Datasets:
Upload 3 files
Browse files
README.md
CHANGED
@@ -1,3 +1,21 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- hypo
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
pretty_name: Hypo
|
9 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
10 |
+
- tabular-classification
|
11 |
+
configs:
|
12 |
+
- hypo
|
13 |
---
|
14 |
+
# Hypo
|
15 |
+
The Hypo dataset.
|
16 |
+
|
17 |
+
# Configurations and tasks
|
18 |
+
| **Configuration** | **Task** | **Description**
|
19 |
+
|-----------------------|---------------------------|
|
20 |
+
| hypo | Multiclass classification.| What kind of hypothyroidism does the patient have? |
|
21 |
+
| has_hypo | Binary classification.| Does the patient hypothyroidism does the patient have? |
|
hypo.data
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hypo.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Hypo Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
import pandas
|
9 |
+
|
10 |
+
|
11 |
+
VERSION = datasets.Version("1.0.0")
|
12 |
+
|
13 |
+
_ENCODING_DICS = {
|
14 |
+
"negative": 0,
|
15 |
+
"compensated hypothyroid": 1,
|
16 |
+
"primary hypothyroid": 2
|
17 |
+
}
|
18 |
+
|
19 |
+
DESCRIPTION = "Hypo dataset."
|
20 |
+
_HOMEPAGE = ""
|
21 |
+
_URLS = ("")
|
22 |
+
_CITATION = """"""
|
23 |
+
|
24 |
+
# Dataset info
|
25 |
+
urls_per_split = {
|
26 |
+
"train": "https://huggingface.co/datasets/mstz/hypo/resolve/main/hypo.data"
|
27 |
+
}
|
28 |
+
features_types_per_config = {
|
29 |
+
"hypo": {
|
30 |
+
"age": datasets.Value("int8"),
|
31 |
+
"sex": datasets.Value("string"),
|
32 |
+
"on_thyroxine": datasets.Value("boolS"),
|
33 |
+
"query_on_thyroxine": datasets.Value("bool"),
|
34 |
+
"on_antithyroid_medication": datasets.Value("bool"),
|
35 |
+
"sick": datasets.Value("bool"),
|
36 |
+
"pregnant": datasets.Value("bool"),
|
37 |
+
"thyroid_surgery": datasets.Value("bool"),
|
38 |
+
"I131_treatment": datasets.Value("bool"),
|
39 |
+
"query_hypothyroid": datasets.Value("bool"),
|
40 |
+
"query_hyperthyroid": datasets.Value("bool"),
|
41 |
+
"lithium": datasets.Value("bool"),
|
42 |
+
"goitre": datasets.Value("bool"),
|
43 |
+
"tumor": datasets.Value("bool"),
|
44 |
+
"hypopituitary": datasets.Value("bool"),
|
45 |
+
"psych": datasets.Value("bool"),
|
46 |
+
"TSH_measured": datasets.Value("bool"),
|
47 |
+
"TSH": datasets.Value("string"),
|
48 |
+
"T3_measured": datasets.Value("bool"),
|
49 |
+
"T3": datasets.Value("float64"),
|
50 |
+
"TT4_measured": datasets.Value("bool"),
|
51 |
+
"TT4": datasets.Value("float64"),
|
52 |
+
"T4U_measured": datasets.Value("bool"),
|
53 |
+
"T4U": datasets.Value("float64"),
|
54 |
+
"FTI_measured": datasets.Value("bool"),
|
55 |
+
"FTI": datasets.Value("float64"),
|
56 |
+
"TBG_measured": datasets.Value("string"),
|
57 |
+
"referral_source": datasets.Value("string"),
|
58 |
+
"class": datasets.ClassLabel(num_classes=3, names=("negative", "compensated hypothyroid", "primary hypothyroid"))
|
59 |
+
},
|
60 |
+
"has_hypo": {
|
61 |
+
"age": datasets.Value("int8"),
|
62 |
+
"sex": datasets.Value("string"),
|
63 |
+
"on_thyroxine": datasets.Value("boolS"),
|
64 |
+
"query_on_thyroxine": datasets.Value("bool"),
|
65 |
+
"on_antithyroid_medication": datasets.Value("bool"),
|
66 |
+
"sick": datasets.Value("bool"),
|
67 |
+
"pregnant": datasets.Value("bool"),
|
68 |
+
"thyroid_surgery": datasets.Value("bool"),
|
69 |
+
"I131_treatment": datasets.Value("bool"),
|
70 |
+
"query_hypothyroid": datasets.Value("bool"),
|
71 |
+
"query_hyperthyroid": datasets.Value("bool"),
|
72 |
+
"lithium": datasets.Value("bool"),
|
73 |
+
"goitre": datasets.Value("bool"),
|
74 |
+
"tumor": datasets.Value("bool"),
|
75 |
+
"hypopituitary": datasets.Value("bool"),
|
76 |
+
"psych": datasets.Value("bool"),
|
77 |
+
"TSH_measured": datasets.Value("bool"),
|
78 |
+
"TSH": datasets.Value("string"),
|
79 |
+
"T3_measured": datasets.Value("bool"),
|
80 |
+
"T3": datasets.Value("string"),
|
81 |
+
"TT4_measured": datasets.Value("bool"),
|
82 |
+
"TT4": datasets.Value("float64"),
|
83 |
+
"T4U_measured": datasets.Value("bool"),
|
84 |
+
"T4U": datasets.Value("float64"),
|
85 |
+
"FTI_measured": datasets.Value("bool"),
|
86 |
+
"FTI": datasets.Value("float64"),
|
87 |
+
"TBG_measured": datasets.Value("string"),
|
88 |
+
"referral_source": datasets.Value("string"),
|
89 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
90 |
+
},
|
91 |
+
}
|
92 |
+
features_types_per_config["hypo"]["class"] = datasets.ClassLabel(num_classes=2)
|
93 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
94 |
+
|
95 |
+
|
96 |
+
class HypoConfig(datasets.BuilderConfig):
|
97 |
+
def __init__(self, **kwargs):
|
98 |
+
super(HypoConfig, self).__init__(version=VERSION, **kwargs)
|
99 |
+
self.features = features_per_config[kwargs["name"]]
|
100 |
+
|
101 |
+
|
102 |
+
class Hypo(datasets.GeneratorBasedBuilder):
|
103 |
+
# dataset versions
|
104 |
+
DEFAULT_CONFIG = "hypo"
|
105 |
+
BUILDER_CONFIGS = [
|
106 |
+
HypoConfig(name="hypo", description="Hypo for multiclass classification."),
|
107 |
+
HypoConfig(name="has_hypo", description="Hypo for binary classification."),
|
108 |
+
]
|
109 |
+
|
110 |
+
|
111 |
+
def _info(self):
|
112 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
113 |
+
features=features_per_config[self.config.name])
|
114 |
+
|
115 |
+
return info
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
118 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
122 |
+
]
|
123 |
+
|
124 |
+
def _generate_examples(self, filepath: str):
|
125 |
+
data = pandas.read_csv(filepath, header=None)
|
126 |
+
data = self.preprocess(data)
|
127 |
+
|
128 |
+
for row_id, row in data.iterrows():
|
129 |
+
data_row = dict(row)
|
130 |
+
|
131 |
+
yield row_id, data_row
|
132 |
+
|
133 |
+
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
134 |
+
data.drop("id", axid="columns", inplace=True)
|
135 |
+
data.drop("TBG", axid="columns", inplace=True)
|
136 |
+
|
137 |
+
data = data[data.age != "?"]
|
138 |
+
data = data[data.sex != "?"]
|
139 |
+
data = data[data.TSH != "?"]
|
140 |
+
|
141 |
+
data.loc[data.TT4 == "?", "T3"] = -1
|
142 |
+
data.loc[data.TT4 == "?", "TT4"] = -1
|
143 |
+
data.loc[data.TT4 == "?", "T4U"] = -1
|
144 |
+
data.loc[data.TT4 == "?", "FTI"] = -1
|
145 |
+
|
146 |
+
data = data.infer_objects()
|
147 |
+
|
148 |
+
for feature in _ENCODING_DICS:
|
149 |
+
encoding_function = partial(self.encode, feature)
|
150 |
+
data[feature] = data[feature].apply(encoding_function)
|
151 |
+
|
152 |
+
if self.config.name == "has_hypo":
|
153 |
+
data["class"] = data["class"].apply(lambda x: 0 if x == 0 else 1)
|
154 |
+
|
155 |
+
return data[list(features_types_per_config[self.config.name].keys())]
|
156 |
+
|
157 |
+
def encode(self, feature, value):
|
158 |
+
if feature in _ENCODING_DICS:
|
159 |
+
return _ENCODING_DICS[feature][value]
|
160 |
+
raise ValueError(f"Unknown feature: {feature}")
|