The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Card for "daily_dialog"

Dataset Summary

We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems.

Supported Tasks and Leaderboards

More Information Needed


More Information Needed

Dataset Structure

Data Instances


  • Size of downloaded dataset files: 4.48 MB
  • Size of the generated dataset: 8.63 MB
  • Total amount of disk used: 13.11 MB

An example of 'validation' looks as follows.

This example was too long and was cropped:

    "act": [2, 1, 1, 1, 1, 2, 3, 2, 3, 4],
    "dialog": "[\"Good afternoon . This is Michelle Li speaking , calling on behalf of IBA . Is Mr Meng available at all ? \", \" This is Mr Meng ...",
    "emotion": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Data Fields

The data fields are the same among all splits.


  • dialog: a list of string features.
  • act: a list of classification labels, with possible values including __dummy__ (0), inform (1), question (2), directive (3) and commissive (4).
  • emotion: a list of classification labels, with possible values including no emotion (0), anger (1), disgust (2), fear (3), happiness (4), sadness (5) and surprise (6).

Data Splits

name train validation test
default 11118 1000 1000

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed


Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

Dataset provided for research purposes only. Please check dataset license for additional information.

Additional Information

Dataset Curators

More Information Needed

Licensing Information

DailyDialog dataset is licensed under CC BY-NC-SA 4.0.

Citation Information

    author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi},
    title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset},
    booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)},
    year = {2017}


Thanks to @thomwolf, @julien-c for adding this dataset.

Downloads last month

Models trained or fine-tuned on li2017dailydialog/daily_dialog