Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
005bb9e
1 Parent(s): fbf2b05

Add cni data files

Browse files
README.md CHANGED
@@ -112,13 +112,13 @@ dataset_info:
112
  '2': contradiction
113
  splits:
114
  - name: validation
115
- num_bytes: 113264
116
  num_examples: 658
117
  - name: test
118
- num_bytes: 116292
119
  num_examples: 750
120
- download_size: 2256093
121
- dataset_size: 229556
122
  - config_name: gn
123
  features:
124
  - name: premise
@@ -286,6 +286,12 @@ configs:
286
  path: bzd/validation-*
287
  - split: test
288
  path: bzd/test-*
 
 
 
 
 
 
289
  ---
290
 
291
  # Dataset Card for AmericasNLI
 
112
  '2': contradiction
113
  splits:
114
  - name: validation
115
+ num_bytes: 113256
116
  num_examples: 658
117
  - name: test
118
+ num_bytes: 116284
119
  num_examples: 750
120
+ download_size: 78899
121
+ dataset_size: 229540
122
  - config_name: gn
123
  features:
124
  - name: premise
 
286
  path: bzd/validation-*
287
  - split: test
288
  path: bzd/test-*
289
+ - config_name: cni
290
+ data_files:
291
+ - split: validation
292
+ path: cni/validation-*
293
+ - split: test
294
+ path: cni/test-*
295
  ---
296
 
297
  # Dataset Card for AmericasNLI
cni/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab5948cebe3927db3e19464ea0aa3bf8a53c87ea9a730526ccb875fa009922c4
3
+ size 40572
cni/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56630838e3349201cc9a7095da4144c1a974765c285aea09e4c6dc3e14001459
3
+ size 38327
dataset_infos.json CHANGED
@@ -104,35 +104,28 @@
104
  "cni": {
105
  "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
106
  "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
107
- "homepage": "TODO",
108
  "license": "",
109
  "features": {
110
  "premise": {
111
  "dtype": "string",
112
- "id": null,
113
  "_type": "Value"
114
  },
115
  "hypothesis": {
116
  "dtype": "string",
117
- "id": null,
118
  "_type": "Value"
119
  },
120
  "label": {
121
- "num_classes": 3,
122
  "names": [
123
  "entailment",
124
  "neutral",
125
  "contradiction"
126
  ],
127
- "names_file": null,
128
- "id": null,
129
  "_type": "ClassLabel"
130
  }
131
  },
132
- "post_processed": null,
133
- "supervised_keys": null,
134
- "task_templates": null,
135
  "builder_name": "americas_nli",
 
136
  "config_name": "cni",
137
  "version": {
138
  "version_str": "1.0.0",
@@ -144,31 +137,20 @@
144
  "splits": {
145
  "validation": {
146
  "name": "validation",
147
- "num_bytes": 113264,
148
  "num_examples": 658,
149
- "dataset_name": "americas_nli"
150
  },
151
  "test": {
152
  "name": "test",
153
- "num_bytes": 116292,
154
  "num_examples": 750,
155
- "dataset_name": "americas_nli"
156
- }
157
- },
158
- "download_checksums": {
159
- "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
160
- "num_bytes": 1090405,
161
- "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
162
- },
163
- "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
164
- "num_bytes": 1165688,
165
- "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
166
  }
167
  },
168
- "download_size": 2256093,
169
- "post_processing_size": null,
170
- "dataset_size": 229556,
171
- "size_in_bytes": 2485649
172
  },
173
  "gn": {
174
  "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
 
104
  "cni": {
105
  "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
106
  "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
107
+ "homepage": "https://github.com/nala-cub/AmericasNLI",
108
  "license": "",
109
  "features": {
110
  "premise": {
111
  "dtype": "string",
 
112
  "_type": "Value"
113
  },
114
  "hypothesis": {
115
  "dtype": "string",
 
116
  "_type": "Value"
117
  },
118
  "label": {
 
119
  "names": [
120
  "entailment",
121
  "neutral",
122
  "contradiction"
123
  ],
 
 
124
  "_type": "ClassLabel"
125
  }
126
  },
 
 
 
127
  "builder_name": "americas_nli",
128
+ "dataset_name": "americas_nli",
129
  "config_name": "cni",
130
  "version": {
131
  "version_str": "1.0.0",
 
137
  "splits": {
138
  "validation": {
139
  "name": "validation",
140
+ "num_bytes": 113256,
141
  "num_examples": 658,
142
+ "dataset_name": null
143
  },
144
  "test": {
145
  "name": "test",
146
+ "num_bytes": 116284,
147
  "num_examples": 750,
148
+ "dataset_name": null
 
 
 
 
 
 
 
 
 
 
149
  }
150
  },
151
+ "download_size": 78899,
152
+ "dataset_size": 229540,
153
+ "size_in_bytes": 308439
 
154
  },
155
  "gn": {
156
  "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",