Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 17,132 Bytes
92bd6c5
 
 
 
 
fed2097
92bd6c5
 
 
 
 
 
 
 
 
 
fed2097
92bd6c5
 
 
 
 
 
 
 
 
 
 
 
e0b2b54
f757483
c4b2c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
668b539
c4b2c0b
 
668b539
c4b2c0b
668b539
 
f757483
 
 
 
 
 
 
 
 
 
e0b2b54
 
 
f757483
 
c4b2c0b
f757483
e6605f9
c4b2c0b
e6605f9
c4b2c0b
 
f757483
 
 
 
 
 
 
 
 
 
e0b2b54
 
 
f757483
 
fbf2b05
f757483
e6605f9
fbf2b05
e6605f9
fbf2b05
 
f757483
 
 
 
 
 
 
 
 
 
e0b2b54
 
 
f757483
 
005bb9e
f757483
e6605f9
005bb9e
e6605f9
005bb9e
 
f757483
 
 
 
 
 
 
 
 
 
e0b2b54
 
 
f757483
 
6fd0ce3
f757483
e6605f9
6fd0ce3
e6605f9
6fd0ce3
 
f757483
 
 
 
 
 
 
 
 
 
e0b2b54
 
 
f757483
 
56acd4d
f757483
e6605f9
56acd4d
e6605f9
56acd4d
 
f757483
 
 
 
 
 
 
 
 
 
e0b2b54
 
 
f757483
 
ed236eb
f757483
e6605f9
ed236eb
e6605f9
ed236eb
 
f757483
 
 
 
 
 
 
 
 
 
e0b2b54
 
 
f757483
 
39bc0e0
f757483
e6605f9
39bc0e0
e6605f9
39bc0e0
 
f757483
 
 
 
 
 
 
 
 
 
e0b2b54
 
 
f757483
 
914f324
f757483
e6605f9
914f324
e6605f9
914f324
 
f757483
 
 
 
 
 
 
 
 
 
e0b2b54
 
 
f757483
 
cf426f3
f757483
e6605f9
cf426f3
e6605f9
cf426f3
 
f757483
 
 
 
 
 
 
 
 
 
e0b2b54
 
 
f757483
 
5b7333a
f757483
e6605f9
5b7333a
e6605f9
5b7333a
 
c4b2c0b
668b539
 
 
 
 
 
c4b2c0b
 
 
 
 
 
fbf2b05
 
 
 
 
 
005bb9e
 
 
 
 
 
6fd0ce3
 
 
 
 
 
56acd4d
 
 
 
 
 
ed236eb
 
 
 
 
 
39bc0e0
 
 
 
 
 
914f324
 
 
 
 
 
cf426f3
 
 
 
 
 
5b7333a
 
 
 
 
 
92bd6c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f757483
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- ay
- bzd
- cni
- gn
- hch
- nah
- oto
- qu
- shp
- tar
license:
- unknown
multilinguality:
- multilingual
- translation
size_categories:
- unknown
source_datasets:
- extended|xnli
task_categories:
- text-classification
task_ids:
- natural-language-inference
pretty_name: 'AmericasNLI: A NLI Corpus of 10 Indigenous Low-Resource Languages.'
dataset_info:
- config_name: all_languages
  features:
  - name: language
    dtype: string
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 1129080
    num_examples: 6457
  - name: test
    num_bytes: 1210579
    num_examples: 7486
  download_size: 791239
  dataset_size: 2339659
- config_name: aym
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 117530
    num_examples: 743
  - name: test
    num_bytes: 115251
    num_examples: 750
  download_size: 87882
  dataset_size: 232781
- config_name: bzd
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 143354
    num_examples: 743
  - name: test
    num_bytes: 127676
    num_examples: 750
  download_size: 91039
  dataset_size: 271030
- config_name: cni
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 113256
    num_examples: 658
  - name: test
    num_bytes: 116284
    num_examples: 750
  download_size: 78899
  dataset_size: 229540
- config_name: gn
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 115135
    num_examples: 743
  - name: test
    num_bytes: 101948
    num_examples: 750
  download_size: 80429
  dataset_size: 217083
- config_name: hch
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 127966
    num_examples: 743
  - name: test
    num_bytes: 120857
    num_examples: 750
  download_size: 90748
  dataset_size: 248823
- config_name: nah
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 50741
    num_examples: 376
  - name: test
    num_bytes: 102953
    num_examples: 738
  download_size: 56953
  dataset_size: 153694
- config_name: oto
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 27010
    num_examples: 222
  - name: test
    num_bytes: 119650
    num_examples: 748
  download_size: 57849
  dataset_size: 146660
- config_name: quy
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 125636
    num_examples: 743
  - name: test
    num_bytes: 112750
    num_examples: 750
  download_size: 85673
  dataset_size: 238386
- config_name: shp
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 124500
    num_examples: 743
  - name: test
    num_bytes: 118934
    num_examples: 750
  download_size: 85544
  dataset_size: 243434
- config_name: tar
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: validation
    num_bytes: 139496
    num_examples: 743
  - name: test
    num_bytes: 122624
    num_examples: 750
  download_size: 89683
  dataset_size: 262120
configs:
- config_name: all_languages
  data_files:
  - split: validation
    path: all_languages/validation-*
  - split: test
    path: all_languages/test-*
- config_name: aym
  data_files:
  - split: validation
    path: aym/validation-*
  - split: test
    path: aym/test-*
- config_name: bzd
  data_files:
  - split: validation
    path: bzd/validation-*
  - split: test
    path: bzd/test-*
- config_name: cni
  data_files:
  - split: validation
    path: cni/validation-*
  - split: test
    path: cni/test-*
- config_name: gn
  data_files:
  - split: validation
    path: gn/validation-*
  - split: test
    path: gn/test-*
- config_name: hch
  data_files:
  - split: validation
    path: hch/validation-*
  - split: test
    path: hch/test-*
- config_name: nah
  data_files:
  - split: validation
    path: nah/validation-*
  - split: test
    path: nah/test-*
- config_name: oto
  data_files:
  - split: validation
    path: oto/validation-*
  - split: test
    path: oto/test-*
- config_name: quy
  data_files:
  - split: validation
    path: quy/validation-*
  - split: test
    path: quy/test-*
- config_name: shp
  data_files:
  - split: validation
    path: shp/validation-*
  - split: test
    path: shp/test-*
- config_name: tar
  data_files:
  - split: validation
    path: tar/validation-*
  - split: test
    path: tar/test-*
---

# Dataset Card for AmericasNLI

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [Needs More Information]
- **Repository:** https://github.com/nala-cub/AmericasNLI
- **Paper:** https://arxiv.org/abs/2104.08726
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]

### Dataset Summary

AmericasNLI is an extension of XNLI (Conneau et al., 2018) a natural language inference (NLI) dataset covering 15 high-resource languages to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).


### Supported Tasks and Leaderboards

[Needs More Information]

### Languages

- aym
- bzd
- cni
- gn
- hch
- nah
- oto
- quy
- shp
- tar

## Dataset Structure

### Data Instances

#### all_languages

An example of the test split looks as follows:

```
{'language': 'aym', 'premise': "Ukhamaxa, janiw ukatuqits lup'kayätti, ukhamarus wali phiñasitayätwa, ukatx jupampiw mayamp aruskipañ qallanttha.", 'hypothesis': 'Janiw mayamp jupampix p
arlxapxti.', 'label': 2}
```

#### aym

An example of the test split looks as follows:

```
{'premise': "Ukhamaxa, janiw ukatuqits lup'kayätti, ukhamarus wali phiñasitayätwa, ukatx jupampiw mayamp aruskipañ qallanttha.", 'hypothesis': 'Janiw mayamp jupampix parlxapxti.', 'label
': 2}
```

#### bzd

An example of the test split looks as follows:

```
{'premise': "Bua', kèq ye' kũ e' bikeitsök erë ye' chkénãwã tã ye' ujtémĩne ie' tã páxlĩnẽ.", 'hypothesis': "Kèq ye' ùtẽnẽ ie' tã páxlĩ.", 'label': 2}
```

#### cni

An example of the test split looks as follows:

```
{'premise': 'Kameetsa, tee nokenkeshireajeroji, iro kantaincha tee nomateroji aisati nintajaro noñanatajiri iroakera.', 'hypothesis': 'Tee noñatajeriji.', 'label': 2}
```

#### gn

An example of the test split looks as follows:

```
{'premise': "Néi, ni napensaikurihína upéva rehe, ajepichaiterei ha añepyrûjey añe'ê hendive.", 'hypothesis': "Nañe'êvéi hendive.", 'label': 2}
```

#### hch

An example of the test split looks as follows:

```
{'premise': 'mu hekwa.', 'hypothesis': 'neuka tita xatawe m+k+ mat+a.', 'label': 2}
```

#### nah

An example of the test split looks as follows:

```
{'premise': 'Cualtitoc, na axnimoihliaya ino, nicualaniztoya queh naha nicamohuihqui', 'hypothesis': 'Ayoc nicamohuihtoc', 'label': 2}
```

#### oto

An example of the test split looks as follows:

```
{'premise': 'mi-ga, nin mibⴘy mbô̮nitho ane guenu, guedi mibⴘy nho ⴘnmⴘy xi di mⴘdi o ñana nen nⴘua manaigui', 'hypothesis': 'hin din bi pengui nen nⴘa', 'label': 2}
```

#### quy

An example of the test split looks as follows:

``` {'premise': 'Allinmi, manam chaypiqa hamutachkarqanichu, ichaqa manam allinchu tarikurqani chaymi kaqllamanta paywan rimarqani.', 'hypothesis': 'Manam paywanqa kaqllamantaqa rimarqani
.', 'label': 2}
```

#### shp

An example of the test split looks as follows:

```
{'premise': 'Jakon riki, ja shinanamara ea ike, ikaxbi kikin frustradara ea ike jakopira ea jabe yoyo iribake.', 'hypothesis': 'Eara jabe yoyo iribiama iki.', 'label': 2}
```

#### tar

An example of the test split looks as follows:

```
{'premise': 'Ga’lá ju, ke tási newalayé nejé echi kítira, we ne majáli, a’lí ko uchécho ne yua ku ra’íchaki.', 'hypothesis': 'Tási ne uchecho yua ra’ícha échi rejói.', 'label': 2}
```

### Data Fields

#### all_languages
    - language: a multilingual string variable, with languages including ar, bg, de, el, en.
    - premise: a multilingual string variable, with languages including ar, bg, de, el, en.
    - hypothesis: a multilingual string variable, with possible languages including ar, bg, de, el, en.
    - label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### aym
    - premise: a string feature.
    - hypothesis: a string feature.
    - label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### bzd
    - premise: a string feature.
    - hypothesis: a string feature.
    - label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### cni
    - premise: a string feature.
    - hypothesis: a string feature.
    - label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### hch
    - premise: a string feature.
    - hypothesis: a string feature.
    - label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### nah
    - premise: a string feature.
    - hypothesis: a string feature.
    - label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### oto
    - premise: a string feature.
    - hypothesis: a string feature.
    - label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### quy
    - premise: a string feature.
    - hypothesis: a string feature.
    - label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### shp
    - premise: a string feature.
    - hypothesis: a string feature.
    - label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### tar
    - premise: a string feature.
    - hypothesis: a string feature.
    - label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).

### Data Splits

| Language          | ISO | Family       | Dev  | Test |
|-------------------|-----|:-------------|-----:|-----:|
| all_languages     | --  | --           | 6457 | 7486 |
| Aymara            | aym | Aymaran      | 743  | 750  |
| Ashaninka         | cni | Arawak       | 658  | 750  |
| Bribri            | bzd | Chibchan     | 743  | 750  |
| Guarani           | gn  | Tupi-Guarani | 743  | 750  |
| Nahuatl           | nah | Uto-Aztecan  | 376  | 738  |
| Otomi             | oto | Oto-Manguean | 222  | 748  |
| Quechua           | quy | Quechuan     | 743  | 750  |
| Raramuri          | tar | Uto-Aztecan  | 743  | 750  |
| Shipibo-Konibo    | shp | Panoan       | 743  | 750  |
| Wixarika          | hch | Uto-Aztecan  | 743  | 750  |

## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

The authors translate from the Spanish subset of XNLI.

> AmericasNLI is the translation of a subset of XNLI (Conneau et al., 2018). As translators between Spanish and the target languages are more frequently available than those for English, we translate from the Spanish version.

As per paragraph 3.1 of the [original paper](https://arxiv.org/abs/2104.08726).

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

The dataset comprises expert translations from Spanish XNLI. 

> Additionally, some translators reported that code-switching is often used to describe certain topics, and, while many words without an exact equivalence in the target language are worked in through translation or interpretation, others are kept in Spanish. To minimize the amount of Spanish vocabulary in the translated examples, we choose sentences from genres that we judged to be relatively easy to translate into the target languages: “face-to-face,” “letters,” and “telephone.”

As per paragraph 3.1 of the [original paper](https://arxiv.org/abs/2104.08726).

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

[Needs More Information]

### Citation Information

```
@article{DBLP:journals/corr/abs-2104-08726,
  author    = {Abteen Ebrahimi and
               Manuel Mager and
               Arturo Oncevay and
               Vishrav Chaudhary and
               Luis Chiruzzo and
               Angela Fan and
               John Ortega and
               Ricardo Ramos and
               Annette Rios and
               Ivan Vladimir and
               Gustavo A. Gim{\'{e}}nez{-}Lugo and
               Elisabeth Mager and
               Graham Neubig and
               Alexis Palmer and
               Rolando A. Coto Solano and
               Ngoc Thang Vu and
               Katharina Kann},
  title     = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of
               Pretrained Multilingual Models in Truly Low-resource Languages},
  journal   = {CoRR},
  volume    = {abs/2104.08726},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.08726},
  eprinttype = {arXiv},
  eprint    = {2104.08726},
  timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

### Contributions

Thanks to [@fdschmidt93](https://github.com/fdschmidt93) for adding this dataset.