Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import representation_theory.Rep | |
import algebra.category.FinVect | |
import representation_theory.basic | |
/-! | |
If `V : fdRep k G`, there is a coercion that allows you to treat `V` as a type, | |
and this type comes equipped with `module k V` and `finite_dimensional k V` instances. | |
Also `V.Ο` gives the homomorphism `G β* (V ββ[k] V)`. | |
Conversely, given a homomorphism `Ο : G β* (V ββ[k] V)`, | |
you can construct the bundled representation as `Rep.of Ο`. | |
We verify that `fdRep k G` is a rigid monoidal category. | |
* `fdRep k G` has all finite (co)limits. | |
* `fdRep k G` is abelian. | |
* `fdRep k G β FinVect (monoid_algebra k G)` (this will require generalising `FinVect` first). | |
* Upgrade the right rigid structure to a rigid structure. | |
-/ | |
universes u | |
open category_theory | |
open category_theory.limits | |
/-- The category of finite dimensional `k`-linear representations of a monoid `G`. -/ | |
@[derive [large_category, concrete_category/-, has_limits, has_colimits-/]] | |
abbreviation fdRep (k G : Type u) [field k] [monoid G] := | |
Action (FinVect.{u} k) (Mon.of G) | |
namespace fdRep | |
variables {k G : Type u} [field k] [monoid G] | |
instance : has_coe_to_sort (fdRep k G) (Type u) := concrete_category.has_coe_to_sort _ | |
instance (V : fdRep k G) : add_comm_group V := | |
by { change add_comm_group ((forgetβ (fdRep k G) (FinVect k)).obj V).obj, apply_instance, } | |
instance (V : fdRep k G) : module k V := | |
by { change module k ((forgetβ (fdRep k G) (FinVect k)).obj V).obj, apply_instance, } | |
instance (V : fdRep k G) : finite_dimensional k V := | |
by { change finite_dimensional k ((forgetβ (fdRep k G) (FinVect k)).obj V).obj, apply_instance, } | |
/-- The monoid homomorphism corresponding to the action of `G` onto `V : fdRep k G`. -/ | |
def Ο (V : fdRep k G) : G β* (V ββ[k] V) := V.Ο | |
/-- The underlying `linear_equiv` of an isomorphism of representations. -/ | |
def iso_to_linear_equiv {V W : fdRep k G} (i : V β W) : V ββ[k] W := | |
FinVect.iso_to_linear_equiv ((Action.forget (FinVect k) (Mon.of G)).map_iso i) | |
lemma iso.conj_Ο {V W : fdRep k G} (i : V β W) (g : G) : | |
W.Ο g = (fdRep.iso_to_linear_equiv i).conj (V.Ο g) := | |
begin | |
rw [fdRep.iso_to_linear_equiv, βFinVect.iso.conj_eq_conj, iso.conj_apply], | |
rw [iso.eq_inv_comp ((Action.forget (FinVect k) (Mon.of G)).map_iso i)], | |
exact (i.hom.comm g).symm, | |
end | |
-- This works well with the new design for representations: | |
example (V : fdRep k G) : G β* (V ββ[k] V) := V.Ο | |
/-- Lift an unbundled representation to `fdRep`. -/ | |
@[simps Ο] | |
def of {V : Type u} [add_comm_group V] [module k V] [finite_dimensional k V] | |
(Ο : representation k G V) : fdRep k G := | |
β¨FinVect.of k V, Οβ© | |
instance : has_forgetβ (fdRep k G) (Rep k G) := | |
{ forgetβ := (forgetβ (FinVect k) (Module k)).map_Action (Mon.of G), } | |
-- Verify that the monoidal structure is available. | |
example : monoidal_category (fdRep k G) := by apply_instance | |
end fdRep | |
namespace fdRep | |
variables {k G : Type u} [field k] [group G] | |
-- Verify that the rigid structure is available when the monoid is a group. | |
noncomputable instance : right_rigid_category (fdRep k G) := | |
by { change right_rigid_category (Action (FinVect k) (Group.of G)), apply_instance, } | |
end fdRep | |
namespace fdRep | |
open representation | |
variables {k G V W : Type u} [field k] [group G] | |
variables [add_comm_group V] [module k V] [add_comm_group W] [module k W] | |
variables [finite_dimensional k V] [finite_dimensional k W] | |
variables (ΟV : representation k G V) (ΟW : representation k G W) | |
/-- Auxiliary definition for `fdRep.dual_tensor_iso_lin_hom`. -/ | |
noncomputable def dual_tensor_iso_lin_hom_aux : | |
((fdRep.of ΟV.dual) β (fdRep.of ΟW)).V β (fdRep.of (lin_hom ΟV ΟW)).V := | |
(dual_tensor_hom_equiv k V W).to_FinVect_iso | |
/-- When `V` and `W` are finite dimensional representations of a group `G`, the isomorphism | |
`dual_tensor_hom_equiv k V W` of vector spaces induces an isomorphism of representations. -/ | |
noncomputable def dual_tensor_iso_lin_hom : | |
(fdRep.of ΟV.dual) β (fdRep.of ΟW) β fdRep.of (lin_hom ΟV ΟW) := | |
begin | |
apply Action.mk_iso (dual_tensor_iso_lin_hom_aux ΟV ΟW), | |
convert (dual_tensor_hom_comm ΟV ΟW), | |
end | |
@[simp] lemma dual_tensor_iso_lin_hom_hom_hom : | |
(dual_tensor_iso_lin_hom ΟV ΟW).hom.hom = dual_tensor_hom k V W := rfl | |
end fdRep | |