File size: 5,267 Bytes
d3d1931
 
 
 
 
 
 
 
 
 
 
 
 
50b4b3b
 
 
69d4f0c
 
50b4b3b
d3d1931
 
 
 
 
 
 
 
 
 
 
 
 
b4b6905
d3d1931
f4f9c0d
d3d1931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c70a3
 
d3d1931
 
b4b6905
d3d1931
ad5c8ff
d3d1931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b1793
d3d1931
 
06b1793
d3d1931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8da4f1
d3d1931
 
 
 
 
 
 
 
be7f1e4
 
d3d1931
 
 
 
 
73d4a4e
d3d1931
d69b3fc
 
d3d1931
 
 
 
 
 
 
 
 
96c70a3
d3e681a
96c70a3
 
d3e681a
d3d1931
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""Hypo Dataset"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")

_ENCODING_DICS = {
	"class": {
		"negative": 0,
		"compensatedhypothyroid": 1,
		"secondaryhypothyroid": 2,
		"primaryhypothyroid": 3
	}
}

DESCRIPTION = "Hypo dataset."
_HOMEPAGE = ""
_URLS = ("")
_CITATION = """"""

# Dataset info
urls_per_split = {
	"train": "https://huggingface.co/datasets/mstz/hypo/resolve/main/hypo.data"
}
features_types_per_config = {
	"hypo": {
		"age": datasets.Value("int64"),
		"sex": datasets.Value("string"),
		"on_thyroxine": datasets.Value("bool"),
		"query_on_thyroxine": datasets.Value("bool"),
		"on_antithyroid_medication": datasets.Value("bool"),
		"sick": datasets.Value("bool"),
		"pregnant": datasets.Value("bool"),
		"thyroid_surgery": datasets.Value("bool"),
		"I131_treatment": datasets.Value("bool"),
		"query_hypothyroid": datasets.Value("bool"),
		"query_hyperthyroid": datasets.Value("bool"),
		"lithium": datasets.Value("bool"),
		"goitre": datasets.Value("bool"),
		"tumor": datasets.Value("bool"),
		"hypopituitary": datasets.Value("bool"),
		"psych": datasets.Value("bool"),
		"TSH_measured": datasets.Value("bool"),
		"TSH": datasets.Value("string"),
		"T3_measured": datasets.Value("bool"),
		"T3": datasets.Value("float64"),
		"TT4_measured": datasets.Value("bool"),
		"TT4": datasets.Value("float64"),
		"T4U_measured": datasets.Value("bool"),
		"T4U": datasets.Value("float64"),
		"FTI_measured": datasets.Value("bool"),
		"FTI": datasets.Value("float64"),
		"TBG_measured": datasets.Value("string"),
		"referral_source": datasets.Value("string"),
		"class": datasets.ClassLabel(num_classes=4,
									 names=("negative", "compensated hypothyroid", "secondary hypothyroid", "primary hypothyroid"))
	},
	"has_hypo": {
		"age": datasets.Value("int64"),
		"sex": datasets.Value("string"),
		"on_thyroxine": datasets.Value("bool"),
		"query_on_thyroxine": datasets.Value("bool"),
		"on_antithyroid_medication": datasets.Value("bool"),
		"sick": datasets.Value("bool"),
		"pregnant": datasets.Value("bool"),
		"thyroid_surgery": datasets.Value("bool"),
		"I131_treatment": datasets.Value("bool"),
		"query_hypothyroid": datasets.Value("bool"),
		"query_hyperthyroid": datasets.Value("bool"),
		"lithium": datasets.Value("bool"),
		"goitre": datasets.Value("bool"),
		"tumor": datasets.Value("bool"),
		"hypopituitary": datasets.Value("bool"),
		"psych": datasets.Value("bool"),
		"TSH_measured": datasets.Value("bool"),
		"TSH": datasets.Value("string"),
		"T3_measured": datasets.Value("bool"),
		"T3": datasets.Value("string"),
		"TT4_measured": datasets.Value("bool"),
		"TT4": datasets.Value("float64"),
		"T4U_measured": datasets.Value("bool"),
		"T4U": datasets.Value("float64"),
		"FTI_measured": datasets.Value("bool"),
		"FTI": datasets.Value("float64"),
		"TBG_measured": datasets.Value("string"),
		"referral_source": datasets.Value("string"),
		"class": datasets.ClassLabel(num_classes=2)
	},
}

features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class HypoConfig(datasets.BuilderConfig):
	def __init__(self, **kwargs):
		super(HypoConfig, self).__init__(version=VERSION, **kwargs)
		self.features = features_per_config[kwargs["name"]]


class Hypo(datasets.GeneratorBasedBuilder):
	# dataset versions
	DEFAULT_CONFIG = "hypo"
	BUILDER_CONFIGS = [
		HypoConfig(name="hypo", description="Hypo for multiclass classification."),
		HypoConfig(name="has_hypo", description="Hypo for binary classification."),
	]


	def _info(self):
		info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
									features=features_per_config[self.config.name])

		return info
	
	def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
		downloads = dl_manager.download_and_extract(urls_per_split)

		return [
			datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
		]
	
	def _generate_examples(self, filepath: str):
		data = pandas.read_csv(filepath)
		data = self.preprocess(data)

		for row_id, row in data.iterrows():
			data_row = dict(row)

			yield row_id, data_row

	def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
		data.drop("id", axis="columns", inplace=True)
		data.drop("TBG", axis="columns", inplace=True)

		data = data[data.age != "?"]
		data = data[data.sex != "?"]
		data = data[data.TSH != "?"]

		data.loc[data.T3 == "?", "T3"] = -1
		data.loc[data.TT4 == "?", "TT4"] = -1
		data.loc[data.T4U == "?", "T4U"] = -1
		data.loc[data.FTI == "?", "FTI"] = -1

		data = data.infer_objects()

		for feature in _ENCODING_DICS:
			encoding_function = partial(self.encode, feature)
			data[feature] = data[feature].apply(encoding_function)
		
		if self.config.name == "has_hypo":
			data["class"] = data["class"].apply(lambda x: 0 if x == 0 else 1)
			print("has hypo\n\n\n")
		
		print("classes")
		print(data["class"].unique())

		return data[list(features_types_per_config[self.config.name].keys())]

	def encode(self, feature, value):
		if feature in _ENCODING_DICS:
			return _ENCODING_DICS[feature][value]
		raise ValueError(f"Unknown feature: {feature}")