session
stringlengths 25
28
| audio
stringlengths 65
68
| text
stringclasses 957
values | speaker_id
stringclasses 15
values | test_data
int64 0
1
|
---|---|---|---|---|
F01-Session1-arrayMic-0006 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0006.wav | STICK | F01 | 1 |
F01-Session1-arrayMic-0008 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0008.wav | EXCEPT IN THE WINTER WHEN THE OOZE OR SNOW OR ICE PREVENTS | F01 | 1 |
F01-Session1-arrayMic-0009 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0009.wav | PAT | F01 | 0 |
F01-Session1-arrayMic-0010 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0010.wav | UP | F01 | 1 |
F01-Session1-arrayMic-0011 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0011.wav | MEAT | F01 | 0 |
F01-Session1-arrayMic-0012 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0012.wav | MEAT | F01 | 0 |
F01-Session1-arrayMic-0013 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0013.wav | KNOW | F01 | 1 |
F01-Session1-arrayMic-0014 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0014.wav | HE SLOWLY TAKES A SHORT WALK IN THE OPEN AIR EACH DAY | F01 | 1 |
F01-Session1-arrayMic-0015 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0015.wav | AIR | F01 | 0 |
F01-Session1-arrayMic-0016 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0016.wav | SWARM | F01 | 0 |
F01-Session1-arrayMic-0017 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0017.wav | DOUBLE | F01 | 1 |
F01-Session1-arrayMic-0018 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0018.wav | NO | F01 | 0 |
F01-Session1-arrayMic-0019 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0019.wav | STORM | F01 | 0 |
F01-Session1-arrayMic-0020 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0020.wav | USUALLY MINUS SEVERAL BUTTONS | F01 | 0 |
F01-Session1-arrayMic-0021 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0021.wav | DUG | F01 | 0 |
F01-Session1-arrayMic-0022 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0022.wav | YOU WISHED TO KNOW ALL ABOUT MY GRANDFATHER | F01 | 1 |
F01-Session1-arrayMic-0024 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0024.wav | KNEE | F01 | 1 |
F01-Session1-arrayMic-0025 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0025.wav | FEET | F01 | 0 |
F01-Session1-arrayMic-0026 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0026.wav | TRAIN | F01 | 0 |
F01-Session1-arrayMic-0027 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0027.wav | BUT HE ALWAYS ANSWERS BANANA OIL | F01 | 0 |
F01-Session1-arrayMic-0028 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0028.wav | BUT HE ALWAYS ANSWERS BANANA OIL | F01 | 0 |
F01-Session1-arrayMic-0029 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0029.wav | BEAT | F01 | 0 |
F01-Session1-arrayMic-0030 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0030.wav | THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG | F01 | 0 |
F01-Session1-arrayMic-0031 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0031.wav | THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG | F01 | 0 |
F01-Session1-arrayMic-0032 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0032.wav | SHE HAD YOUR DARK SUIT IN GREASY WASH WATER ALL YEAR | F01 | 1 |
F01-Session1-arrayMic-0033 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0033.wav | CAR | F01 | 1 |
F01-Session1-arrayMic-0034 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0034.wav | FEET | F01 | 0 |
F01-Session1-arrayMic-0035 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0035.wav | GIVING THOSE WHO OBSERVE HIM A PRONOUNCED FEELING OF THE UTMOST RESPECT | F01 | 1 |
F01-Session1-arrayMic-0036 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0036.wav | WE HAVE OFTEN URGED HIM TO WALK MORE AND SMOKE LESS | F01 | 0 |
F01-Session1-arrayMic-0037 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0037.wav | RAKE | F01 | 0 |
F01-Session1-arrayMic-0039 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0039.wav | SWORE | F01 | 1 |
F01-Session1-arrayMic-0040 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0040.wav | RAVE | F01 | 1 |
F01-Session1-arrayMic-0041 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0041.wav | RAVE | F01 | 1 |
F01-Session1-arrayMic-0042 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0042.wav | FOR | F01 | 0 |
F01-Session1-arrayMic-0043 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0043.wav | SIP | F01 | 1 |
F01-Session1-arrayMic-0044 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0044.wav | GROW | F01 | 0 |
F01-Session1-arrayMic-0045 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0045.wav | BIT | F01 | 1 |
F01-Session1-arrayMic-0046 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0046.wav | CHAIR | F01 | 1 |
F01-Session1-arrayMic-0047 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0047.wav | ONE | F01 | 0 |
F01-Session1-arrayMic-0048 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0048.wav | FAIR | F01 | 1 |
F01-Session1-arrayMic-0049 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0049.wav | TWO | F01 | 0 |
F01-Session1-arrayMic-0050 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0050.wav | BETA | F01 | 1 |
F01-Session1-arrayMic-0051 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0051.wav | RAGE | F01 | 0 |
F01-Session1-arrayMic-0052 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0052.wav | SPARK | F01 | 1 |
F01-Session1-arrayMic-0053 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0053.wav | SWARM | F01 | 0 |
F01-Session1-arrayMic-0054 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0054.wav | BEAT | F01 | 0 |
F01-Session1-arrayMic-0057 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0057.wav | RACE | F01 | 1 |
F01-Session1-arrayMic-0058 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0058.wav | THE | F01 | 1 |
F01-Session1-arrayMic-0059 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0059.wav | THE | F01 | 1 |
F01-Session1-arrayMic-0060 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0060.wav | FORM | F01 | 0 |
F01-Session1-arrayMic-0061 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0061.wav | DARK | F01 | 1 |
F01-Session1-arrayMic-0062 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0062.wav | SIP | F01 | 1 |
F01-Session1-arrayMic-0063 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0063.wav | FARM | F01 | 0 |
F01-Session1-arrayMic-0064 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0064.wav | RAID | F01 | 1 |
F01-Session1-arrayMic-0065 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0065.wav | FEE | F01 | 1 |
F01-Session1-arrayMic-0066 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0066.wav | WEED | F01 | 1 |
F01-Session1-arrayMic-0069 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0069.wav | BAT | F01 | 1 |
F01-Session1-arrayMic-0070 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0070.wav | HORN | F01 | 0 |
F01-Session1-arrayMic-0071 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0071.wav | JAGGED | F01 | 1 |
F01-Session1-arrayMic-0072 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0072.wav | SHEET | F01 | 0 |
F01-Session1-arrayMic-0073 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0073.wav | CHAIR | F01 | 1 |
F01-Session1-arrayMic-0074 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0074.wav | BUBBLE | F01 | 1 |
F01-Session1-arrayMic-0075 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0075.wav | WARM | F01 | 1 |
F01-Session1-arrayMic-0076 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0076.wav | SHIP | F01 | 0 |
F01-Session1-arrayMic-0079 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0079.wav | AIR | F01 | 0 |
F01-Session1-arrayMic-0080 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0080.wav | HAIR | F01 | 1 |
F01-Session1-arrayMic-0081 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0081.wav | SHARE | F01 | 1 |
F01-Session1-arrayMic-0082 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0082.wav | RATE | F01 | 1 |
F01-Session1-arrayMic-0083 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0083.wav | GOAT | F01 | 1 |
F01-Session1-arrayMic-0084 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0084.wav | TRACE | F01 | 1 |
F01-Session1-arrayMic-0085 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0085.wav | SIP | F01 | 1 |
F01-Session1-arrayMic-0086 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0086.wav | GO | F01 | 1 |
F01-Session1-arrayMic-0087 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0087.wav | ALPHA | F01 | 1 |
F01-Session1-arrayMic-0088 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0088.wav | LEFT | F01 | 0 |
F01-Session1-arrayMic-0089 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0089.wav | STICKS | F01 | 0 |
F01-Session1-arrayMic-0090 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0090.wav | TROUBLE | F01 | 1 |
F01-Session1-arrayMic-0091 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0091.wav | DAGGER | F01 | 1 |
F01-Session1-arrayMic-0093 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0093.wav | A LONG FLOWING BEARD CLINGS TO HIS CHIN | F01 | 1 |
F01-Session1-arrayMic-0094 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0094.wav | SLIP | F01 | 1 |
F01-Session1-arrayMic-0095 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0095.wav | GLOW | F01 | 0 |
F01-Session1-arrayMic-0097 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0097.wav | TRADE | F01 | 1 |
F01-Session1-arrayMic-0098 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0098.wav | RANGE | F01 | 1 |
F01-Session1-arrayMic-0099 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0099.wav | STUBBLE | F01 | 1 |
F01-Session1-arrayMic-0100 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0100.wav | FLOOR | F01 | 1 |
F01-Session1-arrayMic-0101 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0101.wav | BUG | F01 | 1 |
F01-Session1-arrayMic-0102 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0102.wav | BUG | F01 | 1 |
F01-Session1-arrayMic-0104 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0104.wav | YET HE STILL THINKS AS SWIFTLY AS EVER | F01 | 1 |
F01-Session1-arrayMic-0105 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0105.wav | YET HE STILL THINKS AS SWIFTLY AS EVER | F01 | 1 |
F01-Session1-arrayMic-0106 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0106.wav | YET HE STILL THINKS AS SWIFTLY AS EVER | F01 | 1 |
F01-Session1-arrayMic-0108 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0108.wav | JACKET | F01 | 1 |
F01-Session1-arrayMic-0109 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0109.wav | BORN | F01 | 0 |
F01-Session1-arrayMic-0110 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0110.wav | WARM | F01 | 1 |
F01-Session1-arrayMic-0111 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0111.wav | CORN | F01 | 0 |
F01-Session1-arrayMic-0112 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0112.wav | RIGHT | F01 | 0 |
F01-Session1-arrayMic-0113 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0113.wav | KNEW | F01 | 1 |
F01-Session1-arrayMic-0114 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0114.wav | WELL HE IS NEARLY NINETY THREE YEARS OLD | F01 | 0 |
F01-Session1-arrayMic-0115 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0115.wav | FEED | F01 | 0 |
F01-Session1-arrayMic-0116 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0116.wav | TWICE EACH DAY HE PLAYS SKILLFULLY AND WITH ZEST UPON OUR SMALL ORGAN | F01 | 1 |
F01-Session1-arrayMic-0117 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0117.wav | FEED | F01 | 0 |
F01-Session1-arrayMic-0118 | /work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0118.wav | KNEW | F01 | 1 |
NP-TORGO: A Partitioned Dysarthric Speech Dataset
Dataset Overview
NP-TORGO (No Prompt-Overlap TORGO) is a partitioned version of the TORGO dataset designed to address the issue of prompt overlap between speakers. The original TORGO dataset contains dysarthric speech samples from individuals with ALS or CP, but significant prompt overlap can lead to data leakage. NP-TORGO ensures there is no prompt overlap between training, validation, and test sets, providing a more realistic evaluation setting for speech recognition models.
Data Structure
The dataset consists of audio samples and corresponding text transcriptions, with the following key columns:
- session: The recording session of the speaker.
- stringlengths (audio/text): The length of the audio and text samples.
- stringclasses (speaker_id): The unique identifier of the speaker.
- test_data: The split indicator, where:
1
denotes the test set.0
denotes the training and validation set.
- file_path: The path to the corresponding audio file.
- transcription: The ground truth text for the audio sample.
Data Filtering
NP-TORGO applies the following filtering logic to ensure a clean separation between training, validation, and test sets:
Data Splitting Strategy
- If
test_data == 1
, the sample belongs to the test set. - If
test_data == 0
, the sample is part of the train or validation set.
Speaker Partitioning Strategy
To ensure a fair evaluation, NP-TORGO follows a predefined rule for speaker assignment:
This means:
- If the test speaker is not F03, then the validation speaker is F03.
- If the test speaker is F03, then the validation speaker is set to F04.
This approach prevents overlap and ensures a robust validation protocol.
Citation
If you use NP-TORGO in your research, please cite our paper:
Enhancing AAC Software for Dysarthric Speakers in e-Health Settings: An Evaluation Using TORGO
Macarious Kin Fung Hui, Jinda Zhang, Aanchan Mohan
IEEE ICC '25
- Downloads last month
- 19