Dataset Viewer
Auto-converted to Parquet
video
video
time_of_event
float64
3.03
56.8
time_of_alert
float64
1.97
55.5
light_conditions
stringclasses
4 values
weather
stringclasses
4 values
scene
stringclasses
7 values
null
null
Normal
Cloudy
Urban
null
null
Normal
Cloudy
Sub-urban
null
null
Normal
Clear
Highway
null
null
Normal
Clear
Sub-urban
null
null
Normal
Clear
Highway
null
null
Normal
Clear
Urban
null
null
Normal
Cloudy
Highway
null
null
Normal
Cloudy
Urban
null
null
Normal
Clear
Highway
null
null
Normal
Cloudy
Urban
null
null
Normal
Clear
Sub-urban
null
null
Normal
Clear
Urban
null
null
Normal
Cloudy
Sub-urban
null
null
Normal
Cloudy
Urban
null
null
Bright
Clear
Highway
null
null
Normal
Cloudy
Sub-urban
null
null
Normal
Rain
Urban
null
null
Normal
Clear
Sub-urban
null
null
Normal
Cloudy
Sub-urban
null
null
Normal
Cloudy
Highway
null
null
Normal
Clear
Highway
null
null
Normal
Cloudy
Sub-urban
null
null
Normal
Clear
Urban
null
null
Twilight
Rain
Urban
null
null
Normal
Cloudy
Urban
null
null
Normal
Clear
Urban
null
null
Normal
Cloudy
Highway
null
null
Normal
Clear
Urban
null
null
Normal
Cloudy
Urban
null
null
Normal
Clear
Highway
null
null
Normal
Clear
Highway
null
null
Twilight
Clear
Sub-urban
null
null
Normal
Cloudy
Urban
null
null
Twilight
Cloudy
Urban
null
null
Normal
Clear
Urban
null
null
Twilight
Clear
Highway
null
null
Normal
Cloudy
Highway
null
null
Normal
Cloudy
Urban
null
null
Normal
Clear
Highway
null
null
Normal
Clear
Highway
null
null
Normal
Cloudy
Sub-urban
null
null
Normal
Clear
Other
null
null
Normal
Clear
Urban
null
null
Normal
Cloudy
Highway
null
null
Normal
Clear
Highway
null
null
Normal
Clear
Urban
null
null
Normal
Clear
Urban
null
null
Twilight
Clear
Highway
null
null
Normal
Clear
Urban
null
null
Bright
Clear
Urban
null
null
Normal
Cloudy
Industrial
null
null
Dark
Clear
Sub-urban
null
null
Normal
Clear
Urban
null
null
Normal
Clear
Sub-urban
null
null
Normal
Clear
Urban
null
null
Normal
Clear
Urban
null
null
Normal
Clear
Sub-urban
null
null
Normal
Cloudy
Urban
null
null
Normal
Clear
Sub-urban
null
null
Normal
Cloudy
Urban
null
null
Twilight
Clear
Highway
null
null
Normal
Clear
Highway
null
null
Normal
Clear
Urban
null
null
Normal
Clear
Urban
null
null
Normal
Cloudy
Urban
null
null
Dark
Clear
Highway
null
null
Normal
Clear
Highway
null
null
Normal
Clear
Industrial
null
null
Normal
Cloudy
Urban
null
null
Dark
Clear
Highway
null
null
Normal
Clear
Urban
null
null
Normal
Cloudy
Sub-urban
null
null
Normal
Clear
Urban
null
null
Normal
Clear
Highway
null
null
Normal
Clear
Sub-urban
null
null
Normal
Clear
Sub-urban
null
null
Normal
Cloudy
Sub-urban
null
null
Normal
Clear
Highway
null
null
Normal
Cloudy
Urban
null
null
Normal
Cloudy
Highway
null
null
Normal
Clear
Sub-urban
null
null
Normal
Clear
Rural
null
null
Normal
Clear
Urban
null
null
Normal
Clear
Highway
null
null
Normal
Clear
Urban
null
null
Twilight
Cloudy
Sub-urban
null
null
Normal
Cloudy
Sub-urban
null
null
Dark
Clear
Highway
null
null
Normal
Cloudy
Urban
null
null
Normal
Clear
Highway
null
null
Normal
Clear
Urban
null
null
Normal
Clear
Urban
null
null
Normal
Clear
Urban
null
null
Normal
Clear
Rural
null
null
Normal
Cloudy
Highway
null
null
Normal
Cloudy
Sub-urban
null
null
Normal
Clear
Sub-urban
null
null
Normal
Clear
Urban
null
null
Normal
Cloudy
Sub-urban
null
null
Normal
Clear
Urban
End of preview. Expand in Data Studio

Nexar Collision Prediction Dataset

This dataset is part of an ongoing competition on Kaggle.

Dataset

The Nexar collision prediction dataset comprises videos from Nexar dashcams. Videos have a resolution of 1280x720 at 30 frames per second and typically have about 40 seconds of duration. The dataset contains 1500 videos where half show events where there was a collision or a collision was eminent (positive cases), and the other half shows regular driving (negative cases). The time of the event (collision or near-miss) is available for positive cases.

Goal

The goal of this dataset is to help build models to predict the time of collision. Models should be able to predict if a collision is about to happen or not. Both collisions and near-misses are treated equally as positive cases.

Model assessment

Models should be able to predict that a collision is about to happen as soon as possible, while avoiding false positives. Assessment scripts will be made available shortly that calculate the mean average precision across different times before collision (e.g. 500ms, 1000ms, 2000ms).

Usage

from datasets import load_dataset

dataset = load_dataset("videofolder", data_dir="/your/path/nexar_collision_prediction", split="train", drop_labels=False)

A positive example would look like this:

{'video': <decord.video_reader.VideoReader object at 0x7f5a97c22670>, 'label': 1, 'time_of_event': 20.367, 'time_of_alert': 19.299, 'light_conditions': 'Normal', 'weather': 'Cloudy', 'scene': 'Urban'}

and a negative example like this:

{'video': <decord.video_reader.VideoReader object at 0x7ff190129b50>, 'label': 0, 'time_of_event': None, 'time_of_alert': None, 'light_conditions': 'Normal', 'weather': 'Cloudy', 'scene': 'Urban'}

Paper and citation

A paper is available describing the dataset and the evaluation framework used on the Nexar Dashcam Crash Prediction Challenge.

Please use the following reference when citing this dataset:

Daniel C. Moura, Shizhan Zhu, and Orly Zvitia . Nexar Dashcam Collision Prediction Dataset and Challenge. https://arxiv.org/abs/2503.03848, 2025.

BibTeX:

@misc{nexar2025dashcamcollisionprediction,
      title={Nexar Dashcam Collision Prediction Dataset and Challenge}, 
      author={Daniel C. Moura and Shizhan Zhu and Orly Zvitia},
      year={2025},
      eprint={2503.03848},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2503.03848}, 
}
Downloads last month
2,531