The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
A dataset for benchmarking keyphrase extraction and generation techniques from abstracts of English scientific papers. For more details about the dataset please refer the original paper - http://memray.me/uploads/acl17-keyphrase-generation.pdf.
Data source - https://github.com/memray/seq2seq-keyphrase
Dataset Summary
Dataset Structure
Dataset Statistics
Data Fields
- id: unique identifier of the document.
- document: Whitespace separated list of words in the document.
- doc_bio_tags: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all.
- extractive_keyphrases: List of all the present keyphrases.
- abstractive_keyphrase: List of all the absent keyphrases.
Data Splits
Split | No. of datapoints |
---|---|
Train | 530,809 |
Test | 20,000 |
Validation | 20,000 |
Usage
Full Dataset
from datasets import load_dataset
# get entire dataset
dataset = load_dataset("midas/kp20k", "raw")
# sample from the train split
print("Sample from training dataset split")
train_sample = dataset["train"][0]
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Tokenized Document: ", train_sample["document"])
print("Document BIO Tags: ", train_sample["doc_bio_tags"])
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the validation split
print("Sample from validation dataset split")
validation_sample = dataset["validation"][0]
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Tokenized Document: ", validation_sample["document"])
print("Document BIO Tags: ", validation_sample["doc_bio_tags"])
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the test split
print("Sample from test dataset split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")
Output
Keyphrase Extraction
from datasets import load_dataset
# get the dataset only for keyphrase extraction
dataset = load_dataset("midas/kp20k", "extraction")
print("Samples for Keyphrase Extraction")
# sample from the train split
print("Sample from training data split")
train_sample = dataset["train"][0]
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Tokenized Document: ", train_sample["document"])
print("Document BIO Tags: ", train_sample["doc_bio_tags"])
print("\n-----------\n")
# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Tokenized Document: ", validation_sample["document"])
print("Document BIO Tags: ", validation_sample["doc_bio_tags"])
print("\n-----------\n")
# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
print("\n-----------\n")
Keyphrase Generation
# get the dataset only for keyphrase generation
dataset = load_dataset("midas/kp20k", "generation")
print("Samples for Keyphrase Generation")
# sample from the train split
print("Sample from training data split")
train_sample = dataset["train"][0]
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Tokenized Document: ", train_sample["document"])
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Tokenized Document: ", validation_sample["document"])
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")
Citation Information
Please cite the works below if you use this dataset in your work.
@InProceedings{meng-EtAl:2017:Long,
author = {Meng, Rui and Zhao, Sanqiang and Han, Shuguang and He, Daqing and Brusilovsky, Peter and Chi, Yu},
title = {Deep Keyphrase Generation},
booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
month = {July},
year = {2017},
address = {Vancouver, Canada},
publisher = {Association for Computational Linguistics},
pages = {582--592},
url = {http://aclweb.org/anthology/P17-1054}
}
@article{mahata2022ldkp,
title={LDKP: A Dataset for Identifying Keyphrases from Long Scientific Documents},
author={Mahata, Debanjan and Agarwal, Navneet and Gautam, Dibya and Kumar, Amardeep and Parekh, Swapnil and Singla, Yaman Kumar and Acharya, Anish and Shah, Rajiv Ratn},
journal={arXiv preprint arXiv:2203.15349},
year={2022}
}
Contributions
Thanks to @debanjanbhucs, @dibyaaaaax, @UmaGunturi and @ad6398 for adding this dataset
- Downloads last month
- 51