File size: 3,657 Bytes
bba6a57
16ec87f
 
39375de
16ec87f
 
39375de
 
16ec87f
 
 
 
 
 
39375de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655b190
 
bd6dd07
655b190
39375de
 
 
 
 
bba6a57
266e9d9
bba6a57
16ec87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266e9d9
 
16ec87f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- fr
license: apache-2.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-generation
- table-question-answering
- summarization
pretty_name: Bulletin officiel des finances publiques - impôts
tags:
- finetuning
- legal
- french law
- droit français
- Bofip
dataset_info:
  features:
  - name: type
    dtype: string
  - name: titre
    dtype: string
  - name: debut_de_validite
    dtype: string
  - name: serie
    dtype: string
  - name: division
    dtype: string
  - name: identifiant_juridique
    dtype: string
  - name: permalien
    dtype: string
  - name: contenu
    dtype: string
  - name: contenu_html
    dtype: string
  splits:
  - name: train
    num_bytes: 185469381
    num_examples: 8621
  download_size: 78744050
  dataset_size: 185469381
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---
# Bulletin officiel des finances publiques - impôts, non-instruct (11-12-2023)

This project focuses on fine-tuning pre-trained language models to create efficient and accurate models for legal practice. 

Fine-tuning is the process of adapting a pre-trained model to perform specific tasks or cater to particular domains. It involves adjusting the model's parameters through a further round of training on task-specific or domain-specific data. While conventional fine-tuning strategies involve supervised learning with labeled data, instruction-based fine-tuning introduces a more structured and interpretable approach.

Instruction-based fine-tuning leverages the power of human-provided instructions to guide the model's behavior. These instructions can be in the form of text prompts, prompts with explicit task descriptions, or a combination of both. This approach allows for a more controlled and context-aware interaction with the LLM, making it adaptable to a multitude of specialized tasks.

Instruction-based fine-tuning significantly enhances the performance of LLMs in the following ways:

- Task-Specific Adaptation: LLMs, when fine-tuned with specific instructions, exhibit remarkable adaptability to diverse tasks. They can switch seamlessly between translation, summarization, and question-answering, guided by the provided instructions.
- Reduced Ambiguity: Traditional LLMs might generate ambiguous or contextually inappropriate responses. Instruction-based fine-tuning allows for a clearer and more context-aware generation, reducing the likelihood of nonsensical outputs.
- Efficient Knowledge Transfer: Instructions can encapsulate domain-specific knowledge, enabling LLMs to benefit from expert guidance. This knowledge transfer is particularly valuable in fields like tax practice, law, medicine, and more.
- Interpretability: Instruction-based fine-tuning also makes LLM behavior more interpretable. Since the instructions are human-readable, it becomes easier to understand and control model outputs.
- Adaptive Behavior: LLMs, post instruction-based fine-tuning, exhibit adaptive behavior that is responsive to both explicit task descriptions and implicit cues within the provided text.

## Citing this project

If you use this code in your research, please use the following BibTeX entry.

```BibTeX
@misc{louisbrulenaudet2023,
  author =       {Louis Brulé Naudet},
  title =        {Bulletin officiel des finances publiques - impôts, non-instruct (11-12-2023)},
  howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/bofip}},
  year =         {2023}
}
```

## Feedback

If you have any feedback, please reach out at [louisbrulenaudet@icloud.com](mailto:louisbrulenaudet@icloud.com).