name
stringlengths
15
44
language
stringclasses
1 value
prompt
stringlengths
311
1.97k
doctests
stringclasses
1 value
original
stringlengths
108
137
prompt_terminology
stringclasses
1 value
tests
stringlengths
300
2.15k
stop_tokens
sequencelengths
1
1
HumanEval_105_by_length
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; type Unbounded_String_Array is array (Positive range <>) of Unbounded_String; function By_Length (Arr : Integer_Array) return Unbounded_String_Array; -- Given an array of integers, sort the integers that are between 1 and 9 inclusive, -- reverse the resulting array, and then replace each digit by its corresponding name from -- "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine". -- For example: -- >>> By_Length ([2, 1, 1, 4, 5, 8, 2, 3]) -- [To_Unbounded_String ("Eight"), To_Unbounded_String ("Five"), To_Unbounded_String ("Four"), To_Unbounded_String ("Three"), To_Unbounded_String ("Two"), To_Unbounded_String ("Two"), To_Unbounded_String ("One"), To_Unbounded_String ("One")] -- If the array is empty, return an empty array: -- >>> By_Length ([]) -- [] -- If the array has any strange number ignore it: -- >>> By_Length ([1, -1, 55]) -- [To_Unbounded_String ("One")] end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function By_Length (Arr : Integer_Array) return Unbounded_String_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_105_by_length.py
reworded
end By_Length; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (Arr : Integer_Array) return Unbounded_String_Array renames Placeholder.By_Length; begin pragma Assert (Candidate ([2, 1, 1, 4, 5, 8, 2, 3]) = [To_Unbounded_String ("Eight"), To_Unbounded_String ("Five"), To_Unbounded_String ("Four"), To_Unbounded_String ("Three"), To_Unbounded_String ("Two"), To_Unbounded_String ("Two"), To_Unbounded_String ("One"), To_Unbounded_String ("One")]); pragma Assert (Candidate ([]) = []); pragma Assert (Candidate ([1, -1, 55]) = [To_Unbounded_String ("One")]); pragma Assert (Candidate ([1, -1, 3, 2]) = [To_Unbounded_String ("Three"), To_Unbounded_String ("Two"), To_Unbounded_String ("One")]); pragma Assert (Candidate ([9, 4, 8]) = [To_Unbounded_String ("Nine"), To_Unbounded_String ("Eight"), To_Unbounded_String ("Four")]); end Main;
[ "\n end " ]
HumanEval_106_f
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function F (N : Integer) return Integer_Array; -- Implement the function f that takes n as a parameter, -- and returns a Vector of size n, such that the value of the element at index i is the factorial of i if i is even -- or the sum of numbers from 1 to i otherwise. -- i starts from 1. -- the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). -- Example: -- >>> F (5) -- [1, 2, 6, 24, 15] end Placeholder; pragma Ada_2022; package body Placeholder is function F (N : Integer) return Integer_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_106_f.py
reworded
end F; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (N : Integer) return Integer_Array renames Placeholder.F; begin pragma Assert (Candidate (5) = [1, 2, 6, 24, 15]); pragma Assert (Candidate (7) = [1, 2, 6, 24, 15, 720, 28]); pragma Assert (Candidate (1) = [1]); pragma Assert (Candidate (3) = [1, 2, 6]); end Main;
[ "\n end " ]
HumanEval_107_even_odd_palindrome
adb
pragma Ada_2022; package Placeholder is type Integer_Integer_Tuple is record Integer_1 : Integer; Integer_2 : Integer; end record; function Even_Odd_Palindrome (N : Integer) return Integer_Integer_Tuple; -- Given a positive integer n, return a record that has the number of even and odd -- integer palindromes that fall within the range(1, n), inclusive. -- Example 1: -- >>> Even_Odd_Palindrome (3) -- (1, 2) -- Explanation: -- Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. -- Example 2: -- >>> Even_Odd_Palindrome (12) -- (4, 6) -- Explanation: -- Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. -- Note: -- 1. 1 <= n <= 10^3 -- 2. returned record has the number of even and odd integer palindromes respectively. end Placeholder; pragma Ada_2022; package body Placeholder is function Even_Odd_Palindrome (N : Integer) return Integer_Integer_Tuple
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_107_even_odd_palindrome.py
reworded
end Even_Odd_Palindrome; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (N : Integer) return Integer_Integer_Tuple renames Placeholder.Even_Odd_Palindrome; begin pragma Assert (Candidate (123) = (8, 13)); pragma Assert (Candidate (12) = (4, 6)); pragma Assert (Candidate (3) = (1, 2)); pragma Assert (Candidate (63) = (6, 8)); pragma Assert (Candidate (25) = (5, 6)); pragma Assert (Candidate (19) = (4, 6)); pragma Assert (Candidate (9) = (4, 5)); pragma Assert (Candidate (1) = (0, 1)); end Main;
[ "\n end " ]
HumanEval_108_count_nums
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Count_Nums (Arr : Integer_Array) return Integer; -- Write a function count_nums which takes an array of integers and returns -- the number of elements which has a sum of digits > 0. -- If a number is negative, then its first signed digit will be negative: -- e.g. -123 has signed digits -1, 2, and 3. -- >>> Count_Nums ([]) -- 0 -- >>> Count_Nums ([-1, 11, -11]) -- 1 -- >>> Count_Nums ([1, 1, 2]) -- 3 end Placeholder; pragma Ada_2022; package body Placeholder is function Count_Nums (Arr : Integer_Array) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_108_count_nums.py
reworded
end Count_Nums; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Arr : Integer_Array) return Integer renames Placeholder.Count_Nums; begin pragma Assert (Candidate ([]) = 0); pragma Assert (Candidate ([-1, -2, 0]) = 0); pragma Assert (Candidate ([1, 1, 2, -2, 3, 4, 5]) = 6); pragma Assert (Candidate ([1, 6, 9, -6, 0, 1, 5]) = 5); pragma Assert (Candidate ([1, 100, 98, -7, 1, -1]) = 4); pragma Assert (Candidate ([12, 23, 34, -45, -56, 0]) = 5); pragma Assert (Candidate ([0, 1]) = 1); pragma Assert (Candidate ([1]) = 1); end Main;
[ "\n end " ]
HumanEval_109_move_one_ball
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Move_One_Ball (Arr : Integer_Array) return Boolean; -- We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The -- numbers in the array will be randomly ordered. Your task is to determine if -- it is possible to get an array sorted in non-decreasing order by performing -- the following operation on the given array: -- You are allowed to perform right shift operation any number of times. -- One right shift operation means shifting all elements of the array by one -- position in the right direction. The last element of the array will be moved to -- the starting position in the array i.e. 0th index. -- If it is possible to obtain the sorted array by performing the above operation -- then return True else return False. -- If the given array is empty then return True. -- Note: The given Vector is guaranteed to have unique elements. -- For Example: -- >>> Move_One_Ball ([3, 4, 5, 1, 2]) -- True -- Explanation: By performin 2 right shift operations, non-decreasing order can -- be achieved for the given array. -- >>> Move_One_Ball ([3, 5, 4, 1, 2]) -- False -- Explanation:It is not possible to get non-decreasing order for the given -- array by performing any number of right shift operations. end Placeholder; pragma Ada_2022; package body Placeholder is function Move_One_Ball (Arr : Integer_Array) return Boolean
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_109_move_one_ball.py
reworded
end Move_One_Ball; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Arr : Integer_Array) return Boolean renames Placeholder.Move_One_Ball; begin pragma Assert (Candidate ([3, 4, 5, 1, 2]) = True); pragma Assert (Candidate ([3, 5, 10, 1, 2]) = True); pragma Assert (Candidate ([4, 3, 1, 2]) = False); pragma Assert (Candidate ([3, 5, 4, 1, 2]) = False); pragma Assert (Candidate ([]) = True); end Main;
[ "\n end " ]
HumanEval_110_exchange
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Exchange (Lst1 : Integer_Array; Lst2 : Integer_Array) return String; -- In this problem, you will implement a function that takes two Vectors of numbers, -- and determines whether it is possible to perform an exchange of elements -- between them to make lst1 a Vector of only even numbers. -- There is no limit on the number of exchanged elements between lst1 and lst2. -- If it is possible to exchange elements between the lst1 and lst2 to make -- all the elements of lst1 to be even, return "YES". -- Otherwise, return "NO". -- For example: -- >>> Exchange ([1, 2, 3, 4], [1, 2, 3, 4]) -- "YES" -- >>> Exchange ([1, 2, 3, 4], [1, 5, 3, 4]) -- "NO" -- It is assumed that the input Vectors will be non-empty. end Placeholder; pragma Ada_2022; package body Placeholder is function Exchange (Lst1 : Integer_Array; Lst2 : Integer_Array) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_110_exchange.py
reworded
end Exchange; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Lst1 : Integer_Array; Lst2 : Integer_Array) return String renames Placeholder.Exchange; begin pragma Assert (Candidate ([1, 2, 3, 4], [1, 2, 3, 4]) = "YES"); pragma Assert (Candidate ([1, 2, 3, 4], [1, 5, 3, 4]) = "NO"); pragma Assert (Candidate ([1, 2, 3, 4], [2, 1, 4, 3]) = "YES"); pragma Assert (Candidate ([5, 7, 3], [2, 6, 4]) = "YES"); pragma Assert (Candidate ([5, 7, 3], [2, 6, 3]) = "NO"); pragma Assert (Candidate ([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) = "NO"); pragma Assert (Candidate ([100, 200], [200, 200]) = "YES"); end Main;
[ "\n end " ]
HumanEval_111_histogram
adb
pragma Ada_2022; with Ada.Containers.Indefinite_Ordered_Maps; package Placeholder is package String_Integer_Dict is new Ada.Containers.Indefinite_Ordered_Maps (Key_Type => String, Element_Type => Integer); use String_Integer_Dict; function Histogram (Test : String) return String_Integer_Dict.Map; -- Given a string representing a space separated lowercase letters, return a Map -- of the letter with the most repetition and containing the corresponding count. -- If several letters have the same occurrence, return all of them. -- Example: -- >>> Histogram ("a b c") -- ["a" => 1, "b" => 1, "c" => 1] -- >>> Histogram ("a b b a") -- ["a" => 2, "b" => 2] -- >>> Histogram ("a b c a b") -- ["a" => 2, "b" => 2] -- >>> Histogram ("b b b b a") -- ["b" => 4] -- >>> Histogram ("") -- [] end Placeholder; pragma Ada_2022; with Ada.Containers.Indefinite_Ordered_Maps; package body Placeholder is function Histogram (Test : String) return String_Integer_Dict.Map
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_111_histogram.py
reworded
end Histogram; end Placeholder; pragma Ada_2022; with Ada.Containers.Indefinite_Ordered_Maps; with Placeholder; use Placeholder; procedure Main is use String_Integer_Dict; function Candidate (Test : String) return String_Integer_Dict.Map renames Placeholder.Histogram; begin pragma Assert (Candidate ("a b b a") = ["a" => 2, "b" => 2]); pragma Assert (Candidate ("a b c a b") = ["a" => 2, "b" => 2]); pragma Assert (Candidate ("a b c d g") = ["a" => 1, "b" => 1, "c" => 1, "d" => 1, "g" => 1]); pragma Assert (Candidate ("r t g") = ["r" => 1, "t" => 1, "g" => 1]); pragma Assert (Candidate ("b b b b a") = ["b" => 4]); pragma Assert (Candidate ("r t g") = ["r" => 1, "t" => 1, "g" => 1]); pragma Assert (Candidate ("") = []); pragma Assert (Candidate ("a") = ["a" => 1]); end Main;
[ "\n end " ]
HumanEval_112_reverse_delete
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Unbounded_String_Boolean_Tuple is record Unbounded_String_1 : Unbounded_String; Boolean_2 : Boolean; end record; function Reverse_Delete (S : String; C : String) return Unbounded_String_Boolean_Tuple; -- Task -- We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c -- then check if the result string is palindrome. -- A string is called palindrome if it reads the same backward as forward. -- You should return a record containing the result string and True/False for the check. -- Example -- >>> Reverse_Delete ("abcde", "ae") -- (To_Unbounded_String ("bcd"), False) -- >>> Reverse_Delete ("abcdef", "b") -- (To_Unbounded_String ("acdef"), False) -- >>> Reverse_Delete ("abcdedcba", "ab") -- (To_Unbounded_String ("cdedc"), True) end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function Reverse_Delete (S : String; C : String) return Unbounded_String_Boolean_Tuple
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_112_reverse_delete.py
reworded
end Reverse_Delete; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (S : String; C : String) return Unbounded_String_Boolean_Tuple renames Placeholder.Reverse_Delete; begin pragma Assert (Candidate ("abcde", "ae") = (To_Unbounded_String ("bcd"), False)); pragma Assert (Candidate ("abcdef", "b") = (To_Unbounded_String ("acdef"), False)); pragma Assert (Candidate ("abcdedcba", "ab") = (To_Unbounded_String ("cdedc"), True)); pragma Assert (Candidate ("dwik", "w") = (To_Unbounded_String ("dik"), False)); pragma Assert (Candidate ("a", "a") = ("", True)); pragma Assert (Candidate ("abcdedcba", "") = (To_Unbounded_String ("abcdedcba"), True)); pragma Assert (Candidate ("abcdedcba", "v") = (To_Unbounded_String ("abcdedcba"), True)); pragma Assert (Candidate ("vabba", "v") = (To_Unbounded_String ("abba"), True)); pragma Assert (Candidate ("mamma", "mia") = ("", True)); end Main;
[ "\n end " ]
HumanEval_113_odd_count
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Unbounded_String_Array is array (Positive range <>) of Unbounded_String; function Odd_Count (Lst : Unbounded_String_Array) return Unbounded_String_Array; -- Given a Vector of strings, where each string consists of only digits, return a Vector. -- Each element i of the output should be "the number of odd elements in the -- string i of the input." where all the i's should be replaced by the number -- of odd digits in the i'th string of the input. -- >>> Odd_Count ([To_Unbounded_String ("1234567")]) -- [To_Unbounded_String ("the number of odd elements 4n the str4ng 4 of the 4nput.")] -- >>> Odd_Count ([To_Unbounded_String ("3"), To_Unbounded_String ("11111111")]) -- [To_Unbounded_String ("the number of odd elements 1n the str1ng 1 of the 1nput."), To_Unbounded_String ("the number of odd elements 8n the str8ng 8 of the 8nput.")] end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function Odd_Count (Lst : Unbounded_String_Array) return Unbounded_String_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_113_odd_count.py
reworded
end Odd_Count; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (Lst : Unbounded_String_Array) return Unbounded_String_Array renames Placeholder.Odd_Count; begin pragma Assert (Candidate ([To_Unbounded_String ("1234567")]) = [To_Unbounded_String ("the number of odd elements 4n the str4ng 4 of the 4nput.")]); pragma Assert (Candidate ([To_Unbounded_String ("3"), To_Unbounded_String ("11111111")]) = [To_Unbounded_String ("the number of odd elements 1n the str1ng 1 of the 1nput."), To_Unbounded_String ("the number of odd elements 8n the str8ng 8 of the 8nput.")]); pragma Assert (Candidate ([To_Unbounded_String ("271"), To_Unbounded_String ("137"), To_Unbounded_String ("314")]) = [To_Unbounded_String ("the number of odd elements 2n the str2ng 2 of the 2nput."), To_Unbounded_String ("the number of odd elements 3n the str3ng 3 of the 3nput."), To_Unbounded_String ("the number of odd elements 2n the str2ng 2 of the 2nput.")]); end Main;
[ "\n end " ]
HumanEval_114_minSubArraySum
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Min_Sub_Array_Sum (Nums : Integer_Array) return Integer; -- Given an array of integers nums, find the minimum sum of any non-empty sub-array -- of nums. -- Example -- >>> Minsubarraysum ([2, 3, 4, 1, 2, 4]) -- 1 -- >>> Minsubarraysum ([-1, -2, -3]) -- -6 end Placeholder; pragma Ada_2022; package body Placeholder is function Min_Sub_Array_Sum (Nums : Integer_Array) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_114_minSubArraySum.py
reworded
end Min_Sub_Array_Sum; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Nums : Integer_Array) return Integer renames Placeholder.Min_Sub_Array_Sum; begin pragma Assert (Candidate ([2, 3, 4, 1, 2, 4]) = 1); pragma Assert (Candidate ([-1, -2, -3]) = -6); pragma Assert (Candidate ([-1, -2, -3, 2, -10]) = -14); pragma Assert (Candidate ([-9999999999999999]) = -9999999999999999); pragma Assert (Candidate ([0, 10, 20, 1000000]) = 0); pragma Assert (Candidate ([-1, -2, -3, 10, -5]) = -6); pragma Assert (Candidate ([100, -1, -2, -3, 10, -5]) = -6); pragma Assert (Candidate ([10, 11, 13, 8, 3, 4]) = 3); pragma Assert (Candidate ([100, -33, 32, -1, 0, -2]) = -33); pragma Assert (Candidate ([-10]) = -10); pragma Assert (Candidate ([7]) = 7); pragma Assert (Candidate ([1, -1]) = -1); end Main;
[ "\n end " ]
HumanEval_115_max_fill
adb
pragma Ada_2022; with Ada.Containers.Vectors; package Placeholder is package Integer_Vector is new Ada.Containers.Vectors (Index_Type => Positive, Element_Type => Integer); use Integer_Vector; type Integer_Vector_Vector_Array is array (Positive range <>) of Integer_Vector.Vector; function Max_Fill (Grid : Integer_Vector_Vector_Array; Capacity : Integer) return Integer; -- You are given a rectangular grid of wells. Each row represents a single well, -- and each 1 in a row represents a single unit of water. -- Each well has a corresponding bucket that can be used to extract water from it, -- and all buckets have the same capacity. -- Your task is to use the buckets to empty the wells. -- Output the number of times you need to lower the buckets. -- Example 1: -- >>> Max_Fill ([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], 1) -- 6 -- Example 2: -- >>> Max_Fill ([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], 2) -- 5 -- Example 3: -- >>> Max_Fill ([[0, 0, 0], [0, 0, 0]], 5) -- 0 -- Constraints: -- * all wells have the same length -- * 1 <= grid.length <= 10^2 -- * 1 <= grid[:,1].length <= 10^2 -- * grid[i][j] -> 0 | 1 -- * 1 <= capacity <= 10 end Placeholder; pragma Ada_2022; with Ada.Containers.Vectors; package body Placeholder is function Max_Fill (Grid : Integer_Vector_Vector_Array; Capacity : Integer) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_115_max_fill.py
reworded
end Max_Fill; end Placeholder; pragma Ada_2022; with Ada.Containers.Vectors; with Placeholder; use Placeholder; procedure Main is use Integer_Vector; function Candidate (Grid : Integer_Vector_Vector_Array; Capacity : Integer) return Integer renames Placeholder.Max_Fill; begin pragma Assert (Candidate ([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], 1) = 6); pragma Assert (Candidate ([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], 2) = 5); pragma Assert (Candidate ([[0, 0, 0], [0, 0, 0]], 5) = 0); pragma Assert (Candidate ([[1, 1, 1, 1], [1, 1, 1, 1]], 2) = 4); pragma Assert (Candidate ([[1, 1, 1, 1], [1, 1, 1, 1]], 9) = 2); end Main;
[ "\n end " ]
HumanEval_116_sort_array
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Sort_Array (Arr : Integer_Array) return Integer_Array; -- In this Kata, you have to sort an array of non-negative integers according to -- number of ones in their binary representation in ascending order. -- For similar number of ones, sort based on decimal value. -- It must be implemented like this: -- >>> Sort_Array ([1, 5, 2, 3, 4]) -- [1, 2, 3, 4, 5] -- >>> Sort_Array ([-2, -3, -4, -5, -6]) -- [-6, -5, -4, -3, -2] -- >>> Sort_Array ([1, 0, 2, 3, 4]) -- [0, 1, 2, 3, 4] end Placeholder; pragma Ada_2022; package body Placeholder is function Sort_Array (Arr : Integer_Array) return Integer_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_116_sort_array.py
reworded
end Sort_Array; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Arr : Integer_Array) return Integer_Array renames Placeholder.Sort_Array; begin pragma Assert (Candidate ([1, 5, 2, 3, 4]) = [1, 2, 4, 3, 5]); pragma Assert (Candidate ([-2, -3, -4, -5, -6]) = [-4, -2, -6, -5, -3]); pragma Assert (Candidate ([1, 0, 2, 3, 4]) = [0, 1, 2, 4, 3]); pragma Assert (Candidate ([]) = []); pragma Assert (Candidate ([2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) = [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]); pragma Assert (Candidate ([3, 6, 44, 12, 32, 5]) = [32, 3, 5, 6, 12, 44]); pragma Assert (Candidate ([2, 4, 8, 16, 32]) = [2, 4, 8, 16, 32]); pragma Assert (Candidate ([2, 4, 8, 16, 32]) = [2, 4, 8, 16, 32]); end Main;
[ "\n end " ]
HumanEval_117_select_words
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Unbounded_String_Array is array (Positive range <>) of Unbounded_String; function Select_Words (S : String; N : Integer) return Unbounded_String_Array; -- Given a string s and a natural number n, you have been tasked to implement -- a function that returns a Vector of all words from string s that contain exactly -- n consonants, in order these words appear in the string s. -- If the string s is empty then the function should return an empty Vector. -- Note: you may assume the input string contains only letters and spaces. -- Examples: -- >>> Select_Words ("Mary had a little lamb", 4) -- [To_Unbounded_String ("little")] -- >>> Select_Words ("Mary had a little lamb", 3) -- [To_Unbounded_String ("Mary"), To_Unbounded_String ("lamb")] -- >>> Select_Words ("simple white space", 2) -- [] -- >>> Select_Words ("Hello world", 4) -- [To_Unbounded_String ("world")] -- >>> Select_Words ("Uncle sam", 3) -- [To_Unbounded_String ("Uncle")] end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function Select_Words (S : String; N : Integer) return Unbounded_String_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_117_select_words.py
reworded
end Select_Words; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (S : String; N : Integer) return Unbounded_String_Array renames Placeholder.Select_Words; begin pragma Assert (Candidate ("Mary had a little lamb", 4) = [To_Unbounded_String ("little")]); pragma Assert (Candidate ("Mary had a little lamb", 3) = [To_Unbounded_String ("Mary"), To_Unbounded_String ("lamb")]); pragma Assert (Candidate ("simple white space", 2) = []); pragma Assert (Candidate ("Hello world", 4) = [To_Unbounded_String ("world")]); pragma Assert (Candidate ("Uncle sam", 3) = [To_Unbounded_String ("Uncle")]); pragma Assert (Candidate ("", 4) = []); pragma Assert (Candidate ("a b c d e f", 1) = [To_Unbounded_String ("b"), To_Unbounded_String ("c"), To_Unbounded_String ("d"), To_Unbounded_String ("f")]); end Main;
[ "\n end " ]
HumanEval_118_get_closest_vowel
adb
pragma Ada_2022; package Placeholder is function Get_Closest_Vowel (Word : String) return String; -- You are given a word. Your task is to find the closest vowel that stands between -- two consonants from the right side of the word (case sensitive). -- Vowels in the beginning and ending doesn't count. Return empty string if you didn't -- find any vowel met the above condition. -- You may assume that the given string contains English letter only. -- Example: -- >>> Get_Closest_Vowel ("yogurt") -- "u" -- >>> Get_Closest_Vowel ("FULL") -- "U" -- >>> Get_Closest_Vowel ("quick") -- "" -- >>> Get_Closest_Vowel ("ab") -- "" end Placeholder; pragma Ada_2022; package body Placeholder is function Get_Closest_Vowel (Word : String) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_118_get_closest_vowel.py
reworded
end Get_Closest_Vowel; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Word : String) return String renames Placeholder.Get_Closest_Vowel; begin pragma Assert (Candidate ("yogurt") = "u"); pragma Assert (Candidate ("full") = "u"); pragma Assert (Candidate ("easy") = ""); pragma Assert (Candidate ("eAsy") = ""); pragma Assert (Candidate ("ali") = ""); pragma Assert (Candidate ("bad") = "a"); pragma Assert (Candidate ("most") = "o"); pragma Assert (Candidate ("ab") = ""); pragma Assert (Candidate ("ba") = ""); pragma Assert (Candidate ("quick") = ""); pragma Assert (Candidate ("anime") = "i"); pragma Assert (Candidate ("Asia") = ""); pragma Assert (Candidate ("Above") = "o"); end Main;
[ "\n end " ]
HumanEval_119_match_parens
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Unbounded_String_Array is array (Positive range <>) of Unbounded_String; function Match_Parens (Lst : Unbounded_String_Array) return String; -- You are given a Vector of two strings, both strings consist of open -- parentheses '(' or close parentheses ')' only. -- Your job is to check if it is possible to concatenate the two strings in -- some order, that the resulting string will be good. -- A string S is considered to be good if and only if all parentheses in S -- are balanced. For example: the string '(())()' is good, while the string -- '())' is not. -- Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. -- Examples: -- >>> Match_Parens ([To_Unbounded_String ("()("), To_Unbounded_String (")")]) -- "Yes" -- >>> Match_Parens ([To_Unbounded_String (")"), To_Unbounded_String (")")]) -- "No" end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function Match_Parens (Lst : Unbounded_String_Array) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_119_match_parens.py
reworded
end Match_Parens; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (Lst : Unbounded_String_Array) return String renames Placeholder.Match_Parens; begin pragma Assert (Candidate ([To_Unbounded_String ("()("), To_Unbounded_String (")")]) = "Yes"); pragma Assert (Candidate ([To_Unbounded_String (")"), To_Unbounded_String (")")]) = "No"); pragma Assert (Candidate ([To_Unbounded_String ("(()(())"), To_Unbounded_String ("())())")]) = "No"); pragma Assert (Candidate ([To_Unbounded_String (")())"), To_Unbounded_String ("(()()(")]) = "Yes"); pragma Assert (Candidate ([To_Unbounded_String ("(())))"), To_Unbounded_String ("(()())((")]) = "Yes"); pragma Assert (Candidate ([To_Unbounded_String ("()"), To_Unbounded_String ("())")]) = "No"); pragma Assert (Candidate ([To_Unbounded_String ("(()("), To_Unbounded_String ("()))()")]) = "Yes"); pragma Assert (Candidate ([To_Unbounded_String ("(((("), To_Unbounded_String ("((())")]) = "No"); pragma Assert (Candidate ([To_Unbounded_String (")(()"), To_Unbounded_String ("(()(")]) = "No"); pragma Assert (Candidate ([To_Unbounded_String (")("), To_Unbounded_String (")(")]) = "No"); pragma Assert (Candidate ([To_Unbounded_String ("("), To_Unbounded_String (")")]) = "Yes"); pragma Assert (Candidate ([To_Unbounded_String (")"), To_Unbounded_String ("(")]) = "Yes"); end Main;
[ "\n end " ]
HumanEval_120_maximum
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Maximum (Arr : Integer_Array; K : Integer) return Integer_Array; -- Given an array arr of integers and a positive integer k, return a sorted Vector -- of length k with the maximum k numbers in arr. -- Example 1: -- >>> Maximum ([-3, -4, 5], 3) -- [-4, -3, 5] -- Example 2: -- >>> Maximum ([4, -4, 4], 2) -- [4, 4] -- Example 3: -- >>> Maximum ([-3, 2, 1, 2, -1, -2, 1], 1) -- [2] -- Note: -- 1. The length of the array will be in the range of [1, 1000]. -- 2. The elements in the array will be in the range of [-1000, 1000]. -- 3. 0 <= k <= len(arr) end Placeholder; pragma Ada_2022; package body Placeholder is function Maximum (Arr : Integer_Array; K : Integer) return Integer_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_120_maximum.py
reworded
end Maximum; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Arr : Integer_Array; K : Integer) return Integer_Array renames Placeholder.Maximum; begin pragma Assert (Candidate ([-3, -4, 5], 3) = [-4, -3, 5]); pragma Assert (Candidate ([4, -4, 4], 2) = [4, 4]); pragma Assert (Candidate ([-3, 2, 1, 2, -1, -2, 1], 1) = [2]); pragma Assert (Candidate ([123, -123, 20, 0, 1, 2, -3], 3) = [2, 20, 123]); pragma Assert (Candidate ([-123, 20, 0, 1, 2, -3], 4) = [0, 1, 2, 20]); pragma Assert (Candidate ([5, 15, 0, 3, -13, -8, 0], 7) = [-13, -8, 0, 0, 3, 5, 15]); pragma Assert (Candidate ([-1, 0, 2, 5, 3, -10], 2) = [3, 5]); pragma Assert (Candidate ([1, 0, 5, -7], 1) = [5]); pragma Assert (Candidate ([4, -4], 2) = [-4, 4]); pragma Assert (Candidate ([-10, 10], 2) = [-10, 10]); pragma Assert (Candidate ([1, 2, 3, -23, 243, -400, 0], 0) = []); end Main;
[ "\n end " ]
HumanEval_121_solution
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Solution (Lst : Integer_Array) return Integer; -- Given a non-empty Vector of integers, return the sum of all of the odd elements that are in even positions. -- Examples -- >>> Solution ([5, 8, 7, 1]) -- 12 -- >>> Solution ([3, 3, 3, 3, 3]) -- 9 -- >>> Solution ([30, 13, 24, 321]) -- 0 end Placeholder; pragma Ada_2022; package body Placeholder is function Solution (Lst : Integer_Array) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_121_solution.py
reworded
end Solution; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Lst : Integer_Array) return Integer renames Placeholder.Solution; begin pragma Assert (Candidate ([5, 8, 7, 1]) = 12); pragma Assert (Candidate ([3, 3, 3, 3, 3]) = 9); pragma Assert (Candidate ([30, 13, 24, 321]) = 0); pragma Assert (Candidate ([5, 9]) = 5); pragma Assert (Candidate ([2, 4, 8]) = 0); pragma Assert (Candidate ([30, 13, 23, 32]) = 23); pragma Assert (Candidate ([3, 13, 2, 9]) = 3); end Main;
[ "\n end " ]
HumanEval_122_add_elements
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Add_Elements (Arr : Integer_Array; K : Integer) return Integer; -- Given a non-empty array of integers arr and an integer k, return -- the sum of the elements with at most two digits from the first k elements of arr. -- Example: -- >>> Add_Elements ([111, 21, 3, 4000, 5, 6, 7, 8, 9], 4) -- 24 -- Constraints: -- 1. 1 <= len(arr) <= 100 -- 2. 1 <= k <= len(arr) end Placeholder; pragma Ada_2022; package body Placeholder is function Add_Elements (Arr : Integer_Array; K : Integer) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_122_add_elements.py
reworded
end Add_Elements; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Arr : Integer_Array; K : Integer) return Integer renames Placeholder.Add_Elements; begin pragma Assert (Candidate ([1, -2, -3, 41, 57, 76, 87, 88, 99], 3) = -4); pragma Assert (Candidate ([111, 121, 3, 4000, 5, 6], 2) = 0); pragma Assert (Candidate ([11, 21, 3, 90, 5, 6, 7, 8, 9], 4) = 125); pragma Assert (Candidate ([111, 21, 3, 4000, 5, 6, 7, 8, 9], 4) = 24); pragma Assert (Candidate ([1], 1) = 1); end Main;
[ "\n end " ]
HumanEval_123_get_odd_collatz
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Get_Odd_Collatz (N : Integer) return Integer_Array; -- Given a positive integer n, return a sorted Vector that has the odd numbers in collatz sequence. -- The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined -- as follows: start with any positive integer n. Then each term is obtained from the -- previous term as follows: if the previous term is even, the next term is one half of -- the previous term. If the previous term is odd, the next term is 3 times the previous -- term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. -- Note: -- 1. Collatz(1) is [1]. -- 2. returned Vector sorted in increasing order. -- For example: -- get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. -- >>> Get_Odd_Collatz (5) -- [1, 5] end Placeholder; pragma Ada_2022; package body Placeholder is function Get_Odd_Collatz (N : Integer) return Integer_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_123_get_odd_collatz.py
reworded
end Get_Odd_Collatz; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (N : Integer) return Integer_Array renames Placeholder.Get_Odd_Collatz; begin pragma Assert (Candidate (14) = [1, 5, 7, 11, 13, 17]); pragma Assert (Candidate (5) = [1, 5]); pragma Assert (Candidate (12) = [1, 3, 5]); pragma Assert (Candidate (1) = [1]); end Main;
[ "\n end " ]
HumanEval_124_valid_date
adb
pragma Ada_2022; package Placeholder is function Valid_Date (Date : String) return Boolean; -- You have to write a function which validates a given date string and -- returns True if the date is valid otherwise False. -- The date is valid if all of the following rules are satisfied: -- 1. The date string is not empty. -- 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. -- 3. The months should not be less than 1 or higher than 12. -- 4. The date should be in the format: mm-dd-yyyy -- >>> Valid_Date ("03-11-2000") -- True -- >>> Valid_Date ("15-01-2012") -- False -- >>> Valid_Date ("04-0-2040") -- False -- >>> Valid_Date ("06-04-2020") -- True -- >>> Valid_Date ("06/04/2020") -- False end Placeholder; pragma Ada_2022; package body Placeholder is function Valid_Date (Date : String) return Boolean
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_124_valid_date.py
reworded
end Valid_Date; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Date : String) return Boolean renames Placeholder.Valid_Date; begin pragma Assert (Candidate ("03-11-2000") = True); pragma Assert (Candidate ("15-01-2012") = False); pragma Assert (Candidate ("04-0-2040") = False); pragma Assert (Candidate ("06-04-2020") = True); pragma Assert (Candidate ("01-01-2007") = True); pragma Assert (Candidate ("03-32-2011") = False); pragma Assert (Candidate ("") = False); pragma Assert (Candidate ("04-31-3000") = False); pragma Assert (Candidate ("06-06-2005") = True); pragma Assert (Candidate ("21-31-2000") = False); pragma Assert (Candidate ("04-12-2003") = True); pragma Assert (Candidate ("04122003") = False); pragma Assert (Candidate ("20030412") = False); pragma Assert (Candidate ("2003-04") = False); pragma Assert (Candidate ("2003-04-12") = False); pragma Assert (Candidate ("04-2003") = False); end Main;
[ "\n end " ]
HumanEval_126_is_sorted
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Is_Sorted (Lst : Integer_Array) return Boolean; -- Given a Vector of numbers, return whether or not they are sorted -- in ascending order. If Vector has more than 1 duplicate of the same -- number, return False. Assume no negative numbers and only integers. -- Examples -- >>> Is_Sorted ([5]) -- True -- >>> Is_Sorted ([1, 2, 3, 4, 5]) -- True -- >>> Is_Sorted ([1, 3, 2, 4, 5]) -- False -- >>> Is_Sorted ([1, 2, 3, 4, 5, 6]) -- True -- >>> Is_Sorted ([1, 2, 3, 4, 5, 6, 7]) -- True -- >>> Is_Sorted ([1, 3, 2, 4, 5, 6, 7]) -- False -- >>> Is_Sorted ([1, 2, 2, 3, 3, 4]) -- True -- >>> Is_Sorted ([1, 2, 2, 2, 3, 4]) -- False end Placeholder; pragma Ada_2022; package body Placeholder is function Is_Sorted (Lst : Integer_Array) return Boolean
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_126_is_sorted.py
reworded
end Is_Sorted; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Lst : Integer_Array) return Boolean renames Placeholder.Is_Sorted; begin pragma Assert (Candidate ([5]) = True); pragma Assert (Candidate ([1, 2, 3, 4, 5]) = True); pragma Assert (Candidate ([1, 3, 2, 4, 5]) = False); pragma Assert (Candidate ([1, 2, 3, 4, 5, 6]) = True); pragma Assert (Candidate ([1, 2, 3, 4, 5, 6, 7]) = True); pragma Assert (Candidate ([1, 3, 2, 4, 5, 6, 7]) = False); pragma Assert (Candidate ([]) = True); pragma Assert (Candidate ([1]) = True); pragma Assert (Candidate ([3, 2, 1]) = False); pragma Assert (Candidate ([1, 2, 2, 2, 3, 4]) = False); pragma Assert (Candidate ([1, 2, 3, 3, 3, 4]) = False); pragma Assert (Candidate ([1, 2, 2, 3, 3, 4]) = True); pragma Assert (Candidate ([1, 2, 3, 4]) = True); end Main;
[ "\n end " ]
HumanEval_127_intersection
adb
pragma Ada_2022; package Placeholder is type Integer_Integer_Tuple is record Integer_1 : Integer; Integer_2 : Integer; end record; function Intersection (Interval1 : Integer_Integer_Tuple; Interval2 : Integer_Integer_Tuple) return String; -- You are given two intervals, -- where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). -- The given intervals are closed which means that the interval (start, end) -- includes both start and end. -- For each given interval, it is assumed that its start is less or equal its end. -- Your task is to determine whether the length of intersection of these two -- intervals is a prime number. -- Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) -- which its length is 1, which not a prime number. -- If the length of the intersection is a prime number, return "YES", -- otherwise, return "NO". -- If the two intervals don't intersect, return "NO". -- [input/output] samples: -- >>> Intersection ((1, 2), (2, 3)) -- "NO" -- >>> Intersection ((-1, 1), (0, 4)) -- "NO" -- >>> Intersection ((-3, -1), (-5, 5)) -- "YES" end Placeholder; pragma Ada_2022; package body Placeholder is function Intersection (Interval1 : Integer_Integer_Tuple; Interval2 : Integer_Integer_Tuple) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_127_intersection.py
reworded
end Intersection; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Interval1 : Integer_Integer_Tuple; Interval2 : Integer_Integer_Tuple) return String renames Placeholder.Intersection; begin pragma Assert (Candidate ((1, 2), (2, 3)) = "NO"); pragma Assert (Candidate ((-1, 1), (0, 4)) = "NO"); pragma Assert (Candidate ((-3, -1), (-5, 5)) = "YES"); pragma Assert (Candidate ((-2, 2), (-4, 0)) = "YES"); pragma Assert (Candidate ((-11, 2), (-1, -1)) = "NO"); pragma Assert (Candidate ((1, 2), (3, 5)) = "NO"); pragma Assert (Candidate ((1, 2), (1, 2)) = "NO"); pragma Assert (Candidate ((-2, -2), (-3, -2)) = "NO"); end Main;
[ "\n end " ]
HumanEval_128_prod_signs
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; type Integer_Option (Valid : Boolean := False) is record case Valid is when True => Value : Integer; when False => null; end case; end record; function Prod_Signs (Arr : Integer_Array) return Integer_Option; -- You are given an array arr of integers and you need to return -- sum of magnitudes of integers multiplied by product of all signs -- of each number in the array, represented by 1, -1 or 0. -- Note: return null for empty arr. -- Example: -- >>> Prod_Signs ([1, 2, 2, -4]) -- (Valid => True, Value => 9) -- >>> Prod_Signs ([0, 1]) -- (Valid => True, Value => 0) -- >>> Prod_Signs ([]) -- (Valid => False) end Placeholder; pragma Ada_2022; package body Placeholder is function Prod_Signs (Arr : Integer_Array) return Integer_Option
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_128_prod_signs.py
reworded
end Prod_Signs; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Arr : Integer_Array) return Integer_Option renames Placeholder.Prod_Signs; begin pragma Assert (Candidate ([1, 2, 2, -4]) = (Valid => True, Value => -9)); pragma Assert (Candidate ([0, 1]) = (Valid => True, Value => 0)); pragma Assert (Candidate ([1, 1, 1, 2, 3, -1, 1]) = (Valid => True, Value => -10)); pragma Assert (Candidate ([]) = (Valid => False)); pragma Assert (Candidate ([2, 4, 1, 2, -1, -1, 9]) = (Valid => True, Value => 20)); pragma Assert (Candidate ([-1, 1, -1, 1]) = (Valid => True, Value => 4)); pragma Assert (Candidate ([-1, 1, 1, 1]) = (Valid => True, Value => -4)); pragma Assert (Candidate ([-1, 1, 1, 0]) = (Valid => True, Value => 0)); end Main;
[ "\n end " ]
HumanEval_129_minPath
adb
pragma Ada_2022; with Ada.Containers.Vectors; package Placeholder is package Integer_Vector is new Ada.Containers.Vectors (Index_Type => Positive, Element_Type => Integer); use Integer_Vector; type Integer_Vector_Vector_Array is array (Positive range <>) of Integer_Vector.Vector; type Integer_Array is array (Positive range <>) of Integer; function Min_Path (Grid : Integer_Vector_Vector_Array; K : Integer) return Integer_Array; -- Given a grid with N rows and N columns (N >= 2) and a positive integer k, -- each cell of the grid contains a value. Every integer in the range [1, N * N] -- inclusive appears exactly once on the cells of the grid. -- You have to find the minimum path of length k in the grid. You can start -- from any cell, and in each step you can move to any of the neighbor cells, -- in other words, you can go to cells which share an edge with you current -- cell. -- Please note that a path of length k means visiting exactly k cells (not -- necessarily distinct). -- You CANNOT go off the grid. -- A path A (of length k) is considered less than a path B (of length k) if -- after making the ordered Vectors of the values on the cells that A and B go -- through (let's call them lst_A and lst_B), lst_A is lexicographically less -- than lst_B, in other words, there exist an integer index i (1 <= i <= k) -- such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have -- lst_A[j] = lst_B[j]. -- It is guaranteed that the answer is unique. -- Return an ordered Vector of the values on the cells that the minimum path go through. -- Examples: -- >>> Minpath ([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) -- [1, 2, 1] -- >>> Minpath ([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) -- [1] end Placeholder; pragma Ada_2022; with Ada.Containers.Vectors; package body Placeholder is function Min_Path (Grid : Integer_Vector_Vector_Array; K : Integer) return Integer_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_129_minPath.py
reworded
end Min_Path; end Placeholder; pragma Ada_2022; with Ada.Containers.Vectors; with Placeholder; use Placeholder; procedure Main is use Integer_Vector; function Candidate (Grid : Integer_Vector_Vector_Array; K : Integer) return Integer_Array renames Placeholder.Min_Path; begin pragma Assert (Candidate ([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) = [1, 2, 1]); pragma Assert (Candidate ([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) = [1]); pragma Assert (Candidate ([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) = [1, 2, 1, 2]); pragma Assert (Candidate ([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) = [1, 10, 1, 10, 1, 10, 1]); pragma Assert (Candidate ([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) = [1, 7, 1, 7, 1]); pragma Assert (Candidate ([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) = [1, 6, 1, 6, 1, 6, 1, 6, 1]); pragma Assert (Candidate ([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) = [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]); pragma Assert (Candidate ([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) = [1, 3, 1, 3, 1, 3, 1, 3]); pragma Assert (Candidate ([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) = [1, 5, 1, 5, 1, 5, 1, 5]); pragma Assert (Candidate ([[1, 2], [3, 4]], 10) = [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]); pragma Assert (Candidate ([[1, 3], [3, 2]], 10) = [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]); end Main;
[ "\n end " ]
HumanEval_130_tri
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Tri (N : Integer) return Integer_Array; -- Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in -- the last couple centuries. However, what people don't know is Tribonacci sequence. -- Tribonacci sequence is defined by the recurrence: -- tri(1) = 3 -- tri(n) = 1 + n / 2, if n is even. -- tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. -- For example: -- tri(2) = 1 + (2 / 2) = 2 -- tri(4) = 3 -- tri(3) = tri(2) + tri(1) + tri(4) -- = 2 + 3 + 3 = 8 -- You are given a non-negative integer number n, you have to a return a Vector of the -- first n + 1 numbers of the Tribonacci sequence. -- Examples: -- >>> Tri (3) -- [1, 3, 2, 8] end Placeholder; pragma Ada_2022; package body Placeholder is function Tri (N : Integer) return Integer_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_130_tri.py
reworded
end Tri; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (N : Integer) return Integer_Array renames Placeholder.Tri; begin pragma Assert (Candidate (3) = [1, 3, 2, 8]); pragma Assert (Candidate (4) = [1, 3, 2, 8, 3]); pragma Assert (Candidate (5) = [1, 3, 2, 8, 3, 15]); pragma Assert (Candidate (6) = [1, 3, 2, 8, 3, 15, 4]); pragma Assert (Candidate (7) = [1, 3, 2, 8, 3, 15, 4, 24]); pragma Assert (Candidate (8) = [1, 3, 2, 8, 3, 15, 4, 24, 5]); pragma Assert (Candidate (9) = [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]); pragma Assert (Candidate (20) = [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]); pragma Assert (Candidate (0) = [1]); pragma Assert (Candidate (1) = [1, 3]); end Main;
[ "\n end " ]
HumanEval_131_digits
adb
pragma Ada_2022; package Placeholder is function Digits (N : Integer) return Integer; -- Given a positive integer n, return the product of the odd digits. -- Return 0 if all digits are even. -- For example: -- >>> My_Digits (1) -- 1 -- >>> My_Digits (4) -- 0 -- >>> My_Digits (235) -- 15 end Placeholder; pragma Ada_2022; package body Placeholder is function Digits (N : Integer) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_131_digits.py
reworded
end Digits; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (N : Integer) return Integer renames Placeholder.Digits; begin pragma Assert (Candidate (5) = 5); pragma Assert (Candidate (54) = 5); pragma Assert (Candidate (120) = 1); pragma Assert (Candidate (5014) = 5); pragma Assert (Candidate (98765) = 315); pragma Assert (Candidate (5576543) = 2625); pragma Assert (Candidate (2468) = 0); end Main;
[ "\n end " ]
HumanEval_132_is_nested
adb
pragma Ada_2022; package Placeholder is function Is_Nested (My_String : String) return Boolean; -- Create a function that takes a string as input which contains only square brackets. -- The function should return True if and only if there is a valid subsequence of brackets -- where at least one bracket in the subsequence is nested. -- >>> Is_Nested ("[[]]") -- True -- >>> Is_Nested ("[]]]]]]][[[[[]") -- False -- >>> Is_Nested ("[][]") -- False -- >>> Is_Nested ("[]") -- False -- >>> Is_Nested ("[[][]]") -- True -- >>> Is_Nested ("[[]][[") -- True end Placeholder; pragma Ada_2022; package body Placeholder is function Is_Nested (My_String : String) return Boolean
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_132_is_nested.py
reworded
end Is_Nested; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (My_String : String) return Boolean renames Placeholder.Is_Nested; begin pragma Assert (Candidate ("[[]]") = True); pragma Assert (Candidate ("[]]]]]]][[[[[]") = False); pragma Assert (Candidate ("[][]") = False); pragma Assert (Candidate ("[]") = False); pragma Assert (Candidate ("[[[[]]]]") = True); pragma Assert (Candidate ("[]]]]]]]]]]") = False); pragma Assert (Candidate ("[][][[]]") = True); pragma Assert (Candidate ("[[]") = False); pragma Assert (Candidate ("[]]") = False); pragma Assert (Candidate ("[[]][[") = True); pragma Assert (Candidate ("[[][]]") = True); pragma Assert (Candidate ("") = False); pragma Assert (Candidate ("[[[[[[[[") = False); pragma Assert (Candidate ("]]]]]]]]") = False); end Main;
[ "\n end " ]
HumanEval_133_sum_squares
adb
pragma Ada_2022; package Placeholder is type Float_Array is array (Positive range <>) of Float; function Sum_Squares (Lst : Float_Array) return Integer; -- You are given a Vector of numbers. -- You need to return the sum of squared numbers in the given Vector, -- round each element in the Vector to the upper int(Ceiling) first. -- Examples: -- >>> Lst ([1.0, 2.0, 3.0]) -- 14 -- >>> Lst ([1.0, 4.0, 9.0]) -- 98 -- >>> Lst ([1.0, 3.0, 5.0, 7.0]) -- 84 -- >>> Lst ([1.4, 4.2, 0.0]) -- 29 -- >>> Lst ([-2.4, 1.0, 1.0]) -- 6 end Placeholder; pragma Ada_2022; package body Placeholder is function Sum_Squares (Lst : Float_Array) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_133_sum_squares.py
reworded
end Sum_Squares; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Lst : Float_Array) return Integer renames Placeholder.Sum_Squares; begin pragma Assert (Candidate ([1.0, 2.0, 3.0]) = 14); pragma Assert (Candidate ([1.0, 2.0, 3.0]) = 14); pragma Assert (Candidate ([1.0, 3.0, 5.0, 7.0]) = 84); pragma Assert (Candidate ([1.4, 4.2, 0.0]) = 29); pragma Assert (Candidate ([-2.4, 1.0, 1.0]) = 6); pragma Assert (Candidate ([100.0, 1.0, 15.0, 2.0]) = 10230); pragma Assert (Candidate ([10000.0, 10000.0]) = 200000000); pragma Assert (Candidate ([-1.4, 4.6, 6.3]) = 75); pragma Assert (Candidate ([-1.4, 17.9, 18.9, 19.9]) = 1086); pragma Assert (Candidate ([0.0]) = 0); pragma Assert (Candidate ([-1.0]) = 1); pragma Assert (Candidate ([-1.0, 1.0, 0.0]) = 2); end Main;
[ "\n end " ]
HumanEval_134_check_if_last_char_is_a_letter
adb
pragma Ada_2022; package Placeholder is function Check_If_Last_Char_Is_A_Letter (Txt : String) return Boolean; -- Create a function that returns True if the last character -- of a given string is an alphabetical character and is not -- a part of a word, and False otherwise. -- Note: "word" is a group of characters separated by space. -- Examples: -- >>> Check_If_Last_Char_Is_A_Letter ("apple pie") -- False -- >>> Check_If_Last_Char_Is_A_Letter ("apple pi e") -- True -- >>> Check_If_Last_Char_Is_A_Letter ("apple pi e ") -- False -- >>> Check_If_Last_Char_Is_A_Letter ("") -- False end Placeholder; pragma Ada_2022; package body Placeholder is function Check_If_Last_Char_Is_A_Letter (Txt : String) return Boolean
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_134_check_if_last_char_is_a_letter.py
reworded
end Check_If_Last_Char_Is_A_Letter; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Txt : String) return Boolean renames Placeholder.Check_If_Last_Char_Is_A_Letter; begin pragma Assert (Candidate ("apple") = False); pragma Assert (Candidate ("apple pi e") = True); pragma Assert (Candidate ("eeeee") = False); pragma Assert (Candidate ("A") = True); pragma Assert (Candidate ("Pumpkin pie ") = False); pragma Assert (Candidate ("Pumpkin pie 1") = False); pragma Assert (Candidate ("") = False); pragma Assert (Candidate ("eeeee e ") = False); pragma Assert (Candidate ("apple pie") = False); pragma Assert (Candidate ("apple pi e ") = False); end Main;
[ "\n end " ]
HumanEval_135_can_arrange
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Can_Arrange (Arr : Integer_Array) return Integer; -- Create a function which returns the largest index of an element which -- is not greater than or equal to the element immediately preceding it. If -- no such element exists then return -1. The given array will not contain -- duplicate values. -- Examples: -- >>> Can_Arrange ([1, 2, 4, 3, 5]) -- 3 -- >>> Can_Arrange ([1, 2, 3]) -- -1 end Placeholder; pragma Ada_2022; package body Placeholder is function Can_Arrange (Arr : Integer_Array) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_135_can_arrange.py
reworded
end Can_Arrange; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Arr : Integer_Array) return Integer renames Placeholder.Can_Arrange; begin pragma Assert (Candidate ([1, 2, 4, 3, 5]) = 3); pragma Assert (Candidate ([1, 2, 4, 5]) = -1); pragma Assert (Candidate ([1, 4, 2, 5, 6, 7, 8, 9, 10]) = 2); pragma Assert (Candidate ([4, 8, 5, 7, 3]) = 4); pragma Assert (Candidate ([]) = -1); end Main;
[ "\n end " ]
HumanEval_136_largest_smallest_integers
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; type Integer_Option (Valid : Boolean := False) is record case Valid is when True => Value : Integer; when False => null; end case; end record; type Integer_Option_Integer_Option_Tuple is record Integer_Option_1 : Integer_Option; Integer_Option_2 : Integer_Option; end record; function Largest_Smallest_Integers (Lst : Integer_Array) return Integer_Option_Integer_Option_Tuple; -- Create a function that returns a record (a, b), where 'a' is -- the largest of negative integers, and 'b' is the smallest -- of positive integers in a Vector. -- If there is no negative or positive integers, return them as null. -- Examples: -- >>> Largest_Smallest_Integers ([2, 4, 1, 3, 5, 7]) -- ((Valid => False), (Valid => True, Value => 1)) -- >>> Largest_Smallest_Integers ([]) -- ((Valid => False), (Valid => False)) -- >>> Largest_Smallest_Integers ([0]) -- ((Valid => False), (Valid => False)) end Placeholder; pragma Ada_2022; package body Placeholder is function Largest_Smallest_Integers (Lst : Integer_Array) return Integer_Option_Integer_Option_Tuple
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_136_largest_smallest_integers.py
reworded
end Largest_Smallest_Integers; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Lst : Integer_Array) return Integer_Option_Integer_Option_Tuple renames Placeholder.Largest_Smallest_Integers; begin pragma Assert (Candidate ([2, 4, 1, 3, 5, 7]) = ((Valid => False), (Valid => True, Value => 1))); pragma Assert (Candidate ([2, 4, 1, 3, 5, 7, 0]) = ((Valid => False), (Valid => True, Value => 1))); pragma Assert (Candidate ([1, 3, 2, 4, 5, 6, -2]) = ((Valid => True, Value => -2), (Valid => True, Value => 1))); pragma Assert (Candidate ([4, 5, 3, 6, 2, 7, -7]) = ((Valid => True, Value => -7), (Valid => True, Value => 2))); pragma Assert (Candidate ([7, 3, 8, 4, 9, 2, 5, -9]) = ((Valid => True, Value => -9), (Valid => True, Value => 2))); pragma Assert (Candidate ([]) = ((Valid => False), (Valid => False))); pragma Assert (Candidate ([0]) = ((Valid => False), (Valid => False))); pragma Assert (Candidate ([-1, -3, -5, -6]) = ((Valid => True, Value => -1), (Valid => False))); pragma Assert (Candidate ([-1, -3, -5, -6, 0]) = ((Valid => True, Value => -1), (Valid => False))); pragma Assert (Candidate ([-6, -4, -4, -3, 1]) = ((Valid => True, Value => -3), (Valid => True, Value => 1))); pragma Assert (Candidate ([-6, -4, -4, -3, -100, 1]) = ((Valid => True, Value => -3), (Valid => True, Value => 1))); end Main;
[ "\n end " ]
HumanEval_138_is_equal_to_sum_even
adb
pragma Ada_2022; package Placeholder is function Is_Equal_To_Sum_Even (N : Integer) return Boolean; -- Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers -- Example -- >>> Is_Equal_To_Sum_Even (4) -- False -- >>> Is_Equal_To_Sum_Even (6) -- False -- >>> Is_Equal_To_Sum_Even (8) -- True end Placeholder; pragma Ada_2022; package body Placeholder is function Is_Equal_To_Sum_Even (N : Integer) return Boolean
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_138_is_equal_to_sum_even.py
reworded
end Is_Equal_To_Sum_Even; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (N : Integer) return Boolean renames Placeholder.Is_Equal_To_Sum_Even; begin pragma Assert (Candidate (4) = False); pragma Assert (Candidate (6) = False); pragma Assert (Candidate (8) = True); pragma Assert (Candidate (10) = True); pragma Assert (Candidate (11) = False); pragma Assert (Candidate (12) = True); pragma Assert (Candidate (13) = False); pragma Assert (Candidate (16) = True); end Main;
[ "\n end " ]
HumanEval_139_special_factorial
adb
pragma Ada_2022; package Placeholder is function Special_Factorial (N : Integer) return Integer; -- The Brazilian factorial is defined as: -- brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! -- where n > 0 -- For example: -- >>> Special_Factorial (4) -- 288 -- The function will receive an integer as input and should return the special -- factorial of this integer. end Placeholder; pragma Ada_2022; package body Placeholder is function Special_Factorial (N : Integer) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_139_special_factorial.py
reworded
end Special_Factorial; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (N : Integer) return Integer renames Placeholder.Special_Factorial; begin pragma Assert (Candidate (4) = 288); pragma Assert (Candidate (5) = 34560); pragma Assert (Candidate (7) = 125411328000); pragma Assert (Candidate (1) = 1); end Main;
[ "\n end " ]
HumanEval_140_fix_spaces
adb
pragma Ada_2022; package Placeholder is function Fix_Spaces (Text : String) return String; -- Given a string text, replace all spaces in it with underscores, -- and if a string has more than 2 consecutive spaces, -- then replace all consecutive spaces with - -- >>> Fix_Spaces (" Example") -- "Example" -- >>> Fix_Spaces (" Example 1") -- "Example_1" -- >>> Fix_Spaces (" Example 2") -- "_Example_2" -- >>> Fix_Spaces (" Example 3") -- "_Example-3" end Placeholder; pragma Ada_2022; package body Placeholder is function Fix_Spaces (Text : String) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_140_fix_spaces.py
reworded
end Fix_Spaces; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Text : String) return String renames Placeholder.Fix_Spaces; begin pragma Assert (Candidate ("Example") = "Example"); pragma Assert (Candidate ("Mudasir Hanif ") = "Mudasir_Hanif_"); pragma Assert (Candidate ("Yellow Yellow Dirty Fellow") = "Yellow_Yellow__Dirty__Fellow"); pragma Assert (Candidate ("Exa mple") = "Exa-mple"); pragma Assert (Candidate (" Exa 1 2 2 mple") = "-Exa_1_2_2_mple"); end Main;
[ "\n end " ]
HumanEval_141_file_name_check
adb
pragma Ada_2022; package Placeholder is function File_Name_Check (File_Name : String) return String; -- Create a function which takes a string representing a file's name, and returns -- 'Yes' if the the file's name is valid, and returns 'No' otherwise. -- A file's name is considered to be valid if and only if all the following conditions -- are met: -- - There should not be more than three digits ('0'-'9') in the file's name. -- - The file's name contains exactly one dot '.' -- - The substring before the dot should not be empty, and it starts with a letter from -- the latin alphapet ('a'-'z' and 'A'-'Z'). -- - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] -- Examples: -- >>> File_Name_Check ("example.txt") -- "Yes" -- >>> File_Name_Check ("1example.dll") -- "No" end Placeholder; pragma Ada_2022; package body Placeholder is function File_Name_Check (File_Name : String) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_141_file_name_check.py
reworded
end File_Name_Check; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (File_Name : String) return String renames Placeholder.File_Name_Check; begin pragma Assert (Candidate ("example.txt") = "Yes"); pragma Assert (Candidate ("1example.dll") = "No"); pragma Assert (Candidate ("s1sdf3.asd") = "No"); pragma Assert (Candidate ("K.dll") = "Yes"); pragma Assert (Candidate ("MY16FILE3.exe") = "Yes"); pragma Assert (Candidate ("His12FILE94.exe") = "No"); pragma Assert (Candidate ("_Y.txt") = "No"); pragma Assert (Candidate ("?aREYA.exe") = "No"); pragma Assert (Candidate ("/this_is_valid.dll") = "No"); pragma Assert (Candidate ("this_is_valid.wow") = "No"); pragma Assert (Candidate ("this_is_valid.txt") = "Yes"); pragma Assert (Candidate ("this_is_valid.txtexe") = "No"); pragma Assert (Candidate ("#this2_i4s_5valid.ten") = "No"); pragma Assert (Candidate ("@this1_is6_valid.exe") = "No"); pragma Assert (Candidate ("this_is_12valid.6exe4.txt") = "No"); pragma Assert (Candidate ("all.exe.txt") = "No"); pragma Assert (Candidate ("I563_No.exe") = "Yes"); pragma Assert (Candidate ("Is3youfault.txt") = "Yes"); pragma Assert (Candidate ("no_one#knows.dll") = "Yes"); pragma Assert (Candidate ("1I563_Yes3.exe") = "No"); pragma Assert (Candidate ("I563_Yes3.txtt") = "No"); pragma Assert (Candidate ("final..txt") = "No"); pragma Assert (Candidate ("final132") = "No"); pragma Assert (Candidate ("_f4indsartal132.") = "No"); pragma Assert (Candidate (".txt") = "No"); pragma Assert (Candidate ("s.") = "No"); end Main;
[ "\n end " ]
HumanEval_142_sum_squares
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Sum_Squares (Lst : Integer_Array) return Integer; -- " -- This function will take a Vector of integers. For all entries in the Vector, the function shall square the integer entry if its index is a -- multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not -- change the entries in the Vector whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. -- Examples: -- >>> Sum_Squares ([1, 2, 3]) -- 6 -- >>> Sum_Squares ([]) -- 0 -- >>> Sum_Squares ([-1, -5, 2, -1, -5]) -- -126 end Placeholder; pragma Ada_2022; package body Placeholder is function Sum_Squares (Lst : Integer_Array) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_142_sum_squares.py
reworded
end Sum_Squares; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Lst : Integer_Array) return Integer renames Placeholder.Sum_Squares; begin pragma Assert (Candidate ([1, 2, 3]) = 6); pragma Assert (Candidate ([1, 4, 9]) = 14); pragma Assert (Candidate ([]) = 0); pragma Assert (Candidate ([1, 1, 1, 1, 1, 1, 1, 1, 1]) = 9); pragma Assert (Candidate ([-1, -1, -1, -1, -1, -1, -1, -1, -1]) = -3); pragma Assert (Candidate ([0]) = 0); pragma Assert (Candidate ([-1, -5, 2, -1, -5]) = -126); pragma Assert (Candidate ([-56, -99, 1, 0, -2]) = 3030); pragma Assert (Candidate ([-1, 0, 0, 0, 0, 0, 0, 0, -1]) = 0); pragma Assert (Candidate ([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) = -14196); pragma Assert (Candidate ([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) = -1448); end Main;
[ "\n end " ]
HumanEval_143_words_in_sentence
adb
pragma Ada_2022; package Placeholder is function Words_In_Sentence (Sentence : String) return String; -- You are given a string representing a sentence, -- the sentence contains some words separated by a space, -- and you have to return a string that contains the words from the original sentence, -- whose lengths are prime numbers, -- the order of the words in the new string should be the same as the original one. -- Example 1: -- >>> Words_In_Sentence ("This is a test") -- "is" -- Example 2: -- >>> Words_In_Sentence ("lets go for swimming") -- "go for" -- Constraints: -- * 1 <= len(sentence) <= 100 -- * sentence contains only letters end Placeholder; pragma Ada_2022; package body Placeholder is function Words_In_Sentence (Sentence : String) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_143_words_in_sentence.py
reworded
end Words_In_Sentence; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Sentence : String) return String renames Placeholder.Words_In_Sentence; begin pragma Assert (Candidate ("This is a test") = "is"); pragma Assert (Candidate ("lets go for swimming") = "go for"); pragma Assert (Candidate ("there is no place available here") = "there is no place"); pragma Assert (Candidate ("Hi I am Hussein") = "Hi am Hussein"); pragma Assert (Candidate ("go for it") = "go for it"); pragma Assert (Candidate ("here") = ""); pragma Assert (Candidate ("here is") = "is"); end Main;
[ "\n end " ]
HumanEval_144_simplify
adb
pragma Ada_2022; package Placeholder is function Simplify (X : String; N : String) return Boolean; -- Your task is to implement a function that will simplify the expression -- x * n. The function returns True if x * n evaluates to a whole number and False -- otherwise. Both x and n, are string representation of a fraction, and have the following format, -- <numerator>/<denominator> where both numerator and denominator are positive whole numbers. -- You can assume that x, and n are valid fractions, and do not have zero as denominator. -- >>> Simplify ("1/5", "5/1") -- True -- >>> Simplify ("1/6", "2/1") -- False -- >>> Simplify ("7/10", "10/2") -- False end Placeholder; pragma Ada_2022; package body Placeholder is function Simplify (X : String; N : String) return Boolean
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_144_simplify.py
reworded
end Simplify; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (X : String; N : String) return Boolean renames Placeholder.Simplify; begin pragma Assert (Candidate ("1/5", "5/1") = True); pragma Assert (Candidate ("1/6", "2/1") = False); pragma Assert (Candidate ("5/1", "3/1") = True); pragma Assert (Candidate ("7/10", "10/2") = False); pragma Assert (Candidate ("2/10", "50/10") = True); pragma Assert (Candidate ("7/2", "4/2") = True); pragma Assert (Candidate ("11/6", "6/1") = True); pragma Assert (Candidate ("2/3", "5/2") = False); pragma Assert (Candidate ("5/2", "3/5") = False); pragma Assert (Candidate ("2/4", "8/4") = True); pragma Assert (Candidate ("2/4", "4/2") = True); pragma Assert (Candidate ("1/5", "5/1") = True); pragma Assert (Candidate ("1/5", "1/5") = False); end Main;
[ "\n end " ]
HumanEval_145_order_by_points
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Order_By_Points (Nums : Integer_Array) return Integer_Array; -- Write a function which sorts the given Vector of integers -- in ascending order according to the sum of their digits. -- Note: if there are several items with similar sum of their digits, -- order them based on their index in original Vector. -- For example: -- >>> Order_By_Points ([1, 11, -1, -11, -12]) -- [-1, -11, 1, -12, 11] -- >>> Order_By_Points ([]) -- [] end Placeholder; pragma Ada_2022; package body Placeholder is function Order_By_Points (Nums : Integer_Array) return Integer_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_145_order_by_points.py
reworded
end Order_By_Points; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Nums : Integer_Array) return Integer_Array renames Placeholder.Order_By_Points; begin pragma Assert (Candidate ([1, 11, -1, -11, -12]) = [-1, -11, 1, -12, 11]); pragma Assert (Candidate ([1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) = [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]); pragma Assert (Candidate ([]) = []); pragma Assert (Candidate ([1, -11, -32, 43, 54, -98, 2, -3]) = [-3, -32, -98, -11, 1, 2, 43, 54]); pragma Assert (Candidate ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) = [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]); pragma Assert (Candidate ([0, 6, 6, -76, -21, 23, 4]) = [-76, -21, 0, 4, 23, 6, 6]); end Main;
[ "\n end " ]
HumanEval_146_specialFilter
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Special_Filter (Nums : Integer_Array) return Integer; -- Write a function that takes an array of numbers as input and returns -- the number of elements in the array that are greater than 10 and both -- first and last digits of a number are odd (1, 3, 5, 7, 9). -- For example: -- >>> Specialfilter ([15, -73, 14, -15]) -- 1 -- >>> Specialfilter ([33, -2, -3, 45, 21, 109]) -- 2 end Placeholder; pragma Ada_2022; package body Placeholder is function Special_Filter (Nums : Integer_Array) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_146_specialFilter.py
reworded
end Special_Filter; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Nums : Integer_Array) return Integer renames Placeholder.Special_Filter; begin pragma Assert (Candidate ([5, -2, 1, -5]) = 0); pragma Assert (Candidate ([15, -73, 14, -15]) = 1); pragma Assert (Candidate ([33, -2, -3, 45, 21, 109]) = 2); pragma Assert (Candidate ([43, -12, 93, 125, 121, 109]) = 4); pragma Assert (Candidate ([71, -2, -33, 75, 21, 19]) = 3); pragma Assert (Candidate ([1]) = 0); pragma Assert (Candidate ([]) = 0); end Main;
[ "\n end " ]
HumanEval_147_get_max_triples
adb
pragma Ada_2022; package Placeholder is function Get_Max_Triples (N : Integer) return Integer; -- You are given a positive integer n. You have to create an integer array a of length n. -- For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. -- Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, -- and a[i] + a[j] + a[k] is a multiple of 3. -- Example : -- >>> Get_Max_Triples (5) -- 1 -- Explanation: -- a = [1, 3, 7, 13, 21] -- The only valid triple is (1, 7, 13). end Placeholder; pragma Ada_2022; package body Placeholder is function Get_Max_Triples (N : Integer) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_147_get_max_triples.py
reworded
end Get_Max_Triples; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (N : Integer) return Integer renames Placeholder.Get_Max_Triples; begin pragma Assert (Candidate (5) = 1); pragma Assert (Candidate (6) = 4); pragma Assert (Candidate (10) = 36); pragma Assert (Candidate (100) = 53361); end Main;
[ "\n end " ]
HumanEval_148_bf
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Unbounded_String_Array is array (Positive range <>) of Unbounded_String; function Bf (Planet1 : String; Planet2 : String) return Unbounded_String_Array; -- There are eight planets in our solar system: the closerst to the Sun -- is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, -- Uranus, Neptune. -- Write a function that takes two planet names as strings planet1 and planet2. -- The function should return a record containing all planets whose orbits are -- located between the orbit of planet1 and the orbit of planet2, sorted by -- the proximity to the sun. -- The function should return an empty record if planet1 or planet2 -- are not correct planet names. -- Examples -- >>> Bf ("Jupiter", "Neptune") -- (To_Unbounded_String ("Saturn"), To_Unbounded_String ("Uranus")) -- >>> Bf ("Earth", "Mercury") -- `VmVudXM=` -- >>> Bf ("Mercury", "Uranus") -- (To_Unbounded_String ("Venus"), To_Unbounded_String ("Earth"), To_Unbounded_String ("Mars"), To_Unbounded_String ("Jupiter"), To_Unbounded_String ("Saturn")) end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function Bf (Planet1 : String; Planet2 : String) return Unbounded_String_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_148_bf.py
reworded
end Bf; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (Planet1 : String; Planet2 : String) return Unbounded_String_Array renames Placeholder.Bf; begin pragma Assert (Candidate ("Jupiter", "Neptune") = (To_Unbounded_String ("Saturn"), To_Unbounded_String ("Uranus"))); pragma Assert (Candidate ("Earth", "Mercury") = (To_Unbounded_String ("Venus"))); pragma Assert (Candidate ("Mercury", "Uranus") = (To_Unbounded_String ("Venus"), To_Unbounded_String ("Earth"), To_Unbounded_String ("Mars"), To_Unbounded_String ("Jupiter"), To_Unbounded_String ("Saturn"))); pragma Assert (Candidate ("Neptune", "Venus") = (To_Unbounded_String ("Earth"), To_Unbounded_String ("Mars"), To_Unbounded_String ("Jupiter"), To_Unbounded_String ("Saturn"), To_Unbounded_String ("Uranus"))); pragma Assert (Candidate ("Earth", "Earth") = ()); pragma Assert (Candidate ("Mars", "Earth") = ()); pragma Assert (Candidate ("Jupiter", "Makemake") = ()); end Main;
[ "\n end " ]
HumanEval_149_sorted_list_sum
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Unbounded_String_Array is array (Positive range <>) of Unbounded_String; function Sorted_List_Sum (Lst : Unbounded_String_Array) return Unbounded_String_Array; -- Write a function that accepts a Vector of strings as a parameter, -- deletes the strings that have odd lengths from it, -- and returns the resulted Vector with a sorted order, -- The Vector is always a Vector of strings and never an array of numbers, -- and it may contain duplicates. -- The order of the Vector should be ascending by length of each word, and you -- should return the Vector sorted by that rule. -- If two words have the same length, sort the Vector alphabetically. -- The function should return a Vector of strings in sorted order. -- You may assume that all words will have the same length. -- For example: -- >>> List_Sort ([To_Unbounded_String ("aa"), To_Unbounded_String ("a"), To_Unbounded_String ("aaa")]) -- [To_Unbounded_String ("aa")] -- >>> List_Sort ([To_Unbounded_String ("ab"), To_Unbounded_String ("a"), To_Unbounded_String ("aaa"), To_Unbounded_String ("cd")]) -- [To_Unbounded_String ("ab"), To_Unbounded_String ("cd")] end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function Sorted_List_Sum (Lst : Unbounded_String_Array) return Unbounded_String_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_149_sorted_list_sum.py
reworded
end Sorted_List_Sum; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (Lst : Unbounded_String_Array) return Unbounded_String_Array renames Placeholder.Sorted_List_Sum; begin pragma Assert (Candidate ([To_Unbounded_String ("aa"), To_Unbounded_String ("a"), To_Unbounded_String ("aaa")]) = [To_Unbounded_String ("aa")]); pragma Assert (Candidate ([To_Unbounded_String ("school"), To_Unbounded_String ("AI"), To_Unbounded_String ("asdf"), To_Unbounded_String ("b")]) = [To_Unbounded_String ("AI"), To_Unbounded_String ("asdf"), To_Unbounded_String ("school")]); pragma Assert (Candidate ([To_Unbounded_String ("d"), To_Unbounded_String ("b"), To_Unbounded_String ("c"), To_Unbounded_String ("a")]) = []); pragma Assert (Candidate ([To_Unbounded_String ("d"), To_Unbounded_String ("dcba"), To_Unbounded_String ("abcd"), To_Unbounded_String ("a")]) = [To_Unbounded_String ("abcd"), To_Unbounded_String ("dcba")]); pragma Assert (Candidate ([To_Unbounded_String ("AI"), To_Unbounded_String ("ai"), To_Unbounded_String ("au")]) = [To_Unbounded_String ("AI"), To_Unbounded_String ("ai"), To_Unbounded_String ("au")]); pragma Assert (Candidate ([To_Unbounded_String ("a"), To_Unbounded_String ("b"), To_Unbounded_String ("b"), To_Unbounded_String ("c"), To_Unbounded_String ("c"), To_Unbounded_String ("a")]) = []); pragma Assert (Candidate ([To_Unbounded_String ("aaaa"), To_Unbounded_String ("bbbb"), To_Unbounded_String ("dd"), To_Unbounded_String ("cc")]) = [To_Unbounded_String ("cc"), To_Unbounded_String ("dd"), To_Unbounded_String ("aaaa"), To_Unbounded_String ("bbbb")]); end Main;
[ "\n end " ]
HumanEval_150_x_or_y
adb
pragma Ada_2022; package Placeholder is function X_Or_Y (N : Integer; X : Integer; Y : Integer) return Integer; -- A simple program which should return the value of x if n is -- a prime number and should return the value of y otherwise. -- Examples: -- >>> X_Or_Y (7, 34, 12) -- 34 -- >>> X_Or_Y (15, 8, 5) -- 5 end Placeholder; pragma Ada_2022; package body Placeholder is function X_Or_Y (N : Integer; X : Integer; Y : Integer) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_150_x_or_y.py
reworded
end X_Or_Y; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (N : Integer; X : Integer; Y : Integer) return Integer renames Placeholder.X_Or_Y; begin pragma Assert (Candidate (7, 34, 12) = 34); pragma Assert (Candidate (15, 8, 5) = 5); pragma Assert (Candidate (3, 33, 5212) = 33); pragma Assert (Candidate (1259, 3, 52) = 3); pragma Assert (Candidate (7919, -1, 12) = -1); pragma Assert (Candidate (3609, 1245, 583) = 583); pragma Assert (Candidate (91, 56, 129) = 129); pragma Assert (Candidate (6, 34, 1234) = 1234); pragma Assert (Candidate (1, 2, 0) = 0); pragma Assert (Candidate (2, 2, 0) = 2); end Main;
[ "\n end " ]
HumanEval_151_double_the_difference
adb
pragma Ada_2022; package Placeholder is type Float_Array is array (Positive range <>) of Float; function Double_The_Difference (Lst : Float_Array) return Integer; -- Given a Vector of numbers, return the sum of squares of the numbers -- in the Vector that are odd. Ignore numbers that are negative or not integers. -- >>> Double_The_Difference ([1, 3, 2, 0]) -- 10 -- >>> Double_The_Difference ([-1, -2, 0]) -- 0 -- >>> Double_The_Difference ([9, -2]) -- 81 -- >>> Double_The_Difference ([0]) -- 0 -- If the input Vector is empty, return 0. end Placeholder; pragma Ada_2022; package body Placeholder is function Double_The_Difference (Lst : Float_Array) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_151_double_the_difference.py
reworded
end Double_The_Difference; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Lst : Float_Array) return Integer renames Placeholder.Double_The_Difference; begin pragma Assert (Candidate ([]) = 0); pragma Assert (Candidate ([5.0, 4.0]) = 25); pragma Assert (Candidate ([0.1, 0.2, 0.3]) = 0); pragma Assert (Candidate ([-10.0, -20.0, -30.0]) = 0); pragma Assert (Candidate ([-1.0, -2.0, 8.0]) = 0); pragma Assert (Candidate ([0.2, 3.0, 5.0]) = 34); pragma Assert (Candidate ([-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) = 165); end Main;
[ "\n end " ]
HumanEval_152_compare
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Compare (Game : Integer_Array; Guess : Integer_Array) return Integer_Array; -- I think we all remember that feeling when the result of some long-awaited -- event is finally known. The feelings and thoughts you have at that moment are -- definitely worth noting down and comparing. -- Your task is to determine if a person correctly guessed the results of a number of matches. -- You are given two arrays of scores and guesses of equal length, where each index shows a match. -- Return an array of the same length denoting how far off each guess was. If they have guessed correctly, -- the value is 0, and if not, the value is the absolute difference between the guess and the score. -- example: -- >>> Compare ([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2]) -- [0, 0, 0, 0, 3, 3] -- >>> Compare ([0, 5, 0, 0, 0, 4], [4, 1, 1, 0, 0, -2]) -- [4, 4, 1, 0, 0, 6] end Placeholder; pragma Ada_2022; package body Placeholder is function Compare (Game : Integer_Array; Guess : Integer_Array) return Integer_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_152_compare.py
reworded
end Compare; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Game : Integer_Array; Guess : Integer_Array) return Integer_Array renames Placeholder.Compare; begin pragma Assert (Candidate ([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2]) = [0, 0, 0, 0, 3, 3]); pragma Assert (Candidate ([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]) = [0, 0, 0, 0, 0, 0]); pragma Assert (Candidate ([1, 2, 3], [-1, -2, -3]) = [2, 4, 6]); pragma Assert (Candidate ([1, 2, 3, 5], [-1, 2, 3, 4]) = [2, 0, 0, 1]); end Main;
[ "\n end " ]
HumanEval_153_Strongest_Extension
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Unbounded_String_Array is array (Positive range <>) of Unbounded_String; function Strongest_Extension (Class_Name : String; Extensions : Unbounded_String_Array) return String; -- You will be given the name of a class (a string) and a Vector of extensions. -- The extensions are to be used to load additional classes to the class. The -- strength of the extension is as follows: Let CAP be the number of the uppercase -- letters in the extension's name, and let SM be the number of lowercase letters -- in the extension's name, the strength is given by the fraction CAP - SM. -- You should find the strongest extension and return a string in this -- format: ClassName.StrongestExtensionName. -- If there are two or more extensions with the same strength, you should -- choose the one that comes first in the Vector. -- For example, if you are given "Slices" as the class and a Vector of the -- extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should -- return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension -- (its strength is -1). -- Example: -- >>> Strongest_Extension ("my_class", [To_Unbounded_String ("AA"), To_Unbounded_String ("Be"), To_Unbounded_String ("CC")]) -- "my_class.AA" end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function Strongest_Extension (Class_Name : String; Extensions : Unbounded_String_Array) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_153_Strongest_Extension.py
reworded
end Strongest_Extension; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (Class_Name : String; Extensions : Unbounded_String_Array) return String renames Placeholder.Strongest_Extension; begin pragma Assert (Candidate ("Watashi", [To_Unbounded_String ("tEN"), To_Unbounded_String ("niNE"), To_Unbounded_String ("eIGHt8OKe")]) = "Watashi.eIGHt8OKe"); pragma Assert (Candidate ("Boku123", [To_Unbounded_String ("nani"), To_Unbounded_String ("NazeDa"), To_Unbounded_String ("YEs.WeCaNe"), To_Unbounded_String ("32145tggg")]) = "Boku123.YEs.WeCaNe"); pragma Assert (Candidate ("__YESIMHERE", [To_Unbounded_String ("t"), To_Unbounded_String ("eMptY"), To_Unbounded_String ("nothing"), To_Unbounded_String ("zeR00"), To_Unbounded_String ("NuLl__"), To_Unbounded_String ("123NoooneB321")]) = "__YESIMHERE.NuLl__"); pragma Assert (Candidate ("K", [To_Unbounded_String ("Ta"), To_Unbounded_String ("TAR"), To_Unbounded_String ("t234An"), To_Unbounded_String ("cosSo")]) = "K.TAR"); pragma Assert (Candidate ("__HAHA", [To_Unbounded_String ("Tab"), To_Unbounded_String ("123"), To_Unbounded_String ("781345"), To_Unbounded_String ("-_-")]) = "__HAHA.123"); pragma Assert (Candidate ("YameRore", [To_Unbounded_String ("HhAas"), To_Unbounded_String ("okIWILL123"), To_Unbounded_String ("WorkOut"), To_Unbounded_String ("Fails"), To_Unbounded_String ("-_-")]) = "YameRore.okIWILL123"); pragma Assert (Candidate ("finNNalLLly", [To_Unbounded_String ("Die"), To_Unbounded_String ("NowW"), To_Unbounded_String ("Wow"), To_Unbounded_String ("WoW")]) = "finNNalLLly.WoW"); pragma Assert (Candidate ("_", [To_Unbounded_String ("Bb"), To_Unbounded_String ("91245")]) = "_.Bb"); pragma Assert (Candidate ("Sp", [To_Unbounded_String ("671235"), To_Unbounded_String ("Bb")]) = "Sp.671235"); end Main;
[ "\n end " ]
HumanEval_154_cycpattern_check
adb
pragma Ada_2022; package Placeholder is function Cycpattern_Check (A : String; B : String) return Boolean; -- You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word -- >>> Cycpattern_Check ("abcd", "abd") -- False -- >>> Cycpattern_Check ("hello", "ell") -- True -- >>> Cycpattern_Check ("whassup", "psus") -- False -- >>> Cycpattern_Check ("abab", "baa") -- True -- >>> Cycpattern_Check ("efef", "eeff") -- False -- >>> Cycpattern_Check ("himenss", "simen") -- True end Placeholder; pragma Ada_2022; package body Placeholder is function Cycpattern_Check (A : String; B : String) return Boolean
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_154_cycpattern_check.py
reworded
end Cycpattern_Check; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (A : String; B : String) return Boolean renames Placeholder.Cycpattern_Check; begin pragma Assert (Candidate ("xyzw", "xyw") = False); pragma Assert (Candidate ("yello", "ell") = True); pragma Assert (Candidate ("whattup", "ptut") = False); pragma Assert (Candidate ("efef", "fee") = True); pragma Assert (Candidate ("abab", "aabb") = False); pragma Assert (Candidate ("winemtt", "tinem") = True); end Main;
[ "\n end " ]
HumanEval_155_even_odd_count
adb
pragma Ada_2022; package Placeholder is type Integer_Integer_Tuple is record Integer_1 : Integer; Integer_2 : Integer; end record; function Even_Odd_Count (Num : Integer) return Integer_Integer_Tuple; -- Given an integer. return a record that has the number of even and odd digits respectively. -- Example: -- >>> Even_Odd_Count (-12) -- (1, 1) -- >>> Even_Odd_Count (123) -- (1, 2) end Placeholder; pragma Ada_2022; package body Placeholder is function Even_Odd_Count (Num : Integer) return Integer_Integer_Tuple
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_155_even_odd_count.py
reworded
end Even_Odd_Count; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Num : Integer) return Integer_Integer_Tuple renames Placeholder.Even_Odd_Count; begin pragma Assert (Candidate (7) = (0, 1)); pragma Assert (Candidate (-78) = (1, 1)); pragma Assert (Candidate (3452) = (2, 2)); pragma Assert (Candidate (346211) = (3, 3)); pragma Assert (Candidate (-345821) = (3, 3)); pragma Assert (Candidate (-2) = (1, 0)); pragma Assert (Candidate (-45347) = (2, 3)); pragma Assert (Candidate (0) = (1, 0)); end Main;
[ "\n end " ]
HumanEval_156_int_to_mini_roman
adb
pragma Ada_2022; package Placeholder is function Int_To_Mini_Roman (Number : Integer) return String; -- Given a positive integer, obtain its roman numeral equivalent as a string, -- and return it in lowercase. -- Restrictions: 1 <= num <= 1000 -- Examples: -- >>> Int_To_Mini_Roman (19) -- "xix" -- >>> Int_To_Mini_Roman (152) -- "clii" -- >>> Int_To_Mini_Roman (426) -- "cdxxvi" end Placeholder; pragma Ada_2022; package body Placeholder is function Int_To_Mini_Roman (Number : Integer) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_156_int_to_mini_roman.py
reworded
end Int_To_Mini_Roman; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Number : Integer) return String renames Placeholder.Int_To_Mini_Roman; begin pragma Assert (Candidate (19) = "xix"); pragma Assert (Candidate (152) = "clii"); pragma Assert (Candidate (251) = "ccli"); pragma Assert (Candidate (426) = "cdxxvi"); pragma Assert (Candidate (500) = "d"); pragma Assert (Candidate (1) = "i"); pragma Assert (Candidate (4) = "iv"); pragma Assert (Candidate (43) = "xliii"); pragma Assert (Candidate (90) = "xc"); pragma Assert (Candidate (94) = "xciv"); pragma Assert (Candidate (532) = "dxxxii"); pragma Assert (Candidate (900) = "cm"); pragma Assert (Candidate (994) = "cmxciv"); pragma Assert (Candidate (1000) = "m"); end Main;
[ "\n end " ]
HumanEval_157_right_angle_triangle
adb
pragma Ada_2022; package Placeholder is function Right_Angle_Triangle (A : Integer; B : Integer; C : Integer) return Boolean; -- Given the lengths of the three sides of a triangle. Return True if the three -- sides form a right-angled triangle, False otherwise. -- A right-angled triangle is a triangle in which one angle is right angle or -- 90 degree. -- Example: -- >>> Right_Angle_Triangle (3, 4, 5) -- True -- >>> Right_Angle_Triangle (1, 2, 3) -- False end Placeholder; pragma Ada_2022; package body Placeholder is function Right_Angle_Triangle (A : Integer; B : Integer; C : Integer) return Boolean
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_157_right_angle_triangle.py
reworded
end Right_Angle_Triangle; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (A : Integer; B : Integer; C : Integer) return Boolean renames Placeholder.Right_Angle_Triangle; begin pragma Assert (Candidate (3, 4, 5) = True); pragma Assert (Candidate (1, 2, 3) = False); pragma Assert (Candidate (10, 6, 8) = True); pragma Assert (Candidate (2, 2, 2) = False); pragma Assert (Candidate (7, 24, 25) = True); pragma Assert (Candidate (10, 5, 7) = False); pragma Assert (Candidate (5, 12, 13) = True); pragma Assert (Candidate (15, 8, 17) = True); pragma Assert (Candidate (48, 55, 73) = True); pragma Assert (Candidate (1, 1, 1) = False); pragma Assert (Candidate (2, 2, 10) = False); end Main;
[ "\n end " ]
HumanEval_158_find_max
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Unbounded_String_Array is array (Positive range <>) of Unbounded_String; function Find_Max (Words : Unbounded_String_Array) return String; -- Write a function that accepts a Vector of strings. -- The Vector contains different words. Return the word with maximum number -- of unique characters. If multiple strings have maximum number of unique -- characters, return the one which comes first in lexicographical order. -- >>> Find_Max ([To_Unbounded_String ("name"), To_Unbounded_String ("of"), To_Unbounded_String ("string")]) -- "string" -- >>> Find_Max ([To_Unbounded_String ("name"), To_Unbounded_String ("enam"), To_Unbounded_String ("game")]) -- "enam" -- >>> Find_Max ([To_Unbounded_String ("aaaaaaa"), To_Unbounded_String ("bb"), To_Unbounded_String ("cc")]) -- "aaaaaaa" end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function Find_Max (Words : Unbounded_String_Array) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_158_find_max.py
reworded
end Find_Max; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (Words : Unbounded_String_Array) return String renames Placeholder.Find_Max; begin pragma Assert (Candidate ([To_Unbounded_String ("name"), To_Unbounded_String ("of"), To_Unbounded_String ("string")]) = "string"); pragma Assert (Candidate ([To_Unbounded_String ("name"), To_Unbounded_String ("enam"), To_Unbounded_String ("game")]) = "enam"); pragma Assert (Candidate ([To_Unbounded_String ("aaaaaaa"), To_Unbounded_String ("bb"), To_Unbounded_String ("cc")]) = "aaaaaaa"); pragma Assert (Candidate ([To_Unbounded_String ("abc"), To_Unbounded_String ("cba")]) = "abc"); pragma Assert (Candidate ([To_Unbounded_String ("play"), To_Unbounded_String ("this"), To_Unbounded_String ("game"), To_Unbounded_String ("of"), To_Unbounded_String ("footbott")]) = "footbott"); pragma Assert (Candidate ([To_Unbounded_String ("we"), To_Unbounded_String ("are"), To_Unbounded_String ("gonna"), To_Unbounded_String ("rock")]) = "gonna"); pragma Assert (Candidate ([To_Unbounded_String ("we"), To_Unbounded_String ("are"), To_Unbounded_String ("a"), To_Unbounded_String ("mad"), To_Unbounded_String ("nation")]) = "nation"); pragma Assert (Candidate ([To_Unbounded_String ("this"), To_Unbounded_String ("is"), To_Unbounded_String ("a"), To_Unbounded_String ("prrk")]) = "this"); pragma Assert (Candidate ([To_Unbounded_String ("b")]) = "b"); pragma Assert (Candidate ([To_Unbounded_String ("play"), To_Unbounded_String ("play"), To_Unbounded_String ("play")]) = "play"); end Main;
[ "\n end " ]
HumanEval_159_eat
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Eat (Number : Integer; Need : Integer; Remaining : Integer) return Integer_Array; -- You're a hungry rabbit, and you already have eaten a certain number of carrots, -- but now you need to eat more carrots to complete the day's meals. -- you should return an array of [ total number of eaten carrots after your meals, -- the number of carrots left after your meals ] -- if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. -- Example: -- >>> Eat (5, 6, 10) -- [11, 4] -- >>> Eat (4, 8, 9) -- [12, 1] -- >>> Eat (1, 10, 10) -- [11, 0] -- >>> Eat (2, 11, 5) -- [7, 0] -- Variables: -- @number : integer -- the number of carrots that you have eaten. -- @need : integer -- the number of carrots that you need to eat. -- @remaining : integer -- the number of remaining carrots thet exist in stock -- Constrain: -- * 0 <= number <= 1000 -- * 0 <= need <= 1000 -- * 0 <= remaining <= 1000 -- Have fun :) end Placeholder; pragma Ada_2022; package body Placeholder is function Eat (Number : Integer; Need : Integer; Remaining : Integer) return Integer_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_159_eat.py
reworded
end Eat; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (Number : Integer; Need : Integer; Remaining : Integer) return Integer_Array renames Placeholder.Eat; begin pragma Assert (Candidate (5, 6, 10) = [11, 4]); pragma Assert (Candidate (4, 8, 9) = [12, 1]); pragma Assert (Candidate (1, 10, 10) = [11, 0]); pragma Assert (Candidate (2, 11, 5) = [7, 0]); pragma Assert (Candidate (4, 5, 7) = [9, 2]); pragma Assert (Candidate (4, 5, 1) = [5, 0]); end Main;
[ "\n end " ]
HumanEval_160_do_algebra
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Unbounded_String_Array is array (Positive range <>) of Unbounded_String; type Integer_Array is array (Positive range <>) of Integer; function Do_Algebra (Operator : Unbounded_String_Array; Operand : Integer_Array) return Integer; -- Given two Vectors operator, and operand. The first Vector has basic algebra operations, and -- the second Vector is a Vector of integers. Use the two given Vectors to build the algebric -- expression and return the evaluation of this expression. -- The basic algebra operations: -- Addition ( + ) -- Subtraction ( - ) -- Multiplication ( * ) -- Floor division ( // ) -- Exponentiation ( ** ) -- Example: -- operator['+', '*', '-'] -- array = [2, 3, 4, 5] -- result = 2 + 3 * 4 - 5 -- => result = 9 -- Note: -- The length of operator Vector is equal to the length of operand Vector minus one. -- Operand is a Vector of of non-negative integers. -- Operator Vector has at least one operator, and operand Vector has at least two operands. end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function Do_Algebra (Operator : Unbounded_String_Array; Operand : Integer_Array) return Integer
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_160_do_algebra.py
reworded
end Do_Algebra; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (Operator : Unbounded_String_Array; Operand : Integer_Array) return Integer renames Placeholder.Do_Algebra; begin pragma Assert (Candidate ([To_Unbounded_String ("**"), To_Unbounded_String ("*"), To_Unbounded_String ("+")], [2, 3, 4, 5]) = 37); pragma Assert (Candidate ([To_Unbounded_String ("+"), To_Unbounded_String ("*"), To_Unbounded_String ("-")], [2, 3, 4, 5]) = 9); pragma Assert (Candidate ([To_Unbounded_String ("//"), To_Unbounded_String ("*")], [7, 3, 4]) = 8); end Main;
[ "\n end " ]
HumanEval_161_solve
adb
pragma Ada_2022; package Placeholder is function Solve (S : String) return String; -- You are given a string s. -- if s[i] is a letter, reverse its case from lower to upper or vise versa, -- otherwise keep it as it is. -- If the string contains no letters, reverse the string. -- The function should return the resulted string. -- Examples -- >>> Solve ("1234") -- "4321" -- >>> Solve ("ab") -- "AB" -- >>> Solve ("#a@C") -- "#A@c" end Placeholder; pragma Ada_2022; package body Placeholder is function Solve (S : String) return String
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_161_solve.py
reworded
end Solve; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (S : String) return String renames Placeholder.Solve; begin pragma Assert (Candidate ("AsDf") = "aSdF"); pragma Assert (Candidate ("1234") = "4321"); pragma Assert (Candidate ("ab") = "AB"); pragma Assert (Candidate ("#a@C") = "#A@c"); pragma Assert (Candidate ("#AsdfW^45") = "#aSDFw^45"); pragma Assert (Candidate ("#6@2") = "2@6#"); pragma Assert (Candidate ("#$a^D") = "#$A^d"); pragma Assert (Candidate ("#ccc") = "#CCC"); end Main;
[ "\n end " ]
HumanEval_162_string_to_md5
adb
pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package Placeholder is type Unbounded_String_Option (Valid : Boolean := False) is record case Valid is when True => Value : Unbounded_String; when False => null; end case; end record; function String_To_Md5 (Text : String) return Unbounded_String_Option; -- Given a string 'text', return its md5 hash equivalent string. -- If 'text' is an empty string, return null. -- >>> String_To_Md5 ("Hello world") -- (Valid => True, Value => To_Unbounded_String ("3e25960a79dbc69b674cd4ec67a72c62")) end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; package body Placeholder is function String_To_Md5 (Text : String) return Unbounded_String_Option
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_162_string_to_md5.py
reworded
end String_To_Md5; end Placeholder; pragma Ada_2022; with Ada.Strings.Unbounded; use Ada.Strings.Unbounded; with Placeholder; use Placeholder; procedure Main is function Candidate (Text : String) return Unbounded_String_Option renames Placeholder.String_To_Md5; begin pragma Assert (Candidate ("Hello world") = (Valid => True, Value => To_Unbounded_String ("3e25960a79dbc69b674cd4ec67a72c62"))); pragma Assert (Candidate ("") = (Valid => False)); pragma Assert (Candidate ("A B C") = (Valid => True, Value => To_Unbounded_String ("0ef78513b0cb8cef12743f5aeb35f888"))); pragma Assert (Candidate ("password") = (Valid => True, Value => To_Unbounded_String ("5f4dcc3b5aa765d61d8327deb882cf99"))); end Main;
[ "\n end " ]
HumanEval_163_generate_integers
adb
pragma Ada_2022; package Placeholder is type Integer_Array is array (Positive range <>) of Integer; function Generate_Integers (A : Integer; B : Integer) return Integer_Array; -- Given two positive integers a and b, return the even digits between a -- and b, in ascending order. -- For example: -- >>> Generate_Integers (2, 8) -- [2, 4, 6, 8] -- >>> Generate_Integers (8, 2) -- [2, 4, 6, 8] -- >>> Generate_Integers (10, 14) -- [] end Placeholder; pragma Ada_2022; package body Placeholder is function Generate_Integers (A : Integer; B : Integer) return Integer_Array
transform
/mnt/ssd/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_163_generate_integers.py
reworded
end Generate_Integers; end Placeholder; pragma Ada_2022; with Placeholder; use Placeholder; procedure Main is function Candidate (A : Integer; B : Integer) return Integer_Array renames Placeholder.Generate_Integers; begin pragma Assert (Candidate (2, 10) = [2, 4, 6, 8]); pragma Assert (Candidate (10, 2) = [2, 4, 6, 8]); pragma Assert (Candidate (132, 2) = [2, 4, 6, 8]); pragma Assert (Candidate (17, 89) = []); end Main;
[ "\n end " ]