pdf
stringlengths 49
199
⌀ | aff
stringlengths 1
1.36k
⌀ | year
stringclasses 19
values | technical_novelty_avg
float64 0
4
⌀ | video
stringlengths 21
47
⌀ | doi
stringlengths 31
63
⌀ | presentation_avg
float64 0
4
⌀ | proceeding
stringlengths 43
129
⌀ | presentation
stringclasses 796
values | sess
stringclasses 576
values | technical_novelty
stringclasses 700
values | arxiv
stringlengths 10
16
⌀ | author
stringlengths 1
1.96k
⌀ | site
stringlengths 37
191
⌀ | keywords
stringlengths 2
582
⌀ | oa
stringlengths 86
198
⌀ | empirical_novelty_avg
float64 0
4
⌀ | poster
stringlengths 57
95
⌀ | openreview
stringlengths 41
45
⌀ | conference
stringclasses 11
values | corr_rating_confidence
float64 -1
1
⌀ | corr_rating_correctness
float64 -1
1
⌀ | project
stringlengths 1
162
⌀ | track
stringclasses 3
values | rating_avg
float64 0
10
⌀ | rating
stringlengths 1
17
⌀ | correctness
stringclasses 809
values | slides
stringlengths 32
41
⌀ | title
stringlengths 2
192
⌀ | github
stringlengths 3
165
⌀ | authors
stringlengths 7
161
⌀ | correctness_avg
float64 0
5
⌀ | confidence_avg
float64 0
5
⌀ | status
stringclasses 22
values | confidence
stringlengths 1
17
⌀ | empirical_novelty
stringclasses 763
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | task clustering;matrix completion;multi-task learning;few-shot learning | null | 0 | null | null | iclr | 0 | 0 | null | main | 4.666667 | 4;5;5 | null | null | Robust Task Clustering for Deep and Diverse Multi-Task and Few-Shot Learning | null | null | 0 | 4 | Withdraw | 4;4;4 | null |
null | Department of Electronics and Computer Science, University of Southampton | 2018 | 0 | null | null | 0 | null | null | null | null | null | Yan Zhang, Jonathon Hare, Adam Prugel-Bennett | https://iclr.cc/virtual/2018/poster/307 | visual question answering;vqa;counting | null | 0 | null | null | iclr | -1 | 0 | null | main | 5.333333 | 4;6;6 | null | null | Learning to Count Objects in Natural Images for Visual Question Answering | https://github.com/Cyanogenoid/vqa-counting | null | 0 | 3.333333 | Poster | 4;3;3 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | iclr | 0 | 0 | null | main | 0 | null | null | null | THINK VISUALLY: QUESTION ANSWERING THROUGH VIRTUAL IMAGERY | null | null | 0 | 0 | Active | null | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | interpretability;generative adversarial networks | null | 0 | null | null | iclr | -0.240192 | 0 | null | main | 6.333333 | 4;7;8 | null | null | Thinking like a machine — generating visual rationales through latent space optimization | null | null | 0 | 3 | Reject | 3;4;2 | null |
null | University of British Columbia | 2018 | 0 | null | null | 0 | null | null | null | null | null | Glen Berseth, Cheng Xie, Paul Cernek, Michiel van de Panne | https://iclr.cc/virtual/2018/poster/300 | Reinforcement Learning;Distillation;Transfer Learning;Continual Learning | null | 0 | null | null | iclr | 1 | 0 | null | main | 6.333333 | 5;7;7 | null | null | Progressive Reinforcement Learning with Distillation for Multi-Skilled Motion Control | null | null | 0 | 3.666667 | Poster | 3;4;4 | null |
null | Carnegie Mellon University; Google Brain | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | squad;stanford question answering dataset;reading comprehension;attention;text convolutions;question answering | null | 0 | null | null | iclr | 0.654654 | 0 | null | main | 6.333333 | 5;6;8 | null | null | QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension | null | null | 0 | 4 | Poster | 4;3;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Non-convex optimization;Deep Learning | null | 0 | null | null | iclr | -0.866025 | 0 | null | main | 5.333333 | 4;6;6 | null | null | No Spurious Local Minima in a Two Hidden Unit ReLU Network | null | null | 0 | 3 | Workshop | 4;3;2 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | boosting learning;deep learning;neural network | null | 0 | null | null | iclr | -0.960769 | 0 | null | main | 4.333333 | 2;5;6 | null | null | Deep Boosting of Diverse Experts | null | null | 0 | 4 | Reject | 5;4;3 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | reinforcement learning;safe exploration;dqn | null | 0 | null | null | iclr | -0.866025 | 0 | null | main | 5.666667 | 5;5;7 | null | null | Avoiding Catastrophic States with Intrinsic Fear | null | null | 0 | 4 | Reject | 4;5;3 | null |
null | Columbia University, New York, NY 10027, USA | 2018 | 0 | null | null | 0 | null | null | null | null | null | Christopher Cueva, Xue-Xin Wei | https://iclr.cc/virtual/2018/poster/245 | recurrent neural network;grid cell;neural representation of space | null | 0 | null | null | iclr | 0 | 0 | null | main | 8.333333 | 8;8;9 | null | null | Emergence of grid-like representations by training recurrent neural networks to perform spatial localization | null | null | 0 | 4 | Poster | 4;4;4 | null |
null | Microsoft Research Montreal; Montréal Institute for Learning Algorithms (MILA), Université de Montréal, CIFAR Senior Fellow; Montréal Institute for Learning Algorithms (MILA), Université de Montréal, Work done while author was an intern at Microsoft Research Montreal; Montréal Institute for Learning Algorithms (MILA), Ecole Polytechnique de Montréal | 2018 | 0 | null | null | 0 | null | null | null | null | null | Sandeep Subramanian, Adam Trischler, Yoshua Bengio, Christopher Pal | https://iclr.cc/virtual/2018/poster/99 | distributed sentence representations;multi-task learning | null | 0 | null | null | iclr | 0 | 0 | null | main | 6.666667 | 4;8;8 | null | null | Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning | null | null | 0 | 5 | Poster | 5;5;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | clustering;deep learning;neural networks | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 2.666667 | 2;3;3 | null | null | Clustering with Deep Learning: Taxonomy and New Methods | null | null | 0 | 4.666667 | Reject | 5;5;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | NLU;word embeddings;representation learning | null | 0 | null | null | iclr | -1 | 0 | null | main | 5.666667 | 5;5;7 | null | null | Learning to Compute Word Embeddings On the Fly | null | null | 0 | 3.666667 | Reject | 4;4;3 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | program synthesis;program induction;example selection | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 4.666667 | 4;5;5 | null | null | Learning to select examples for program synthesis | null | null | 0 | 3.666667 | Reject | 4;3;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | Anonymous | null | Deep Learning;Autoencoders;Alternating Optimization | null | 0 | null | null | iclr | 0.755929 | 0 | null | main | 5.666667 | 4;6;7 | null | null | Training Autoencoders by Alternating Minimization | null | null | 0 | 4.333333 | Reject | 4;4;5 | null |
null | UC Berkeley, Department of Electrical Engineering and Computer Science | 2018 | 0 | null | null | 0 | null | null | null | null | null | Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, Pieter Abbeel | https://iclr.cc/virtual/2018/poster/64 | meta-learning;few-shot learning | null | 0 | null | null | iclr | 1 | 0 | null | main | 6.333333 | 6;6;7 | null | null | A Simple Neural Attentive Meta-Learner | null | null | 0 | 3.333333 | Poster | 3;3;4 | null |
null | Google Brain | 2018 | 0 | null | null | 0 | null | null | null | null | null | Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein | https://iclr.cc/virtual/2018/poster/91 | Gaussian process;Bayesian regression;deep networks;kernel methods | null | 0 | null | null | iclr | -0.755929 | 0 | null | main | 5.666667 | 4;6;7 | null | null | Deep Neural Networks as Gaussian Processes | null | null | 0 | 3.666667 | Poster | 4;4;3 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Deep Reinforcement Learning;mult-agent systems | null | 0 | null | null | iclr | 0 | 0 | null | main | 3.333333 | 3;3;4 | null | null | Autonomous Vehicle Fleet Coordination With Deep Reinforcement Learning | null | null | 0 | 4 | Reject | 5;3;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | iclr | 0.5 | 0 | null | main | 5.666667 | 5;5;7 | null | null | Federated Learning: Strategies for Improving Communication Efficiency | null | null | 0 | 4.333333 | Reject | 3;5;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | SVM;siamese network;one-shot learning;few-shot learning | null | 0 | null | null | iclr | 0 | 0 | null | main | 4 | 3;4;5 | null | null | Make SVM great again with Siamese kernel for few-shot learning | null | null | 0 | 4.333333 | Reject | 4;5;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | autonomous lane changing;decision making;deep reinforcement learning;q-learning | null | 0 | null | null | iclr | 0 | 0 | null | main | 3 | 3;3;3 | null | null | Tactical Decision Making for Lane Changing with Deep Reinforcement Learning | null | null | 0 | 4.666667 | Withdraw | 5;4;5 | null |
null | The University of Tokyo, RIKEN; The University of Tokyo | 2018 | 0 | null | null | 0 | null | null | null | null | null | Yuji Tokozume, Yoshitaka Ushiku, Tatsuya Harada | https://iclr.cc/virtual/2018/poster/259 | sound recognition;supervised learning;feature learning | null | 0 | null | null | iclr | 0 | 0 | null | main | 7 | 4;8;9 | null | null | Learning from Between-class Examples for Deep Sound Recognition | https://github.com/mil-tokyo/bc_learning_sound/ | null | 0 | 4 | Poster | 4;4;4 | null |
null | Redwood Center for Theoretical Neuroscience, University of California, Berkeley | 2018 | 0 | null | null | 0 | null | null | null | null | null | Alexander Anderson, Cory P Berg | https://iclr.cc/virtual/2018/poster/244 | Binary Neural Networks;Neural Network Visualization | null | 0 | null | null | iclr | 1 | 0 | null | main | 6 | 4;7;7 | null | null | The High-Dimensional Geometry of Binary Neural Networks | null | null | 0 | 3.666667 | Poster | 3;4;4 | null |
null | Department of Applied Mathematics and Statistics, Johns Hopkins University; Department of Computer Science, Johns Hopkins University | 2018 | 0 | null | null | 0 | null | null | null | null | null | Raman Arora, Amitabh Basu, Poorya Mianjy, Anirbit Mukherjee | https://iclr.cc/virtual/2018/poster/155 | expressive power;benefits of depth;empirical risk minimization;global optimality;computational hardness;combinatorial optimization | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 6.333333 | 6;6;7 | null | null | Understanding Deep Neural Networks with Rectified Linear Units | null | null | 0 | 4.333333 | Poster | 4;5;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Deep Reinforcement Learning;Multi-Agent Reinforcement Learning;StarCraft Micromanagement Tasks | null | 0 | null | null | iclr | 0.866025 | 0 | null | main | 4.666667 | 4;5;5 | null | null | Revisiting The Master-Slave Architecture In Multi-Agent Deep Reinforcement Learning | null | null | 0 | 4 | Reject | 3;4;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Deep learning;Structured Prediction;Natural Language Processing;Neural Program Synthesis | null | 0 | null | null | iclr | 0 | 0 | null | main | 5.333333 | 4;5;7 | null | null | Neural Program Search: Solving Data Processing Tasks from Description and Examples | null | null | 0 | 4 | Workshop | 4;4;4 | null |
null | Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA | 2018 | 0 | null | null | 0 | null | null | null | null | null | Abram Friesen, Pedro Domingos | https://iclr.cc/virtual/2018/poster/92 | hard-threshold units;combinatorial optimization;target propagation;straight-through estimation;quantization | null | 0 | null | null | iclr | 0 | 0 | null | main | 7 | 7;7;7 | null | null | Deep Learning as a Mixed Convex-Combinatorial Optimization Problem | null | null | 0 | 3.666667 | Poster | 3;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | domain adaptation;neural networks;generative models;discriminative models | null | 0 | null | null | iclr | -1 | 0 | null | main | 5.333333 | 5;5;6 | null | null | Principled Hybrids of Generative and Discriminative Domain Adaptation | null | null | 0 | 3.666667 | Reject | 4;4;3 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | style transfer;text generation;non-parallel data | null | 0 | null | null | iclr | 0 | 0 | null | main | 0 | null | null | null | Language Style Transfer from Non-Parallel Text with Arbitrary Styles | null | null | 0 | 0 | Withdraw | null | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | deep reinforcement learning;task execution;instruction execution | null | 0 | null | null | iclr | -0.5 | 0 | https://youtu.be/e_ZXVS5VutM | main | 5.333333 | 4;6;6 | null | null | Neural Task Graph Execution | null | null | 0 | 3.666667 | Reject | 4;3;4 | null |
null | Preferred Networks, Inc.; Ritsumeikan University; National Institute of Informatics | 2018 | 0 | null | null | 0 | null | null | null | null | null | Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida | https://iclr.cc/virtual/2018/poster/331 | Generative Adversarial Networks;Deep Generative Models;Unsupervised Learning | null | 0 | null | null | iclr | 0 | 0 | null | main | 7.333333 | 7;7;8 | null | null | Spectral Normalization for Generative Adversarial Networks | https://github.com/pfnet-research/sngan_projection | null | 0 | 3 | Oral | 4;2;3 | null |
null | Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 | 2018 | 0 | null | null | 0 | null | null | null | null | null | Pan Zhou, Jiashi Feng, Pan Zhou | https://iclr.cc/virtual/2018/poster/329 | Deep Learning Analysis;Deep Learning Theory;Empirical Risk;Landscape Analysis;Nonconvex Optimization | null | 0 | null | null | iclr | 0 | 0 | null | main | 5.666667 | 3;7;7 | null | null | Empirical Risk Landscape Analysis for Understanding Deep Neural Networks | null | null | 0 | 3 | Poster | 3;3;3 | null |
null | MPI for Intelligent Systems; University of Amsterdam; Google Brain | 2018 | 0 | null | null | 0 | null | null | null | null | null | Mostafa Dehghani, Arash Mehrjou, Stephan Gouws, Jaap Kamps, Bernhard Schoelkopf | https://iclr.cc/virtual/2018/poster/76 | fidelity-weighted learning;semisupervised learning;weakly-labeled data;teacher-student | null | 0 | null | null | iclr | 0 | 0 | null | main | 6 | 5;6;7 | null | null | Fidelity-Weighted Learning | null | null | 0 | 3.666667 | Poster | 4;3;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Distributional shift;causal effects;domain adaptation | null | 0 | null | null | iclr | 0.188982 | 0 | null | main | 6.666667 | 5;7;8 | null | null | Learning Weighted Representations for Generalization Across Designs | null | null | 0 | 3.333333 | Reject | 3;4;3 | null |
null | Google Brain | 2018 | 0 | null | null | 0 | null | null | null | null | null | Samuel Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V Le | https://iclr.cc/virtual/2018/poster/272 | batch size;learning rate;simulated annealing;large batch training;scaling rules;stochastic gradient descent;sgd;imagenet;optimization | null | 0 | null | null | iclr | 0 | 0 | null | main | 6.333333 | 6;6;7 | null | null | Don't Decay the Learning Rate, Increase the Batch Size | null | null | 0 | 4 | Poster | 4;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Bayesian Deep Learning;Amortized Inference;Variational Auto-Encoders;Learning to Learn | null | 0 | null | null | iclr | 1 | 0 | null | main | 5.333333 | 5;5;6 | null | null | Learning to Infer | null | null | 0 | 4.333333 | Workshop | 4;4;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | GAN;medical;records;time;series;generation;privacy | null | 0 | null | null | iclr | 0 | 0 | null | main | 5 | 4;5;6 | null | null | Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs | null | null | 0 | 4 | Reject | 4;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, Debbie Marr | https://iclr.cc/virtual/2018/poster/208 | Low precision;binary;ternary;4-bits networks | null | 0 | null | null | iclr | 0.5 | 0 | null | main | 6.333333 | 5;5;9 | null | null | WRPN: Wide Reduced-Precision Networks | null | null | 0 | 3.666667 | Poster | 4;3;4 | null |
null | Accelerator Architecture Lab, Intel Labs | 2018 | 0 | null | null | 0 | null | null | null | null | null | Asit Mishra, Debbie Marr | https://iclr.cc/virtual/2018/poster/173 | Ternary;4-bits;low precision;knowledge distillation;knowledge transfer;model compression | null | 0 | null | null | iclr | 0 | 0 | null | main | 7.333333 | 7;7;8 | null | null | Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy | null | null | 0 | 4 | Poster | 4;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | Xu He, Herbert Jaeger | https://iclr.cc/virtual/2018/poster/233 | Catastrophic Interference;Conceptor;Backpropagation;Continual Learning;Lifelong Learning | null | 0 | null | null | iclr | 0 | 0 | null | main | 7 | 7;7;7 | null | null | Overcoming Catastrophic Interference using Conceptor-Aided Backpropagation | null | null | 0 | 3.666667 | Poster | 3;3;5 | null |
null | Paper under double-blind review | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Reading Comprehension;Answering Multiple Choice Questions | null | 0 | null | null | iclr | -1 | 0 | null | main | 4.666667 | 4;5;5 | null | null | ElimiNet: A Model for Eliminating Options for Reading Comprehension with Multiple Choice Questions | null | null | 0 | 3.333333 | Reject | 4;3;3 | null |
null | Princeton University; Columbia University | 2018 | 0 | null | null | 0 | null | null | null | null | null | Sanjeev Arora, Mikhail Khodak, Nikunj Umesh Saunshi, Kiran Vodrahalli | https://iclr.cc/virtual/2018/poster/96 | theory;LSTM;unsupervised learning;word embeddings;compressed sensing;sparse recovery;document representation;text classification | null | 0 | null | null | iclr | -0.755929 | 0 | null | main | 6.666667 | 6;7;7 | null | null | A Compressed Sensing View of Unsupervised Text Embeddings, Bag-of-n-Grams, and LSTMs | null | null | 0 | 2.666667 | Poster | 4;3;1 | null |
null | The University of Melbourne, Parkville, Australia; National Institute of Informatics, Tokyo, Japan; University of Michigan, Ann Arbor, USA; Tsinghua University, Beijing, China; University of California, Berkeley, USA | 2018 | 0 | null | null | 0 | null | null | null | null | null | Xingjun Ma, Bo Li, Yisen Wang, Sarah Erfani, Sudanthi Wijewickrema, Grant Schoenebeck, Dawn Song, Michael E Houle, James Bailey | https://iclr.cc/virtual/2018/poster/328 | Adversarial Subspace;Local Intrinsic Dimensionality;Deep Neural Networks | null | 0 | null | null | iclr | 0.654654 | 0 | null | main | 7 | 6;7;8 | null | null | Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality | null | null | 0 | 2.666667 | Oral | 1;4;3 | null |
null | Department of Computer Science, University of Bonn, Germany; Fraunhofer Institute IAIS, Sankt Augustin, Germany | 2018 | 0 | null | null | 0 | null | null | null | null | null | Henning Petzka, Asja Fischer, Denis Lukovnikov | https://iclr.cc/virtual/2018/poster/17 | null | null | 0 | null | null | iclr | 0.866025 | 0 | null | main | 5 | 2;6;7 | null | null | On the regularization of Wasserstein GANs | null | null | 0 | 3.666667 | Poster | 2;5;4 | null |
null | Robotics Institute, Carnegie Mellon University; Volvo Construction Equipment, Volvo Group | 2018 | 0 | null | null | 0 | null | null | null | null | null | Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, Kris M Kitani | https://iclr.cc/virtual/2018/poster/132 | Deep learning;Neural networks;Model compression | null | 0 | null | null | iclr | 0 | 0 | null | main | 6 | 4;5;9 | null | null | N2N learning: Network to Network Compression via Policy Gradient Reinforcement Learning | null | null | 0 | 4 | Poster | 4;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | inversion scheme;deep neural networks;semi-supervised learning;MNIST;SVHN;CIFAR10 | null | 0 | null | null | iclr | -1 | 0 | null | main | 5.333333 | 4;5;7 | null | null | Semi-Supervised Learning via New Deep Network Inversion | null | null | 0 | 3.666667 | Reject | 5;4;2 | null |
null | Courant Institute of Mathematical Sciences, Center for Data Science, New York, NY 10012, USA; Courant Institute of Mathematical Sciences, Center for Data Science, New York University, New York, NY 10012, USA | 2018 | 0 | null | null | 0 | null | null | null | null | null | Alex Nowak, David Folqué Garcia, Joan Bruna | https://iclr.cc/virtual/2018/poster/44 | Neural Networks;Combinatorial Optimization;Algorithms | null | 0 | null | null | iclr | 0 | 0 | null | main | 6.666667 | 6;7;7 | null | null | Divide and Conquer Networks | null | null | 0 | 3 | Poster | 3;3;3 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Word Embeddings;Tensor Factorization;Natural Language Processing | null | 0 | null | null | iclr | 0 | 0 | null | main | 5 | 5;5;5 | null | null | LEARNING SEMANTIC WORD RESPRESENTATIONS VIA TENSOR FACTORIZATION | null | null | 0 | 4.333333 | Reject | 3;5;5 | null |
null | †The University of Hong Kong; ‡Salesforce Research | 2018 | 0 | null | null | 0 | null | null | null | null | null | Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, richard socher | https://iclr.cc/virtual/2018/poster/241 | machine translation;non-autoregressive;transformer;fertility;nmt | null | 0 | null | null | iclr | 0 | 0 | null | main | 6.666667 | 6;7;7 | null | null | Non-Autoregressive Neural Machine Translation | null | null | 0 | 4 | Poster | 4;4;4 | null |
null | UC Irvine; Amazon.com; Snap Inc; UC Santa Barbara; Think Big Analytics | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Recommender systems;deep learning;personalization | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 6.333333 | 6;6;7 | null | null | THE EFFECTIVENESS OF A TWO-LAYER NEURAL NETWORK FOR RECOMMENDATIONS | null | null | 0 | 3.333333 | Workshop | 3;4;3 | null |
null | N/A | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | vocabulary-informed learning;data augmentation | null | 0 | null | null | iclr | 0.866025 | 0 | null | main | 5 | 4;5;6 | null | null | VOCABULARY-INFORMED VISUAL FEATURE AUGMENTATION FOR ONE-SHOT LEARNING | null | null | 0 | 3.666667 | Reject | 3;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | structured prediction;RAML;theory;Bayes decision rule;reward function | null | 0 | null | null | iclr | 0 | 0 | null | main | 5.333333 | 5;5;6 | null | null | Softmax Q-Distribution Estimation for Structured Prediction: A Theoretical Interpretation for RAML | null | null | 0 | 3 | Reject | 4;2;3 | null |
null | The Institute for Theoretical Computer Science, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China; Department of Computer Science, University of Southern California, Los Angeles, USA | 2018 | 0 | null | null | 0 | null | null | null | null | null | Jiayuan Mao, Honghua Dong, Joseph J Lim | https://iclr.cc/virtual/2018/poster/3 | reinforcement learning;transfer learning | null | 0 | null | null | iclr | 1 | 0 | null | main | 6.333333 | 6;6;7 | null | null | Universal Agent for Disentangling Environments and Tasks | null | null | 0 | 3.333333 | Poster | 3;3;4 | null |
null | Stanford University; Google AI Perception; Google Brain | 2018 | 0 | null | null | 0 | null | null | null | null | null | Daniel Levy, Matthew D Hoffman, Jascha Sohl-Dickstein | https://iclr.cc/virtual/2018/poster/284 | markov;chain;monte;carlo;sampling;posterior;deep;learning;hamiltonian;mcmc | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 7 | 6;7;8 | null | null | Generalizing Hamiltonian Monte Carlo with Neural Networks | https://github.com/google-research/google-research/tree/master/generalizing_hmc | null | 0 | 3 | Poster | 3;4;2 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Reinforcement learning | null | 0 | null | null | iclr | 1 | 0 | null | main | 5.666667 | 5;6;6 | null | null | Learning Gaussian Policies from Smoothed Action Value Functions | null | null | 0 | 3.666667 | Reject | 3;4;4 | null |
null | Department of Computer Science and Engineering, Indian Institute of Technology, Madras; Department of Mechanical Engineering, Indian Institute of Technology, Madras; Department of Electrical Engineering, Indian Institute of Technology, Madras; Department of Computer Science and Engineering, and Robert Bosch Centre for Data Science and AI (RBC-DSAI), Indian Institute of Technology, Madras | 2018 | 0 | null | null | 0 | null | null | null | null | null | Sahil Sharma, Ashutosh Kumar Jha, Parikshit Hegde, Balaraman Ravindran | https://iclr.cc/virtual/2018/poster/257 | Deep Reinforcement Learning | null | 0 | null | null | iclr | 0.5 | 0 | null | main | 6.333333 | 5;7;7 | null | null | Learning to Multi-Task by Active Sampling | null | null | 0 | 3.666667 | Poster | 3;3;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | forward modeling;partially observable;deep learning;strategy game;real-time strategy | null | 0 | null | null | iclr | 0.944911 | 0 | null | main | 4.666667 | 4;5;5 | null | null | Forward Modeling for Partial Observation Strategy Games - A StarCraft Defogger | null | null | 0 | 2.666667 | Reject | 1;3;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | label noise;weakly supervised learning;robustness of neural networks;deep learning;large datasets | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 4.666667 | 4;5;5 | null | null | Deep Learning is Robust to Massive Label Noise | null | null | 0 | 4.666667 | Reject | 5;4;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Deep Learning;Deconvolutional Layer;Pixel CNN | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 5.333333 | 5;5;6 | null | null | Pixel Deconvolutional Networks | null | null | 0 | 4.333333 | Reject | 5;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Word embedding;tensor decomposition | null | 0 | null | null | iclr | 0 | 0 | null | main | 5 | 5;5;5 | null | null | Learning Covariate-Specific Embeddings with Tensor Decompositions | null | null | 0 | 4 | Reject | 4;3;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | LVCSR;speech recognition;embedded;low rank factorization;RNN;GRU;trace norm | null | 0 | null | null | iclr | 0.5 | 0 | null | main | 4.666667 | 4;5;5 | null | null | Trace norm regularization and faster inference for embedded speech recognition RNNs | https://github.com/paddlepaddle/farm | null | 0 | 3.666667 | Reject | 3;3;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | adversarial attacks;security;auto-encoder | null | 0 | null | null | iclr | -0.866025 | 0 | null | main | 4 | 3;4;5 | null | null | LatentPoison -- Adversarial Attacks On The Latent Space | null | null | 0 | 3.666667 | Reject | 4;4;3 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | natural language processing;background knowledge;word embeddings;question answering;natural language inference | null | 0 | null | null | iclr | 0.5 | 0 | null | main | 5.333333 | 5;5;6 | null | null | Dynamic Integration of Background Knowledge in Neural NLU Systems | null | null | 0 | 3.666667 | Reject | 4;3;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Manifold Learning;Non-linear Dimensionality Reduction;Neural Networks;Unsupervised Learning | null | 0 | null | null | iclr | 0.866025 | 0 | null | main | 4 | 3;4;5 | null | null | Parametric Manifold Learning Via Sparse Multidimensional Scaling | null | null | 0 | 4.333333 | Reject | 4;4;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 4.666667 | 4;5;5 | null | null | Attribute-aware Collaborative Filtering: Survey and Classification | null | null | 0 | 4.666667 | Withdraw | 5;4;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | price predictions;expert system;recurrent neural networks;deep learning;natural language processing | null | 0 | null | null | iclr | 1 | 0 | null | main | 4.666667 | 4;4;6 | null | null | Predicting Auction Price of Vehicle License Plate with Deep Recurrent Neural Network | null | null | 0 | 4.333333 | Reject | 4;4;5 | null |
null | Universit´e de Bretagne Sud, IRISA, UMR 6074, CNRS; Kyoto University, Graduate School of Informatics; NTT Communication Science Laboratories; Universit´e Cˆote d'Azur, Lagrange, UMR 7293, CNRS, OCA | 2018 | 0 | null | null | 0 | null | null | null | null | null | Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet, Mathieu Blondel | https://iclr.cc/virtual/2018/poster/179 | optimal transport;Wasserstein;domain adaptation;generative models;Monge map;optimal mapping | null | 0 | null | null | iclr | 0 | 0 | null | main | 6.75 | 6;6;7;8 | null | null | Large Scale Optimal Transport and Mapping Estimation | null | null | 0 | 3 | Poster | 3;3;3;3 | null |
null | Google | 2018 | 0 | null | null | 0 | null | null | null | null | null | H. Brendan McMahan, Daniel Ramage, Kunal Talwar, Li Zhang | https://iclr.cc/virtual/2018/poster/187 | differential privacy;LSTMs;language models;privacy | null | 0 | null | null | iclr | 0.5 | 0 | null | main | 7.333333 | 7;7;8 | null | null | Learning Differentially Private Recurrent Language Models | null | null | 0 | 3.333333 | Poster | 2;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 4.666667 | 4;5;5 | null | null | Learning what to learn in a neural program | null | null | 0 | 3.333333 | Reject | 4;4;2 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | iclr | 0 | 0 | null | main | 5 | 4;5;6 | null | null | Multimodal Sentiment Analysis To Explore the Structure of Emotions | null | null | 0 | 5 | Reject | 5;5;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | RNNs | null | 0 | null | null | iclr | -0.188982 | 0 | null | main | 4.333333 | 3;4;6 | null | null | Efficiently applying attention to sequential data with the Recurrent Discounted Attention unit | null | null | 0 | 4.333333 | Reject | 4;5;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Reinforcement Learning;Imitation Learning | null | 0 | null | null | iclr | -0.866025 | 0 | null | main | 5.666667 | 5;6;6 | null | null | Faster Reinforcement Learning with Expert State Sequences | null | null | 0 | 4 | Reject | 5;4;3 | null |
null | Department of Engineering Science, University of Oxford; Department of Statistics, University of Oxford | 2018 | 0 | null | null | 0 | null | null | null | null | null | Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, Frank Wood | https://iclr.cc/virtual/2018/poster/31 | Variational Autoencoders;Inference amortization;Model learning;Sequential Monte Carlo;ELBOs | null | 0 | null | null | iclr | 0.866025 | 0 | null | main | 5.666667 | 3;7;7 | null | null | Auto-Encoding Sequential Monte Carlo | null | null | 0 | 3 | Poster | 2;4;3 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | supervised learning;unsupervised learning;self-organization;internal representation;topological structure | null | 0 | null | null | iclr | -1 | 0 | null | main | 2.666667 | 2;2;4 | null | null | Self-Organization adds application robustness to deep learners | null | null | 0 | 4.666667 | Withdraw | 5;5;4 | null |
null | Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology; Paul G. Allen School of Computer Science & Engineering, University of Washington | 2018 | 0 | null | null | 0 | null | null | null | null | null | Yonatan Belinkov, Yonatan Bisk | https://iclr.cc/virtual/2018/poster/172 | neural machine translation;characters;noise;adversarial examples;robust training | null | 0 | null | null | iclr | 0 | 0 | null | main | 7.333333 | 7;7;8 | null | null | Synthetic and Natural Noise Both Break Neural Machine Translation | null | null | 0 | 4 | Oral | 4;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Deep Reinforcement Learning;Domain Adaptation;Adversarial Networks | null | 0 | null | null | iclr | 0.5 | 0 | null | main | 3 | 2;3;4 | null | null | Domain Adaptation for Deep Reinforcement Learning in Visually Distinct Games | null | null | 0 | 4 | Reject | 4;3;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | linear quadratic regulator;policy gradient;natural gradient;reinforcement learning;non-convex optimization | null | 0 | null | null | iclr | 1 | 0 | null | main | 5.333333 | 5;5;6 | null | null | Global Convergence of Policy Gradient Methods for Linearized Control Problems | null | null | 0 | 3.333333 | Reject | 3;3;4 | null |
null | Under double-blind review | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | adversarial examples | null | 0 | null | null | iclr | -0.944911 | 0 | https://youtu.be/YXy6oX1iNoA | main | 6.333333 | 5;6;8 | null | null | Synthesizing Robust Adversarial Examples | null | null | 0 | 3.666667 | Reject | 4;4;3 | null |
null | Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA | 2018 | 0 | null | null | 0 | null | null | null | null | null | Murat Kocaoglu, Christopher Snyder, Alexandros Dimakis, Sriram Vishwanath | https://iclr.cc/virtual/2018/poster/159 | causality;structural causal models;GANs;conditional GANs;BEGAN;adversarial training | null | 0 | null | null | iclr | 0 | 0 | null | main | 7.333333 | 6;7;9 | null | null | CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training | null | null | 0 | 3 | Poster | 3;3;3 | null |
null | Racah Institute of Physics, The Hebrew University of Jerusalem; Department of Engineering Science, University of Oxford; Assistant Professor at the Federal University of Rio Grande, Rio Grande, Brazil | 2018 | 0 | null | null | 0 | null | null | null | null | null | Zohar Ringel, Rodrigo Andrade de Bem | https://iclr.cc/virtual/2018/poster/303 | Deep Convolutional Networks;Loss function landscape;Graph Structured Data;Training Complexity;Theory of deep learning;Percolation theory;Anderson Localization | null | 0 | null | null | iclr | 1 | 0 | null | main | 6.666667 | 6;7;7 | null | null | Critical Percolation as a Framework to Analyze the Training of Deep Networks | null | null | 0 | 2.333333 | Poster | 1;3;3 | null |
null | Microsoft Business AI and Research, National Taiwan University; Microsoft Business AI and Research | 2018 | 0 | null | null | 0 | null | null | null | null | null | Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, Weizhu Chen | https://iclr.cc/virtual/2018/poster/246 | Attention Mechanism;Machine Comprehension;Natural Language Processing;Deep Learning | null | 0 | null | null | iclr | -0.866025 | 0 | null | main | 7.333333 | 7;7;8 | null | null | FusionNet: Fusing via Fully-aware Attention with Application to Machine Comprehension | null | null | 0 | 4 | Poster | 5;4;3 | null |
null | Department of Computer Science and Operations Research, University of Montréal, Canada; Department of Computer Science, Stanford University, USA | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | representation learning;auto-encoders;3D point clouds;generative models;GANs;Gaussian Mixture Models | null | 0 | null | null | iclr | 0.755929 | 0 | null | main | 6.333333 | 5;6;8 | null | null | Learning Representations and Generative Models for 3D Point Clouds | null | null | 0 | 4.666667 | Workshop | 4;5;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | VAE;Generative Model;Vision;Natural Language | null | 0 | null | null | iclr | 0.5 | 0 | null | main | 4.666667 | 4;5;5 | null | null | Generative Entity Networks: Disentangling Entitites and Attributes in Visual Scenes using Partial Natural Language Descriptions | null | null | 0 | 4.333333 | Reject | 4;4;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | learning from demonstration;reinforcement learning;maximum entropy learning | null | 0 | null | null | iclr | 0.866025 | 0 | null | main | 5.333333 | 5;5;6 | null | null | Reinforcement Learning from Imperfect Demonstrations | null | null | 0 | 4 | Workshop | 3;4;5 | null |
null | Washington State University, Pullman; NEC Laboratories America | 2018 | 0 | null | null | 0 | null | null | null | null | null | Bo Zong, Qi Song, Martin Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, Haifeng Chen | https://iclr.cc/virtual/2018/poster/126 | Density estimation;unsupervised anomaly detection;high-dimensional data;Deep autoencoder;Gaussian mixture modeling;latent low-dimensional space | null | 0 | null | null | iclr | 0 | 0 | null | main | 8 | 8;8;8 | null | null | Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection | null | null | 0 | 4.333333 | Poster | 5;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | deep neural networks;short text classification;cybersecurity;domain generation algorithms;malicious domain names | null | 0 | null | null | iclr | 0.188982 | 0 | null | main | 5.333333 | 4;5;7 | null | null | Character Level Based Detection of DGA Domain Names | null | null | 0 | 3.666667 | Reject | 4;3;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | hierarchical;tree-lstm;treelstm;syntax;composition | null | 0 | null | null | iclr | 0 | 0 | null | main | 5 | 4;5;6 | null | null | Jointly Learning Sentence Embeddings and Syntax with Unsupervised Tree-LSTMs | null | null | 0 | 4 | Reject | 4;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | Xu Chen, Jiang Wang, Hao Ge | https://iclr.cc/virtual/2018/poster/273 | GAN;Primal-Dual Subgradient;Mode Collapse;Saddle Point | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 6.666667 | 6;7;7 | null | null | TRAINING GENERATIVE ADVERSARIAL NETWORKS VIA PRIMAL-DUAL SUBGRADIENT METHODS: A LAGRANGIAN PERSPECTIVE ON GAN | null | null | 0 | 3.666667 | Poster | 4;3;4 | null |
null | Simon Fraser University, Burnaby, BC, Canada; Microsoft Research, Cambridge, UK | 2018 | 0 | null | null | 0 | null | null | null | null | null | Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khademi | https://iclr.cc/virtual/2018/poster/216 | programs;source code;graph neural networks | null | 0 | null | null | iclr | 0 | 0 | null | main | 8 | 8;8;8 | null | null | Learning to Represent Programs with Graphs | null | null | 0 | 4 | Oral | 4;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | optimization;vanishing gradients;shattered gradients;skip-connections | null | 0 | null | null | iclr | 0 | 0 | null | main | 6 | 6;6;6 | null | null | Avoiding degradation in deep feed-forward networks by phasing out skip-connections | null | null | 0 | 4.333333 | Reject | 4;5;4 | null |
null | Carnegie Mellon University; DeepMind | 2018 | 0 | null | null | 0 | null | null | null | null | null | Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu | https://iclr.cc/virtual/2018/poster/45 | deep learning;architecture search | null | 0 | null | null | iclr | 0.5 | 0 | null | main | 6.666667 | 6;6;8 | null | null | Hierarchical Representations for Efficient Architecture Search | null | null | 0 | 3.666667 | Poster | 3;4;4 | null |
null | The University of Tokyo | 2018 | 0 | null | null | 0 | null | null | null | null | null | Raphael Shu, Hideki Nakayama | https://iclr.cc/virtual/2018/poster/242 | natural language processing;word embedding;compression;deep learning | null | 0 | null | null | iclr | 0 | 0 | null | main | 7 | 6;7;8 | null | null | Compressing Word Embeddings via Deep Compositional Code Learning | null | null | 0 | 4 | Poster | 4;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | iclr | 0.866025 | 0 | null | main | 4.666667 | 4;4;6 | null | null | The Context-Aware Learner | null | null | 0 | 4 | Reject | 4;3;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Few-Shot Learning;Neural Network Understanding;Visual Concepts | null | 0 | null | null | iclr | -0.755929 | 0 | null | main | 5.333333 | 4;5;7 | null | null | Unleashing the Potential of CNNs for Interpretable Few-Shot Learning | null | null | 0 | 4.333333 | Reject | 5;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, Thomas L Griffiths | https://iclr.cc/virtual/2018/poster/313 | meta-learning;learning to learn;hierarchical Bayes;approximate Bayesian methods | null | 0 | null | null | iclr | 0 | 0 | null | main | 6.666667 | 6;7;7 | null | null | Recasting Gradient-Based Meta-Learning as Hierarchical Bayes | null | null | 0 | 3 | Poster | 3;3;3 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | Guillaume Bellec, David Kappel, Wolfgang Maass, Robert Legenstein | https://iclr.cc/virtual/2018/poster/291 | deep learning;pruning;LSTM;convolutional networks;recurrent neural network;sparse networks;neuromorphic hardware;energy efficient computing;low memory hardware;stochastic differential equation;fokker-planck equation | null | 0 | null | null | iclr | -0.755929 | 0 | null | main | 6.333333 | 5;6;8 | null | null | Deep Rewiring: Training very sparse deep networks | null | null | 0 | 4.333333 | Poster | 5;4;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 3D fMRI data;Deep Learning;Generative Adversarial Network;Classification | null | 0 | null | null | iclr | 0.981981 | 0 | null | main | 6.333333 | 5;6;8 | null | null | Hallucinating brains with artificial brains | null | null | 0 | 4 | Reject | 3;4;5 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | graph topology;GAN;network science;hierarchical learning | null | 0 | null | null | iclr | 0.5 | 0 | null | main | 3.666667 | 3;4;4 | null | null | Graph Topological Features via GAN | null | null | 0 | 4.333333 | Reject | 4;5;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | Sanjeev Arora, Andrej Risteski, Yi Zhang | https://iclr.cc/virtual/2018/poster/72 | Generative Adversarial Networks;mode collapse;birthday paradox;support size estimation | null | 0 | null | null | iclr | -0.5 | 0 | null | main | 6.666667 | 6;7;7 | null | null | Do GANs learn the distribution? Some Theory and Empirics | null | null | 0 | 3.666667 | Poster | 4;3;4 | null |
null | null | 2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | Machine learning;Neural networks;Sparse neural networks;Pre-defined sparsity;Scatter;Connectivity patterns;Adjacency matrix;Parameter Reduction;Morse code | null | 0 | null | null | iclr | 0 | 0 | null | main | 4.333333 | 4;4;5 | null | null | Characterizing Sparse Connectivity Patterns in Neural Networks | null | null | 0 | 3 | Reject | 3;3;3 | null |
End of preview. Expand
in Dataset Viewer.
paperlists Dataset
Dataset Details
This dataset contains the list of scientific papers accepted at one of these conferences:
- CVPR (Computer Vision and Pattern Recognition)
- ICCV (International Conference on Computer Vision)
- ECCV (European Conference on Computer Vision)
- CoRL (Conference on Robot Learning)
- ICLR (International Conference on Learning Representations)
- ICML (International Conference on Machine Learning)
- NeurIPS (Conference on Neural Information Processing Systems)
- SIGGRAPH (Special Interest Group on Graphics and Interactive Techniques)
- EMNLP (Conference on Empirical Methods in Natural Language Processing)
From 2006 to the present (depending on the conferences)
Dataset Sources
The data comes from the paperlists repository
Uses
This dataset can be used to produce statistics on papers accepted at TOP-tier AI conferences
Data Collection and Processing
Please note, this is a raw dataset that has undergone little transformation. All fields are original except youtube which was merged into video and id, psid and ssid* which were deleted
Bias, Risks, and Limitations
The data is limited both by conference type and by year They are raw and have a lot of unspecified value
Citation
- Downloads last month
- 29