>") = True);
pragma Assert (Candidate ("<><><<><>><>") = True);
pragma Assert (Candidate ("<><><<<><><>><>><<><><<>>>") = True);
pragma Assert (Candidate ("<<<><>>>>") = False);
pragma Assert (Candidate ("><<>") = False);
pragma Assert (Candidate ("<") = False);
pragma Assert (Candidate ("<<<<") = False);
pragma Assert (Candidate (">") = False);
pragma Assert (Candidate ("<<>") = False);
pragma Assert (Candidate ("<><><<><>><>><<>") = False);
pragma Assert (Candidate ("<><><<><>><>>><>") = False);
end Main; | [
"\n end "
] |
HumanEval_57_monotonic | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Monotonic (L : Integer_Array) return Boolean;
-- Return True is Vector elements are monotonically increasing or decreasing.
-- >>> Monotonic ([1, 2, 4, 20])
-- True
-- >>> Monotonic ([1, 20, 4, 10])
-- False
-- >>> Monotonic ([4, 1, 0, -10])
-- True
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Monotonic (L : Integer_Array) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_57_monotonic.py | reworded |
end Monotonic;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L : Integer_Array) return Boolean renames Placeholder.Monotonic;
begin
pragma Assert (Candidate ([1, 2, 4, 10]) = True);
pragma Assert (Candidate ([1, 2, 4, 20]) = True);
pragma Assert (Candidate ([1, 20, 4, 10]) = False);
pragma Assert (Candidate ([4, 1, 0, -10]) = True);
pragma Assert (Candidate ([4, 1, 1, 0]) = True);
pragma Assert (Candidate ([1, 2, 3, 2, 5, 60]) = False);
pragma Assert (Candidate ([1, 2, 3, 4, 5, 60]) = True);
pragma Assert (Candidate ([9, 9, 9, 9]) = True);
end Main; | [
"\n end "
] |
HumanEval_58_common | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Common (L1 : Integer_Array; L2 : Integer_Array) return Integer_Array;
-- Return sorted unique common elements for two Vectors.
-- >>> Common ([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])
-- [1, 5, 653]
-- >>> Common ([5, 3, 2, 8], [3, 2])
-- [2, 3]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Common (L1 : Integer_Array; L2 : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_58_common.py | reworded |
end Common;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (L1 : Integer_Array; L2 : Integer_Array) return Integer_Array renames Placeholder.Common;
begin
pragma Assert (Candidate ([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) = [1, 5, 653]);
pragma Assert (Candidate ([5, 3, 2, 8], [3, 2]) = [2, 3]);
pragma Assert (Candidate ([4, 3, 2, 8], [3, 2, 4]) = [2, 3, 4]);
pragma Assert (Candidate ([4, 3, 2, 8], []) = []);
end Main; | [
"\n end "
] |
HumanEval_59_largest_prime_factor | adb | pragma Ada_2022;
package Placeholder is
function Largest_Prime_Factor (N : Integer) return Integer;
-- Return the largest prime factor of n. Assume n > 1 and is not a prime.
-- >>> Largest_Prime_Factor (13195)
-- 29
-- >>> Largest_Prime_Factor (2048)
-- 2
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Largest_Prime_Factor (N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_59_largest_prime_factor.py | reworded |
end Largest_Prime_Factor;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer renames Placeholder.Largest_Prime_Factor;
begin
pragma Assert (Candidate (15) = 5);
pragma Assert (Candidate (27) = 3);
pragma Assert (Candidate (63) = 7);
pragma Assert (Candidate (330) = 11);
pragma Assert (Candidate (13195) = 29);
end Main; | [
"\n end "
] |
HumanEval_60_sum_to_n | adb | pragma Ada_2022;
package Placeholder is
function Sum_To_N (N : Integer) return Integer;
-- sum_to_n is a function that sums numbers from 1 to n.
-- >>> Sum_To_N (30)
-- 465
-- >>> Sum_To_N (100)
-- 5050
-- >>> Sum_To_N (5)
-- 15
-- >>> Sum_To_N (10)
-- 55
-- >>> Sum_To_N (1)
-- 1
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Sum_To_N (N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_60_sum_to_n.py | reworded |
end Sum_To_N;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer renames Placeholder.Sum_To_N;
begin
pragma Assert (Candidate (1) = 1);
pragma Assert (Candidate (6) = 21);
pragma Assert (Candidate (11) = 66);
pragma Assert (Candidate (30) = 465);
pragma Assert (Candidate (100) = 5050);
end Main; | [
"\n end "
] |
HumanEval_61_correct_bracketing | adb | pragma Ada_2022;
package Placeholder is
function Correct_Bracketing (Brackets : String) return Boolean;
-- brackets is a string of "(" and ")".
-- return True if every opening bracket has a corresponding closing bracket.
-- >>> Correct_Bracketing ("(")
-- False
-- >>> Correct_Bracketing ("()")
-- True
-- >>> Correct_Bracketing ("(()())")
-- True
-- >>> Correct_Bracketing (")(()")
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Correct_Bracketing (Brackets : String) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_61_correct_bracketing.py | reworded |
end Correct_Bracketing;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Brackets : String) return Boolean renames Placeholder.Correct_Bracketing;
begin
pragma Assert (Candidate ("()") = True);
pragma Assert (Candidate ("(()())") = True);
pragma Assert (Candidate ("()()(()())()") = True);
pragma Assert (Candidate ("()()((()()())())(()()(()))") = True);
pragma Assert (Candidate ("((()())))") = False);
pragma Assert (Candidate (")(()") = False);
pragma Assert (Candidate ("(") = False);
pragma Assert (Candidate ("((((") = False);
pragma Assert (Candidate (")") = False);
pragma Assert (Candidate ("(()") = False);
pragma Assert (Candidate ("()()(()())())(()") = False);
pragma Assert (Candidate ("()()(()())()))()") = False);
end Main; | [
"\n end "
] |
HumanEval_62_derivative | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Derivative (Xs : Integer_Array) return Integer_Array;
-- xs represent coefficients of a polynomial.
-- xs[0] + xs[1] * x + xs[2] * x^2 + ....
-- Return derivative of this polynomial in the same form.
-- >>> Derivative ([3, 1, 2, 4, 5])
-- [1, 4, 12, 20]
-- >>> Derivative ([1, 2, 3])
-- [2, 6]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Derivative (Xs : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_62_derivative.py | reworded |
end Derivative;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Xs : Integer_Array) return Integer_Array renames Placeholder.Derivative;
begin
pragma Assert (Candidate ([3, 1, 2, 4, 5]) = [1, 4, 12, 20]);
pragma Assert (Candidate ([1, 2, 3]) = [2, 6]);
pragma Assert (Candidate ([3, 2, 1]) = [2, 2]);
pragma Assert (Candidate ([3, 2, 1, 0, 4]) = [2, 2, 0, 16]);
pragma Assert (Candidate ([1]) = []);
end Main; | [
"\n end "
] |
HumanEval_63_fibfib | adb | pragma Ada_2022;
package Placeholder is
function Fibfib (N : Integer) return Integer;
-- The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
-- fibfib(0) == 0
-- fibfib(1) == 0
-- fibfib(2) == 1
-- fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
-- Please write a function to efficiently compute the n-th element of the fibfib number sequence.
-- >>> Fibfib (1)
-- 0
-- >>> Fibfib (5)
-- 4
-- >>> Fibfib (8)
-- 24
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Fibfib (N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_63_fibfib.py | reworded |
end Fibfib;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer renames Placeholder.Fibfib;
begin
pragma Assert (Candidate (2) = 1);
pragma Assert (Candidate (1) = 0);
pragma Assert (Candidate (5) = 4);
pragma Assert (Candidate (8) = 24);
pragma Assert (Candidate (10) = 81);
pragma Assert (Candidate (12) = 274);
pragma Assert (Candidate (14) = 927);
end Main; | [
"\n end "
] |
HumanEval_64_vowels_count | adb | pragma Ada_2022;
package Placeholder is
function Vowels_Count (S : String) return Integer;
-- Write a function vowels_count which takes a string representing
-- a word as input and returns the number of vowels in the string.
-- Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
-- vowel, but only when it is at the end of the given word.
-- Example:
-- >>> Vowels_Count ("abcde")
-- 2
-- >>> Vowels_Count ("ACEDY")
-- 3
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Vowels_Count (S : String) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_64_vowels_count.py | reworded |
end Vowels_Count;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (S : String) return Integer renames Placeholder.Vowels_Count;
begin
pragma Assert (Candidate ("abcde") = 2);
pragma Assert (Candidate ("Alone") = 3);
pragma Assert (Candidate ("key") = 2);
pragma Assert (Candidate ("bye") = 1);
pragma Assert (Candidate ("keY") = 2);
pragma Assert (Candidate ("bYe") = 1);
pragma Assert (Candidate ("ACEDY") = 3);
end Main; | [
"\n end "
] |
HumanEval_65_circular_shift | adb | pragma Ada_2022;
package Placeholder is
function Circular_Shift (X : Integer; Shift : Integer) return String;
-- Circular shift the digits of the integer x, shift the digits right by shift
-- and return the result as a string.
-- If shift > number of digits, return digits reversed.
-- >>> Circular_Shift (12, 1)
-- "21"
-- >>> Circular_Shift (12, 2)
-- "12"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Circular_Shift (X : Integer; Shift : Integer) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_65_circular_shift.py | reworded |
end Circular_Shift;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (X : Integer; Shift : Integer) return String renames Placeholder.Circular_Shift;
begin
pragma Assert (Candidate (100, 2) = "001");
pragma Assert (Candidate (12, 2) = "12");
pragma Assert (Candidate (97, 8) = "79");
pragma Assert (Candidate (12, 1) = "21");
pragma Assert (Candidate (11, 101) = "11");
end Main; | [
"\n end "
] |
HumanEval_66_digitSum | adb | pragma Ada_2022;
package Placeholder is
function Digit_Sum (S : String) return Integer;
-- Task
-- Write a function that takes a string as input and returns the sum of the upper characters only'
-- ASCII codes.
-- Examples:
-- >>> Digitsum ("")
-- 0
-- >>> Digitsum ("abAB")
-- 131
-- >>> Digitsum ("abcCd")
-- 67
-- >>> Digitsum ("helloE")
-- 69
-- >>> Digitsum ("woArBld")
-- 131
-- >>> Digitsum ("aAaaaXa")
-- 153
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Digit_Sum (S : String) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_66_digitSum.py | reworded |
end Digit_Sum;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (S : String) return Integer renames Placeholder.Digit_Sum;
begin
pragma Assert (Candidate ("") = 0);
pragma Assert (Candidate ("abAB") = 131);
pragma Assert (Candidate ("abcCd") = 67);
pragma Assert (Candidate ("helloE") = 69);
pragma Assert (Candidate ("woArBld") = 131);
pragma Assert (Candidate ("aAaaaXa") = 153);
pragma Assert (Candidate (" How are yOu?") = 151);
pragma Assert (Candidate ("You arE Very Smart") = 327);
end Main; | [
"\n end "
] |
HumanEval_67_fruit_distribution | adb | pragma Ada_2022;
package Placeholder is
function Fruit_Distribution (S : String; N : Integer) return Integer;
-- In this task, you will be given a string that represents a number of apples and oranges
-- that are distributed in a basket of fruit this basket contains
-- apples, oranges, and mango fruits. Given the string that represents the total number of
-- the oranges and apples and an integer that represent the total number of the fruits
-- in the basket return the number of the mango fruits in the basket.
-- for examble:
-- >>> Fruit_Distribution ("5 apples and 6 oranges", 19)
-- 8
-- >>> Fruit_Distribution ("0 apples and 1 oranges", 3)
-- 2
-- >>> Fruit_Distribution ("2 apples and 3 oranges", 100)
-- 95
-- >>> Fruit_Distribution ("100 apples and 1 oranges", 120)
-- 19
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Fruit_Distribution (S : String; N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_67_fruit_distribution.py | reworded |
end Fruit_Distribution;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (S : String; N : Integer) return Integer renames Placeholder.Fruit_Distribution;
begin
pragma Assert (Candidate ("5 apples and 6 oranges", 19) = 8);
pragma Assert (Candidate ("5 apples and 6 oranges", 21) = 10);
pragma Assert (Candidate ("0 apples and 1 oranges", 3) = 2);
pragma Assert (Candidate ("1 apples and 0 oranges", 3) = 2);
pragma Assert (Candidate ("2 apples and 3 oranges", 100) = 95);
pragma Assert (Candidate ("2 apples and 3 oranges", 5) = 0);
pragma Assert (Candidate ("1 apples and 100 oranges", 120) = 19);
end Main; | [
"\n end "
] |
HumanEval_68_pluck | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Pluck (Arr : Integer_Array) return Integer_Array;
-- "Given an array representing a branch of a tree that has non-negative integer nodes
-- your task is to pluck one of the nodes and return it.
-- The plucked node should be the node with the smallest even value.
-- If multiple nodes with the same smallest even value are found return the node that has smallest index.
-- The plucked node should be returned in a Vector, [ smalest_value, its index ],
-- If there are no even values or the given array is empty, return [].
-- Example 1:
-- >>> Pluck ([4, 2, 3])
-- [2, 1]
-- Explanation: 2 has the smallest even value, and 2 has the smallest index.
-- Example 2:
-- >>> Pluck ([1, 2, 3])
-- [2, 1]
-- Explanation: 2 has the smallest even value, and 2 has the smallest index.
-- Example 3:
-- >>> Pluck ([])
-- []
-- Example 4:
-- >>> Pluck ([5, 0, 3, 0, 4, 2])
-- [0, 1]
-- Explanation: 0 is the smallest value, but there are two zeros,
-- so we will choose the first zero, which has the smallest index.
-- Constraints:
-- * 1 <= nodes.length <= 10000
-- * 0 <= node.value
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Pluck (Arr : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_68_pluck.py | reworded |
end Pluck;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Arr : Integer_Array) return Integer_Array renames Placeholder.Pluck;
begin
pragma Assert (Candidate ([4, 2, 3]) = [2, 1]);
pragma Assert (Candidate ([1, 2, 3]) = [2, 1]);
pragma Assert (Candidate ([]) = []);
pragma Assert (Candidate ([5, 0, 3, 0, 4, 2]) = [0, 1]);
pragma Assert (Candidate ([1, 2, 3, 0, 5, 3]) = [0, 3]);
pragma Assert (Candidate ([5, 4, 8, 4, 8]) = [4, 1]);
pragma Assert (Candidate ([7, 6, 7, 1]) = [6, 1]);
pragma Assert (Candidate ([7, 9, 7, 1]) = []);
end Main; | [
"\n end "
] |
HumanEval_69_search | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Search (Lst : Integer_Array) return Integer;
-- You are given a non-empty Vector of positive integers. Return the greatest integer that is greater than
-- zero, and has a frequency greater than or equal to the value of the integer itself.
-- The frequency of an integer is the number of times it appears in the Vector.
-- If no such a value exist, return -1.
-- Examples:
-- >>> Search ([4, 1, 2, 2, 3, 1])
-- 2
-- >>> Search ([1, 2, 2, 3, 3, 3, 4, 4, 4])
-- 3
-- >>> Search ([5, 5, 4, 4, 4])
-- -1
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Search (Lst : Integer_Array) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_69_search.py | reworded |
end Search;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Lst : Integer_Array) return Integer renames Placeholder.Search;
begin
pragma Assert (Candidate ([5, 5, 5, 5, 1]) = 1);
pragma Assert (Candidate ([4, 1, 4, 1, 4, 4]) = 4);
pragma Assert (Candidate ([3, 3]) = -1);
pragma Assert (Candidate ([8, 8, 8, 8, 8, 8, 8, 8]) = 8);
pragma Assert (Candidate ([2, 3, 3, 2, 2]) = 2);
pragma Assert (Candidate ([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) = 1);
pragma Assert (Candidate ([3, 2, 8, 2]) = 2);
pragma Assert (Candidate ([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) = 1);
pragma Assert (Candidate ([8, 8, 3, 6, 5, 6, 4]) = -1);
pragma Assert (Candidate ([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) = 1);
pragma Assert (Candidate ([1, 9, 10, 1, 3]) = 1);
pragma Assert (Candidate ([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) = 5);
pragma Assert (Candidate ([1]) = 1);
pragma Assert (Candidate ([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) = 4);
pragma Assert (Candidate ([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) = 2);
pragma Assert (Candidate ([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) = 1);
pragma Assert (Candidate ([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) = 4);
pragma Assert (Candidate ([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) = 4);
pragma Assert (Candidate ([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) = 2);
pragma Assert (Candidate ([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) = -1);
pragma Assert (Candidate ([10]) = -1);
pragma Assert (Candidate ([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) = 2);
pragma Assert (Candidate ([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) = 1);
pragma Assert (Candidate ([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) = 1);
pragma Assert (Candidate ([3, 10, 10, 9, 2]) = -1);
end Main; | [
"\n end "
] |
HumanEval_70_strange_sort_list | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Strange_Sort_List (Lst : Integer_Array) return Integer_Array;
-- Given Vector of integers, return Vector in strange order.
-- Strange sorting, is when you start with the minimum value,
-- then maximum of the remaining integers, then minimum and so on.
-- Examples:
-- >>> Strange_Sort_List ([1, 2, 3, 4])
-- [1, 4, 2, 3]
-- >>> Strange_Sort_List ([5, 5, 5, 5])
-- [5, 5, 5, 5]
-- >>> Strange_Sort_List ([])
-- []
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Strange_Sort_List (Lst : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_70_strange_sort_list.py | reworded |
end Strange_Sort_List;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Lst : Integer_Array) return Integer_Array renames Placeholder.Strange_Sort_List;
begin
pragma Assert (Candidate ([1, 2, 3, 4]) = [1, 4, 2, 3]);
pragma Assert (Candidate ([5, 6, 7, 8, 9]) = [5, 9, 6, 8, 7]);
pragma Assert (Candidate ([1, 2, 3, 4, 5]) = [1, 5, 2, 4, 3]);
pragma Assert (Candidate ([5, 6, 7, 8, 9, 1]) = [1, 9, 5, 8, 6, 7]);
pragma Assert (Candidate ([5, 5, 5, 5]) = [5, 5, 5, 5]);
pragma Assert (Candidate ([]) = []);
pragma Assert (Candidate ([1, 2, 3, 4, 5, 6, 7, 8]) = [1, 8, 2, 7, 3, 6, 4, 5]);
pragma Assert (Candidate ([0, 2, 2, 2, 5, 5, -5, -5]) = [-5, 5, -5, 5, 0, 2, 2, 2]);
pragma Assert (Candidate ([111111]) = [111111]);
end Main; | [
"\n end "
] |
HumanEval_71_triangle_area | adb | pragma Ada_2022;
package Placeholder is
function Triangle_Area (A : Integer; B : Integer; C : Integer) return Float;
-- Given the lengths of the three sides of a triangle. Return the area of
-- the triangle rounded to 2 decimal points if the three sides form a valid triangle.
-- Otherwise return -1
-- Three sides make a valid triangle when the sum of any two sides is greater
-- than the third side.
-- Example:
-- >>> Triangle_Area (3, 4, 5)
-- 6.0
-- >>> Triangle_Area (1, 2, 10)
-- -1
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Triangle_Area (A : Integer; B : Integer; C : Integer) return Float | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_71_triangle_area.py | reworded |
end Triangle_Area;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (A : Integer; B : Integer; C : Integer) return Float renames Placeholder.Triangle_Area;
begin
pragma Assert (Candidate (3, 4, 5) = 6.0);
pragma Assert (Candidate (1, 2, 10) = -1);
pragma Assert (Candidate (4, 8, 5) = 8.18);
pragma Assert (Candidate (2, 2, 2) = 1.73);
pragma Assert (Candidate (1, 2, 3) = -1);
pragma Assert (Candidate (10, 5, 7) = 16.25);
pragma Assert (Candidate (2, 6, 3) = -1);
pragma Assert (Candidate (1, 1, 1) = 0.43);
pragma Assert (Candidate (2, 2, 10) = -1);
end Main; | [
"\n end "
] |
HumanEval_72_will_it_fly | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Will_It_Fly (Q : Integer_Array; W : Integer) return Boolean;
-- Write a function that returns True if the object q will fly, and False otherwise.
-- The object q will fly if it's balanced (it is a palindromic Vector) and the sum of its elements is less than or equal the maximum possible weight w.
-- Example:
-- >>> Will_It_Fly ([1, 2], 5)
-- False
-- # 1+2 is less than the maximum possible weight, but it's unbalanced.
-- >>> Will_It_Fly ([3, 2, 3], 1)
-- False
-- # it's balanced, but 3+2+3 is more than the maximum possible weight.
-- >>> Will_It_Fly ([3, 2, 3], 9)
-- True
-- # 3+2+3 is less than the maximum possible weight, and it's balanced.
-- >>> Will_It_Fly ([3], 5)
-- True
-- # 3 is less than the maximum possible weight, and it's balanced.
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Will_It_Fly (Q : Integer_Array; W : Integer) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_72_will_it_fly.py | reworded |
end Will_It_Fly;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Q : Integer_Array; W : Integer) return Boolean renames Placeholder.Will_It_Fly;
begin
pragma Assert (Candidate ([3, 2, 3], 9) = True);
pragma Assert (Candidate ([1, 2], 5) = False);
pragma Assert (Candidate ([3], 5) = True);
pragma Assert (Candidate ([3, 2, 3], 1) = False);
pragma Assert (Candidate ([1, 2, 3], 6) = False);
pragma Assert (Candidate ([5], 5) = True);
end Main; | [
"\n end "
] |
HumanEval_73_smallest_change | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Smallest_Change (Arr : Integer_Array) return Integer;
-- Given an array arr of integers, find the minimum number of elements that
-- need to be changed to make the array palindromic. A palindromic array is an array that
-- is read the same backwards and forwards. In one change, you can change one element to any other element.
-- For example:
-- >>> Smallest_Change ([1, 2, 3, 5, 4, 7, 9, 6])
-- 4
-- >>> Smallest_Change ([1, 2, 3, 4, 3, 2, 2])
-- 1
-- >>> Smallest_Change ([1, 2, 3, 2, 1])
-- 0
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Smallest_Change (Arr : Integer_Array) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_73_smallest_change.py | reworded |
end Smallest_Change;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Arr : Integer_Array) return Integer renames Placeholder.Smallest_Change;
begin
pragma Assert (Candidate ([1, 2, 3, 5, 4, 7, 9, 6]) = 4);
pragma Assert (Candidate ([1, 2, 3, 4, 3, 2, 2]) = 1);
pragma Assert (Candidate ([1, 4, 2]) = 1);
pragma Assert (Candidate ([1, 4, 4, 2]) = 1);
pragma Assert (Candidate ([1, 2, 3, 2, 1]) = 0);
pragma Assert (Candidate ([3, 1, 1, 3]) = 0);
pragma Assert (Candidate ([1]) = 0);
pragma Assert (Candidate ([0, 1]) = 1);
end Main; | [
"\n end "
] |
HumanEval_74_total_match | adb | pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Placeholder is
type Unbounded_String_Array is array (Positive range <>) of Unbounded_String;
function Total_Match (Lst1 : Unbounded_String_Array; Lst2 : Unbounded_String_Array) return Unbounded_String_Array;
-- Write a function that accepts two Vectors of strings and returns the Vector that has
-- total number of chars in the all strings of the Vector less than the other Vector.
-- if the two Vectors have the same number of chars, return the first Vector.
-- Examples
-- >>> Total_Match ([], [])
-- []
-- >>> Total_Match ([To_Unbounded_String ("hi"), To_Unbounded_String ("admin")], [To_Unbounded_String ("hI"), To_Unbounded_String ("Hi")])
-- [To_Unbounded_String ("hI"), To_Unbounded_String ("Hi")]
-- >>> Total_Match ([To_Unbounded_String ("hi"), To_Unbounded_String ("admin")], [To_Unbounded_String ("hi"), To_Unbounded_String ("hi"), To_Unbounded_String ("admin"), To_Unbounded_String ("project")])
-- [To_Unbounded_String ("hi"), To_Unbounded_String ("admin")]
-- >>> Total_Match ([To_Unbounded_String ("hi"), To_Unbounded_String ("admin")], [To_Unbounded_String ("hI"), To_Unbounded_String ("hi"), To_Unbounded_String ("hi")])
-- [To_Unbounded_String ("hI"), To_Unbounded_String ("hi"), To_Unbounded_String ("hi")]
-- >>> Total_Match ([To_Unbounded_String ("4")], [To_Unbounded_String ("1"), To_Unbounded_String ("2"), To_Unbounded_String ("3"), To_Unbounded_String ("4"), To_Unbounded_String ("5")])
-- [To_Unbounded_String ("4")]
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package body Placeholder is
function Total_Match (Lst1 : Unbounded_String_Array; Lst2 : Unbounded_String_Array) return Unbounded_String_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_74_total_match.py | reworded |
end Total_Match;
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Lst1 : Unbounded_String_Array; Lst2 : Unbounded_String_Array) return Unbounded_String_Array renames Placeholder.Total_Match;
begin
pragma Assert (Candidate ([], []) = []);
pragma Assert (Candidate ([To_Unbounded_String ("hi"), To_Unbounded_String ("admin")], [To_Unbounded_String ("hi"), To_Unbounded_String ("hi")]) = [To_Unbounded_String ("hi"), To_Unbounded_String ("hi")]);
pragma Assert (Candidate ([To_Unbounded_String ("hi"), To_Unbounded_String ("admin")], [To_Unbounded_String ("hi"), To_Unbounded_String ("hi"), To_Unbounded_String ("admin"), To_Unbounded_String ("project")]) = [To_Unbounded_String ("hi"), To_Unbounded_String ("admin")]);
pragma Assert (Candidate ([To_Unbounded_String ("4")], [To_Unbounded_String ("1"), To_Unbounded_String ("2"), To_Unbounded_String ("3"), To_Unbounded_String ("4"), To_Unbounded_String ("5")]) = [To_Unbounded_String ("4")]);
pragma Assert (Candidate ([To_Unbounded_String ("hi"), To_Unbounded_String ("admin")], [To_Unbounded_String ("hI"), To_Unbounded_String ("Hi")]) = [To_Unbounded_String ("hI"), To_Unbounded_String ("Hi")]);
pragma Assert (Candidate ([To_Unbounded_String ("hi"), To_Unbounded_String ("admin")], [To_Unbounded_String ("hI"), To_Unbounded_String ("hi"), To_Unbounded_String ("hi")]) = [To_Unbounded_String ("hI"), To_Unbounded_String ("hi"), To_Unbounded_String ("hi")]);
pragma Assert (Candidate ([To_Unbounded_String ("hi"), To_Unbounded_String ("admin")], [To_Unbounded_String ("hI"), To_Unbounded_String ("hi"), To_Unbounded_String ("hii")]) = [To_Unbounded_String ("hi"), To_Unbounded_String ("admin")]);
pragma Assert (Candidate ([], [To_Unbounded_String ("this")]) = []);
pragma Assert (Candidate ([To_Unbounded_String ("this")], []) = []);
end Main; | [
"\n end "
] |
HumanEval_75_is_multiply_prime | adb | pragma Ada_2022;
package Placeholder is
function Is_Multiply_Prime (A : Integer) return Boolean;
-- Write a function that returns true if the given number is the multiplication of 3 prime numbers
-- and false otherwise.
-- Knowing that (a) is less then 100.
-- Example:
-- >>> Is_Multiply_Prime (30)
-- True
-- 30 = 2 * 3 * 5
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Is_Multiply_Prime (A : Integer) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_75_is_multiply_prime.py | reworded |
end Is_Multiply_Prime;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (A : Integer) return Boolean renames Placeholder.Is_Multiply_Prime;
begin
pragma Assert (Candidate (5) = False);
pragma Assert (Candidate (30) = True);
pragma Assert (Candidate (8) = True);
pragma Assert (Candidate (10) = False);
pragma Assert (Candidate (125) = True);
pragma Assert (Candidate (105) = True);
pragma Assert (Candidate (126) = False);
pragma Assert (Candidate (729) = False);
pragma Assert (Candidate (891) = False);
pragma Assert (Candidate (1001) = True);
end Main; | [
"\n end "
] |
HumanEval_76_is_simple_power | adb | pragma Ada_2022;
package Placeholder is
function Is_Simple_Power (X : Integer; N : Integer) return Boolean;
-- Your task is to write a function that returns true if a number x is a simple
-- power of n and false in other cases.
-- x is a simple power of n if n**int=x
-- For example:
-- >>> Is_Simple_Power (1, 4)
-- True
-- >>> Is_Simple_Power (2, 2)
-- True
-- >>> Is_Simple_Power (8, 2)
-- True
-- >>> Is_Simple_Power (3, 2)
-- False
-- >>> Is_Simple_Power (3, 1)
-- False
-- >>> Is_Simple_Power (5, 3)
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Is_Simple_Power (X : Integer; N : Integer) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_76_is_simple_power.py | reworded |
end Is_Simple_Power;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (X : Integer; N : Integer) return Boolean renames Placeholder.Is_Simple_Power;
begin
pragma Assert (Candidate (16, 2) = True);
pragma Assert (Candidate (143214, 16) = False);
pragma Assert (Candidate (4, 2) = True);
pragma Assert (Candidate (9, 3) = True);
pragma Assert (Candidate (16, 4) = True);
pragma Assert (Candidate (24, 2) = False);
pragma Assert (Candidate (128, 4) = False);
pragma Assert (Candidate (12, 6) = False);
pragma Assert (Candidate (1, 1) = True);
pragma Assert (Candidate (1, 12) = True);
end Main; | [
"\n end "
] |
HumanEval_77_iscube | adb | pragma Ada_2022;
package Placeholder is
function Iscube (A : Integer) return Boolean;
-- Write a function that takes an integer a and returns True
-- if this ingeger is a cube of some integer number.
-- Note: you may assume the input is always valid.
-- Examples:
-- >>> Iscube (1)
-- True
-- >>> Iscube (2)
-- False
-- >>> Iscube (-1)
-- True
-- >>> Iscube (64)
-- True
-- >>> Iscube (0)
-- True
-- >>> Iscube (180)
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Iscube (A : Integer) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_77_iscube.py | reworded |
end Iscube;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (A : Integer) return Boolean renames Placeholder.Iscube;
begin
pragma Assert (Candidate (1) = True);
pragma Assert (Candidate (2) = False);
pragma Assert (Candidate (-1) = True);
pragma Assert (Candidate (64) = True);
pragma Assert (Candidate (180) = False);
pragma Assert (Candidate (1000) = True);
pragma Assert (Candidate (0) = True);
pragma Assert (Candidate (1729) = False);
end Main; | [
"\n end "
] |
HumanEval_78_hex_key | adb | pragma Ada_2022;
package Placeholder is
function Hex_Key (Num : String) return Integer;
-- You have been tasked to write a function that receives
-- a hexadecimal number as a string and counts the number of hexadecimal
-- digits that are primes (prime number, or a prime, is a natural number
-- greater than 1 that is not a product of two smaller natural numbers).
-- Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
-- Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
-- So you have to determine a number of the following digits: 2, 3, 5, 7,
-- B (=decimal 11), D (=decimal 13).
-- Note: you may assume the input is always correct or empty string,
-- and symbols A,B,C,D,E,F are always uppercase.
-- Examples:
-- >>> Hex_Key ("AB")
-- 1
-- >>> Hex_Key ("1077E")
-- 2
-- >>> Hex_Key ("ABED1A33")
-- 4
-- >>> Hex_Key ("123456789ABCDEF0")
-- 6
-- >>> Hex_Key ("2020")
-- 2
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Hex_Key (Num : String) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_78_hex_key.py | reworded |
end Hex_Key;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Num : String) return Integer renames Placeholder.Hex_Key;
begin
pragma Assert (Candidate ("AB") = 1);
pragma Assert (Candidate ("1077E") = 2);
pragma Assert (Candidate ("ABED1A33") = 4);
pragma Assert (Candidate ("2020") = 2);
pragma Assert (Candidate ("123456789ABCDEF0") = 6);
pragma Assert (Candidate ("112233445566778899AABBCCDDEEFF00") = 12);
end Main; | [
"\n end "
] |
HumanEval_79_decimal_to_binary | adb | pragma Ada_2022;
package Placeholder is
function Decimal_To_Binary (Decimal : Integer) return String;
-- You will be given a number in decimal form and your task is to convert it to
-- binary format. The function should return a string, with each character representing a binary
-- number. Each character in the string will be '0' or '1'.
-- There will be an extra couple of characters 'db' at the beginning and at the end of the string.
-- The extra characters are there to help with the format.
-- Examples:
-- >>> Decimal_To_Binary (15)
-- "db1111db"
-- >>> Decimal_To_Binary (32)
-- "db100000db"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Decimal_To_Binary (Decimal : Integer) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_79_decimal_to_binary.py | reworded |
end Decimal_To_Binary;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Decimal : Integer) return String renames Placeholder.Decimal_To_Binary;
begin
pragma Assert (Candidate (0) = "db0db");
pragma Assert (Candidate (32) = "db100000db");
pragma Assert (Candidate (103) = "db1100111db");
pragma Assert (Candidate (15) = "db1111db");
end Main; | [
"\n end "
] |
HumanEval_80_is_happy | adb | pragma Ada_2022;
package Placeholder is
function Is_Happy (S : String) return Boolean;
-- You are given a string s.
-- Your task is to check if the string is hapadb or not.
-- A string is hapadb if its length is at least 3 and every 3 consecutive letters are distinct
-- For example:
-- >>> Is_Happy ("a")
-- False
-- >>> Is_Happy ("aa")
-- False
-- >>> Is_Happy ("abcd")
-- True
-- >>> Is_Happy ("aabb")
-- False
-- >>> Is_Happy ("adb")
-- True
-- >>> Is_Happy ("xyy")
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Is_Happy (S : String) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_80_is_happy.py | reworded |
end Is_Happy;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (S : String) return Boolean renames Placeholder.Is_Happy;
begin
pragma Assert (Candidate ("a") = False);
pragma Assert (Candidate ("aa") = False);
pragma Assert (Candidate ("abcd") = True);
pragma Assert (Candidate ("aabb") = False);
pragma Assert (Candidate ("adb") = True);
pragma Assert (Candidate ("xyy") = False);
pragma Assert (Candidate ("iopaxpoi") = True);
pragma Assert (Candidate ("iopaxioi") = False);
end Main; | [
"\n end "
] |
HumanEval_81_numerical_letter_grade | adb | pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Placeholder is
type Float_Array is array (Positive range <>) of Float;
type Unbounded_String_Array is array (Positive range <>) of Unbounded_String;
function Numerical_Letter_Grade (Grades : Float_Array) return Unbounded_String_Array;
-- It is the last week of the semester and the teacher has to give the grades
-- to students. The teacher has been making her own algorithm for grading.
-- The only problem is, she has lost the code she used for grading.
-- She has given you a Vector of GPAs for some students and you have to write
-- a function that can output a Vector of letter grades using the following table:
-- GPA | Letter grade
-- 4.0 A+
-- > 3.7 A
-- > 3.3 A-
-- > 3.0 B+
-- > 2.7 B
-- > 2.3 B-
-- > 2.0 C+
-- > 1.7 C
-- > 1.3 C-
-- > 1.0 D+
-- > 0.7 D
-- > 0.0 D-
-- 0.0 E
-- Example:
-- >>> Grade_Equation ([4.0, 3, 1.7, 2, 3.5])
-- [To_Unbounded_String ("A+"), To_Unbounded_String ("B"), To_Unbounded_String ("C-"), To_Unbounded_String ("C"), To_Unbounded_String ("A-")]
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package body Placeholder is
function Numerical_Letter_Grade (Grades : Float_Array) return Unbounded_String_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_81_numerical_letter_grade.py | reworded |
end Numerical_Letter_Grade;
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Grades : Float_Array) return Unbounded_String_Array renames Placeholder.Numerical_Letter_Grade;
begin
pragma Assert (Candidate ([4.0, 3, 1.7, 2, 3.5]) = [To_Unbounded_String ("A+"), To_Unbounded_String ("B"), To_Unbounded_String ("C-"), To_Unbounded_String ("C"), To_Unbounded_String ("A-")]);
pragma Assert (Candidate ([1.2]) = [To_Unbounded_String ("D+")]);
pragma Assert (Candidate ([0.5]) = [To_Unbounded_String ("D-")]);
pragma Assert (Candidate ([0.0]) = [To_Unbounded_String ("E")]);
pragma Assert (Candidate ([1.0, 0.3, 1.5, 2.8, 3.3]) = [To_Unbounded_String ("D"), To_Unbounded_String ("D-"), To_Unbounded_String ("C-"), To_Unbounded_String ("B"), To_Unbounded_String ("B+")]);
pragma Assert (Candidate ([0.0, 0.7]) = [To_Unbounded_String ("E"), To_Unbounded_String ("D-")]);
end Main; | [
"\n end "
] |
HumanEval_82_prime_length | adb | pragma Ada_2022;
package Placeholder is
function Prime_Length (My_String : String) return Boolean;
-- Write a function that takes a string and returns True if the string
-- length is a prime number or False otherwise
-- Examples
-- >>> Prime_Length ("Hello")
-- True
-- >>> Prime_Length ("abcdcba")
-- True
-- >>> Prime_Length ("kittens")
-- True
-- >>> Prime_Length ("orange")
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Prime_Length (My_String : String) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_82_prime_length.py | reworded |
end Prime_Length;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (My_String : String) return Boolean renames Placeholder.Prime_Length;
begin
pragma Assert (Candidate ("Hello") = True);
pragma Assert (Candidate ("abcdcba") = True);
pragma Assert (Candidate ("kittens") = True);
pragma Assert (Candidate ("orange") = False);
pragma Assert (Candidate ("wow") = True);
pragma Assert (Candidate ("world") = True);
pragma Assert (Candidate ("MadaM") = True);
pragma Assert (Candidate ("Wow") = True);
pragma Assert (Candidate ("") = False);
pragma Assert (Candidate ("HI") = True);
pragma Assert (Candidate ("go") = True);
pragma Assert (Candidate ("gogo") = False);
pragma Assert (Candidate ("aaaaaaaaaaaaaaa") = False);
pragma Assert (Candidate ("Madam") = True);
pragma Assert (Candidate ("M") = False);
pragma Assert (Candidate ("0") = False);
end Main; | [
"\n end "
] |
HumanEval_83_starts_one_ends | adb | pragma Ada_2022;
package Placeholder is
function Starts_One_Ends (N : Integer) return Integer;
-- Given a positive integer n, return the count of the numbers of n-digit
-- positive integers that start or end with 1.
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Starts_One_Ends (N : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_83_starts_one_ends.py | reworded |
end Starts_One_Ends;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer renames Placeholder.Starts_One_Ends;
begin
pragma Assert (Candidate (1) = 1);
pragma Assert (Candidate (2) = 18);
pragma Assert (Candidate (3) = 180);
pragma Assert (Candidate (4) = 1800);
pragma Assert (Candidate (5) = 18000);
end Main; | [
"\n end "
] |
HumanEval_84_solve | adb | pragma Ada_2022;
package Placeholder is
function Solve (N : Integer) return String;
-- Given a positive integer N, return the total sum of its digits in binary.
-- Example
-- >>> Solve (1000)
-- "1"
-- >>> Solve (150)
-- "110"
-- >>> Solve (147)
-- "1100"
-- Variables:
-- @N integer
-- Constraints: 0 ≤ N ≤ 10000.
-- Output:
-- a string of binary number
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Solve (N : Integer) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_84_solve.py | reworded |
end Solve;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return String renames Placeholder.Solve;
begin
pragma Assert (Candidate (1000) = "1");
pragma Assert (Candidate (150) = "110");
pragma Assert (Candidate (147) = "1100");
pragma Assert (Candidate (333) = "1001");
pragma Assert (Candidate (963) = "10010");
end Main; | [
"\n end "
] |
HumanEval_85_add | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Add (Lst : Integer_Array) return Integer;
-- Given a non-empty Vector of integers lst. add the even elements that are at odd indices..
-- Examples:
-- >>> Add ([4, 2, 6, 7])
-- 2
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Add (Lst : Integer_Array) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_85_add.py | reworded |
end Add;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Lst : Integer_Array) return Integer renames Placeholder.Add;
begin
pragma Assert (Candidate ([4, 88]) = 88);
pragma Assert (Candidate ([4, 5, 6, 7, 2, 122]) = 122);
pragma Assert (Candidate ([4, 0, 6, 7]) = 0);
pragma Assert (Candidate ([4, 4, 6, 8]) = 12);
end Main; | [
"\n end "
] |
HumanEval_86_anti_shuffle | adb | pragma Ada_2022;
package Placeholder is
function Anti_Shuffle (S : String) return String;
-- Write a function that takes a string and returns an ordered version of it.
-- Ordered version of string, is a string where all words (separated by space)
-- are replaced by a new word where all the characters arranged in
-- ascending order based on ascii value.
-- Note: You should keep the order of words and blank spaces in the sentence.
-- For example:
-- >>> Anti_Shuffle ("Hi")
-- "Hi"
-- >>> Anti_Shuffle ("hello")
-- "ehllo"
-- >>> Anti_Shuffle ("Hello World!!!")
-- "Hello !!!Wdlor"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Anti_Shuffle (S : String) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_86_anti_shuffle.py | reworded |
end Anti_Shuffle;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (S : String) return String renames Placeholder.Anti_Shuffle;
begin
pragma Assert (Candidate ("Hi") = "Hi");
pragma Assert (Candidate ("hello") = "ehllo");
pragma Assert (Candidate ("number") = "bemnru");
pragma Assert (Candidate ("abcd") = "abcd");
pragma Assert (Candidate ("Hello World!!!") = "Hello !!!Wdlor");
pragma Assert (Candidate ("") = "");
pragma Assert (Candidate ("Hi. My name is Mister Robot. How are you?") = ".Hi My aemn is Meirst .Rboot How aer ?ouy");
end Main; | [
"\n end "
] |
HumanEval_87_get_row | adb | pragma Ada_2022;
with Ada.Containers.Vectors;
package Placeholder is
package Integer_Vector is new Ada.Containers.Vectors (Index_Type => Positive, Element_Type => Integer);
use Integer_Vector;
type Integer_Vector_Vector_Array is array (Positive range <>) of Integer_Vector.Vector;
type Integer_Integer_Tuple is record
Integer_1 : Integer;
Integer_2 : Integer;
end record;
type Integer_Integer_Tuple_Array is array (Positive range <>) of Integer_Integer_Tuple;
function Get_Row (Lst : Integer_Vector_Vector_Array; X : Integer) return Integer_Integer_Tuple_Array;
-- You are given a 2 dimensional data, as a nested Vectors,
-- which is similar to matrix, however, unlike matrices,
-- each row may contain a different number of columns.
-- Given lst, and integer x, find integers x in the Vector,
-- and return Vector of records, [(x1, y1), (x2, y2) ...] such that
-- each record is a coordinate - (row, columns), starting with 0.
-- Sort coordinates initially by rows in ascending order.
-- Also, sort coordinates of the row by columns in descending order.
-- Examples:
-- >>> Get_Row ([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1)
-- [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
-- >>> Get_Row ([], 1)
-- []
-- >>> Get_Row ([[], [1], [1, 2, 3]], 3)
-- [(2, 2)]
end Placeholder;
pragma Ada_2022;
with Ada.Containers.Vectors;
package body Placeholder is
function Get_Row (Lst : Integer_Vector_Vector_Array; X : Integer) return Integer_Integer_Tuple_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_87_get_row.py | reworded |
end Get_Row;
end Placeholder;
pragma Ada_2022;
with Ada.Containers.Vectors;
with Placeholder; use Placeholder;
procedure Main is
use Integer_Vector;
function Candidate (Lst : Integer_Vector_Vector_Array; X : Integer) return Integer_Integer_Tuple_Array renames Placeholder.Get_Row;
begin
pragma Assert (Candidate ([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1) = [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]);
pragma Assert (Candidate ([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6]], 2) = [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]);
pragma Assert (Candidate ([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 1, 3, 4, 5, 6], [1, 2, 1, 4, 5, 6], [1, 2, 3, 1, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1) = [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]);
pragma Assert (Candidate ([], 1) = []);
pragma Assert (Candidate ([[1]], 2) = []);
pragma Assert (Candidate ([[], [1], [1, 2, 3]], 3) = [(2, 2)]);
end Main; | [
"\n end "
] |
HumanEval_88_sort_array | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Sort_Array (My_Array : Integer_Array) return Integer_Array;
-- Given an array of non-negative integers, return a coadb of the given array after sorting,
-- you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
-- or sort it in descending order if the sum( first index value, last index value) is even.
-- Note:
-- * don't change the given array.
-- Examples:
-- >>> Sort_Array ([])
-- []
-- >>> Sort_Array ([5])
-- [5]
-- >>> Sort_Array ([2, 4, 3, 0, 1, 5])
-- [0, 1, 2, 3, 4, 5]
-- >>> Sort_Array ([2, 4, 3, 0, 1, 5, 6])
-- [6, 5, 4, 3, 2, 1, 0]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Sort_Array (My_Array : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_88_sort_array.py | reworded |
end Sort_Array;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (My_Array : Integer_Array) return Integer_Array renames Placeholder.Sort_Array;
begin
pragma Assert (Candidate ([]) = []);
pragma Assert (Candidate ([5]) = [5]);
pragma Assert (Candidate ([2, 4, 3, 0, 1, 5]) = [0, 1, 2, 3, 4, 5]);
pragma Assert (Candidate ([2, 4, 3, 0, 1, 5, 6]) = [6, 5, 4, 3, 2, 1, 0]);
pragma Assert (Candidate ([2, 1]) = [1, 2]);
pragma Assert (Candidate ([15, 42, 87, 32, 11, 0]) = [0, 11, 15, 32, 42, 87]);
pragma Assert (Candidate ([21, 14, 23, 11]) = [23, 21, 14, 11]);
end Main; | [
"\n end "
] |
HumanEval_89_encrypt | adb | pragma Ada_2022;
package Placeholder is
function Encrypt (S : String) return String;
-- Create a function encrypt that takes a string as an argument and
-- returns a string encrypted with the alphabet being rotated.
-- The alphabet should be rotated in a manner such that the letters
-- shift down by two multiplied to two places.
-- For example:
-- >>> Encrypt ("hi")
-- "lm"
-- >>> Encrypt ("asdfghjkl")
-- "ewhjklnop"
-- >>> Encrypt ("gf")
-- "kj"
-- >>> Encrypt ("et")
-- "ix"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Encrypt (S : String) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_89_encrypt.py | reworded |
end Encrypt;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (S : String) return String renames Placeholder.Encrypt;
begin
pragma Assert (Candidate ("hi") = "lm");
pragma Assert (Candidate ("asdfghjkl") = "ewhjklnop");
pragma Assert (Candidate ("gf") = "kj");
pragma Assert (Candidate ("et") = "ix");
pragma Assert (Candidate ("faewfawefaewg") = "jeiajeaijeiak");
pragma Assert (Candidate ("hellomyfriend") = "lippsqcjvmirh");
pragma Assert (Candidate ("dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") = "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl");
pragma Assert (Candidate ("a") = "e");
end Main; | [
"\n end "
] |
HumanEval_90_next_smallest | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
type Integer_Option (Valid : Boolean := False) is record
case Valid is
when True =>
Value : Integer;
when False =>
null;
end case;
end record;
function Next_Smallest (Lst : Integer_Array) return Integer_Option;
-- You are given a Vector of integers.
-- Write a function next_smallest() that returns the 2nd smallest element of the Vector.
-- Return null if there is no such element.
-- >>> Next_Smallest ([1, 2, 3, 4, 5])
-- (Valid => True, Value => 2)
-- >>> Next_Smallest ([5, 1, 4, 3, 2])
-- (Valid => True, Value => 2)
-- >>> Next_Smallest ([])
-- (Valid => False)
-- >>> Next_Smallest ([1, 1])
-- (Valid => False)
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Next_Smallest (Lst : Integer_Array) return Integer_Option | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_90_next_smallest.py | reworded |
end Next_Smallest;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Lst : Integer_Array) return Integer_Option renames Placeholder.Next_Smallest;
begin
pragma Assert (Candidate ([1, 2, 3, 4, 5]) = (Valid => True, Value => 2));
pragma Assert (Candidate ([5, 1, 4, 3, 2]) = (Valid => True, Value => 2));
pragma Assert (Candidate ([]) = (Valid => False));
pragma Assert (Candidate ([1, 1]) = (Valid => False));
pragma Assert (Candidate ([1, 1, 1, 1, 0]) = (Valid => True, Value => 1));
pragma Assert (Candidate ([1, 1]) = (Valid => False));
pragma Assert (Candidate ([-35, 34, 12, -45]) = (Valid => True, Value => -35));
end Main; | [
"\n end "
] |
HumanEval_91_is_bored | adb | pragma Ada_2022;
package Placeholder is
function Is_Bored (S : String) return Integer;
-- You'll be given a string of words, and your task is to count the number
-- of boredoms. A boredom is a sentence that starts with the word "I".
-- Sentences are delimited by '.', '?' or '!'.
-- For example:
-- >>> Is_Bored ("Hello world")
-- 0
-- >>> Is_Bored ("The sky is blue. The sun is shining. I love this weather")
-- 1
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Is_Bored (S : String) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_91_is_bored.py | reworded |
end Is_Bored;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (S : String) return Integer renames Placeholder.Is_Bored;
begin
pragma Assert (Candidate ("Hello world") = 0);
pragma Assert (Candidate ("Is the sky blue?") = 0);
pragma Assert (Candidate ("I love It !") = 1);
pragma Assert (Candidate ("bIt") = 0);
pragma Assert (Candidate ("I feel good today. I will be productive. will kill It") = 2);
pragma Assert (Candidate ("You and I are going for a walk") = 0);
end Main; | [
"\n end "
] |
HumanEval_92_any_int | adb | pragma Ada_2022;
package Placeholder is
function Any_Int (X : Float; Y : Float; Z : Float) return Boolean;
-- Create a function that takes 3 numbers.
-- Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
-- Returns false in any other cases.
-- Examples
-- >>> Any_Int (5, 2, 7)
-- True
-- >>> Any_Int (3, 2, 2)
-- False
-- >>> Any_Int (3, -2, 1)
-- True
-- >>> Any_Int (3.6, -2.2, 2)
-- False
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Any_Int (X : Float; Y : Float; Z : Float) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_92_any_int.py | reworded |
end Any_Int;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (X : Float; Y : Float; Z : Float) return Boolean renames Placeholder.Any_Int;
begin
pragma Assert (Candidate (2, 3, 1) = True);
pragma Assert (Candidate (2.5, 2, 3) = False);
pragma Assert (Candidate (1.5, 5, 3.5) = False);
pragma Assert (Candidate (2, 6, 2) = False);
pragma Assert (Candidate (4, 2, 2) = True);
pragma Assert (Candidate (2.2, 2.2, 2.2) = False);
pragma Assert (Candidate (-4, 6, 2) = True);
pragma Assert (Candidate (2, 1, 1) = True);
pragma Assert (Candidate (3, 4, 7) = True);
pragma Assert (Candidate (3.0, 4, 7) = False);
end Main; | [
"\n end "
] |
HumanEval_93_encode | adb | pragma Ada_2022;
package Placeholder is
function Encode (Message : String) return String;
-- Write a function that takes a message, and encodes in such a
-- way that it swaps case of all letters, replaces all vowels in
-- the message with the letter that appears 2 places ahead of that
-- vowel in the english alphabet.
-- Assume only letters.
-- Examples:
-- >>> Encode ("test")
-- "TGST"
-- >>> Encode ("This is a message")
-- "tHKS KS C MGSSCGG"
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Encode (Message : String) return String | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_93_encode.py | reworded |
end Encode;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Message : String) return String renames Placeholder.Encode;
begin
pragma Assert (Candidate ("TEST") = "tgst");
pragma Assert (Candidate ("Mudasir") = "mWDCSKR");
pragma Assert (Candidate ("YES") = "ygs");
pragma Assert (Candidate ("This is a message") = "tHKS KS C MGSSCGG");
pragma Assert (Candidate ("I DoNt KnOw WhAt tO WrItE") = "k dQnT kNqW wHcT Tq wRkTg");
end Main; | [
"\n end "
] |
HumanEval_94_skjkasdkd | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Skjkasdkd (Lst : Integer_Array) return Integer;
-- You are given a Vector of integers.
-- You need to find the largest prime value and return the sum of its digits.
-- Examples:
-- >>> Skjkasdkd ([0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3])
-- 10
-- >>> Skjkasdkd ([1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1])
-- 25
-- >>> Skjkasdkd ([1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3])
-- 13
-- >>> Skjkasdkd ([0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6])
-- 11
-- >>> Skjkasdkd ([0, 81, 12, 3, 1, 21])
-- 3
-- >>> Skjkasdkd ([0, 8, 1, 2, 1, 7])
-- 7
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Skjkasdkd (Lst : Integer_Array) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_94_skjkasdkd.py | reworded |
end Skjkasdkd;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Lst : Integer_Array) return Integer renames Placeholder.Skjkasdkd;
begin
pragma Assert (Candidate ([0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) = 10);
pragma Assert (Candidate ([1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) = 25);
pragma Assert (Candidate ([1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) = 13);
pragma Assert (Candidate ([0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) = 11);
pragma Assert (Candidate ([0, 81, 12, 3, 1, 21]) = 3);
pragma Assert (Candidate ([0, 8, 1, 2, 1, 7]) = 7);
pragma Assert (Candidate ([8191]) = 19);
pragma Assert (Candidate ([8191, 123456, 127, 7]) = 19);
pragma Assert (Candidate ([127, 97, 8192]) = 10);
end Main; | [
"\n end "
] |
HumanEval_95_check_dict_case | adb | pragma Ada_2022;
with Ada.Containers.Indefinite_Ordered_Maps;
package Placeholder is
package String_String_Dict is new Ada.Containers.Indefinite_Ordered_Maps (Key_Type => String, Element_Type => String);
use String_String_Dict;
function Check_Dict_Case (Dict : String_String_Dict.Map) return Boolean;
-- Given a Map, return True if all keys are strings in lower
-- case or all keys are strings in upper case, else return False.
-- The function should return False is the given Map is empty.
-- Examples:
-- >>> Check_Dict_Case (["a" => "apple", "b" => "banana"])
-- True
-- >>> Check_Dict_Case (["a" => "apple", "A" => "banana", "B" => "banana"])
-- False
-- >>> Check_Dict_Case (["a" => "apple", 8 => "banana", "a" => "apple"])
-- False
-- >>> Check_Dict_Case (["Name" => "John", "Age" => "36", "City" => "Houston"])
-- False
-- >>> Check_Dict_Case (["STATE" => "NC", "ZIP" => "12345"])
-- True
end Placeholder;
pragma Ada_2022;
with Ada.Containers.Indefinite_Ordered_Maps;
package body Placeholder is
function Check_Dict_Case (Dict : String_String_Dict.Map) return Boolean | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_95_check_dict_case.py | reworded |
end Check_Dict_Case;
end Placeholder;
pragma Ada_2022;
with Ada.Containers.Indefinite_Ordered_Maps;
with Placeholder; use Placeholder;
procedure Main is
use String_String_Dict;
function Candidate (Dict : String_String_Dict.Map) return Boolean renames Placeholder.Check_Dict_Case;
begin
pragma Assert (Candidate (["p" => "pineapple", "b" => "banana"]) = True);
pragma Assert (Candidate (["p" => "pineapple", "A" => "banana", "B" => "banana"]) = False);
pragma Assert (Candidate (["p" => "pineapple", "5" => "banana", "a" => "apple"]) = False);
pragma Assert (Candidate (["Name" => "John", "Age" => "36", "City" => "Houston"]) = False);
pragma Assert (Candidate (["STATE" => "NC", "ZIP" => "12345"]) = True);
pragma Assert (Candidate (["fruit" => "Orange", "taste" => "Sweet"]) = True);
pragma Assert (Candidate ([]) = False);
end Main; | [
"\n end "
] |
HumanEval_96_count_up_to | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Count_Up_To (N : Integer) return Integer_Array;
-- Implement a function that takes an non-negative integer and returns an array of the first n
-- integers that are prime numbers and less than n.
-- for example:
-- >>> Count_Up_To (5)
-- [2, 3]
-- >>> Count_Up_To (11)
-- [2, 3, 5, 7]
-- >>> Count_Up_To (0)
-- []
-- >>> Count_Up_To (20)
-- [2, 3, 5, 7, 11, 13, 17, 19]
-- >>> Count_Up_To (1)
-- []
-- >>> Count_Up_To (18)
-- [2, 3, 5, 7, 11, 13, 17]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Count_Up_To (N : Integer) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_96_count_up_to.py | reworded |
end Count_Up_To;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer_Array renames Placeholder.Count_Up_To;
begin
pragma Assert (Candidate (5) = [2, 3]);
pragma Assert (Candidate (6) = [2, 3, 5]);
pragma Assert (Candidate (7) = [2, 3, 5]);
pragma Assert (Candidate (10) = [2, 3, 5, 7]);
pragma Assert (Candidate (0) = []);
pragma Assert (Candidate (22) = [2, 3, 5, 7, 11, 13, 17, 19]);
pragma Assert (Candidate (1) = []);
pragma Assert (Candidate (18) = [2, 3, 5, 7, 11, 13, 17]);
pragma Assert (Candidate (47) = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]);
pragma Assert (Candidate (101) = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]);
end Main; | [
"\n end "
] |
HumanEval_97_multiply | adb | pragma Ada_2022;
package Placeholder is
function Multiply (A : Integer; B : Integer) return Integer;
-- Complete the function that takes two integers and returns
-- the product of their unit digits.
-- Assume the input is always valid.
-- Examples:
-- >>> Multiply (148, 412)
-- 16
-- >>> Multiply (19, 28)
-- 72
-- >>> Multiply (2020, 1851)
-- 0
-- >>> Multiply (14, -15)
-- 20
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Multiply (A : Integer; B : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_97_multiply.py | reworded |
end Multiply;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (A : Integer; B : Integer) return Integer renames Placeholder.Multiply;
begin
pragma Assert (Candidate (148, 412) = 16);
pragma Assert (Candidate (19, 28) = 72);
pragma Assert (Candidate (2020, 1851) = 0);
pragma Assert (Candidate (14, -15) = 20);
pragma Assert (Candidate (76, 67) = 42);
pragma Assert (Candidate (17, 27) = 49);
pragma Assert (Candidate (0, 1) = 0);
pragma Assert (Candidate (0, 0) = 0);
end Main; | [
"\n end "
] |
HumanEval_98_count_upper | adb | pragma Ada_2022;
package Placeholder is
function Count_Upper (S : String) return Integer;
-- Given a string s, count the number of uppercase vowels in even indices.
-- For example:
-- >>> Count_Upper ("aBCdEf")
-- 1
-- >>> Count_Upper ("abcdefg")
-- 0
-- >>> Count_Upper ("dBBE")
-- 0
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Count_Upper (S : String) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_98_count_upper.py | reworded |
end Count_Upper;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (S : String) return Integer renames Placeholder.Count_Upper;
begin
pragma Assert (Candidate ("aBCdEf") = 1);
pragma Assert (Candidate ("abcdefg") = 0);
pragma Assert (Candidate ("dBBE") = 0);
pragma Assert (Candidate ("B") = 0);
pragma Assert (Candidate ("U") = 1);
pragma Assert (Candidate ("") = 0);
pragma Assert (Candidate ("EEEE") = 2);
end Main; | [
"\n end "
] |
HumanEval_99_closest_integer | adb | pragma Ada_2022;
package Placeholder is
function Closest_Integer (Value : String) return Integer;
-- Create a function that takes a value (string) representing a number
-- and returns the closest integer to it. If the number is equidistant
-- from two integers, round it away from zero.
-- Examples
-- >>> Closest_Integer ("10")
-- 10
-- >>> Closest_Integer ("15.3")
-- 15
-- Note:
-- Rounding away from zero means that if the given number is equidistant
-- from two integers, the one you should return is the one that is the
-- farthest from zero. For example closest_integer("14.5") should
-- return 15 and closest_integer("-14.5") should return -15.
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Closest_Integer (Value : String) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_99_closest_integer.py | reworded |
end Closest_Integer;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (Value : String) return Integer renames Placeholder.Closest_Integer;
begin
pragma Assert (Candidate ("10") = 10);
pragma Assert (Candidate ("14.5") = 15);
pragma Assert (Candidate ("-15.5") = -16);
pragma Assert (Candidate ("15.3") = 15);
pragma Assert (Candidate ("0") = 0);
end Main; | [
"\n end "
] |
HumanEval_100_make_a_pile | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Make_A_Pile (N : Integer) return Integer_Array;
-- Given a positive integer n, you have to make a pile of n levels of stones.
-- The first level has n stones.
-- The number of stones in the next level is:
-- - the next odd number if n is odd.
-- - the next even number if n is even.
-- Return the number of stones in each level in a Vector, where element at index
-- i represents the number of stones in the level (i+1).
-- Examples:
-- >>> Make_A_Pile (3)
-- [3, 5, 7]
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Make_A_Pile (N : Integer) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_100_make_a_pile.py | reworded |
end Make_A_Pile;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (N : Integer) return Integer_Array renames Placeholder.Make_A_Pile;
begin
pragma Assert (Candidate (3) = [3, 5, 7]);
pragma Assert (Candidate (4) = [4, 6, 8, 10]);
pragma Assert (Candidate (5) = [5, 7, 9, 11, 13]);
pragma Assert (Candidate (6) = [6, 8, 10, 12, 14, 16]);
pragma Assert (Candidate (8) = [8, 10, 12, 14, 16, 18, 20, 22]);
end Main; | [
"\n end "
] |
HumanEval_101_words_string | adb | pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Placeholder is
type Unbounded_String_Array is array (Positive range <>) of Unbounded_String;
function Words_String (S : String) return Unbounded_String_Array;
-- You will be given a string of words separated by commas or spaces. Your task is
-- to split the string into words and return an array of the words.
-- For example:
-- >>> Words_String ("Hi, my name is John")
-- [To_Unbounded_String ("Hi"), To_Unbounded_String ("my"), To_Unbounded_String ("name"), To_Unbounded_String ("is"), To_Unbounded_String ("John")]
-- >>> Words_String ("One, two, three, four, five, six")
-- [To_Unbounded_String ("One"), To_Unbounded_String ("two"), To_Unbounded_String ("three"), To_Unbounded_String ("four"), To_Unbounded_String ("five"), To_Unbounded_String ("six")]
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package body Placeholder is
function Words_String (S : String) return Unbounded_String_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_101_words_string.py | reworded |
end Words_String;
end Placeholder;
pragma Ada_2022;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (S : String) return Unbounded_String_Array renames Placeholder.Words_String;
begin
pragma Assert (Candidate ("Hi, my name is John") = [To_Unbounded_String ("Hi"), To_Unbounded_String ("my"), To_Unbounded_String ("name"), To_Unbounded_String ("is"), To_Unbounded_String ("John")]);
pragma Assert (Candidate ("One, two, three, four, five, six") = [To_Unbounded_String ("One"), To_Unbounded_String ("two"), To_Unbounded_String ("three"), To_Unbounded_String ("four"), To_Unbounded_String ("five"), To_Unbounded_String ("six")]);
pragma Assert (Candidate ("Hi, my name") = [To_Unbounded_String ("Hi"), To_Unbounded_String ("my"), To_Unbounded_String ("name")]);
pragma Assert (Candidate ("One,, two, three, four, five, six,") = [To_Unbounded_String ("One"), To_Unbounded_String ("two"), To_Unbounded_String ("three"), To_Unbounded_String ("four"), To_Unbounded_String ("five"), To_Unbounded_String ("six")]);
pragma Assert (Candidate ("") = []);
pragma Assert (Candidate ("ahmed , gamal") = [To_Unbounded_String ("ahmed"), To_Unbounded_String ("gamal")]);
end Main; | [
"\n end "
] |
HumanEval_102_choose_num | adb | pragma Ada_2022;
package Placeholder is
function Choose_Num (X : Integer; Y : Integer) return Integer;
-- This function takes two positive numbers x and y and returns the
-- biggest even integer number that is in the range [x, y] inclusive. If
-- there's no such number, then the function should return -1.
-- For example:
-- >>> Choose_Num (12, 15)
-- 14
-- >>> Choose_Num (13, 12)
-- -1
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Choose_Num (X : Integer; Y : Integer) return Integer | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_102_choose_num.py | reworded |
end Choose_Num;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (X : Integer; Y : Integer) return Integer renames Placeholder.Choose_Num;
begin
pragma Assert (Candidate (12, 15) = 14);
pragma Assert (Candidate (13, 12) = -1);
pragma Assert (Candidate (33, 12354) = 12354);
pragma Assert (Candidate (5234, 5233) = -1);
pragma Assert (Candidate (6, 29) = 28);
pragma Assert (Candidate (27, 10) = -1);
pragma Assert (Candidate (7, 7) = -1);
pragma Assert (Candidate (546, 546) = 546);
end Main; | [
"\n end "
] |
HumanEval_104_unique_digits | adb | pragma Ada_2022;
package Placeholder is
type Integer_Array is array (Positive range <>) of Integer;
function Unique_Digits (X : Integer_Array) return Integer_Array;
-- Given a Vector of positive integers x. return a sorted Vector of all
-- elements that hasn't any even digit.
-- Note: Returned Vector should be sorted in increasing order.
-- For example:
-- >>> Unique_Digits ([15, 33, 1422, 1])
-- [1, 15, 33]
-- >>> Unique_Digits ([152, 323, 1422, 10])
-- []
end Placeholder;
pragma Ada_2022;
package body Placeholder is
function Unique_Digits (X : Integer_Array) return Integer_Array | transform | /mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_104_unique_digits.py | reworded |
end Unique_Digits;
end Placeholder;
pragma Ada_2022;
with Placeholder; use Placeholder;
procedure Main is
function Candidate (X : Integer_Array) return Integer_Array renames Placeholder.Unique_Digits;
begin
pragma Assert (Candidate ([15, 33, 1422, 1]) = [1, 15, 33]);
pragma Assert (Candidate ([152, 323, 1422, 10]) = []);
pragma Assert (Candidate ([12345, 2033, 111, 151]) = [111, 151]);
pragma Assert (Candidate ([135, 103, 31]) = [31, 135]);
end Main; | [
"\n end "
] |
Dataset Card for MultiPL-E
Dataset Summary
MultiPL-E is a dataset for evaluating large language models for code generation that supports 22 programming languages. It takes the OpenAI HumanEval and the Mostly Basic Python Programs (MBPP) benchmarks and uses little compilers to translate them to other languages. It is easy to add support for new languages and benchmarks.
The dataset is divided into several configurations named SRCDATA-LANG, where SRCDATA is either "humaneval" or "mbpp" and LANG is one of the supported languages. We use the canonical file extension for each language to identify the language, e.g., "cpp" for C++, "lua" for Lua, "clj" for Clojure, and so on.
Using MultiPL-E
MultiPL-E is part of the BigCode Code Generation LM Harness. This is the easiest way to use MultiPL-E.
MultiPL-E has its own evaluation framework that supports proprietary models, the prompt ablations, more source benchmarks, and more recently added programming languages. See the MultiPL-E tutorial on how to use this framework directly.
The MultiPL-E Ablations
The MultiPL-E paper presented several ablations of the prompt for the original
set of programming languages. We do not include them in the current version of
MultiPL-E, but they are still available in this repository from revision
d23b094
or earlier. (You can optionally pass the revision to
datasets.load_dataset
.)
These are the prompt variations:
SRCDATA-LANG-keep is the same as SRCDATA-LANG, but the text of the prompt is totally unchanged. If the original prompt had Python doctests, they remain as Python instead of being translated to LANG. If the original prompt had Python-specific terminology, e.g., "list", it remains "list", instead of being translated, e.g., to "vector" for C++.
SRCDATA-LANG-transform transforms the doctests to LANG but leaves the natural language text of the prompt unchanged.
SRCDATA-LANG-removed removes the doctests from the prompt.
Note that MBPP does not have any doctests, so the "removed" and "transform" variations are not available for MBPP.
Changelog
Version 3.0
This is the first significant update since MultiPL-E was used in StarCoder 1.
- We no longer publish the MultiPL-E ablations, but they are available in
revision
d23b094
and earlier. - New programming languages supported:
- Clojure, thanks to Alex Miller
- Elixir, thanks to Marko Vukovic
- Haskell, thanks to https://github.com/Cajunvoodoo
- OCaml, thanks to John Gouwar
- Changes to existing HumanEval-based problems:
- Four Scala problems have fixed prompts/tests (12, 90, 128, 162).
- Some whitespace-only changes to problems for Racket (18 problems), R (36 problems), Julia (159 problems), and D (156 problems). We will try to avoid these kinds of changes in the future.
- The MBPP-based problems have changes analogous to the HumanEval-based problems.
See the directory diffs_v3.0
in the dataset repository for the diffs to
each prompt.
- Downloads last month
- 216