Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
c4b2c0b
1 Parent(s): e0b2b54

Convert dataset to Parquet

Browse files

Convert dataset to Parquet.

README.md CHANGED
@@ -29,6 +29,30 @@ task_ids:
29
  - natural-language-inference
30
  pretty_name: 'AmericasNLI: A NLI Corpus of 10 Indigenous Low-Resource Languages.'
31
  dataset_info:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  - config_name: aym
33
  features:
34
  - name: premise
@@ -44,13 +68,13 @@ dataset_info:
44
  '2': contradiction
45
  splits:
46
  - name: validation
47
- num_bytes: 117538
48
  num_examples: 743
49
  - name: test
50
- num_bytes: 115259
51
  num_examples: 750
52
- download_size: 2256093
53
- dataset_size: 232797
54
  - config_name: bzd
55
  features:
56
  - name: premise
@@ -249,30 +273,13 @@ dataset_info:
249
  num_examples: 750
250
  download_size: 2256093
251
  dataset_size: 262136
252
- - config_name: all_languages
253
- features:
254
- - name: language
255
- dtype: string
256
- - name: premise
257
- dtype: string
258
- - name: hypothesis
259
- dtype: string
260
- - name: label
261
- dtype:
262
- class_label:
263
- names:
264
- '0': entailment
265
- '1': neutral
266
- '2': contradiction
267
- splits:
268
- - name: validation
269
- num_bytes: 1129092
270
- num_examples: 6457
271
- - name: test
272
- num_bytes: 1210591
273
- num_examples: 7486
274
- download_size: 2256093
275
- dataset_size: 2339683
276
  ---
277
 
278
  # Dataset Card for AmericasNLI
 
29
  - natural-language-inference
30
  pretty_name: 'AmericasNLI: A NLI Corpus of 10 Indigenous Low-Resource Languages.'
31
  dataset_info:
32
+ - config_name: all_languages
33
+ features:
34
+ - name: language
35
+ dtype: string
36
+ - name: premise
37
+ dtype: string
38
+ - name: hypothesis
39
+ dtype: string
40
+ - name: label
41
+ dtype:
42
+ class_label:
43
+ names:
44
+ '0': entailment
45
+ '1': neutral
46
+ '2': contradiction
47
+ splits:
48
+ - name: validation
49
+ num_bytes: 1129092
50
+ num_examples: 6457
51
+ - name: test
52
+ num_bytes: 1210591
53
+ num_examples: 7486
54
+ download_size: 2256093
55
+ dataset_size: 2339683
56
  - config_name: aym
57
  features:
58
  - name: premise
 
68
  '2': contradiction
69
  splits:
70
  - name: validation
71
+ num_bytes: 117530
72
  num_examples: 743
73
  - name: test
74
+ num_bytes: 115251
75
  num_examples: 750
76
+ download_size: 87882
77
+ dataset_size: 232781
78
  - config_name: bzd
79
  features:
80
  - name: premise
 
273
  num_examples: 750
274
  download_size: 2256093
275
  dataset_size: 262136
276
+ configs:
277
+ - config_name: aym
278
+ data_files:
279
+ - split: validation
280
+ path: aym/validation-*
281
+ - split: test
282
+ path: aym/test-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
  ---
284
 
285
  # Dataset Card for AmericasNLI
aym/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:896a0b3bb572957898fd3816c2784120f51f553d19556bfab4b6f5183de25a21
3
+ size 43340
aym/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e013d265c28563d845fd8d459b186ab0eca8c3e8ca01d86be0169f5ff5362c9e
3
+ size 44542
dataset_infos.json CHANGED
@@ -1 +1,748 @@
1
- {"aym": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "aym", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 117538, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 115259, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 232797, "size_in_bytes": 2488890}, "bzd": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "bzd", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 143362, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 127684, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 271046, "size_in_bytes": 2527139}, "cni": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "cni", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 113264, "num_examples": 658, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 116292, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 229556, "size_in_bytes": 2485649}, "gn": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "gn", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 115143, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 101956, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 217099, "size_in_bytes": 2473192}, "hch": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "hch", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 127974, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 120865, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 248839, "size_in_bytes": 2504932}, "nah": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "nah", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 50749, "num_examples": 376, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 102961, "num_examples": 738, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 153710, "size_in_bytes": 2409803}, "oto": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "oto", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 27018, "num_examples": 222, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 119658, "num_examples": 748, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 146676, "size_in_bytes": 2402769}, "quy": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "quy", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 125644, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 112758, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 238402, "size_in_bytes": 2494495}, "shp": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "shp", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 124508, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 118942, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 243450, "size_in_bytes": 2499543}, "tar": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "tar", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 139504, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 122632, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 262136, "size_in_bytes": 2518229}, "all_languages": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"language": {"dtype": "string", "id": null, "_type": "Value"}, "premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "all_languages", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 1129092, "num_examples": 6457, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 1210591, "num_examples": 7486, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 2339683, "size_in_bytes": 4595776}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "aym": {
3
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
4
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
5
+ "homepage": "https://github.com/nala-cub/AmericasNLI",
6
+ "license": "",
7
+ "features": {
8
+ "premise": {
9
+ "dtype": "string",
10
+ "_type": "Value"
11
+ },
12
+ "hypothesis": {
13
+ "dtype": "string",
14
+ "_type": "Value"
15
+ },
16
+ "label": {
17
+ "names": [
18
+ "entailment",
19
+ "neutral",
20
+ "contradiction"
21
+ ],
22
+ "_type": "ClassLabel"
23
+ }
24
+ },
25
+ "builder_name": "americas_nli",
26
+ "dataset_name": "americas_nli",
27
+ "config_name": "aym",
28
+ "version": {
29
+ "version_str": "1.0.0",
30
+ "description": "",
31
+ "major": 1,
32
+ "minor": 0,
33
+ "patch": 0
34
+ },
35
+ "splits": {
36
+ "validation": {
37
+ "name": "validation",
38
+ "num_bytes": 117530,
39
+ "num_examples": 743,
40
+ "dataset_name": null
41
+ },
42
+ "test": {
43
+ "name": "test",
44
+ "num_bytes": 115251,
45
+ "num_examples": 750,
46
+ "dataset_name": null
47
+ }
48
+ },
49
+ "download_size": 87882,
50
+ "dataset_size": 232781,
51
+ "size_in_bytes": 320663
52
+ },
53
+ "bzd": {
54
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
55
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
56
+ "homepage": "TODO",
57
+ "license": "",
58
+ "features": {
59
+ "premise": {
60
+ "dtype": "string",
61
+ "id": null,
62
+ "_type": "Value"
63
+ },
64
+ "hypothesis": {
65
+ "dtype": "string",
66
+ "id": null,
67
+ "_type": "Value"
68
+ },
69
+ "label": {
70
+ "num_classes": 3,
71
+ "names": [
72
+ "entailment",
73
+ "neutral",
74
+ "contradiction"
75
+ ],
76
+ "names_file": null,
77
+ "id": null,
78
+ "_type": "ClassLabel"
79
+ }
80
+ },
81
+ "post_processed": null,
82
+ "supervised_keys": null,
83
+ "task_templates": null,
84
+ "builder_name": "americas_nli",
85
+ "config_name": "bzd",
86
+ "version": {
87
+ "version_str": "1.0.0",
88
+ "description": "",
89
+ "major": 1,
90
+ "minor": 0,
91
+ "patch": 0
92
+ },
93
+ "splits": {
94
+ "validation": {
95
+ "name": "validation",
96
+ "num_bytes": 143362,
97
+ "num_examples": 743,
98
+ "dataset_name": "americas_nli"
99
+ },
100
+ "test": {
101
+ "name": "test",
102
+ "num_bytes": 127684,
103
+ "num_examples": 750,
104
+ "dataset_name": "americas_nli"
105
+ }
106
+ },
107
+ "download_checksums": {
108
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
109
+ "num_bytes": 1090405,
110
+ "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
111
+ },
112
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
113
+ "num_bytes": 1165688,
114
+ "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
115
+ }
116
+ },
117
+ "download_size": 2256093,
118
+ "post_processing_size": null,
119
+ "dataset_size": 271046,
120
+ "size_in_bytes": 2527139
121
+ },
122
+ "cni": {
123
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
124
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
125
+ "homepage": "TODO",
126
+ "license": "",
127
+ "features": {
128
+ "premise": {
129
+ "dtype": "string",
130
+ "id": null,
131
+ "_type": "Value"
132
+ },
133
+ "hypothesis": {
134
+ "dtype": "string",
135
+ "id": null,
136
+ "_type": "Value"
137
+ },
138
+ "label": {
139
+ "num_classes": 3,
140
+ "names": [
141
+ "entailment",
142
+ "neutral",
143
+ "contradiction"
144
+ ],
145
+ "names_file": null,
146
+ "id": null,
147
+ "_type": "ClassLabel"
148
+ }
149
+ },
150
+ "post_processed": null,
151
+ "supervised_keys": null,
152
+ "task_templates": null,
153
+ "builder_name": "americas_nli",
154
+ "config_name": "cni",
155
+ "version": {
156
+ "version_str": "1.0.0",
157
+ "description": "",
158
+ "major": 1,
159
+ "minor": 0,
160
+ "patch": 0
161
+ },
162
+ "splits": {
163
+ "validation": {
164
+ "name": "validation",
165
+ "num_bytes": 113264,
166
+ "num_examples": 658,
167
+ "dataset_name": "americas_nli"
168
+ },
169
+ "test": {
170
+ "name": "test",
171
+ "num_bytes": 116292,
172
+ "num_examples": 750,
173
+ "dataset_name": "americas_nli"
174
+ }
175
+ },
176
+ "download_checksums": {
177
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
178
+ "num_bytes": 1090405,
179
+ "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
180
+ },
181
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
182
+ "num_bytes": 1165688,
183
+ "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
184
+ }
185
+ },
186
+ "download_size": 2256093,
187
+ "post_processing_size": null,
188
+ "dataset_size": 229556,
189
+ "size_in_bytes": 2485649
190
+ },
191
+ "gn": {
192
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
193
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
194
+ "homepage": "TODO",
195
+ "license": "",
196
+ "features": {
197
+ "premise": {
198
+ "dtype": "string",
199
+ "id": null,
200
+ "_type": "Value"
201
+ },
202
+ "hypothesis": {
203
+ "dtype": "string",
204
+ "id": null,
205
+ "_type": "Value"
206
+ },
207
+ "label": {
208
+ "num_classes": 3,
209
+ "names": [
210
+ "entailment",
211
+ "neutral",
212
+ "contradiction"
213
+ ],
214
+ "names_file": null,
215
+ "id": null,
216
+ "_type": "ClassLabel"
217
+ }
218
+ },
219
+ "post_processed": null,
220
+ "supervised_keys": null,
221
+ "task_templates": null,
222
+ "builder_name": "americas_nli",
223
+ "config_name": "gn",
224
+ "version": {
225
+ "version_str": "1.0.0",
226
+ "description": "",
227
+ "major": 1,
228
+ "minor": 0,
229
+ "patch": 0
230
+ },
231
+ "splits": {
232
+ "validation": {
233
+ "name": "validation",
234
+ "num_bytes": 115143,
235
+ "num_examples": 743,
236
+ "dataset_name": "americas_nli"
237
+ },
238
+ "test": {
239
+ "name": "test",
240
+ "num_bytes": 101956,
241
+ "num_examples": 750,
242
+ "dataset_name": "americas_nli"
243
+ }
244
+ },
245
+ "download_checksums": {
246
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
247
+ "num_bytes": 1090405,
248
+ "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
249
+ },
250
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
251
+ "num_bytes": 1165688,
252
+ "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
253
+ }
254
+ },
255
+ "download_size": 2256093,
256
+ "post_processing_size": null,
257
+ "dataset_size": 217099,
258
+ "size_in_bytes": 2473192
259
+ },
260
+ "hch": {
261
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
262
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
263
+ "homepage": "TODO",
264
+ "license": "",
265
+ "features": {
266
+ "premise": {
267
+ "dtype": "string",
268
+ "id": null,
269
+ "_type": "Value"
270
+ },
271
+ "hypothesis": {
272
+ "dtype": "string",
273
+ "id": null,
274
+ "_type": "Value"
275
+ },
276
+ "label": {
277
+ "num_classes": 3,
278
+ "names": [
279
+ "entailment",
280
+ "neutral",
281
+ "contradiction"
282
+ ],
283
+ "names_file": null,
284
+ "id": null,
285
+ "_type": "ClassLabel"
286
+ }
287
+ },
288
+ "post_processed": null,
289
+ "supervised_keys": null,
290
+ "task_templates": null,
291
+ "builder_name": "americas_nli",
292
+ "config_name": "hch",
293
+ "version": {
294
+ "version_str": "1.0.0",
295
+ "description": "",
296
+ "major": 1,
297
+ "minor": 0,
298
+ "patch": 0
299
+ },
300
+ "splits": {
301
+ "validation": {
302
+ "name": "validation",
303
+ "num_bytes": 127974,
304
+ "num_examples": 743,
305
+ "dataset_name": "americas_nli"
306
+ },
307
+ "test": {
308
+ "name": "test",
309
+ "num_bytes": 120865,
310
+ "num_examples": 750,
311
+ "dataset_name": "americas_nli"
312
+ }
313
+ },
314
+ "download_checksums": {
315
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
316
+ "num_bytes": 1090405,
317
+ "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
318
+ },
319
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
320
+ "num_bytes": 1165688,
321
+ "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
322
+ }
323
+ },
324
+ "download_size": 2256093,
325
+ "post_processing_size": null,
326
+ "dataset_size": 248839,
327
+ "size_in_bytes": 2504932
328
+ },
329
+ "nah": {
330
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
331
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
332
+ "homepage": "TODO",
333
+ "license": "",
334
+ "features": {
335
+ "premise": {
336
+ "dtype": "string",
337
+ "id": null,
338
+ "_type": "Value"
339
+ },
340
+ "hypothesis": {
341
+ "dtype": "string",
342
+ "id": null,
343
+ "_type": "Value"
344
+ },
345
+ "label": {
346
+ "num_classes": 3,
347
+ "names": [
348
+ "entailment",
349
+ "neutral",
350
+ "contradiction"
351
+ ],
352
+ "names_file": null,
353
+ "id": null,
354
+ "_type": "ClassLabel"
355
+ }
356
+ },
357
+ "post_processed": null,
358
+ "supervised_keys": null,
359
+ "task_templates": null,
360
+ "builder_name": "americas_nli",
361
+ "config_name": "nah",
362
+ "version": {
363
+ "version_str": "1.0.0",
364
+ "description": "",
365
+ "major": 1,
366
+ "minor": 0,
367
+ "patch": 0
368
+ },
369
+ "splits": {
370
+ "validation": {
371
+ "name": "validation",
372
+ "num_bytes": 50749,
373
+ "num_examples": 376,
374
+ "dataset_name": "americas_nli"
375
+ },
376
+ "test": {
377
+ "name": "test",
378
+ "num_bytes": 102961,
379
+ "num_examples": 738,
380
+ "dataset_name": "americas_nli"
381
+ }
382
+ },
383
+ "download_checksums": {
384
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
385
+ "num_bytes": 1090405,
386
+ "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
387
+ },
388
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
389
+ "num_bytes": 1165688,
390
+ "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
391
+ }
392
+ },
393
+ "download_size": 2256093,
394
+ "post_processing_size": null,
395
+ "dataset_size": 153710,
396
+ "size_in_bytes": 2409803
397
+ },
398
+ "oto": {
399
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
400
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
401
+ "homepage": "TODO",
402
+ "license": "",
403
+ "features": {
404
+ "premise": {
405
+ "dtype": "string",
406
+ "id": null,
407
+ "_type": "Value"
408
+ },
409
+ "hypothesis": {
410
+ "dtype": "string",
411
+ "id": null,
412
+ "_type": "Value"
413
+ },
414
+ "label": {
415
+ "num_classes": 3,
416
+ "names": [
417
+ "entailment",
418
+ "neutral",
419
+ "contradiction"
420
+ ],
421
+ "names_file": null,
422
+ "id": null,
423
+ "_type": "ClassLabel"
424
+ }
425
+ },
426
+ "post_processed": null,
427
+ "supervised_keys": null,
428
+ "task_templates": null,
429
+ "builder_name": "americas_nli",
430
+ "config_name": "oto",
431
+ "version": {
432
+ "version_str": "1.0.0",
433
+ "description": "",
434
+ "major": 1,
435
+ "minor": 0,
436
+ "patch": 0
437
+ },
438
+ "splits": {
439
+ "validation": {
440
+ "name": "validation",
441
+ "num_bytes": 27018,
442
+ "num_examples": 222,
443
+ "dataset_name": "americas_nli"
444
+ },
445
+ "test": {
446
+ "name": "test",
447
+ "num_bytes": 119658,
448
+ "num_examples": 748,
449
+ "dataset_name": "americas_nli"
450
+ }
451
+ },
452
+ "download_checksums": {
453
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
454
+ "num_bytes": 1090405,
455
+ "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
456
+ },
457
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
458
+ "num_bytes": 1165688,
459
+ "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
460
+ }
461
+ },
462
+ "download_size": 2256093,
463
+ "post_processing_size": null,
464
+ "dataset_size": 146676,
465
+ "size_in_bytes": 2402769
466
+ },
467
+ "quy": {
468
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
469
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
470
+ "homepage": "TODO",
471
+ "license": "",
472
+ "features": {
473
+ "premise": {
474
+ "dtype": "string",
475
+ "id": null,
476
+ "_type": "Value"
477
+ },
478
+ "hypothesis": {
479
+ "dtype": "string",
480
+ "id": null,
481
+ "_type": "Value"
482
+ },
483
+ "label": {
484
+ "num_classes": 3,
485
+ "names": [
486
+ "entailment",
487
+ "neutral",
488
+ "contradiction"
489
+ ],
490
+ "names_file": null,
491
+ "id": null,
492
+ "_type": "ClassLabel"
493
+ }
494
+ },
495
+ "post_processed": null,
496
+ "supervised_keys": null,
497
+ "task_templates": null,
498
+ "builder_name": "americas_nli",
499
+ "config_name": "quy",
500
+ "version": {
501
+ "version_str": "1.0.0",
502
+ "description": "",
503
+ "major": 1,
504
+ "minor": 0,
505
+ "patch": 0
506
+ },
507
+ "splits": {
508
+ "validation": {
509
+ "name": "validation",
510
+ "num_bytes": 125644,
511
+ "num_examples": 743,
512
+ "dataset_name": "americas_nli"
513
+ },
514
+ "test": {
515
+ "name": "test",
516
+ "num_bytes": 112758,
517
+ "num_examples": 750,
518
+ "dataset_name": "americas_nli"
519
+ }
520
+ },
521
+ "download_checksums": {
522
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
523
+ "num_bytes": 1090405,
524
+ "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
525
+ },
526
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
527
+ "num_bytes": 1165688,
528
+ "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
529
+ }
530
+ },
531
+ "download_size": 2256093,
532
+ "post_processing_size": null,
533
+ "dataset_size": 238402,
534
+ "size_in_bytes": 2494495
535
+ },
536
+ "shp": {
537
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
538
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
539
+ "homepage": "TODO",
540
+ "license": "",
541
+ "features": {
542
+ "premise": {
543
+ "dtype": "string",
544
+ "id": null,
545
+ "_type": "Value"
546
+ },
547
+ "hypothesis": {
548
+ "dtype": "string",
549
+ "id": null,
550
+ "_type": "Value"
551
+ },
552
+ "label": {
553
+ "num_classes": 3,
554
+ "names": [
555
+ "entailment",
556
+ "neutral",
557
+ "contradiction"
558
+ ],
559
+ "names_file": null,
560
+ "id": null,
561
+ "_type": "ClassLabel"
562
+ }
563
+ },
564
+ "post_processed": null,
565
+ "supervised_keys": null,
566
+ "task_templates": null,
567
+ "builder_name": "americas_nli",
568
+ "config_name": "shp",
569
+ "version": {
570
+ "version_str": "1.0.0",
571
+ "description": "",
572
+ "major": 1,
573
+ "minor": 0,
574
+ "patch": 0
575
+ },
576
+ "splits": {
577
+ "validation": {
578
+ "name": "validation",
579
+ "num_bytes": 124508,
580
+ "num_examples": 743,
581
+ "dataset_name": "americas_nli"
582
+ },
583
+ "test": {
584
+ "name": "test",
585
+ "num_bytes": 118942,
586
+ "num_examples": 750,
587
+ "dataset_name": "americas_nli"
588
+ }
589
+ },
590
+ "download_checksums": {
591
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
592
+ "num_bytes": 1090405,
593
+ "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
594
+ },
595
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
596
+ "num_bytes": 1165688,
597
+ "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
598
+ }
599
+ },
600
+ "download_size": 2256093,
601
+ "post_processing_size": null,
602
+ "dataset_size": 243450,
603
+ "size_in_bytes": 2499543
604
+ },
605
+ "tar": {
606
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
607
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
608
+ "homepage": "TODO",
609
+ "license": "",
610
+ "features": {
611
+ "premise": {
612
+ "dtype": "string",
613
+ "id": null,
614
+ "_type": "Value"
615
+ },
616
+ "hypothesis": {
617
+ "dtype": "string",
618
+ "id": null,
619
+ "_type": "Value"
620
+ },
621
+ "label": {
622
+ "num_classes": 3,
623
+ "names": [
624
+ "entailment",
625
+ "neutral",
626
+ "contradiction"
627
+ ],
628
+ "names_file": null,
629
+ "id": null,
630
+ "_type": "ClassLabel"
631
+ }
632
+ },
633
+ "post_processed": null,
634
+ "supervised_keys": null,
635
+ "task_templates": null,
636
+ "builder_name": "americas_nli",
637
+ "config_name": "tar",
638
+ "version": {
639
+ "version_str": "1.0.0",
640
+ "description": "",
641
+ "major": 1,
642
+ "minor": 0,
643
+ "patch": 0
644
+ },
645
+ "splits": {
646
+ "validation": {
647
+ "name": "validation",
648
+ "num_bytes": 139504,
649
+ "num_examples": 743,
650
+ "dataset_name": "americas_nli"
651
+ },
652
+ "test": {
653
+ "name": "test",
654
+ "num_bytes": 122632,
655
+ "num_examples": 750,
656
+ "dataset_name": "americas_nli"
657
+ }
658
+ },
659
+ "download_checksums": {
660
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
661
+ "num_bytes": 1090405,
662
+ "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
663
+ },
664
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
665
+ "num_bytes": 1165688,
666
+ "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
667
+ }
668
+ },
669
+ "download_size": 2256093,
670
+ "post_processing_size": null,
671
+ "dataset_size": 262136,
672
+ "size_in_bytes": 2518229
673
+ },
674
+ "all_languages": {
675
+ "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
676
+ "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
677
+ "homepage": "TODO",
678
+ "license": "",
679
+ "features": {
680
+ "language": {
681
+ "dtype": "string",
682
+ "id": null,
683
+ "_type": "Value"
684
+ },
685
+ "premise": {
686
+ "dtype": "string",
687
+ "id": null,
688
+ "_type": "Value"
689
+ },
690
+ "hypothesis": {
691
+ "dtype": "string",
692
+ "id": null,
693
+ "_type": "Value"
694
+ },
695
+ "label": {
696
+ "num_classes": 3,
697
+ "names": [
698
+ "entailment",
699
+ "neutral",
700
+ "contradiction"
701
+ ],
702
+ "names_file": null,
703
+ "id": null,
704
+ "_type": "ClassLabel"
705
+ }
706
+ },
707
+ "post_processed": null,
708
+ "supervised_keys": null,
709
+ "task_templates": null,
710
+ "builder_name": "americas_nli",
711
+ "config_name": "all_languages",
712
+ "version": {
713
+ "version_str": "1.0.0",
714
+ "description": "",
715
+ "major": 1,
716
+ "minor": 0,
717
+ "patch": 0
718
+ },
719
+ "splits": {
720
+ "validation": {
721
+ "name": "validation",
722
+ "num_bytes": 1129092,
723
+ "num_examples": 6457,
724
+ "dataset_name": "americas_nli"
725
+ },
726
+ "test": {
727
+ "name": "test",
728
+ "num_bytes": 1210591,
729
+ "num_examples": 7486,
730
+ "dataset_name": "americas_nli"
731
+ }
732
+ },
733
+ "download_checksums": {
734
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
735
+ "num_bytes": 1090405,
736
+ "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
737
+ },
738
+ "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
739
+ "num_bytes": 1165688,
740
+ "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
741
+ }
742
+ },
743
+ "download_size": 2256093,
744
+ "post_processing_size": null,
745
+ "dataset_size": 2339683,
746
+ "size_in_bytes": 4595776
747
+ }
748
+ }