Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code: FeaturesError Exception: ValueError Message: Not able to read records in the JSON file at hf://datasets/lilacai/lilac-wikitext-2-raw-v1@85e5f78663be0e0deea80d01f8d241f8f228d06e/lilac/wikitext-2-raw-v1/text/lilac/legal-termination/gte-small/signal_manifest.json. You should probably indicate the field of the JSON file containing your records. This JSON file contain the following fields: ['files', 'parquet_id', 'data_schema', 'signal', 'enriched_path', 'py_version']. Select the correct one and provide it as `field='XXX'` to the dataset loading method. Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 241, in compute_first_rows_from_streaming_response iterable_dataset = iterable_dataset._resolve_features() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2216, in _resolve_features features = _infer_features_from_batch(self.with_format(None)._head()) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1239, in _head return _examples_to_batch(list(self.take(n))) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1389, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1044, in __iter__ yield from islice(self.ex_iterable, self.n) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 282, in __iter__ for key, pa_table in self.generate_tables_fn(**self.kwargs): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 170, in _generate_tables raise ValueError( ValueError: Not able to read records in the JSON file at hf://datasets/lilacai/lilac-wikitext-2-raw-v1@85e5f78663be0e0deea80d01f8d241f8f228d06e/lilac/wikitext-2-raw-v1/text/lilac/legal-termination/gte-small/signal_manifest.json. You should probably indicate the field of the JSON file containing your records. This JSON file contain the following fields: ['files', 'parquet_id', 'data_schema', 'signal', 'enriched_path', 'py_version']. Select the correct one and provide it as `field='XXX'` to the dataset loading method.
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
This dataset is generated by Lilac for a HuggingFace Space: huggingface.co/spaces/lilacai/lilac.
Original dataset: https://huggingface.co/datasets/wikitext
Lilac dataset config:
name: wikitext-2-raw-v1
source:
dataset_name: wikitext
config_name: wikitext-2-raw-v1
source_name: huggingface
embeddings:
- path: text
embedding: gte-small
signals:
- path: text
signal:
signal_name: near_dup
- path: text
signal:
signal_name: pii
- path: text
signal:
signal_name: lang_detection
- path: text
signal:
signal_name: text_statistics
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: legal-termination
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: negative-sentiment
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: non-english
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: positive-sentiment
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: profanity
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: question
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: source-code
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: toxicity
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: legal-termination
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: negative-sentiment
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: non-english
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: positive-sentiment
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: profanity
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: question
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: source-code
signal_name: concept_score
- path: text
signal:
embedding: gte-small
namespace: lilac
concept_name: toxicity
signal_name: concept_score
- path: text
signal:
signal_name: cluster_dbscan
- path: text
signal:
embedding: gte-small
signal_name: cluster_hdbscan
settings:
ui:
media_paths:
- text
markdown_paths: []
tags:
- machine-learning
- Downloads last month
- 31