text
stringlengths
6
3.19k
time_discrete
int64
2.01k
2.02k
In this contribution, we propose a generic online (also sometimes called adaptive or recursive) version of the Expectation-Maximisation (EM) algorithm applicable to latent variable models of independent observations. Compared to the algorithm of Titterington (1984), this approach is more directly connected to the usual EM algorithm and does not rely on integration with respect to the complete data distribution. The resulting algorithm is usually simpler and is shown to achieve convergence to the stationary points of the Kullback-Leibler divergence between the marginal distribution of the observation and the model distribution at the optimal rate, i.e., that of the maximum likelihood estimator. In addition, the proposed approach is also suitable for conditional (or regression) models, as illustrated in the case of the mixture of linear regressions model.
2,017
Online EM Algorithm for Latent Data Models
2,017
We define a new model of quantum learning that we call Predictive Quantum (PQ). This is a quantum analogue of PAC, where during the testing phase the student is only required to answer a polynomial number of testing queries. We demonstrate a relational concept class that is efficiently learnable in PQ, while in any "reasonable" classical model exponential amount of training data would be required. This is the first unconditional separation between quantum and classical learning. We show that our separation is the best possible in several ways; in particular, there is no analogous result for a functional class, as well as for several weaker versions of quantum learning. In order to demonstrate tightness of our separation we consider a special case of one-way communication that we call single-input mode, where Bob receives no input. Somewhat surprisingly, this setting becomes nontrivial when relational communication tasks are considered. In particular, any problem with two-sided input can be transformed into a single-input relational problem of equal classical one-way cost. We show that the situation is different in the quantum case, where the same transformation can make the communication complexity exponentially larger. This happens if and only if the original problem has exponential gap between quantum and classical one-way communication costs. We believe that these auxiliary results might be of independent interest.
2,012
Quantum Predictive Learning and Communication Complexity with Single Input
2,012
Cilibrasi and Vitanyi have demonstrated that it is possible to extract the meaning of words from the world-wide web. To achieve this, they rely on the number of webpages that are found through a Google search containing a given word and they associate the page count to the probability that the word appears on a webpage. Thus, conditional probabilities allow them to correlate one word with another word's meaning. Furthermore, they have developed a similarity distance function that gauges how closely related a pair of words is. We present a specific counterexample to the triangle inequality for this similarity distance function.
2,015
Google distance between words
2,015
This paper has been retracted.
2,013
Differential Contrastive Divergence
2,013
Given a matrix M of low-rank, we consider the problem of reconstructing it from noisy observations of a small, random subset of its entries. The problem arises in a variety of applications, from collaborative filtering (the `Netflix problem') to structure-from-motion and positioning. We study a low complexity algorithm introduced by Keshavan et al.(2009), based on a combination of spectral techniques and manifold optimization, that we call here OptSpace. We prove performance guarantees that are order-optimal in a number of circumstances.
2,012
Matrix Completion from Noisy Entries
2,012
Background: Hidden Markov models are widely employed by numerous bioinformatics programs used today. Applications range widely from comparative gene prediction to time-series analyses of micro-array data. The parameters of the underlying models need to be adjusted for specific data sets, for example the genome of a particular species, in order to maximize the prediction accuracy. Computationally efficient algorithms for parameter training are thus key to maximizing the usability of a wide range of bioinformatics applications. Results: We introduce two computationally efficient training algorithms, one for Viterbi training and one for stochastic expectation maximization (EM) training, which render the memory requirements independent of the sequence length. Unlike the existing algorithms for Viterbi and stochastic EM training which require a two-step procedure, our two new algorithms require only one step and scan the input sequence in only one direction. We also implement these two new algorithms and the already published linear-memory algorithm for EM training into the hidden Markov model compiler HMM-Converter and examine their respective practical merits for three small example models. Conclusions: Bioinformatics applications employing hidden Markov models can use the two algorithms in order to make Viterbi training and stochastic EM training more computationally efficient. Using these algorithms, parameter training can thus be attempted for more complex models and longer training sequences. The two new algorithms have the added advantage of being easier to implement than the corresponding default algorithms for Viterbi training and stochastic EM training.
2,012
Efficient algorithms for training the parameters of hidden Markov models using stochastic expectation maximization EM training and Viterbi training
2,012
There are many resources useful for processing images, most of them freely available and quite friendly to use. In spite of this abundance of tools, a study of the processing methods is still worthy of efforts. Here, we want to discuss the possibilities arising from the use of fractional differential calculus. This calculus evolved in the research field of pure mathematics until 1920, when applied science started to use it. Only recently, fractional calculus was involved in image processing methods. As we shall see, the fractional calculation is able to enhance the quality of images, with interesting possibilities in edge detection and image restoration. We suggest also the fractional differentiation as a tool to reveal faint objects in astronomical images.
2,015
Fractional differentiation based image processing
2,015
The versatility of exponential families, along with their attendant convexity properties, make them a popular and effective statistical model. A central issue is learning these models in high-dimensions, such as when there is some sparsity pattern of the optimal parameter. This work characterizes a certain strong convexity property of general exponential families, which allow their generalization ability to be quantified. In particular, we show how this property can be used to analyze generic exponential families under L_1 regularization.
2,015
Learning Exponential Families in High-Dimensions: Strong Convexity and Sparsity
2,015
This paper describes a methodology for detecting anomalies from sequentially observed and potentially noisy data. The proposed approach consists of two main elements: (1) {\em filtering}, or assigning a belief or likelihood to each successive measurement based upon our ability to predict it from previous noisy observations, and (2) {\em hedging}, or flagging potential anomalies by comparing the current belief against a time-varying and data-adaptive threshold. The threshold is adjusted based on the available feedback from an end user. Our algorithms, which combine universal prediction with recent work on online convex programming, do not require computing posterior distributions given all current observations and involve simple primal-dual parameter updates. At the heart of the proposed approach lie exponential-family models which can be used in a wide variety of contexts and applications, and which yield methods that achieve sublinear per-round regret against both static and slowly varying product distributions with marginals drawn from the same exponential family. Moreover, the regret against static distributions coincides with the minimax value of the corresponding online strongly convex game. We also prove bounds on the number of mistakes made during the hedging step relative to the best offline choice of the threshold with access to all estimated beliefs and feedback signals. We validate the theory on synthetic data drawn from a time-varying distribution over binary vectors of high dimensionality, as well as on the Enron email dataset.
2,012
Sequential anomaly detection in the presence of noise and limited feedback
2,012
Languages evolve over time in a process in which reproduction, mutation and extinction are all possible, similar to what happens to living organisms. Using this similarity it is possible, in principle, to build family trees which show the degree of relatedness between languages. The method used by modern glottochronology, developed by Swadesh in the 1950s, measures distances from the percentage of words with a common historical origin. The weak point of this method is that subjective judgment plays a relevant role. Recently we proposed an automated method that avoids the subjectivity, whose results can be replicated by studies that use the same database and that doesn't require a specific linguistic knowledge. Moreover, the method allows a quick comparison of a large number of languages. We applied our method to the Indo-European and Austronesian families, considering in both cases, fifty different languages. The resulting trees are similar to those of previous studies, but with some important differences in the position of few languages and subgroups. We believe that these differences carry new information on the structure of the tree and on the phylogenetic relationships within families.
2,012
Automated languages phylogeny from Levenshtein distance
2,012
Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects $\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}$, measures how well other pairs A:B fit in with the set $\mathbf{S}$. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in $\mathbf{S}$? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.
2,013
Ranking relations using analogies in biological and information networks
2,013
We consider a group of Bayesian agents who try to estimate a state of the world $\theta$ through interaction on a social network. Each agent $v$ initially receives a private measurement of $\theta$: a number $S_v$ picked from a Gaussian distribution with mean $\theta$ and standard deviation one. Then, in each discrete time iteration, each reveals its estimate of $\theta$ to its neighbors, and, observing its neighbors' actions, updates its belief using Bayes' Law. This process aggregates information efficiently, in the sense that all the agents converge to the belief that they would have, had they access to all the private measurements. We show that this process is computationally efficient, so that each agent's calculation can be easily carried out. We also show that on any graph the process converges after at most $2N \cdot D$ steps, where $N$ is the number of agents and $D$ is the diameter of the network. Finally, we show that on trees and on distance transitive-graphs the process converges after $D$ steps, and that it preserves privacy, so that agents learn very little about the private signal of most other agents, despite the efficient aggregation of information. Our results extend those in an unpublished manuscript of the first and last authors.
2,016
Efficient Bayesian Learning in Social Networks with Gaussian Estimators
2,016
Automatic License Plate Recognition (ALPR) is a challenging area of research due to its importance to variety of commercial applications. The overall problem may be subdivided into two key modules, firstly, localization of license plates from vehicle images, and secondly, optical character recognition of extracted license plates. In the current work, we have concentrated on the first part of the problem, i.e., localization of license plate regions from Indian commercial vehicles as a significant step towards development of a complete ALPR system for Indian vehicles. The technique is based on color based segmentation of vehicle images and identification of potential license plate regions. True license plates are finally localized based on four spatial and horizontal contrast features. The technique successfully localizes the actual license plates in 73.4% images.
2,015
An Offline Technique for Localization of License Plates for Indian Commercial Vehicles
2,015
Integrated Traffic Management Systems (ITMS) are now implemented in different cities in India to primarily address the concerns of road-safety and security. An automated Red Light Violation Detection System (RLVDS) is an integral part of the ITMS. In our present work we have designed and developed a complete system for generating the list of all stop-line violating vehicle images automatically from video snapshots of road-side surveillance cameras. The system first generates adaptive background images for each camera view, subtracts captured images from the corresponding background images and analyses potential occlusions over the stop-line in a traffic signal. Considering round-the-clock operations in a real-life test environment, the developed system could successfully track 92% images of vehicles with violations on the stop-line in a "Red" traffic signal.
2,015
Development of an automated Red Light Violation Detection System (RLVDS) for Indian vehicles
2,015
Automatic License Plate Recognition system is a challenging area of research now-a-days and binarization is an integral and most important part of it. In case of a real life scenario, most of existing methods fail to properly binarize the image of a vehicle in a congested road, captured through a CCD camera. In the current work we have applied histogram equalization technique over the complete image and also over different hierarchy of image partitioning. A novel scheme is formulated for giving the membership value to each pixel for each hierarchy of histogram equalization. Then the image is binarized depending on the net membership value of each pixel. The technique is exhaustively evaluated on the vehicle image dataset as well as the license plate dataset, giving satisfactory performances.
2,015
A novel scheme for binarization of vehicle images using hierarchical histogram equalization technique
2,015
Biological data objects often have both of the following features: (i) they are functions rather than single numbers or vectors, and (ii) they are correlated due to phylogenetic relationships. In this paper we give a flexible statistical model for such data, by combining assumptions from phylogenetics with Gaussian processes. We describe its use as a nonparametric Bayesian prior distribution, both for prediction (placing posterior distributions on ancestral functions) and model selection (comparing rates of evolution across a phylogeny, or identifying the most likely phylogenies consistent with the observed data). Our work is integrative, extending the popular phylogenetic Brownian Motion and Ornstein-Uhlenbeck models to functional data and Bayesian inference, and extending Gaussian Process regression to phylogenies. We provide a brief illustration of the application of our method.
2,012
Evolutionary Inference for Function-valued Traits: Gaussian Process Regression on Phylogenies
2,012
We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream teacher and then pass samples from the model to their downstream student. It extends the population dynamics of genetic drift, recasting Kimura's selectively neutral theory as a special case of a generalized drift process using structured populations with memory. We examine the diffusion and fixation properties of several drift processes and propose applications to learning, inference, and evolution. We also demonstrate how the organization of drift process space controls fidelity, facilitates innovations, and leads to information loss in sequential learning with and without memory.
2,012
Structural Drift: The Population Dynamics of Sequential Learning
2,012
We study the problem of estimating high-dimensional regression models regularized by a structured sparsity-inducing penalty that encodes prior structural information on either the input or output variables. We consider two widely adopted types of penalties of this kind as motivating examples: (1) the general overlapping-group-lasso penalty, generalized from the group-lasso penalty; and (2) the graph-guided-fused-lasso penalty, generalized from the fused-lasso penalty. For both types of penalties, due to their nonseparability and nonsmoothness, developing an efficient optimization method remains a challenging problem. In this paper we propose a general optimization approach, the smoothing proximal gradient (SPG) method, which can solve structured sparse regression problems with any smooth convex loss under a wide spectrum of structured sparsity-inducing penalties. Our approach combines a smoothing technique with an effective proximal gradient method. It achieves a convergence rate significantly faster than the standard first-order methods, subgradient methods, and is much more scalable than the most widely used interior-point methods. The efficiency and scalability of our method are demonstrated on both simulation experiments and real genetic data sets.
2,012
Smoothing proximal gradient method for general structured sparse regression
2,012
We consider the problem of sequential prediction and provide tools to study the minimax value of the associated game. Classical statistical learning theory provides several useful complexity measures to study learning with i.i.d. data. Our proposed sequential complexities can be seen as extensions of these measures to the sequential setting. The developed theory is shown to yield precise learning guarantees for the problem of sequential prediction. In particular, we show necessary and sufficient conditions for online learnability in the setting of supervised learning. Several examples show the utility of our framework: we can establish learnability without having to exhibit an explicit online learning algorithm.
2,014
Online Learning via Sequential Complexities
2,014
This companion paper complements the main DEFT'10 article describing the MARF approach (arXiv:0905.1235) to the DEFT'10 NLP challenge (described at http://www.groupes.polymtl.ca/taln2010/deft.php in French). This paper is aimed to present the complete result sets of all the conducted experiments and their settings in the resulting tables highlighting the approach and the best results, but also showing the worse and the worst and their subsequent analysis. This particular work focuses on application of the MARF's classical and NLP pipelines to identification tasks within various francophone corpora to identify decades when certain articles were published for the first track (Piste 1) and place of origin of a publication (Piste 2), such as the journal and location (France vs. Quebec). This is the sixth iteration of the release of the results.
2,014
Complete Complementary Results Report of the MARF's NLP Approach to the DEFT 2010 Competition
2,014
One of the most visually demonstrable and straightforward uses of filtering is in the field of Computer Vision. In this document we will try to outline the issues encountered while designing and implementing a particle and kalman filter based tracking system.
2,017
3D Visual Tracking with Particle and Kalman Filters
2,017
The two parameter Poisson-Dirichlet Process (PDP), a generalisation of the Dirichlet Process, is increasingly being used for probabilistic modelling in discrete areas such as language technology, bioinformatics, and image analysis. There is a rich literature about the PDP and its derivative distributions such as the Chinese Restaurant Process (CRP). This article reviews some of the basic theory and then the major results needed for Bayesian modelling of discrete problems including details of priors, posteriors and computation. The PDP allows one to build distributions over countable partitions. The PDP has two other remarkable properties: first it is partially conjugate to itself, which allows one to build hierarchies of PDPs, and second using a marginalised relative the CRP, one gets fragmentation and clustering properties that lets one layer partitions to build trees. This article presents the basic theory for understanding the notion of partitions and distributions over them, the PDP and the CRP, and the important properties of conjugacy, fragmentation and clustering, as well as some key related properties such as consistency and convergence. This article also presents a Bayesian interpretation of the Poisson-Dirichlet process based on an improper and infinite dimensional Dirichlet distribution. This means we can understand the process as just another Dirichlet and thus all its sampling properties emerge naturally. The theory of PDPs is usually presented for continuous distributions (more generally referred to as non-atomic distributions), however, when applied to discrete distributions its remarkable conjugacy property emerges. This context and basic results are also presented, as well as techniques for computing the second order Stirling numbers that occur in the posteriors for discrete distributions.
2,012
A Bayesian View of the Poisson-Dirichlet Process
2,012
Motivated by the unceasing interest in hidden Markov models (HMMs), this paper re-examines hidden path inference in these models, using primarily a risk-based framework. While the most common maximum a posteriori (MAP), or Viterbi, path estimator and the minimum error, or Posterior Decoder (PD), have long been around, other path estimators, or decoders, have been either only hinted at or applied more recently and in dedicated applications generally unfamiliar to the statistical learning community. Over a decade ago, however, a family of algorithmically defined decoders aiming to hybridize the two standard ones was proposed (Brushe et al., 1998). The present paper gives a careful analysis of this hybridization approach, identifies several problems and issues with it and other previously proposed approaches, and proposes practical resolutions of those. Furthermore, simple modifications of the classical criteria for hidden path recognition are shown to lead to a new class of decoders. Dynamic programming algorithms to compute these decoders in the usual forward-backward manner are presented. A particularly interesting subclass of such estimators can be also viewed as hybrids of the MAP and PD estimators. Similar to previously proposed MAP-PD hybrids, the new class is parameterized by a small number of tunable parameters. Unlike their algorithmic predecessors, the new risk-based decoders are more clearly interpretable, and, most importantly, work "out of the box" in practice, which is demonstrated on some real bioinformatics tasks and data. Some further generalizations and applications are discussed in conclusion.
2,013
A generalized risk approach to path inference based on hidden Markov models
2,013
In this paper we present a new algorithm for learning oblique decision trees. Most of the current decision tree algorithms rely on impurity measures to assess the goodness of hyperplanes at each node while learning a decision tree in a top-down fashion. These impurity measures do not properly capture the geometric structures in the data. Motivated by this, our algorithm uses a strategy to assess the hyperplanes in such a way that the geometric structure in the data is taken into account. At each node of the decision tree, we find the clustering hyperplanes for both the classes and use their angle bisectors as the split rule at that node. We show through empirical studies that this idea leads to small decision trees and better performance. We also present some analysis to show that the angle bisectors of clustering hyperplanes that we use as the split rules at each node, are solutions of an interesting optimization problem and hence argue that this is a principled method of learning a decision tree.
2,012
Geometric Decision Tree
2,012
Margin theory provides one of the most popular explanations to the success of \texttt{AdaBoost}, where the central point lies in the recognition that \textit{margin} is the key for characterizing the performance of \texttt{AdaBoost}. This theory has been very influential, e.g., it has been used to argue that \texttt{AdaBoost} usually does not overfit since it tends to enlarge the margin even after the training error reaches zero. Previously the \textit{minimum margin bound} was established for \texttt{AdaBoost}, however, \cite{Breiman1999} pointed out that maximizing the minimum margin does not necessarily lead to a better generalization. Later, \cite{Reyzin:Schapire2006} emphasized that the margin distribution rather than minimum margin is crucial to the performance of \texttt{AdaBoost}. In this paper, we first present the \textit{$k$th margin bound} and further study on its relationship to previous work such as the minimum margin bound and Emargin bound. Then, we improve the previous empirical Bernstein bounds \citep{Maurer:Pontil2009,Audibert:Munos:Szepesvari2009}, and based on such findings, we defend the margin-based explanation against Breiman's doubts by proving a new generalization error bound that considers exactly the same factors as \cite{Schapire:Freund:Bartlett:Lee1998} but is sharper than \cite{Breiman1999}'s minimum margin bound. By incorporating factors such as average margin and variance, we present a generalization error bound that is heavily related to the whole margin distribution. We also provide margin distribution bounds for generalization error of voting classifiers in finite VC-dimension space.
2,013
On the Doubt about Margin Explanation of Boosting
2,013
We establish an excess risk bound of O(H R_n^2 + R_n \sqrt{H L*}) for empirical risk minimization with an H-smooth loss function and a hypothesis class with Rademacher complexity R_n, where L* is the best risk achievable by the hypothesis class. For typical hypothesis classes where R_n = \sqrt{R/n}, this translates to a learning rate of O(RH/n) in the separable (L*=0) case and O(RH/n + \sqrt{L^* RH/n}) more generally. We also provide similar guarantees for online and stochastic convex optimization with a smooth non-negative objective.
2,012
Optimistic Rates for Learning with a Smooth Loss
2,012
We consider the problem of energy-efficient point-to-point transmission of delay-sensitive data (e.g. multimedia data) over a fading channel. Existing research on this topic utilizes either physical-layer centric solutions, namely power-control and adaptive modulation and coding (AMC), or system-level solutions based on dynamic power management (DPM); however, there is currently no rigorous and unified framework for simultaneously utilizing both physical-layer centric and system-level techniques to achieve the minimum possible energy consumption, under delay constraints, in the presence of stochastic and a priori unknown traffic and channel conditions. In this report, we propose such a framework. We formulate the stochastic optimization problem as a Markov decision process (MDP) and solve it online using reinforcement learning. The advantages of the proposed online method are that (i) it does not require a priori knowledge of the traffic arrival and channel statistics to determine the jointly optimal power-control, AMC, and DPM policies; (ii) it exploits partial information about the system so that less information needs to be learned than when using conventional reinforcement learning algorithms; and (iii) it obviates the need for action exploration, which severely limits the adaptation speed and run-time performance of conventional reinforcement learning algorithms. Our results show that the proposed learning algorithms can converge up to two orders of magnitude faster than a state-of-the-art learning algorithm for physical layer power-control and up to three orders of magnitude faster than conventional reinforcement learning algorithms.
2,013
Fast Reinforcement Learning for Energy-Efficient Wireless Communications
2,013
To classify time series by nearest neighbors, we need to specify or learn one or several distance measures. We consider variations of the Mahalanobis distance measures which rely on the inverse covariance matrix of the data. Unfortunately --- for time series data --- the covariance matrix has often low rank. To alleviate this problem we can either use a pseudoinverse, covariance shrinking or limit the matrix to its diagonal. We review these alternatives and benchmark them against competitive methods such as the related Large Margin Nearest Neighbor Classification (LMNN) and the Dynamic Time Warping (DTW) distance. As we expected, we find that the DTW is superior, but the Mahalanobis distance measures are one to two orders of magnitude faster. To get best results with Mahalanobis distance measures, we recommend learning one distance measure per class using either covariance shrinking or the diagonal approach.
2,012
Time Series Classification by Class-Specific Mahalanobis Distance Measures
2,012
We present a simple and fast geometric method for modeling data by a union of affine subspaces. The method begins by forming a collection of local best-fit affine subspaces, i.e., subspaces approximating the data in local neighborhoods. The correct sizes of the local neighborhoods are determined automatically by the Jones' $\beta_2$ numbers (we prove under certain geometric conditions that our method finds the optimal local neighborhoods). The collection of subspaces is further processed by a greedy selection procedure or a spectral method to generate the final model. We discuss applications to tracking-based motion segmentation and clustering of faces under different illuminating conditions. We give extensive experimental evidence demonstrating the state of the art accuracy and speed of the suggested algorithms on these problems and also on synthetic hybrid linear data as well as the MNIST handwritten digits data; and we demonstrate how to use our algorithms for fast determination of the number of affine subspaces.
2,012
Hybrid Linear Modeling via Local Best-fit Flats
2,012
A scattering vector is a local descriptor including multiscale and multi-direction co-occurrence information. It is computed with a cascade of wavelet decompositions and complex modulus. This scattering representation is locally translation invariant and linearizes deformations. A supervised classification algorithm is computed with a PCA model selection on scattering vectors. State of the art results are obtained for handwritten digit recognition and texture classification.
2,013
Classification with Scattering Operators
2,013
We obtain a tight distribution-specific characterization of the sample complexity of large-margin classification with L_2 regularization: We introduce the \gamma-adapted-dimension, which is a simple function of the spectrum of a distribution's covariance matrix, and show distribution-specific upper and lower bounds on the sample complexity, both governed by the \gamma-adapted-dimension of the source distribution. We conclude that this new quantity tightly characterizes the true sample complexity of large-margin classification. The bounds hold for a rich family of sub-Gaussian distributions.
2,012
Tight Sample Complexity of Large-Margin Learning
2,012
Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a {novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data.
2,014
Generalized Species Sampling Priors with Latent Beta reinforcements
2,014
We assume data sampled from a mixture of d-dimensional linear subspaces with spherically symmetric distributions within each subspace and an additional outlier component with spherically symmetric distribution within the ambient space (for simplicity we may assume that all distributions are uniform on their corresponding unit spheres). We also assume mixture weights for the different components. We say that one of the underlying subspaces of the model is most significant if its mixture weight is higher than the sum of the mixture weights of all other subspaces. We study the recovery of the most significant subspace by minimizing the lp-averaged distances of data points from d-dimensional subspaces, where p>0. Unlike other lp minimization problems, this minimization is non-convex for all p>0 and thus requires different methods for its analysis. We show that if 0<p<=1, then for any fraction of outliers the most significant subspace can be recovered by lp minimization with overwhelming probability (which depends on the generating distribution and its parameters). We show that when adding small noise around the underlying subspaces the most significant subspace can be nearly recovered by lp minimization for any 0<p<=1 with an error proportional to the noise level. On the other hand, if p>1 and there is more than one underlying subspace, then with overwhelming probability the most significant subspace cannot be recovered or nearly recovered. This last result does not require spherically symmetric outliers.
2,014
lp-Recovery of the Most Significant Subspace among Multiple Subspaces with Outliers
2,014
We consider the problem of online linear regression on arbitrary deterministic sequences when the ambient dimension d can be much larger than the number of time rounds T. We introduce the notion of sparsity regret bound, which is a deterministic online counterpart of recent risk bounds derived in the stochastic setting under a sparsity scenario. We prove such regret bounds for an online-learning algorithm called SeqSEW and based on exponential weighting and data-driven truncation. In a second part we apply a parameter-free version of this algorithm to the stochastic setting (regression model with random design). This yields risk bounds of the same flavor as in Dalalyan and Tsybakov (2011) but which solve two questions left open therein. In particular our risk bounds are adaptive (up to a logarithmic factor) to the unknown variance of the noise if the latter is Gaussian. We also address the regression model with fixed design.
2,013
Sparsity regret bounds for individual sequences in online linear regression
2,013
This paper constructs translation invariant operators on L2(R^d), which are Lipschitz continuous to the action of diffeomorphisms. A scattering propagator is a path ordered product of non-linear and non-commuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz continuous to the action of diffeomorphisms. As the window size increases, it converges to a wavelet scattering transform which is translation invariant. Scattering coefficients also provide representations of stationary processes. Expected values depend upon high order moments and can discriminate processes having the same power spectrum. Scattering operators are extended on L2 (G), where G is a compact Lie group, and are invariant under the action of G. Combining a scattering on L2(R^d) and on Ld (SO(d)) defines a translation and rotation invariant scattering on L2(R^d).
2,012
Group Invariant Scattering
2,012
This work is motivated by the problem of image mis-registration in remote sensing and we are interested in determining the resulting loss in the accuracy of pattern classification. A statistical formulation is given where we propose to use data contamination to model and understand the phenomenon of image mis-registration. This model is widely applicable to many other types of errors as well, for example, measurement errors and gross errors etc. The impact of data contamination on classification is studied under a statistical learning theoretical framework. A closed-form asymptotic bound is established for the resulting loss in classification accuracy, which is less than $\epsilon/(1-\epsilon)$ for data contamination of an amount of $\epsilon$. Our bound is sharper than similar bounds in the domain adaptation literature and, unlike such bounds, it applies to classifiers with an infinite Vapnik-Chervonekis (VC) dimension. Extensive simulations have been conducted on both synthetic and real datasets under various types of data contamination, including label flipping, feature swapping and the replacement of feature values with data generated from a random source such as a Gaussian or Cauchy distribution. Our simulation results show that the bound we derive is fairly tight.
2,012
Classification under Data Contamination with Application to Remote Sensing Image Mis-registration
2,012
Targeting at sparse learning, we construct Banach spaces B of functions on an input space X with the properties that (1) B possesses an l1 norm in the sense that it is isometrically isomorphic to the Banach space of integrable functions on X with respect to the counting measure; (2) point evaluations are continuous linear functionals on B and are representable through a bilinear form with a kernel function; (3) regularized learning schemes on B satisfy the linear representer theorem. Examples of kernel functions admissible for the construction of such spaces are given.
2,012
Reproducing Kernel Banach Spaces with the l1 Norm
2,012
We consider a retailer selling a single product with limited on-hand inventory over a finite selling season. Customer demand arrives according to a Poisson process, the rate of which is influenced by a single action taken by the retailer (such as price adjustment, sales commission, advertisement intensity, etc.). The relationship between the action and the demand rate is not known in advance. However, the retailer is able to learn the optimal action "on the fly" as she maximizes her total expected revenue based on the observed demand reactions. Using the pricing problem as an example, we propose a dynamic "learning-while-doing" algorithm that only involves function value estimation to achieve a near-optimal performance. Our algorithm employs a series of shrinking price intervals and iteratively tests prices within that interval using a set of carefully chosen parameters. We prove that the convergence rate of our algorithm is among the fastest of all possible algorithms in terms of asymptotic "regret" (the relative loss comparing to the full information optimal solution). Our result closes the performance gaps between parametric and non-parametric learning and between a post-price mechanism and a customer-bidding mechanism. Important managerial insight from this research is that the values of information on both the parametric form of the demand function as well as each customer's exact reservation price are less important than prior literature suggests. Our results also suggest that firms would be better off to perform dynamic learning and action concurrently rather than sequentially.
2,013
Close the Gaps: A Learning-while-Doing Algorithm for a Class of Single-Product Revenue Management Problems
2,013
Boosting combines weak learners into a predictor with low empirical risk. Its dual constructs a high entropy distribution upon which weak learners and training labels are uncorrelated. This manuscript studies this primal-dual relationship under a broad family of losses, including the exponential loss of AdaBoost and the logistic loss, revealing: - Weak learnability aids the whole loss family: for any {\epsilon}>0, O(ln(1/{\epsilon})) iterations suffice to produce a predictor with empirical risk {\epsilon}-close to the infimum; - The circumstances granting the existence of an empirical risk minimizer may be characterized in terms of the primal and dual problems, yielding a new proof of the known rate O(ln(1/{\epsilon})); - Arbitrary instances may be decomposed into the above two, granting rate O(1/{\epsilon}), with a matching lower bound provided for the logistic loss.
2,012
A Primal-Dual Convergence Analysis of Boosting
2,012
We reformulate minimalist grammars as partial functions on term algebras for strings and trees. Using filler/role bindings and tensor product representations, we construct homomorphisms for these data structures into geometric vector spaces. We prove that the structure-building functions as well as simple processors for minimalist languages can be realized by piecewise linear operators in representation space. We also propose harmony, i.e. the distance of an intermediate processing step from the final well-formed state in representation space, as a measure of processing complexity. Finally, we illustrate our findings by means of two particular arithmetic and fractal representations.
2,012
Geometric representations for minimalist grammars
2,012
Prediction markets are used in real life to predict outcomes of interest such as presidential elections. This paper presents a mathematical theory of artificial prediction markets for supervised learning of conditional probability estimators. The artificial prediction market is a novel method for fusing the prediction information of features or trained classifiers, where the fusion result is the contract price on the possible outcomes. The market can be trained online by updating the participants' budgets using training examples. Inspired by the real prediction markets, the equations that govern the market are derived from simple and reasonable assumptions. Efficient numerical algorithms are presented for solving these equations. The obtained artificial prediction market is shown to be a maximum likelihood estimator. It generalizes linear aggregation, existent in boosting and random forest, as well as logistic regression and some kernel methods. Furthermore, the market mechanism allows the aggregation of specialized classifiers that participate only on specific instances. Experimental comparisons show that the artificial prediction markets often outperform random forest and implicit online learning on synthetic data and real UCI datasets. Moreover, an extensive evaluation for pelvic and abdominal lymph node detection in CT data shows that the prediction market improves adaboost's detection rate from 79.6% to 81.2% at 3 false positives/volume.
2,012
An Introduction to Artificial Prediction Markets for Classification
2,012
Ordinal regression is commonly formulated as a multi-class problem with ordinal constraints. The challenge of designing accurate classifiers for ordinal regression generally increases with the number of classes involved, due to the large number of labeled patterns that are needed. The availability of ordinal class labels, however, is often costly to calibrate or difficult to obtain. Unlabeled patterns, on the other hand, often exist in much greater abundance and are freely available. To take benefits from the abundance of unlabeled patterns, we present a novel transductive learning paradigm for ordinal regression in this paper, namely Transductive Ordinal Regression (TOR). The key challenge of the present study lies in the precise estimation of both the ordinal class label of the unlabeled data and the decision functions of the ordinal classes, simultaneously. The core elements of the proposed TOR include an objective function that caters to several commonly used loss functions casted in transductive settings, for general ordinal regression. A label swapping scheme that facilitates a strictly monotonic decrease in the objective function value is also introduced. Extensive numerical studies on commonly used benchmark datasets including the real world sentiment prediction problem are then presented to showcase the characteristics and efficacies of the proposed transductive ordinal regression. Further, comparisons to recent state-of-the-art ordinal regression methods demonstrate the introduced transductive learning paradigm for ordinal regression led to the robust and improved performance.
2,012
Transductive Ordinal Regression
2,012
Feature selection with specific multivariate performance measures is the key to the success of many applications, such as image retrieval and text classification. The existing feature selection methods are usually designed for classification error. In this paper, we propose a generalized sparse regularizer. Based on the proposed regularizer, we present a unified feature selection framework for general loss functions. In particular, we study the novel feature selection paradigm by optimizing multivariate performance measures. The resultant formulation is a challenging problem for high-dimensional data. Hence, a two-layer cutting plane algorithm is proposed to solve this problem, and the convergence is presented. In addition, we adapt the proposed method to optimize multivariate measures for multiple instance learning problems. The analyses by comparing with the state-of-the-art feature selection methods show that the proposed method is superior to others. Extensive experiments on large-scale and high-dimensional real world datasets show that the proposed method outperforms $l_1$-SVM and SVM-RFE when choosing a small subset of features, and achieves significantly improved performances over SVM$^{perf}$ in terms of $F_1$-score.
2,013
A Feature Selection Method for Multivariate Performance Measures
2,013
In the 21st century, Aerial and satellite images are information rich. They are also complex to analyze. For GIS systems, many features require fast and reliable extraction of open space area from high resolution satellite imagery. In this paper we will study efficient and reliable automatic extraction algorithm to find out the open space area from the high resolution urban satellite imagery. This automatic extraction algorithm uses some filters and segmentations and grouping is applying on satellite images. And the result images may use to calculate the total available open space area and the built up area. It may also use to compare the difference between present and past open space area using historical urban satellite images of that same projection
2,022
Automatic Extraction of Open Space Area from High Resolution Urban Satellite Imagery
2,022
In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naive estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.
2,013
Adaptive Evolutionary Clustering
2,013
With inspiration from Random Forests (RF) in the context of classification, a new clustering ensemble method---Cluster Forests (CF) is proposed. Geometrically, CF randomly probes a high-dimensional data cloud to obtain "good local clusterings" and then aggregates via spectral clustering to obtain cluster assignments for the whole dataset. The search for good local clusterings is guided by a cluster quality measure kappa. CF progressively improves each local clustering in a fashion that resembles the tree growth in RF. Empirical studies on several real-world datasets under two different performance metrics show that CF compares favorably to its competitors. Theoretical analysis reveals that the kappa measure makes it possible to grow the local clustering in a desirable way---it is "noise-resistant". A closed-form expression is obtained for the mis-clustering rate of spectral clustering under a perturbation model, which yields new insights into some aspects of spectral clustering.
2,013
Cluster Forests
2,013
Gabor filters play an important role in many application areas for the enhancement of various types of images and the extraction of Gabor features. For the purpose of enhancing curved structures in noisy images, we introduce curved Gabor filters which locally adapt their shape to the direction of flow. These curved Gabor filters enable the choice of filter parameters which increase the smoothing power without creating artifacts in the enhanced image. In this paper, curved Gabor filters are applied to the curved ridge and valley structure of low-quality fingerprint images. First, we combine two orientation field estimation methods in order to obtain a more robust estimation for very noisy images. Next, curved regions are constructed by following the respective local orientation and they are used for estimating the local ridge frequency. Lastly, curved Gabor filters are defined based on curved regions and they are applied for the enhancement of low-quality fingerprint images. Experimental results on the FVC2004 databases show improvements of this approach in comparison to state-of-the-art enhancement methods.
2,014
Curved Gabor Filters for Fingerprint Image Enhancement
2,014
The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.
2,012
Positive Semidefinite Metric Learning Using Boosting-like Algorithms
2,012
This paper considers the problem of clustering a partially observed unweighted graph---i.e., one where for some node pairs we know there is an edge between them, for some others we know there is no edge, and for the remaining we do not know whether or not there is an edge. We want to organize the nodes into disjoint clusters so that there is relatively dense (observed) connectivity within clusters, and sparse across clusters. We take a novel yet natural approach to this problem, by focusing on finding the clustering that minimizes the number of "disagreements"---i.e., the sum of the number of (observed) missing edges within clusters, and (observed) present edges across clusters. Our algorithm uses convex optimization; its basis is a reduction of disagreement minimization to the problem of recovering an (unknown) low-rank matrix and an (unknown) sparse matrix from their partially observed sum. We evaluate the performance of our algorithm on the classical Planted Partition/Stochastic Block Model. Our main theorem provides sufficient conditions for the success of our algorithm as a function of the minimum cluster size, edge density and observation probability; in particular, the results characterize the tradeoff between the observation probability and the edge density gap. When there are a constant number of clusters of equal size, our results are optimal up to logarithmic factors.
2,014
Clustering Partially Observed Graphs via Convex Optimization
2,014
We present a new application and covering number bound for the framework of "Machine Learning with Operational Costs (MLOC)," which is an exploratory form of decision theory. The MLOC framework incorporates knowledge about how a predictive model will be used for a subsequent task, thus combining machine learning with the decision that is made afterwards. In this work, we use the MLOC framework to study a problem that has implications for power grid reliability and maintenance, called the Machine Learning and Traveling Repairman Problem ML&TRP. The goal of the ML&TRP is to determine a route for a "repair crew," which repairs nodes on a graph. The repair crew aims to minimize the cost of failures at the nodes, but as in many real situations, the failure probabilities are not known and must be estimated. The MLOC framework allows us to understand how this uncertainty influences the repair route. We also present new covering number generalization bounds for the MLOC framework.
2,014
On Combining Machine Learning with Decision Making
2,014

Dataset Card for "DynaMiTE"

More Information needed

Downloads last month
0
Edit dataset card