pdf
stringlengths
49
199
aff
stringlengths
1
1.36k
year
stringclasses
19 values
technical_novelty_avg
float64
0
4
video
stringlengths
21
47
doi
stringlengths
31
63
presentation_avg
float64
0
4
proceeding
stringlengths
43
129
presentation
stringclasses
796 values
sess
stringclasses
576 values
technical_novelty
stringclasses
700 values
arxiv
stringlengths
10
16
author
stringlengths
1
1.96k
site
stringlengths
37
191
keywords
stringlengths
2
582
oa
stringlengths
86
198
empirical_novelty_avg
float64
0
4
poster
stringlengths
57
95
openreview
stringlengths
41
45
conference
stringclasses
11 values
corr_rating_confidence
float64
-1
1
corr_rating_correctness
float64
-1
1
project
stringlengths
1
162
track
stringclasses
3 values
rating_avg
float64
0
10
rating
stringlengths
1
17
correctness
stringclasses
809 values
slides
stringlengths
32
41
title
stringlengths
2
192
github
stringlengths
3
165
authors
stringlengths
7
161
correctness_avg
float64
0
5
confidence_avg
float64
0
5
status
stringclasses
22 values
confidence
stringlengths
1
17
empirical_novelty
stringclasses
763 values
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
task clustering;matrix completion;multi-task learning;few-shot learning
null
0
null
null
iclr
0
0
null
main
4.666667
4;5;5
null
null
Robust Task Clustering for Deep and Diverse Multi-Task and Few-Shot Learning
null
null
0
4
Withdraw
4;4;4
null
null
Department of Electronics and Computer Science, University of Southampton
2018
0
null
null
0
null
null
null
null
null
Yan Zhang, Jonathon Hare, Adam Prugel-Bennett
https://iclr.cc/virtual/2018/poster/307
visual question answering;vqa;counting
null
0
null
null
iclr
-1
0
null
main
5.333333
4;6;6
null
null
Learning to Count Objects in Natural Images for Visual Question Answering
https://github.com/Cyanogenoid/vqa-counting
null
0
3.333333
Poster
4;3;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
THINK VISUALLY: QUESTION ANSWERING THROUGH VIRTUAL IMAGERY
null
null
0
0
Active
null
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
interpretability;generative adversarial networks
null
0
null
null
iclr
-0.240192
0
null
main
6.333333
4;7;8
null
null
Thinking like a machine — generating visual rationales through latent space optimization
null
null
0
3
Reject
3;4;2
null
null
University of British Columbia
2018
0
null
null
0
null
null
null
null
null
Glen Berseth, Cheng Xie, Paul Cernek, Michiel van de Panne
https://iclr.cc/virtual/2018/poster/300
Reinforcement Learning;Distillation;Transfer Learning;Continual Learning
null
0
null
null
iclr
1
0
null
main
6.333333
5;7;7
null
null
Progressive Reinforcement Learning with Distillation for Multi-Skilled Motion Control
null
null
0
3.666667
Poster
3;4;4
null
null
Carnegie Mellon University; Google Brain
2018
0
null
null
0
null
null
null
null
null
null
null
squad;stanford question answering dataset;reading comprehension;attention;text convolutions;question answering
null
0
null
null
iclr
0.654654
0
null
main
6.333333
5;6;8
null
null
QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension
null
null
0
4
Poster
4;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Non-convex optimization;Deep Learning
null
0
null
null
iclr
-0.866025
0
null
main
5.333333
4;6;6
null
null
No Spurious Local Minima in a Two Hidden Unit ReLU Network
null
null
0
3
Workshop
4;3;2
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
boosting learning;deep learning;neural network
null
0
null
null
iclr
-0.960769
0
null
main
4.333333
2;5;6
null
null
Deep Boosting of Diverse Experts
null
null
0
4
Reject
5;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;safe exploration;dqn
null
0
null
null
iclr
-0.866025
0
null
main
5.666667
5;5;7
null
null
Avoiding Catastrophic States with Intrinsic Fear
null
null
0
4
Reject
4;5;3
null
null
Columbia University, New York, NY 10027, USA
2018
0
null
null
0
null
null
null
null
null
Christopher Cueva, Xue-Xin Wei
https://iclr.cc/virtual/2018/poster/245
recurrent neural network;grid cell;neural representation of space
null
0
null
null
iclr
0
0
null
main
8.333333
8;8;9
null
null
Emergence of grid-like representations by training recurrent neural networks to perform spatial localization
null
null
0
4
Poster
4;4;4
null
null
Microsoft Research Montreal; Montréal Institute for Learning Algorithms (MILA), Université de Montréal, CIFAR Senior Fellow; Montréal Institute for Learning Algorithms (MILA), Université de Montréal, Work done while author was an intern at Microsoft Research Montreal; Montréal Institute for Learning Algorithms (MILA), Ecole Polytechnique de Montréal
2018
0
null
null
0
null
null
null
null
null
Sandeep Subramanian, Adam Trischler, Yoshua Bengio, Christopher Pal
https://iclr.cc/virtual/2018/poster/99
distributed sentence representations;multi-task learning
null
0
null
null
iclr
0
0
null
main
6.666667
4;8;8
null
null
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning
null
null
0
5
Poster
5;5;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
clustering;deep learning;neural networks
null
0
null
null
iclr
-0.5
0
null
main
2.666667
2;3;3
null
null
Clustering with Deep Learning: Taxonomy and New Methods
null
null
0
4.666667
Reject
5;5;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
NLU;word embeddings;representation learning
null
0
null
null
iclr
-1
0
null
main
5.666667
5;5;7
null
null
Learning to Compute Word Embeddings On the Fly
null
null
0
3.666667
Reject
4;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
program synthesis;program induction;example selection
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Learning to select examples for program synthesis
null
null
0
3.666667
Reject
4;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Anonymous
null
Deep Learning;Autoencoders;Alternating Optimization
null
0
null
null
iclr
0.755929
0
null
main
5.666667
4;6;7
null
null
Training Autoencoders by Alternating Minimization
null
null
0
4.333333
Reject
4;4;5
null
null
UC Berkeley, Department of Electrical Engineering and Computer Science
2018
0
null
null
0
null
null
null
null
null
Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, Pieter Abbeel
https://iclr.cc/virtual/2018/poster/64
meta-learning;few-shot learning
null
0
null
null
iclr
1
0
null
main
6.333333
6;6;7
null
null
A Simple Neural Attentive Meta-Learner
null
null
0
3.333333
Poster
3;3;4
null
null
Google Brain
2018
0
null
null
0
null
null
null
null
null
Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein
https://iclr.cc/virtual/2018/poster/91
Gaussian process;Bayesian regression;deep networks;kernel methods
null
0
null
null
iclr
-0.755929
0
null
main
5.666667
4;6;7
null
null
Deep Neural Networks as Gaussian Processes
null
null
0
3.666667
Poster
4;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Deep Reinforcement Learning;mult-agent systems
null
0
null
null
iclr
0
0
null
main
3.333333
3;3;4
null
null
Autonomous Vehicle Fleet Coordination With Deep Reinforcement Learning
null
null
0
4
Reject
5;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
5.666667
5;5;7
null
null
Federated Learning: Strategies for Improving Communication Efficiency
null
null
0
4.333333
Reject
3;5;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
SVM;siamese network;one-shot learning;few-shot learning
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
Make SVM great again with Siamese kernel for few-shot learning
null
null
0
4.333333
Reject
4;5;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
autonomous lane changing;decision making;deep reinforcement learning;q-learning
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
Tactical Decision Making for Lane Changing with Deep Reinforcement Learning
null
null
0
4.666667
Withdraw
5;4;5
null
null
The University of Tokyo, RIKEN; The University of Tokyo
2018
0
null
null
0
null
null
null
null
null
Yuji Tokozume, Yoshitaka Ushiku, Tatsuya Harada
https://iclr.cc/virtual/2018/poster/259
sound recognition;supervised learning;feature learning
null
0
null
null
iclr
0
0
null
main
7
4;8;9
null
null
Learning from Between-class Examples for Deep Sound Recognition
https://github.com/mil-tokyo/bc_learning_sound/
null
0
4
Poster
4;4;4
null
null
Redwood Center for Theoretical Neuroscience, University of California, Berkeley
2018
0
null
null
0
null
null
null
null
null
Alexander Anderson, Cory P Berg
https://iclr.cc/virtual/2018/poster/244
Binary Neural Networks;Neural Network Visualization
null
0
null
null
iclr
1
0
null
main
6
4;7;7
null
null
The High-Dimensional Geometry of Binary Neural Networks
null
null
0
3.666667
Poster
3;4;4
null
null
Department of Applied Mathematics and Statistics, Johns Hopkins University; Department of Computer Science, Johns Hopkins University
2018
0
null
null
0
null
null
null
null
null
Raman Arora, Amitabh Basu, Poorya Mianjy, Anirbit Mukherjee
https://iclr.cc/virtual/2018/poster/155
expressive power;benefits of depth;empirical risk minimization;global optimality;computational hardness;combinatorial optimization
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
Understanding Deep Neural Networks with Rectified Linear Units
null
null
0
4.333333
Poster
4;5;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Deep Reinforcement Learning;Multi-Agent Reinforcement Learning;StarCraft Micromanagement Tasks
null
0
null
null
iclr
0.866025
0
null
main
4.666667
4;5;5
null
null
Revisiting The Master-Slave Architecture In Multi-Agent Deep Reinforcement Learning
null
null
0
4
Reject
3;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Structured Prediction;Natural Language Processing;Neural Program Synthesis
null
0
null
null
iclr
0
0
null
main
5.333333
4;5;7
null
null
Neural Program Search: Solving Data Processing Tasks from Description and Examples
null
null
0
4
Workshop
4;4;4
null
null
Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
2018
0
null
null
0
null
null
null
null
null
Abram Friesen, Pedro Domingos
https://iclr.cc/virtual/2018/poster/92
hard-threshold units;combinatorial optimization;target propagation;straight-through estimation;quantization
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Deep Learning as a Mixed Convex-Combinatorial Optimization Problem
null
null
0
3.666667
Poster
3;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
domain adaptation;neural networks;generative models;discriminative models
null
0
null
null
iclr
-1
0
null
main
5.333333
5;5;6
null
null
Principled Hybrids of Generative and Discriminative Domain Adaptation
null
null
0
3.666667
Reject
4;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
style transfer;text generation;non-parallel data
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Language Style Transfer from Non-Parallel Text with Arbitrary Styles
null
null
0
0
Withdraw
null
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
deep reinforcement learning;task execution;instruction execution
null
0
null
null
iclr
-0.5
0
https://youtu.be/e_ZXVS5VutM
main
5.333333
4;6;6
null
null
Neural Task Graph Execution
null
null
0
3.666667
Reject
4;3;4
null
null
Preferred Networks, Inc.; Ritsumeikan University; National Institute of Informatics
2018
0
null
null
0
null
null
null
null
null
Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida
https://iclr.cc/virtual/2018/poster/331
Generative Adversarial Networks;Deep Generative Models;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
Spectral Normalization for Generative Adversarial Networks
https://github.com/pfnet-research/sngan_projection
null
0
3
Oral
4;2;3
null
null
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583
2018
0
null
null
0
null
null
null
null
null
Pan Zhou, Jiashi Feng, Pan Zhou
https://iclr.cc/virtual/2018/poster/329
Deep Learning Analysis;Deep Learning Theory;Empirical Risk;Landscape Analysis;Nonconvex Optimization
null
0
null
null
iclr
0
0
null
main
5.666667
3;7;7
null
null
Empirical Risk Landscape Analysis for Understanding Deep Neural Networks
null
null
0
3
Poster
3;3;3
null
null
MPI for Intelligent Systems; University of Amsterdam; Google Brain
2018
0
null
null
0
null
null
null
null
null
Mostafa Dehghani, Arash Mehrjou, Stephan Gouws, Jaap Kamps, Bernhard Schoelkopf
https://iclr.cc/virtual/2018/poster/76
fidelity-weighted learning;semisupervised learning;weakly-labeled data;teacher-student
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Fidelity-Weighted Learning
null
null
0
3.666667
Poster
4;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Distributional shift;causal effects;domain adaptation
null
0
null
null
iclr
0.188982
0
null
main
6.666667
5;7;8
null
null
Learning Weighted Representations for Generalization Across Designs
null
null
0
3.333333
Reject
3;4;3
null
null
Google Brain
2018
0
null
null
0
null
null
null
null
null
Samuel Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V Le
https://iclr.cc/virtual/2018/poster/272
batch size;learning rate;simulated annealing;large batch training;scaling rules;stochastic gradient descent;sgd;imagenet;optimization
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Don't Decay the Learning Rate, Increase the Batch Size
null
null
0
4
Poster
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Bayesian Deep Learning;Amortized Inference;Variational Auto-Encoders;Learning to Learn
null
0
null
null
iclr
1
0
null
main
5.333333
5;5;6
null
null
Learning to Infer
null
null
0
4.333333
Workshop
4;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
GAN;medical;records;time;series;generation;privacy
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs
null
null
0
4
Reject
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, Debbie Marr
https://iclr.cc/virtual/2018/poster/208
Low precision;binary;ternary;4-bits networks
null
0
null
null
iclr
0.5
0
null
main
6.333333
5;5;9
null
null
WRPN: Wide Reduced-Precision Networks
null
null
0
3.666667
Poster
4;3;4
null
null
Accelerator Architecture Lab, Intel Labs
2018
0
null
null
0
null
null
null
null
null
Asit Mishra, Debbie Marr
https://iclr.cc/virtual/2018/poster/173
Ternary;4-bits;low precision;knowledge distillation;knowledge transfer;model compression
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy
null
null
0
4
Poster
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Xu He, Herbert Jaeger
https://iclr.cc/virtual/2018/poster/233
Catastrophic Interference;Conceptor;Backpropagation;Continual Learning;Lifelong Learning
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Overcoming Catastrophic Interference using Conceptor-Aided Backpropagation
null
null
0
3.666667
Poster
3;3;5
null
null
Paper under double-blind review
2018
0
null
null
0
null
null
null
null
null
null
null
Reading Comprehension;Answering Multiple Choice Questions
null
0
null
null
iclr
-1
0
null
main
4.666667
4;5;5
null
null
ElimiNet: A Model for Eliminating Options for Reading Comprehension with Multiple Choice Questions
null
null
0
3.333333
Reject
4;3;3
null
null
Princeton University; Columbia University
2018
0
null
null
0
null
null
null
null
null
Sanjeev Arora, Mikhail Khodak, Nikunj Umesh Saunshi, Kiran Vodrahalli
https://iclr.cc/virtual/2018/poster/96
theory;LSTM;unsupervised learning;word embeddings;compressed sensing;sparse recovery;document representation;text classification
null
0
null
null
iclr
-0.755929
0
null
main
6.666667
6;7;7
null
null
A Compressed Sensing View of Unsupervised Text Embeddings, Bag-of-n-Grams, and LSTMs
null
null
0
2.666667
Poster
4;3;1
null
null
The University of Melbourne, Parkville, Australia; National Institute of Informatics, Tokyo, Japan; University of Michigan, Ann Arbor, USA; Tsinghua University, Beijing, China; University of California, Berkeley, USA
2018
0
null
null
0
null
null
null
null
null
Xingjun Ma, Bo Li, Yisen Wang, Sarah Erfani, Sudanthi Wijewickrema, Grant Schoenebeck, Dawn Song, Michael E Houle, James Bailey
https://iclr.cc/virtual/2018/poster/328
Adversarial Subspace;Local Intrinsic Dimensionality;Deep Neural Networks
null
0
null
null
iclr
0.654654
0
null
main
7
6;7;8
null
null
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
null
null
0
2.666667
Oral
1;4;3
null
null
Department of Computer Science, University of Bonn, Germany; Fraunhofer Institute IAIS, Sankt Augustin, Germany
2018
0
null
null
0
null
null
null
null
null
Henning Petzka, Asja Fischer, Denis Lukovnikov
https://iclr.cc/virtual/2018/poster/17
null
null
0
null
null
iclr
0.866025
0
null
main
5
2;6;7
null
null
On the regularization of Wasserstein GANs
null
null
0
3.666667
Poster
2;5;4
null
null
Robotics Institute, Carnegie Mellon University; Volvo Construction Equipment, Volvo Group
2018
0
null
null
0
null
null
null
null
null
Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, Kris M Kitani
https://iclr.cc/virtual/2018/poster/132
Deep learning;Neural networks;Model compression
null
0
null
null
iclr
0
0
null
main
6
4;5;9
null
null
N2N learning: Network to Network Compression via Policy Gradient Reinforcement Learning
null
null
0
4
Poster
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
inversion scheme;deep neural networks;semi-supervised learning;MNIST;SVHN;CIFAR10
null
0
null
null
iclr
-1
0
null
main
5.333333
4;5;7
null
null
Semi-Supervised Learning via New Deep Network Inversion
null
null
0
3.666667
Reject
5;4;2
null
null
Courant Institute of Mathematical Sciences, Center for Data Science, New York, NY 10012, USA; Courant Institute of Mathematical Sciences, Center for Data Science, New York University, New York, NY 10012, USA
2018
0
null
null
0
null
null
null
null
null
Alex Nowak, David Folqué Garcia, Joan Bruna
https://iclr.cc/virtual/2018/poster/44
Neural Networks;Combinatorial Optimization;Algorithms
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Divide and Conquer Networks
null
null
0
3
Poster
3;3;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Word Embeddings;Tensor Factorization;Natural Language Processing
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
LEARNING SEMANTIC WORD RESPRESENTATIONS VIA TENSOR FACTORIZATION
null
null
0
4.333333
Reject
3;5;5
null
null
†The University of Hong Kong; ‡Salesforce Research
2018
0
null
null
0
null
null
null
null
null
Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, richard socher
https://iclr.cc/virtual/2018/poster/241
machine translation;non-autoregressive;transformer;fertility;nmt
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Non-Autoregressive Neural Machine Translation
null
null
0
4
Poster
4;4;4
null
null
UC Irvine; Amazon.com; Snap Inc; UC Santa Barbara; Think Big Analytics
2018
0
null
null
0
null
null
null
null
null
null
null
Recommender systems;deep learning;personalization
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
THE EFFECTIVENESS OF A TWO-LAYER NEURAL NETWORK FOR RECOMMENDATIONS
null
null
0
3.333333
Workshop
3;4;3
null
null
N/A
2018
0
null
null
0
null
null
null
null
null
null
null
vocabulary-informed learning;data augmentation
null
0
null
null
iclr
0.866025
0
null
main
5
4;5;6
null
null
VOCABULARY-INFORMED VISUAL FEATURE AUGMENTATION FOR ONE-SHOT LEARNING
null
null
0
3.666667
Reject
3;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
structured prediction;RAML;theory;Bayes decision rule;reward function
null
0
null
null
iclr
0
0
null
main
5.333333
5;5;6
null
null
Softmax Q-Distribution Estimation for Structured Prediction: A Theoretical Interpretation for RAML
null
null
0
3
Reject
4;2;3
null
null
The Institute for Theoretical Computer Science, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China; Department of Computer Science, University of Southern California, Los Angeles, USA
2018
0
null
null
0
null
null
null
null
null
Jiayuan Mao, Honghua Dong, Joseph J Lim
https://iclr.cc/virtual/2018/poster/3
reinforcement learning;transfer learning
null
0
null
null
iclr
1
0
null
main
6.333333
6;6;7
null
null
Universal Agent for Disentangling Environments and Tasks
null
null
0
3.333333
Poster
3;3;4
null
null
Stanford University; Google AI Perception; Google Brain
2018
0
null
null
0
null
null
null
null
null
Daniel Levy, Matthew D Hoffman, Jascha Sohl-Dickstein
https://iclr.cc/virtual/2018/poster/284
markov;chain;monte;carlo;sampling;posterior;deep;learning;hamiltonian;mcmc
null
0
null
null
iclr
-0.5
0
null
main
7
6;7;8
null
null
Generalizing Hamiltonian Monte Carlo with Neural Networks
https://github.com/google-research/google-research/tree/master/generalizing_hmc
null
0
3
Poster
3;4;2
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Reinforcement learning
null
0
null
null
iclr
1
0
null
main
5.666667
5;6;6
null
null
Learning Gaussian Policies from Smoothed Action Value Functions
null
null
0
3.666667
Reject
3;4;4
null
null
Department of Computer Science and Engineering, Indian Institute of Technology, Madras; Department of Mechanical Engineering, Indian Institute of Technology, Madras; Department of Electrical Engineering, Indian Institute of Technology, Madras; Department of Computer Science and Engineering, and Robert Bosch Centre for Data Science and AI (RBC-DSAI), Indian Institute of Technology, Madras
2018
0
null
null
0
null
null
null
null
null
Sahil Sharma, Ashutosh Kumar Jha, Parikshit Hegde, Balaraman Ravindran
https://iclr.cc/virtual/2018/poster/257
Deep Reinforcement Learning
null
0
null
null
iclr
0.5
0
null
main
6.333333
5;7;7
null
null
Learning to Multi-Task by Active Sampling
null
null
0
3.666667
Poster
3;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
forward modeling;partially observable;deep learning;strategy game;real-time strategy
null
0
null
null
iclr
0.944911
0
null
main
4.666667
4;5;5
null
null
Forward Modeling for Partial Observation Strategy Games - A StarCraft Defogger
null
null
0
2.666667
Reject
1;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
label noise;weakly supervised learning;robustness of neural networks;deep learning;large datasets
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Deep Learning is Robust to Massive Label Noise
null
null
0
4.666667
Reject
5;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Deep Learning;Deconvolutional Layer;Pixel CNN
null
0
null
null
iclr
-0.5
0
null
main
5.333333
5;5;6
null
null
Pixel Deconvolutional Networks
null
null
0
4.333333
Reject
5;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Word embedding;tensor decomposition
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
Learning Covariate-Specific Embeddings with Tensor Decompositions
null
null
0
4
Reject
4;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
LVCSR;speech recognition;embedded;low rank factorization;RNN;GRU;trace norm
null
0
null
null
iclr
0.5
0
null
main
4.666667
4;5;5
null
null
Trace norm regularization and faster inference for embedded speech recognition RNNs
https://github.com/paddlepaddle/farm
null
0
3.666667
Reject
3;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
adversarial attacks;security;auto-encoder
null
0
null
null
iclr
-0.866025
0
null
main
4
3;4;5
null
null
LatentPoison -- Adversarial Attacks On The Latent Space
null
null
0
3.666667
Reject
4;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
natural language processing;background knowledge;word embeddings;question answering;natural language inference
null
0
null
null
iclr
0.5
0
null
main
5.333333
5;5;6
null
null
Dynamic Integration of Background Knowledge in Neural NLU Systems
null
null
0
3.666667
Reject
4;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Manifold Learning;Non-linear Dimensionality Reduction;Neural Networks;Unsupervised Learning
null
0
null
null
iclr
0.866025
0
null
main
4
3;4;5
null
null
Parametric Manifold Learning Via Sparse Multidimensional Scaling
null
null
0
4.333333
Reject
4;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Attribute-aware Collaborative Filtering: Survey and Classification
null
null
0
4.666667
Withdraw
5;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
price predictions;expert system;recurrent neural networks;deep learning;natural language processing
null
0
null
null
iclr
1
0
null
main
4.666667
4;4;6
null
null
Predicting Auction Price of Vehicle License Plate with Deep Recurrent Neural Network
null
null
0
4.333333
Reject
4;4;5
null
null
Universit´e de Bretagne Sud, IRISA, UMR 6074, CNRS; Kyoto University, Graduate School of Informatics; NTT Communication Science Laboratories; Universit´e Cˆote d'Azur, Lagrange, UMR 7293, CNRS, OCA
2018
0
null
null
0
null
null
null
null
null
Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet, Mathieu Blondel
https://iclr.cc/virtual/2018/poster/179
optimal transport;Wasserstein;domain adaptation;generative models;Monge map;optimal mapping
null
0
null
null
iclr
0
0
null
main
6.75
6;6;7;8
null
null
Large Scale Optimal Transport and Mapping Estimation
null
null
0
3
Poster
3;3;3;3
null
null
Google
2018
0
null
null
0
null
null
null
null
null
H. Brendan McMahan, Daniel Ramage, Kunal Talwar, Li Zhang
https://iclr.cc/virtual/2018/poster/187
differential privacy;LSTMs;language models;privacy
null
0
null
null
iclr
0.5
0
null
main
7.333333
7;7;8
null
null
Learning Differentially Private Recurrent Language Models
null
null
0
3.333333
Poster
2;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Learning what to learn in a neural program
null
null
0
3.333333
Reject
4;4;2
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Multimodal Sentiment Analysis To Explore the Structure of Emotions
null
null
0
5
Reject
5;5;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
RNNs
null
0
null
null
iclr
-0.188982
0
null
main
4.333333
3;4;6
null
null
Efficiently applying attention to sequential data with the Recurrent Discounted Attention unit
null
null
0
4.333333
Reject
4;5;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Imitation Learning
null
0
null
null
iclr
-0.866025
0
null
main
5.666667
5;6;6
null
null
Faster Reinforcement Learning with Expert State Sequences
null
null
0
4
Reject
5;4;3
null
null
Department of Engineering Science, University of Oxford; Department of Statistics, University of Oxford
2018
0
null
null
0
null
null
null
null
null
Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, Frank Wood
https://iclr.cc/virtual/2018/poster/31
Variational Autoencoders;Inference amortization;Model learning;Sequential Monte Carlo;ELBOs
null
0
null
null
iclr
0.866025
0
null
main
5.666667
3;7;7
null
null
Auto-Encoding Sequential Monte Carlo
null
null
0
3
Poster
2;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
supervised learning;unsupervised learning;self-organization;internal representation;topological structure
null
0
null
null
iclr
-1
0
null
main
2.666667
2;2;4
null
null
Self-Organization adds application robustness to deep learners
null
null
0
4.666667
Withdraw
5;5;4
null
null
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology; Paul G. Allen School of Computer Science & Engineering, University of Washington
2018
0
null
null
0
null
null
null
null
null
Yonatan Belinkov, Yonatan Bisk
https://iclr.cc/virtual/2018/poster/172
neural machine translation;characters;noise;adversarial examples;robust training
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
Synthetic and Natural Noise Both Break Neural Machine Translation
null
null
0
4
Oral
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Deep Reinforcement Learning;Domain Adaptation;Adversarial Networks
null
0
null
null
iclr
0.5
0
null
main
3
2;3;4
null
null
Domain Adaptation for Deep Reinforcement Learning in Visually Distinct Games
null
null
0
4
Reject
4;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
linear quadratic regulator;policy gradient;natural gradient;reinforcement learning;non-convex optimization
null
0
null
null
iclr
1
0
null
main
5.333333
5;5;6
null
null
Global Convergence of Policy Gradient Methods for Linearized Control Problems
null
null
0
3.333333
Reject
3;3;4
null
null
Under double-blind review
2018
0
null
null
0
null
null
null
null
null
null
null
adversarial examples
null
0
null
null
iclr
-0.944911
0
https://youtu.be/YXy6oX1iNoA
main
6.333333
5;6;8
null
null
Synthesizing Robust Adversarial Examples
null
null
0
3.666667
Reject
4;4;3
null
null
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
2018
0
null
null
0
null
null
null
null
null
Murat Kocaoglu, Christopher Snyder, Alexandros Dimakis, Sriram Vishwanath
https://iclr.cc/virtual/2018/poster/159
causality;structural causal models;GANs;conditional GANs;BEGAN;adversarial training
null
0
null
null
iclr
0
0
null
main
7.333333
6;7;9
null
null
CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
null
null
0
3
Poster
3;3;3
null
null
Racah Institute of Physics, The Hebrew University of Jerusalem; Department of Engineering Science, University of Oxford; Assistant Professor at the Federal University of Rio Grande, Rio Grande, Brazil
2018
0
null
null
0
null
null
null
null
null
Zohar Ringel, Rodrigo Andrade de Bem
https://iclr.cc/virtual/2018/poster/303
Deep Convolutional Networks;Loss function landscape;Graph Structured Data;Training Complexity;Theory of deep learning;Percolation theory;Anderson Localization
null
0
null
null
iclr
1
0
null
main
6.666667
6;7;7
null
null
Critical Percolation as a Framework to Analyze the Training of Deep Networks
null
null
0
2.333333
Poster
1;3;3
null
null
Microsoft Business AI and Research, National Taiwan University; Microsoft Business AI and Research
2018
0
null
null
0
null
null
null
null
null
Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, Weizhu Chen
https://iclr.cc/virtual/2018/poster/246
Attention Mechanism;Machine Comprehension;Natural Language Processing;Deep Learning
null
0
null
null
iclr
-0.866025
0
null
main
7.333333
7;7;8
null
null
FusionNet: Fusing via Fully-aware Attention with Application to Machine Comprehension
null
null
0
4
Poster
5;4;3
null
null
Department of Computer Science and Operations Research, University of Montréal, Canada; Department of Computer Science, Stanford University, USA
2018
0
null
null
0
null
null
null
null
null
null
null
representation learning;auto-encoders;3D point clouds;generative models;GANs;Gaussian Mixture Models
null
0
null
null
iclr
0.755929
0
null
main
6.333333
5;6;8
null
null
Learning Representations and Generative Models for 3D Point Clouds
null
null
0
4.666667
Workshop
4;5;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
VAE;Generative Model;Vision;Natural Language
null
0
null
null
iclr
0.5
0
null
main
4.666667
4;5;5
null
null
Generative Entity Networks: Disentangling Entitites and Attributes in Visual Scenes using Partial Natural Language Descriptions
null
null
0
4.333333
Reject
4;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
learning from demonstration;reinforcement learning;maximum entropy learning
null
0
null
null
iclr
0.866025
0
null
main
5.333333
5;5;6
null
null
Reinforcement Learning from Imperfect Demonstrations
null
null
0
4
Workshop
3;4;5
null
null
Washington State University, Pullman; NEC Laboratories America
2018
0
null
null
0
null
null
null
null
null
Bo Zong, Qi Song, Martin Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, Haifeng Chen
https://iclr.cc/virtual/2018/poster/126
Density estimation;unsupervised anomaly detection;high-dimensional data;Deep autoencoder;Gaussian mixture modeling;latent low-dimensional space
null
0
null
null
iclr
0
0
null
main
8
8;8;8
null
null
Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection
null
null
0
4.333333
Poster
5;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
deep neural networks;short text classification;cybersecurity;domain generation algorithms;malicious domain names
null
0
null
null
iclr
0.188982
0
null
main
5.333333
4;5;7
null
null
Character Level Based Detection of DGA Domain Names
null
null
0
3.666667
Reject
4;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
hierarchical;tree-lstm;treelstm;syntax;composition
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Jointly Learning Sentence Embeddings and Syntax with Unsupervised Tree-LSTMs
null
null
0
4
Reject
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Xu Chen, Jiang Wang, Hao Ge
https://iclr.cc/virtual/2018/poster/273
GAN;Primal-Dual Subgradient;Mode Collapse;Saddle Point
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
TRAINING GENERATIVE ADVERSARIAL NETWORKS VIA PRIMAL-DUAL SUBGRADIENT METHODS: A LAGRANGIAN PERSPECTIVE ON GAN
null
null
0
3.666667
Poster
4;3;4
null
null
Simon Fraser University, Burnaby, BC, Canada; Microsoft Research, Cambridge, UK
2018
0
null
null
0
null
null
null
null
null
Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khademi
https://iclr.cc/virtual/2018/poster/216
programs;source code;graph neural networks
null
0
null
null
iclr
0
0
null
main
8
8;8;8
null
null
Learning to Represent Programs with Graphs
null
null
0
4
Oral
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
optimization;vanishing gradients;shattered gradients;skip-connections
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Avoiding degradation in deep feed-forward networks by phasing out skip-connections
null
null
0
4.333333
Reject
4;5;4
null
null
Carnegie Mellon University; DeepMind
2018
0
null
null
0
null
null
null
null
null
Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu
https://iclr.cc/virtual/2018/poster/45
deep learning;architecture search
null
0
null
null
iclr
0.5
0
null
main
6.666667
6;6;8
null
null
Hierarchical Representations for Efficient Architecture Search
null
null
0
3.666667
Poster
3;4;4
null
null
The University of Tokyo
2018
0
null
null
0
null
null
null
null
null
Raphael Shu, Hideki Nakayama
https://iclr.cc/virtual/2018/poster/242
natural language processing;word embedding;compression;deep learning
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
Compressing Word Embeddings via Deep Compositional Code Learning
null
null
0
4
Poster
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.866025
0
null
main
4.666667
4;4;6
null
null
The Context-Aware Learner
null
null
0
4
Reject
4;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Few-Shot Learning;Neural Network Understanding;Visual Concepts
null
0
null
null
iclr
-0.755929
0
null
main
5.333333
4;5;7
null
null
Unleashing the Potential of CNNs for Interpretable Few-Shot Learning
null
null
0
4.333333
Reject
5;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, Thomas L Griffiths
https://iclr.cc/virtual/2018/poster/313
meta-learning;learning to learn;hierarchical Bayes;approximate Bayesian methods
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
null
null
0
3
Poster
3;3;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
Guillaume Bellec, David Kappel, Wolfgang Maass, Robert Legenstein
https://iclr.cc/virtual/2018/poster/291
deep learning;pruning;LSTM;convolutional networks;recurrent neural network;sparse networks;neuromorphic hardware;energy efficient computing;low memory hardware;stochastic differential equation;fokker-planck equation
null
0
null
null
iclr
-0.755929
0
null
main
6.333333
5;6;8
null
null
Deep Rewiring: Training very sparse deep networks
null
null
0
4.333333
Poster
5;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
3D fMRI data;Deep Learning;Generative Adversarial Network;Classification
null
0
null
null
iclr
0.981981
0
null
main
6.333333
5;6;8
null
null
Hallucinating brains with artificial brains
null
null
0
4
Reject
3;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
graph topology;GAN;network science;hierarchical learning
null
0
null
null
iclr
0.5
0
null
main
3.666667
3;4;4
null
null
Graph Topological Features via GAN
null
null
0
4.333333
Reject
4;5;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Sanjeev Arora, Andrej Risteski, Yi Zhang
https://iclr.cc/virtual/2018/poster/72
Generative Adversarial Networks;mode collapse;birthday paradox;support size estimation
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
Do GANs learn the distribution? Some Theory and Empirics
null
null
0
3.666667
Poster
4;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Machine learning;Neural networks;Sparse neural networks;Pre-defined sparsity;Scatter;Connectivity patterns;Adjacency matrix;Parameter Reduction;Morse code
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Characterizing Sparse Connectivity Patterns in Neural Networks
null
null
0
3
Reject
3;3;3
null