Dataset Viewer
Full Screen
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ValueError
Message:      Not able to read records in the JSON file at hf://datasets/lilacai/lilac-imdb@25755cd80eedc0a8cc1aa147d820faf4a1b5a04b/lilac/imdb/text/lilac/legal-termination/gte-small/signal_manifest.json. You should probably indicate the field of the JSON file containing your records. This JSON file contain the following fields: ['files', 'parquet_id', 'data_schema', 'signal', 'enriched_path', 'py_version']. Select the correct one and provide it as `field='XXX'` to the dataset loading method. 
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 241, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2216, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1239, in _head
                  return _examples_to_batch(list(self.take(n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1389, in __iter__
                  for key, example in ex_iterable:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1044, in __iter__
                  yield from islice(self.ex_iterable, self.n)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 282, in __iter__
                  for key, pa_table in self.generate_tables_fn(**self.kwargs):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 170, in _generate_tables
                  raise ValueError(
              ValueError: Not able to read records in the JSON file at hf://datasets/lilacai/lilac-imdb@25755cd80eedc0a8cc1aa147d820faf4a1b5a04b/lilac/imdb/text/lilac/legal-termination/gte-small/signal_manifest.json. You should probably indicate the field of the JSON file containing your records. This JSON file contain the following fields: ['files', 'parquet_id', 'data_schema', 'signal', 'enriched_path', 'py_version']. Select the correct one and provide it as `field='XXX'` to the dataset loading method.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

This dataset is generated by Lilac for a HuggingFace Space: huggingface.co/spaces/lilacai/lilac.

Original dataset: https://huggingface.co/datasets/imdb

Lilac dataset config:

name: imdb
source:
  dataset_name: imdb
  source_name: huggingface
embeddings:
  - path: text
    embedding: gte-small
signals:
  - path: text
    signal:
      signal_name: near_dup
  - path: text
    signal:
      signal_name: pii
  - path: text
    signal:
      signal_name: lang_detection
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: positive-sentiment
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: non-english
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: toxicity
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: question
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: legal-termination
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: source-code
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: negative-sentiment
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: profanity
      signal_name: concept_score
  - path: text
    signal:
      signal_name: text_statistics
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: legal-termination
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: negative-sentiment
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: non-english
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: positive-sentiment
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: profanity
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: question
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: legal-termination
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: negative-sentiment
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: non-english
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: positive-sentiment
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: profanity
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: question
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: source-code
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: toxicity
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: legal-termination
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: legal-termination
      signal_name: concept_score
  - path: text
    signal:
      embedding: gte-small
      namespace: lilac
      concept_name: legal-termination
      signal_name: concept_score
  - path: text
    signal:
      signal_name: cluster_dbscan
  - path: text
    signal:
      embedding: gte-small
      signal_name: cluster_hdbscan
settings:
  ui:
    media_paths:
      - text
    markdown_paths: []
  tags:
    - machine-learning
Downloads last month
13

Space using lilacai/lilac-imdb 1