Dataset Viewer
Auto-converted to Parquet
session
stringlengths
25
28
audio
stringlengths
65
68
text
stringclasses
957 values
speaker_id
stringclasses
15 values
test_data
int64
0
1
F01-Session1-arrayMic-0006
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0006.wav
STICK
F01
1
F01-Session1-arrayMic-0008
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0008.wav
EXCEPT IN THE WINTER WHEN THE OOZE OR SNOW OR ICE PREVENTS
F01
1
F01-Session1-arrayMic-0009
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0009.wav
PAT
F01
0
F01-Session1-arrayMic-0010
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0010.wav
UP
F01
1
F01-Session1-arrayMic-0011
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0011.wav
MEAT
F01
0
F01-Session1-arrayMic-0012
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0012.wav
MEAT
F01
0
F01-Session1-arrayMic-0013
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0013.wav
KNOW
F01
1
F01-Session1-arrayMic-0014
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0014.wav
HE SLOWLY TAKES A SHORT WALK IN THE OPEN AIR EACH DAY
F01
1
F01-Session1-arrayMic-0015
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0015.wav
AIR
F01
0
F01-Session1-arrayMic-0016
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0016.wav
SWARM
F01
0
F01-Session1-arrayMic-0017
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0017.wav
DOUBLE
F01
1
F01-Session1-arrayMic-0018
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0018.wav
NO
F01
0
F01-Session1-arrayMic-0019
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0019.wav
STORM
F01
0
F01-Session1-arrayMic-0020
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0020.wav
USUALLY MINUS SEVERAL BUTTONS
F01
0
F01-Session1-arrayMic-0021
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0021.wav
DUG
F01
0
F01-Session1-arrayMic-0022
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0022.wav
YOU WISHED TO KNOW ALL ABOUT MY GRANDFATHER
F01
1
F01-Session1-arrayMic-0024
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0024.wav
KNEE
F01
1
F01-Session1-arrayMic-0025
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0025.wav
FEET
F01
0
F01-Session1-arrayMic-0026
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0026.wav
TRAIN
F01
0
F01-Session1-arrayMic-0027
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0027.wav
BUT HE ALWAYS ANSWERS BANANA OIL
F01
0
F01-Session1-arrayMic-0028
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0028.wav
BUT HE ALWAYS ANSWERS BANANA OIL
F01
0
F01-Session1-arrayMic-0029
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0029.wav
BEAT
F01
0
F01-Session1-arrayMic-0030
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0030.wav
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
F01
0
F01-Session1-arrayMic-0031
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0031.wav
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
F01
0
F01-Session1-arrayMic-0032
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0032.wav
SHE HAD YOUR DARK SUIT IN GREASY WASH WATER ALL YEAR
F01
1
F01-Session1-arrayMic-0033
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0033.wav
CAR
F01
1
F01-Session1-arrayMic-0034
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0034.wav
FEET
F01
0
F01-Session1-arrayMic-0035
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0035.wav
GIVING THOSE WHO OBSERVE HIM A PRONOUNCED FEELING OF THE UTMOST RESPECT
F01
1
F01-Session1-arrayMic-0036
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0036.wav
WE HAVE OFTEN URGED HIM TO WALK MORE AND SMOKE LESS
F01
0
F01-Session1-arrayMic-0037
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0037.wav
RAKE
F01
0
F01-Session1-arrayMic-0039
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0039.wav
SWORE
F01
1
F01-Session1-arrayMic-0040
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0040.wav
RAVE
F01
1
F01-Session1-arrayMic-0041
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0041.wav
RAVE
F01
1
F01-Session1-arrayMic-0042
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0042.wav
FOR
F01
0
F01-Session1-arrayMic-0043
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0043.wav
SIP
F01
1
F01-Session1-arrayMic-0044
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0044.wav
GROW
F01
0
F01-Session1-arrayMic-0045
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0045.wav
BIT
F01
1
F01-Session1-arrayMic-0046
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0046.wav
CHAIR
F01
1
F01-Session1-arrayMic-0047
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0047.wav
ONE
F01
0
F01-Session1-arrayMic-0048
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0048.wav
FAIR
F01
1
F01-Session1-arrayMic-0049
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0049.wav
TWO
F01
0
F01-Session1-arrayMic-0050
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0050.wav
BETA
F01
1
F01-Session1-arrayMic-0051
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0051.wav
RAGE
F01
0
F01-Session1-arrayMic-0052
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0052.wav
SPARK
F01
1
F01-Session1-arrayMic-0053
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0053.wav
SWARM
F01
0
F01-Session1-arrayMic-0054
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0054.wav
BEAT
F01
0
F01-Session1-arrayMic-0057
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0057.wav
RACE
F01
1
F01-Session1-arrayMic-0058
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0058.wav
THE
F01
1
F01-Session1-arrayMic-0059
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0059.wav
THE
F01
1
F01-Session1-arrayMic-0060
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0060.wav
FORM
F01
0
F01-Session1-arrayMic-0061
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0061.wav
DARK
F01
1
F01-Session1-arrayMic-0062
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0062.wav
SIP
F01
1
F01-Session1-arrayMic-0063
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0063.wav
FARM
F01
0
F01-Session1-arrayMic-0064
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0064.wav
RAID
F01
1
F01-Session1-arrayMic-0065
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0065.wav
FEE
F01
1
F01-Session1-arrayMic-0066
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0066.wav
WEED
F01
1
F01-Session1-arrayMic-0069
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0069.wav
BAT
F01
1
F01-Session1-arrayMic-0070
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0070.wav
HORN
F01
0
F01-Session1-arrayMic-0071
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0071.wav
JAGGED
F01
1
F01-Session1-arrayMic-0072
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0072.wav
SHEET
F01
0
F01-Session1-arrayMic-0073
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0073.wav
CHAIR
F01
1
F01-Session1-arrayMic-0074
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0074.wav
BUBBLE
F01
1
F01-Session1-arrayMic-0075
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0075.wav
WARM
F01
1
F01-Session1-arrayMic-0076
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0076.wav
SHIP
F01
0
F01-Session1-arrayMic-0079
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0079.wav
AIR
F01
0
F01-Session1-arrayMic-0080
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0080.wav
HAIR
F01
1
F01-Session1-arrayMic-0081
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0081.wav
SHARE
F01
1
F01-Session1-arrayMic-0082
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0082.wav
RATE
F01
1
F01-Session1-arrayMic-0083
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0083.wav
GOAT
F01
1
F01-Session1-arrayMic-0084
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0084.wav
TRACE
F01
1
F01-Session1-arrayMic-0085
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0085.wav
SIP
F01
1
F01-Session1-arrayMic-0086
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0086.wav
GO
F01
1
F01-Session1-arrayMic-0087
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0087.wav
ALPHA
F01
1
F01-Session1-arrayMic-0088
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0088.wav
LEFT
F01
0
F01-Session1-arrayMic-0089
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0089.wav
STICKS
F01
0
F01-Session1-arrayMic-0090
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0090.wav
TROUBLE
F01
1
F01-Session1-arrayMic-0091
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0091.wav
DAGGER
F01
1
F01-Session1-arrayMic-0093
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0093.wav
A LONG FLOWING BEARD CLINGS TO HIS CHIN
F01
1
F01-Session1-arrayMic-0094
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0094.wav
SLIP
F01
1
F01-Session1-arrayMic-0095
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0095.wav
GLOW
F01
0
F01-Session1-arrayMic-0097
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0097.wav
TRADE
F01
1
F01-Session1-arrayMic-0098
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0098.wav
RANGE
F01
1
F01-Session1-arrayMic-0099
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0099.wav
STUBBLE
F01
1
F01-Session1-arrayMic-0100
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0100.wav
FLOOR
F01
1
F01-Session1-arrayMic-0101
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0101.wav
BUG
F01
1
F01-Session1-arrayMic-0102
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0102.wav
BUG
F01
1
F01-Session1-arrayMic-0104
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0104.wav
YET HE STILL THINKS AS SWIFTLY AS EVER
F01
1
F01-Session1-arrayMic-0105
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0105.wav
YET HE STILL THINKS AS SWIFTLY AS EVER
F01
1
F01-Session1-arrayMic-0106
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0106.wav
YET HE STILL THINKS AS SWIFTLY AS EVER
F01
1
F01-Session1-arrayMic-0108
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0108.wav
JACKET
F01
1
F01-Session1-arrayMic-0109
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0109.wav
BORN
F01
0
F01-Session1-arrayMic-0110
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0110.wav
WARM
F01
1
F01-Session1-arrayMic-0111
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0111.wav
CORN
F01
0
F01-Session1-arrayMic-0112
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0112.wav
RIGHT
F01
0
F01-Session1-arrayMic-0113
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0113.wav
KNEW
F01
1
F01-Session1-arrayMic-0114
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0114.wav
WELL HE IS NEARLY NINETY THREE YEARS OLD
F01
0
F01-Session1-arrayMic-0115
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0115.wav
FEED
F01
0
F01-Session1-arrayMic-0116
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0116.wav
TWICE EACH DAY HE PLAYS SKILLFULLY AND WITH ZEST UPON OUR SMALL ORGAN
F01
1
F01-Session1-arrayMic-0117
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0117.wav
FEED
F01
0
F01-Session1-arrayMic-0118
/work/van-speech-nlp/data/torgo/F01/Session1/wav_arrayMic/0118.wav
KNEW
F01
1
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

NP-TORGO: A Partitioned Dysarthric Speech Dataset

Dataset Overview

NP-TORGO (No Prompt-Overlap TORGO) is a partitioned version of the TORGO dataset designed to address the issue of prompt overlap between speakers. The original TORGO dataset contains dysarthric speech samples from individuals with ALS or CP, but significant prompt overlap can lead to data leakage. NP-TORGO ensures there is no prompt overlap between training, validation, and test sets, providing a more realistic evaluation setting for speech recognition models.

Data Structure

The dataset consists of audio samples and corresponding text transcriptions, with the following key columns:

  • session: The recording session of the speaker.
  • stringlengths (audio/text): The length of the audio and text samples.
  • stringclasses (speaker_id): The unique identifier of the speaker.
  • test_data: The split indicator, where:
    • 1 denotes the test set.
    • 0 denotes the training and validation set.
  • file_path: The path to the corresponding audio file.
  • transcription: The ground truth text for the audio sample.

Data Filtering

NP-TORGO applies the following filtering logic to ensure a clean separation between training, validation, and test sets:

Data Splitting Strategy

  • If test_data == 1, the sample belongs to the test set.
  • If test_data == 0, the sample is part of the train or validation set.

Speaker Partitioning Strategy

To ensure a fair evaluation, NP-TORGO follows a predefined rule for speaker assignment:

This means:

  • If the test speaker is not F03, then the validation speaker is F03.
  • If the test speaker is F03, then the validation speaker is set to F04.

This approach prevents overlap and ensures a robust validation protocol.

Citation

If you use NP-TORGO in your research, please cite our paper:

Enhancing AAC Software for Dysarthric Speakers in e-Health Settings: An Evaluation Using TORGO
Macarious Kin Fung Hui, Jinda Zhang, Aanchan Mohan
IEEE ICC '25

Downloads last month
19