Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
Zhangir Azerbayev
commited on
Commit
•
fc5e983
1
Parent(s):
58f396b
I think it's all done!
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- fetch_books_and_formal.py +14 -15
- formal/lean/mathlib/algebra/algebra/basic.lean +28 -3
- formal/lean/mathlib/algebra/algebra/bilinear.lean +112 -86
- formal/lean/mathlib/algebra/algebra/operations.lean +25 -5
- formal/lean/mathlib/algebra/algebra/subalgebra/basic.lean +13 -14
- formal/lean/mathlib/algebra/algebra/tower.lean +1 -1
- formal/lean/mathlib/algebra/algebra/unitization.lean +3 -5
- formal/lean/mathlib/algebra/big_operators/basic.lean +167 -29
- formal/lean/mathlib/algebra/big_operators/fin.lean +47 -0
- formal/lean/mathlib/algebra/big_operators/multiset.lean +31 -0
- formal/lean/mathlib/algebra/big_operators/norm_num.lean +89 -89
- formal/lean/mathlib/algebra/big_operators/ring.lean +1 -1
- formal/lean/mathlib/algebra/category/FinVect.lean +23 -25
- formal/lean/mathlib/algebra/category/FinVect/limits.lean +1 -1
- formal/lean/mathlib/algebra/category/Group/epi_mono.lean +79 -2
- formal/lean/mathlib/algebra/category/Group/equivalence_Group_AddGroup.lean +86 -0
- formal/lean/mathlib/algebra/category/Module/adjunctions.lean +1 -1
- formal/lean/mathlib/algebra/category/Module/change_of_rings.lean +65 -0
- formal/lean/mathlib/algebra/char_p/algebra.lean +3 -0
- formal/lean/mathlib/algebra/char_p/basic.lean +11 -8
- formal/lean/mathlib/algebra/char_p/char_and_card.lean +13 -7
- formal/lean/mathlib/algebra/direct_sum/internal.lean +1 -2
- formal/lean/mathlib/algebra/direct_sum/ring.lean +1 -1
- formal/lean/mathlib/algebra/field/basic.lean +40 -39
- formal/lean/mathlib/algebra/field_power.lean +6 -24
- formal/lean/mathlib/algebra/group/prod.lean +1 -1
- formal/lean/mathlib/algebra/group/to_additive.lean +2 -0
- formal/lean/mathlib/algebra/group/units.lean +40 -7
- formal/lean/mathlib/algebra/group_with_zero/power.lean +2 -6
- formal/lean/mathlib/algebra/hom/equiv.lean +13 -0
- formal/lean/mathlib/algebra/hom/group_action.lean +2 -2
- formal/lean/mathlib/algebra/hom/group_instances.lean +17 -2
- formal/lean/mathlib/algebra/hom/ring.lean +4 -0
- formal/lean/mathlib/algebra/hom/units.lean +1 -1
- formal/lean/mathlib/algebra/homology/complex_shape.lean +1 -1
- formal/lean/mathlib/algebra/homology/homological_complex.lean +13 -13
- formal/lean/mathlib/algebra/homology/homotopy.lean +1 -1
- formal/lean/mathlib/algebra/homology/short_exact/preadditive.lean +1 -1
- formal/lean/mathlib/algebra/indicator_function.lean +2 -6
- formal/lean/mathlib/algebra/lie/base_change.lean +3 -3
- formal/lean/mathlib/algebra/lie/nilpotent.lean +6 -3
- formal/lean/mathlib/algebra/lie/of_associative.lean +1 -1
- formal/lean/mathlib/algebra/module/basic.lean +7 -1
- formal/lean/mathlib/algebra/module/bimodule.lean +136 -0
- formal/lean/mathlib/algebra/module/equiv.lean +49 -4
- formal/lean/mathlib/algebra/module/linear_map.lean +21 -1
- formal/lean/mathlib/algebra/module/localized_module.lean +1 -1
- formal/lean/mathlib/algebra/monoid_algebra/basic.lean +21 -6
- formal/lean/mathlib/algebra/monoid_algebra/degree.lean +154 -0
- formal/lean/mathlib/algebra/order/archimedean.lean +43 -15
fetch_books_and_formal.py
CHANGED
@@ -104,7 +104,7 @@ def lean(creds):
|
|
104 |
{
|
105 |
"author": "leanprover-community",
|
106 |
"repo": "mathlib",
|
107 |
-
"sha": "
|
108 |
"repo_dir": "src",
|
109 |
"save_path": os.path.join(save_dir, "mathlib"),
|
110 |
},
|
@@ -118,7 +118,7 @@ def lean(creds):
|
|
118 |
{
|
119 |
"author": "leanprover-community",
|
120 |
"repo": "sphere-eversion",
|
121 |
-
"sha": "
|
122 |
"repo_dir": "src",
|
123 |
"save_path": os.path.join(save_dir, "sphere-eversion"),
|
124 |
},
|
@@ -506,20 +506,19 @@ def napkin(creds):
|
|
506 |
|
507 |
def main():
|
508 |
creds = ("zhangir-azerbayev", os.environ["GITHUB_TOKEN"])
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
#afp(testing=False)
|
515 |
setmm(creds)
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
|
524 |
|
525 |
if __name__ == "__main__":
|
|
|
104 |
{
|
105 |
"author": "leanprover-community",
|
106 |
"repo": "mathlib",
|
107 |
+
"sha": "63138639ca195344ae96aa77f3a02b90a3ac5c68",
|
108 |
"repo_dir": "src",
|
109 |
"save_path": os.path.join(save_dir, "mathlib"),
|
110 |
},
|
|
|
118 |
{
|
119 |
"author": "leanprover-community",
|
120 |
"repo": "sphere-eversion",
|
121 |
+
"sha": "cb378966c3c02d9e4ee83040d20c51782fa351ae",
|
122 |
"repo_dir": "src",
|
123 |
"save_path": os.path.join(save_dir, "sphere-eversion"),
|
124 |
},
|
|
|
506 |
|
507 |
def main():
|
508 |
creds = ("zhangir-azerbayev", os.environ["GITHUB_TOKEN"])
|
509 |
+
napkin(creds)
|
510 |
+
cring(creds)
|
511 |
+
stacks(creds)
|
512 |
+
mizar(creds)
|
513 |
+
afp(testing=False)
|
|
|
514 |
setmm(creds)
|
515 |
+
trench()
|
516 |
+
hott(creds)
|
517 |
+
stein(creds)
|
518 |
+
coq(creds)
|
519 |
+
lean(creds)
|
520 |
+
hol()
|
521 |
+
cam()
|
522 |
|
523 |
|
524 |
if __name__ == "__main__":
|
formal/lean/mathlib/algebra/algebra/basic.lean
CHANGED
@@ -112,7 +112,7 @@ An associative unital `R`-algebra is a semiring `A` equipped with a map into its
|
|
112 |
|
113 |
See the implementation notes in this file for discussion of the details of this definition.
|
114 |
-/
|
115 |
-
@[nolint
|
116 |
class algebra (R : Type u) (A : Type v) [comm_semiring R] [semiring A]
|
117 |
extends has_smul R A, R →+* A :=
|
118 |
(commutes' : ∀ r x, to_fun r * x = x * to_fun r)
|
@@ -261,6 +261,11 @@ search (and was here first). -/
|
|
261 |
(r • x) * y = r • (x * y) :=
|
262 |
smul_mul_assoc r x y
|
263 |
|
|
|
|
|
|
|
|
|
|
|
264 |
section
|
265 |
variables {r : R} {a : A}
|
266 |
|
@@ -474,7 +479,7 @@ end module
|
|
474 |
|
475 |
set_option old_structure_cmd true
|
476 |
/-- Defining the homomorphism in the category R-Alg. -/
|
477 |
-
@[nolint
|
478 |
structure alg_hom (R : Type u) (A : Type v) (B : Type w)
|
479 |
[comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] extends ring_hom A B :=
|
480 |
(commutes' : ∀ r : R, to_fun (algebra_map R A r) = algebra_map R B r)
|
@@ -695,6 +700,17 @@ lemma map_list_prod (s : list A) :
|
|
695 |
φ s.prod = (s.map φ).prod :=
|
696 |
φ.to_ring_hom.map_list_prod s
|
697 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
698 |
section prod
|
699 |
|
700 |
/-- First projection as `alg_hom`. -/
|
@@ -797,6 +813,13 @@ instance to_alg_hom_class (F R A B : Type*)
|
|
797 |
map_one := map_one,
|
798 |
.. h }
|
799 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
800 |
end alg_equiv_class
|
801 |
|
802 |
namespace alg_equiv
|
@@ -1225,7 +1248,9 @@ This is a stronger version of `mul_semiring_action.to_ring_hom` and
|
|
1225 |
`distrib_mul_action.to_linear_map`. -/
|
1226 |
@[simps]
|
1227 |
def to_alg_hom (m : M) : A →ₐ[R] A :=
|
1228 |
-
|
|
|
|
|
1229 |
|
1230 |
theorem to_alg_hom_injective [has_faithful_smul M A] :
|
1231 |
function.injective (mul_semiring_action.to_alg_hom R A : M → A →ₐ[R] A) :=
|
|
|
112 |
|
113 |
See the implementation notes in this file for discussion of the details of this definition.
|
114 |
-/
|
115 |
+
@[nolint has_nonempty_instance]
|
116 |
class algebra (R : Type u) (A : Type v) [comm_semiring R] [semiring A]
|
117 |
extends has_smul R A, R →+* A :=
|
118 |
(commutes' : ∀ r x, to_fun r * x = x * to_fun r)
|
|
|
261 |
(r • x) * y = r • (x * y) :=
|
262 |
smul_mul_assoc r x y
|
263 |
|
264 |
+
@[simp]
|
265 |
+
lemma _root_.smul_algebra_map {α : Type*} [monoid α] [mul_distrib_mul_action α A]
|
266 |
+
[smul_comm_class α R A] (a : α) (r : R) : a • algebra_map R A r = algebra_map R A r :=
|
267 |
+
by rw [algebra_map_eq_smul_one, smul_comm a r (1 : A), smul_one]
|
268 |
+
|
269 |
section
|
270 |
variables {r : R} {a : A}
|
271 |
|
|
|
479 |
|
480 |
set_option old_structure_cmd true
|
481 |
/-- Defining the homomorphism in the category R-Alg. -/
|
482 |
+
@[nolint has_nonempty_instance]
|
483 |
structure alg_hom (R : Type u) (A : Type v) (B : Type w)
|
484 |
[comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] extends ring_hom A B :=
|
485 |
(commutes' : ∀ r : R, to_fun (algebra_map R A r) = algebra_map R B r)
|
|
|
700 |
φ s.prod = (s.map φ).prod :=
|
701 |
φ.to_ring_hom.map_list_prod s
|
702 |
|
703 |
+
@[simps mul one {attrs := []}] instance End : monoid (A →ₐ[R] A) :=
|
704 |
+
{ mul := comp,
|
705 |
+
mul_assoc := λ ϕ ψ χ, rfl,
|
706 |
+
one := alg_hom.id R A,
|
707 |
+
one_mul := λ ϕ, ext $ λ x, rfl,
|
708 |
+
mul_one := λ ϕ, ext $ λ x, rfl }
|
709 |
+
|
710 |
+
@[simp] lemma one_apply (x : A) : (1 : A →ₐ[R] A) x = x := rfl
|
711 |
+
|
712 |
+
@[simp] lemma mul_apply (φ ψ : A →ₐ[R] A) (x : A) : (φ * ψ) x = φ (ψ x) := rfl
|
713 |
+
|
714 |
section prod
|
715 |
|
716 |
/-- First projection as `alg_hom`. -/
|
|
|
813 |
map_one := map_one,
|
814 |
.. h }
|
815 |
|
816 |
+
@[priority 100]
|
817 |
+
instance to_linear_equiv_class (F R A B : Type*)
|
818 |
+
[comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B]
|
819 |
+
[h : alg_equiv_class F R A B] : linear_equiv_class F R A B :=
|
820 |
+
{ map_smulₛₗ := λ f, map_smulₛₗ f,
|
821 |
+
..h }
|
822 |
+
|
823 |
end alg_equiv_class
|
824 |
|
825 |
namespace alg_equiv
|
|
|
1248 |
`distrib_mul_action.to_linear_map`. -/
|
1249 |
@[simps]
|
1250 |
def to_alg_hom (m : M) : A →ₐ[R] A :=
|
1251 |
+
{ to_fun := λ a, m • a,
|
1252 |
+
commutes' := smul_algebra_map _,
|
1253 |
+
..mul_semiring_action.to_ring_hom _ _ m }
|
1254 |
|
1255 |
theorem to_alg_hom_injective [has_faithful_smul M A] :
|
1256 |
function.injective (mul_semiring_action.to_alg_hom R A : M → A →ₐ[R] A) :=
|
formal/lean/mathlib/algebra/algebra/bilinear.lean
CHANGED
@@ -5,6 +5,7 @@ Authors: Kenny Lau, Yury Kudryashov
|
|
5 |
-/
|
6 |
import algebra.algebra.basic
|
7 |
import algebra.hom.iterate
|
|
|
8 |
import linear_algebra.tensor_product
|
9 |
|
10 |
/-!
|
@@ -15,143 +16,168 @@ in order to avoid importing `linear_algebra.bilinear_map` and
|
|
15 |
`linear_algebra.tensor_product` unnecessarily.
|
16 |
-/
|
17 |
|
18 |
-
universes u v w
|
19 |
-
|
20 |
-
namespace algebra
|
21 |
-
|
22 |
open_locale tensor_product
|
23 |
open module
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
A weaker version of this for semirings exists as `add_monoid_hom.mul`. -/
|
32 |
-
def
|
33 |
-
{ map_one' := by { ext a, exact one_mul a },
|
34 |
-
map_mul' := by { intros a b, ext c, exact mul_assoc a b c },
|
35 |
-
map_zero' := by { ext a, exact zero_mul a },
|
36 |
-
commutes' := by { intro r, ext a, dsimp, rw [smul_def] },
|
37 |
-
.. (show A →ₗ[R] A →ₗ[R] A, from linear_map.mk₂ R (*)
|
38 |
-
(λ x y z, add_mul x y z)
|
39 |
-
(λ c x y, by rw [smul_def, smul_def, mul_assoc _ x y])
|
40 |
-
(λ x y z, mul_add x y z)
|
41 |
-
(λ c x y, by rw [smul_def, smul_def, left_comm])) }
|
42 |
|
43 |
-
|
|
|
|
|
44 |
|
45 |
-
|
46 |
|
|
|
|
|
47 |
|
48 |
-
|
|
|
49 |
|
50 |
-
/--
|
51 |
-
def
|
52 |
-
lmul R A r
|
53 |
|
54 |
-
@[simp] lemma
|
55 |
-
(
|
56 |
-
fun_like.coe_injective rfl
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
(lmul R A).to_linear_map.flip r
|
61 |
|
62 |
-
|
63 |
-
(lmul_right R r : A →+ A) = add_monoid_hom.mul_right r :=
|
64 |
-
fun_like.coe_injective rfl
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
(
|
|
|
69 |
|
70 |
-
lemma
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
variables {R A}
|
79 |
|
80 |
-
@[simp]
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
@[simp] lemma
|
84 |
-
|
85 |
-
|
86 |
-
lmul_left_right R vw p = vw.1 * p * vw.2 := rfl
|
87 |
|
88 |
-
|
89 |
-
by { ext, simp only [linear_map.id_coe, one_mul, id.def, lmul_left_apply] }
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
by { ext,
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
lmul_left R (0 : A) = 0 :=
|
104 |
-
(lmul R A).map_zero
|
105 |
|
106 |
-
@[simp] lemma
|
107 |
-
lmul_right R (0 : A) = 0 :=
|
108 |
-
(lmul R A).to_linear_map.flip.map_zero
|
109 |
|
110 |
-
@[simp] lemma
|
111 |
-
|
112 |
begin
|
113 |
split; intros h,
|
114 |
-
{ rw [← mul_one a, ←
|
115 |
-
{ rw h, exact
|
116 |
end
|
117 |
|
118 |
-
@[simp] lemma
|
119 |
-
|
120 |
begin
|
121 |
split; intros h,
|
122 |
-
{ rw [← one_mul a, ←
|
123 |
-
{ rw h, exact
|
124 |
end
|
125 |
|
126 |
-
@[simp] lemma
|
127 |
-
|
128 |
-
((lmul R A).map_pow a n).symm
|
129 |
|
130 |
-
@[simp] lemma
|
131 |
-
|
132 |
-
linear_map.coe_injective $ ((lmul_right R a).coe_pow n).symm ▸ (mul_right_iterate a n)
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
end
|
135 |
|
136 |
-
|
|
|
|
|
137 |
|
138 |
variables {R A : Type*} [comm_semiring R] [ring A] [algebra R A]
|
139 |
|
140 |
-
lemma
|
141 |
-
function.injective (
|
142 |
by { letI : is_domain A := { exists_pair_ne := ⟨x, 0, hx⟩, ..‹ring A›, ..‹no_zero_divisors A› },
|
143 |
exact mul_right_injective₀ hx }
|
144 |
|
145 |
-
lemma
|
146 |
-
function.injective (
|
147 |
by { letI : is_domain A := { exists_pair_ne := ⟨x, 0, hx⟩, ..‹ring A›, ..‹no_zero_divisors A› },
|
148 |
exact mul_left_injective₀ hx }
|
149 |
|
150 |
-
lemma
|
151 |
-
function.injective (
|
152 |
by { letI : is_domain A := { exists_pair_ne := ⟨x, 0, hx⟩, ..‹ring A›, ..‹no_zero_divisors A› },
|
153 |
exact mul_right_injective₀ hx }
|
154 |
|
155 |
-
end
|
156 |
|
157 |
-
end
|
|
|
5 |
-/
|
6 |
import algebra.algebra.basic
|
7 |
import algebra.hom.iterate
|
8 |
+
import algebra.hom.non_unital_alg
|
9 |
import linear_algebra.tensor_product
|
10 |
|
11 |
/-!
|
|
|
16 |
`linear_algebra.tensor_product` unnecessarily.
|
17 |
-/
|
18 |
|
|
|
|
|
|
|
|
|
19 |
open_locale tensor_product
|
20 |
open module
|
21 |
|
22 |
+
namespace linear_map
|
23 |
|
24 |
+
section non_unital_non_assoc
|
25 |
|
26 |
+
variables (R A : Type*) [comm_semiring R] [non_unital_non_assoc_semiring A]
|
27 |
+
[module R A] [smul_comm_class R A A] [is_scalar_tower R A A]
|
28 |
+
|
29 |
+
/-- The multiplication in a non-unital non-associative algebra is a bilinear map.
|
30 |
|
31 |
A weaker version of this for semirings exists as `add_monoid_hom.mul`. -/
|
32 |
+
def mul : A →ₗ[R] A →ₗ[R] A := linear_map.mk₂ R (*) add_mul smul_mul_assoc mul_add mul_smul_comm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
/-- The multiplication map on a non-unital algebra, as an `R`-linear map from `A ⊗[R] A` to `A`. -/
|
35 |
+
def mul' : A ⊗[R] A →ₗ[R] A :=
|
36 |
+
tensor_product.lift (mul R A)
|
37 |
|
38 |
+
variables {A}
|
39 |
|
40 |
+
/-- The multiplication on the left in a non-unital algebra is a linear map. -/
|
41 |
+
def mul_left (a : A) : A →ₗ[R] A := mul R A a
|
42 |
|
43 |
+
/-- The multiplication on the right in an algebra is a linear map. -/
|
44 |
+
def mul_right (a : A) : A →ₗ[R] A := (mul R A).flip a
|
45 |
|
46 |
+
/-- Simultaneous multiplication on the left and right is a linear map. -/
|
47 |
+
def mul_left_right (ab : A × A) : A →ₗ[R] A := (mul_right R ab.snd).comp (mul_left R ab.fst)
|
|
|
48 |
|
49 |
+
@[simp] lemma mul_left_to_add_monoid_hom (a : A) :
|
50 |
+
(mul_left R a : A →+ A) = add_monoid_hom.mul_left a := rfl
|
|
|
51 |
|
52 |
+
@[simp] lemma mul_right_to_add_monoid_hom (a : A) :
|
53 |
+
(mul_right R a : A →+ A) = add_monoid_hom.mul_right a := rfl
|
|
|
54 |
|
55 |
+
variables {R}
|
|
|
|
|
56 |
|
57 |
+
@[simp] lemma mul_apply' (a b : A) : mul R A a b = a * b := rfl
|
58 |
+
@[simp] lemma mul_left_apply (a b : A) : mul_left R a b = a * b := rfl
|
59 |
+
@[simp] lemma mul_right_apply (a b : A) : mul_right R a b = b * a := rfl
|
60 |
+
@[simp] lemma mul_left_right_apply (a b x : A) : mul_left_right R (a, b) x = a * x * b := rfl
|
61 |
|
62 |
+
@[simp] lemma mul'_apply {a b : A} : mul' R A (a ⊗ₜ b) = a * b :=
|
63 |
+
by simp only [linear_map.mul', tensor_product.lift.tmul, mul_apply']
|
64 |
+
|
65 |
+
@[simp] lemma mul_left_zero_eq_zero :
|
66 |
+
mul_left R (0 : A) = 0 :=
|
67 |
+
(mul R A).map_zero
|
68 |
+
|
69 |
+
@[simp] lemma mul_right_zero_eq_zero :
|
70 |
+
mul_right R (0 : A) = 0 :=
|
71 |
+
(mul R A).flip.map_zero
|
72 |
+
|
73 |
+
end non_unital_non_assoc
|
74 |
+
|
75 |
+
section non_unital
|
76 |
|
77 |
+
variables (R A : Type*) [comm_semiring R] [non_unital_semiring A]
|
78 |
+
[module R A] [smul_comm_class R A A] [is_scalar_tower R A A]
|
79 |
+
|
80 |
+
/-- The multiplication in a non-unital algebra is a bilinear map.
|
81 |
+
|
82 |
+
A weaker version of this for non-unital non-associative algebras exists as `linear_map.mul`. -/
|
83 |
+
def _root_.non_unital_alg_hom.lmul : A →ₙₐ[R] (End R A) :=
|
84 |
+
{ map_mul' := by { intros a b, ext c, exact mul_assoc a b c },
|
85 |
+
map_zero' := by { ext a, exact zero_mul a },
|
86 |
+
.. (mul R A) }
|
87 |
|
88 |
variables {R A}
|
89 |
|
90 |
+
@[simp]
|
91 |
+
lemma _root_.non_unital_alg_hom.coe_lmul_eq_mul : ⇑(non_unital_alg_hom.lmul R A) = mul R A := rfl
|
92 |
+
|
93 |
+
lemma commute_mul_left_right (a b : A) :
|
94 |
+
commute (mul_left R a) (mul_right R b) :=
|
95 |
+
by { ext c, exact (mul_assoc a c b).symm, }
|
96 |
+
|
97 |
+
@[simp] lemma mul_left_mul (a b : A) :
|
98 |
+
mul_left R (a * b) = (mul_left R a).comp (mul_left R b) :=
|
99 |
+
by { ext, simp only [mul_left_apply, comp_apply, mul_assoc] }
|
100 |
|
101 |
+
@[simp] lemma mul_right_mul (a b : A) :
|
102 |
+
mul_right R (a * b) = (mul_right R b).comp (mul_right R a) :=
|
103 |
+
by { ext, simp only [mul_right_apply, comp_apply, mul_assoc] }
|
|
|
104 |
|
105 |
+
end non_unital
|
|
|
106 |
|
107 |
+
section semiring
|
108 |
+
|
109 |
+
variables (R A : Type*) [comm_semiring R] [semiring A] [algebra R A]
|
110 |
|
111 |
+
/-- The multiplication in an algebra is an algebra homomorphism into the endomorphisms on
|
112 |
+
the algebra.
|
113 |
|
114 |
+
A weaker version of this for non-unital algebras exists as `non_unital_alg_hom.mul`. -/
|
115 |
+
def _root_.algebra.lmul : A →ₐ[R] (End R A) :=
|
116 |
+
{ map_one' := by { ext a, exact one_mul a },
|
117 |
+
map_mul' := by { intros a b, ext c, exact mul_assoc a b c },
|
118 |
+
map_zero' := by { ext a, exact zero_mul a },
|
119 |
+
commutes' := by { intro r, ext a, exact (algebra.smul_def r a).symm, },
|
120 |
+
.. (linear_map.mul R A) }
|
121 |
|
122 |
+
variables {R A}
|
|
|
|
|
123 |
|
124 |
+
@[simp] lemma _root_.algebra.coe_lmul_eq_mul : ⇑(algebra.lmul R A) = mul R A := rfl
|
|
|
|
|
125 |
|
126 |
+
@[simp] lemma mul_left_eq_zero_iff (a : A) :
|
127 |
+
mul_left R a = 0 ↔ a = 0 :=
|
128 |
begin
|
129 |
split; intros h,
|
130 |
+
{ rw [← mul_one a, ← mul_left_apply a 1, h, linear_map.zero_apply], },
|
131 |
+
{ rw h, exact mul_left_zero_eq_zero, },
|
132 |
end
|
133 |
|
134 |
+
@[simp] lemma mul_right_eq_zero_iff (a : A) :
|
135 |
+
mul_right R a = 0 ↔ a = 0 :=
|
136 |
begin
|
137 |
split; intros h,
|
138 |
+
{ rw [← one_mul a, ← mul_right_apply a 1, h, linear_map.zero_apply], },
|
139 |
+
{ rw h, exact mul_right_zero_eq_zero, },
|
140 |
end
|
141 |
|
142 |
+
@[simp] lemma mul_left_one : mul_left R (1:A) = linear_map.id :=
|
143 |
+
by { ext, simp only [linear_map.id_coe, one_mul, id.def, mul_left_apply] }
|
|
|
144 |
|
145 |
+
@[simp] lemma mul_right_one : mul_right R (1:A) = linear_map.id :=
|
146 |
+
by { ext, simp only [linear_map.id_coe, mul_one, id.def, mul_right_apply] }
|
|
|
147 |
|
148 |
+
@[simp] lemma pow_mul_left (a : A) (n : ℕ) :
|
149 |
+
(mul_left R a) ^ n = mul_left R (a ^ n) :=
|
150 |
+
by simpa only [mul_left, ←algebra.coe_lmul_eq_mul] using ((algebra.lmul R A).map_pow a n).symm
|
151 |
+
|
152 |
+
@[simp] lemma pow_mul_right (a : A) (n : ℕ) :
|
153 |
+
(mul_right R a) ^ n = mul_right R (a ^ n) :=
|
154 |
+
begin
|
155 |
+
simp only [mul_right, ←algebra.coe_lmul_eq_mul],
|
156 |
+
exact linear_map.coe_injective
|
157 |
+
(((mul_right R a).coe_pow n).symm ▸ (mul_right_iterate a n)),
|
158 |
end
|
159 |
|
160 |
+
end semiring
|
161 |
+
|
162 |
+
section ring
|
163 |
|
164 |
variables {R A : Type*} [comm_semiring R] [ring A] [algebra R A]
|
165 |
|
166 |
+
lemma mul_left_injective [no_zero_divisors A] {x : A} (hx : x ≠ 0) :
|
167 |
+
function.injective (mul_left R x) :=
|
168 |
by { letI : is_domain A := { exists_pair_ne := ⟨x, 0, hx⟩, ..‹ring A›, ..‹no_zero_divisors A› },
|
169 |
exact mul_right_injective₀ hx }
|
170 |
|
171 |
+
lemma mul_right_injective [no_zero_divisors A] {x : A} (hx : x ≠ 0) :
|
172 |
+
function.injective (mul_right R x) :=
|
173 |
by { letI : is_domain A := { exists_pair_ne := ⟨x, 0, hx⟩, ..‹ring A›, ..‹no_zero_divisors A› },
|
174 |
exact mul_left_injective₀ hx }
|
175 |
|
176 |
+
lemma mul_injective [no_zero_divisors A] {x : A} (hx : x ≠ 0) :
|
177 |
+
function.injective (mul R A x) :=
|
178 |
by { letI : is_domain A := { exists_pair_ne := ⟨x, 0, hx⟩, ..‹ring A›, ..‹no_zero_divisors A› },
|
179 |
exact mul_right_injective₀ hx }
|
180 |
|
181 |
+
end ring
|
182 |
|
183 |
+
end linear_map
|
formal/lean/mathlib/algebra/algebra/operations.lean
CHANGED
@@ -18,7 +18,7 @@ An interface for multiplication and division of sub-R-modules of an R-algebra A
|
|
18 |
|
19 |
## Main definitions
|
20 |
|
21 |
-
Let `R` be a commutative ring (or semiring) and
|
22 |
|
23 |
* `1 : submodule R A` : the R-submodule R of the R-algebra A
|
24 |
* `has_mul (submodule R A)` : multiplication of two sub-R-modules M and N of A is defined to be
|
@@ -28,6 +28,9 @@ Let `R` be a commutative ring (or semiring) and aet `A` be an `R`-algebra.
|
|
28 |
|
29 |
It is proved that `submodule R A` is a semiring, and also an algebra over `set A`.
|
30 |
|
|
|
|
|
|
|
31 |
## Tags
|
32 |
|
33 |
multiplication of submodules, division of submodules, submodule semiring
|
@@ -118,7 +121,7 @@ by rw [←map_equiv_eq_comap_symm, map_op_one]
|
|
118 |
|
119 |
/-- Multiplication of sub-R-modules of an R-algebra A. The submodule `M * N` is the
|
120 |
smallest R-submodule of `A` containing the elements `m * n` for `m ∈ M` and `n ∈ N`. -/
|
121 |
-
instance : has_mul (submodule R A) := ⟨submodule.map₂
|
122 |
|
123 |
theorem mul_mem_mul (hm : m ∈ M) (hn : n ∈ N) : m * n ∈ M * N := apply_mem_map₂ _ hm hn
|
124 |
|
@@ -128,7 +131,7 @@ lemma mul_to_add_submonoid (M N : submodule R A) :
|
|
128 |
(M * N).to_add_submonoid = M.to_add_submonoid * N.to_add_submonoid :=
|
129 |
begin
|
130 |
dsimp [has_mul.mul],
|
131 |
-
simp_rw [←
|
132 |
map₂],
|
133 |
rw supr_to_add_submonoid,
|
134 |
refl,
|
@@ -189,7 +192,7 @@ image2_subset_map₂ (algebra.lmul R A).to_linear_map M N
|
|
189 |
protected lemma map_mul {A'} [semiring A'] [algebra R A'] (f : A →ₐ[R] A') :
|
190 |
map f.to_linear_map (M * N) = map f.to_linear_map M * map f.to_linear_map N :=
|
191 |
calc map f.to_linear_map (M * N)
|
192 |
-
= ⨆ (i : M), (N.map (
|
193 |
... = map f.to_linear_map M * map f.to_linear_map N :
|
194 |
begin
|
195 |
apply congr_arg Sup,
|
@@ -454,6 +457,23 @@ def span.ring_hom : set_semiring A →+* submodule R A :=
|
|
454 |
map_add' := span_union,
|
455 |
map_mul' := λ s t, by erw [span_mul_span, ← image_mul_prod] }
|
456 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
end ring
|
458 |
|
459 |
section comm_ring
|
@@ -512,7 +532,7 @@ lemma smul_le_smul {s t : set_semiring A} {M N : submodule R A} (h₁ : s.down
|
|
512 |
mul_le_mul (span_mono h₁) h₂
|
513 |
|
514 |
lemma smul_singleton (a : A) (M : submodule R A) :
|
515 |
-
({a} : set A).up • M = M.map (
|
516 |
begin
|
517 |
conv_lhs {rw ← span_eq M},
|
518 |
change span _ _ * span _ _ = _,
|
|
|
18 |
|
19 |
## Main definitions
|
20 |
|
21 |
+
Let `R` be a commutative ring (or semiring) and let `A` be an `R`-algebra.
|
22 |
|
23 |
* `1 : submodule R A` : the R-submodule R of the R-algebra A
|
24 |
* `has_mul (submodule R A)` : multiplication of two sub-R-modules M and N of A is defined to be
|
|
|
28 |
|
29 |
It is proved that `submodule R A` is a semiring, and also an algebra over `set A`.
|
30 |
|
31 |
+
Additionally, in the `pointwise` locale we promote `submodule.pointwise_distrib_mul_action` to a
|
32 |
+
`mul_semiring_action` as `submodule.pointwise_mul_semiring_action`.
|
33 |
+
|
34 |
## Tags
|
35 |
|
36 |
multiplication of submodules, division of submodules, submodule semiring
|
|
|
121 |
|
122 |
/-- Multiplication of sub-R-modules of an R-algebra A. The submodule `M * N` is the
|
123 |
smallest R-submodule of `A` containing the elements `m * n` for `m ∈ M` and `n ∈ N`. -/
|
124 |
+
instance : has_mul (submodule R A) := ⟨submodule.map₂ $ linear_map.mul R A⟩
|
125 |
|
126 |
theorem mul_mem_mul (hm : m ∈ M) (hn : n ∈ N) : m * n ∈ M * N := apply_mem_map₂ _ hm hn
|
127 |
|
|
|
131 |
(M * N).to_add_submonoid = M.to_add_submonoid * N.to_add_submonoid :=
|
132 |
begin
|
133 |
dsimp [has_mul.mul],
|
134 |
+
simp_rw [←linear_map.mul_left_to_add_monoid_hom R, linear_map.mul_left, ←map_to_add_submonoid _ N,
|
135 |
map₂],
|
136 |
rw supr_to_add_submonoid,
|
137 |
refl,
|
|
|
192 |
protected lemma map_mul {A'} [semiring A'] [algebra R A'] (f : A →ₐ[R] A') :
|
193 |
map f.to_linear_map (M * N) = map f.to_linear_map M * map f.to_linear_map N :=
|
194 |
calc map f.to_linear_map (M * N)
|
195 |
+
= ⨆ (i : M), (N.map (linear_map.mul R A i)).map f.to_linear_map : map_supr _ _
|
196 |
... = map f.to_linear_map M * map f.to_linear_map N :
|
197 |
begin
|
198 |
apply congr_arg Sup,
|
|
|
457 |
map_add' := span_union,
|
458 |
map_mul' := λ s t, by erw [span_mul_span, ← image_mul_prod] }
|
459 |
|
460 |
+
section
|
461 |
+
variables {α : Type*} [monoid α] [mul_semiring_action α A] [smul_comm_class α R A]
|
462 |
+
|
463 |
+
/-- The action on a submodule corresponding to applying the action to every element.
|
464 |
+
|
465 |
+
This is available as an instance in the `pointwise` locale.
|
466 |
+
|
467 |
+
This is a stronger version of `submodule.pointwise_distrib_mul_action`. -/
|
468 |
+
protected def pointwise_mul_semiring_action : mul_semiring_action α (submodule R A) :=
|
469 |
+
{ smul_mul := λ r x y, submodule.map_mul x y $ mul_semiring_action.to_alg_hom R A r,
|
470 |
+
smul_one := λ r, submodule.map_one $ mul_semiring_action.to_alg_hom R A r,
|
471 |
+
..submodule.pointwise_distrib_mul_action }
|
472 |
+
|
473 |
+
localized "attribute [instance] submodule.pointwise_mul_semiring_action" in pointwise
|
474 |
+
|
475 |
+
end
|
476 |
+
|
477 |
end ring
|
478 |
|
479 |
section comm_ring
|
|
|
532 |
mul_le_mul (span_mono h₁) h₂
|
533 |
|
534 |
lemma smul_singleton (a : A) (M : submodule R A) :
|
535 |
+
({a} : set A).up • M = M.map (linear_map.mul_left _ a) :=
|
536 |
begin
|
537 |
conv_lhs {rw ← span_eq M},
|
538 |
change span _ _ * span _ _ = _,
|
formal/lean/mathlib/algebra/algebra/subalgebra/basic.lean
CHANGED
@@ -305,7 +305,7 @@ def to_submodule_equiv (S : subalgebra R A) : S.to_submodule ≃ₗ[R] S :=
|
|
305 |
linear_equiv.of_eq _ _ rfl
|
306 |
|
307 |
/-- Transport a subalgebra via an algebra homomorphism. -/
|
308 |
-
def map (
|
309 |
{ algebra_map_mem' := λ r, f.commutes r ▸ set.mem_image_of_mem _ (S.algebra_map_mem r),
|
310 |
.. S.to_subsemiring.map (f : A →+* B) }
|
311 |
|
@@ -313,9 +313,9 @@ lemma map_mono {S₁ S₂ : subalgebra R A} {f : A →ₐ[R] B} :
|
|
313 |
S₁ ≤ S₂ → S₁.map f ≤ S₂.map f :=
|
314 |
set.image_subset f
|
315 |
|
316 |
-
lemma map_injective {
|
317 |
-
|
318 |
-
ext $ set.ext_iff.1 $ set.image_injective.2 hf $ set.ext $ set_like.ext_iff.mp ih
|
319 |
|
320 |
@[simp] lemma map_id (S : subalgebra R A) : S.map (alg_hom.id R A) = S :=
|
321 |
set_like.coe_injective $ set.image_id _
|
@@ -325,7 +325,7 @@ lemma map_map (S : subalgebra R A) (g : B →ₐ[R] C) (f : A →ₐ[R] B) :
|
|
325 |
set_like.coe_injective $ set.image_image _ _ _
|
326 |
|
327 |
lemma mem_map {S : subalgebra R A} {f : A →ₐ[R] B} {y : B} :
|
328 |
-
y ∈ map S
|
329 |
subsemiring.mem_map
|
330 |
|
331 |
lemma map_to_submodule {S : subalgebra R A} {f : A →ₐ[R] B} :
|
@@ -341,16 +341,16 @@ set_like.coe_injective rfl
|
|
341 |
rfl
|
342 |
|
343 |
/-- Preimage of a subalgebra under an algebra homomorphism. -/
|
344 |
-
def comap (
|
345 |
{ algebra_map_mem' := λ r, show f (algebra_map R A r) ∈ S,
|
346 |
from (f.commutes r).symm ▸ S.algebra_map_mem r,
|
347 |
.. S.to_subsemiring.comap (f : A →+* B) }
|
348 |
|
349 |
theorem map_le {S : subalgebra R A} {f : A →ₐ[R] B} {U : subalgebra R B} :
|
350 |
-
map S
|
351 |
set.image_subset_iff
|
352 |
|
353 |
-
lemma gc_map_comap (f : A →ₐ[R] B) : galois_connection (
|
354 |
λ S U, map_le
|
355 |
|
356 |
@[simp] lemma mem_comap (S : subalgebra R B) (f : A →ₐ[R] B) (x : A) :
|
@@ -648,14 +648,14 @@ algebra.eq_top_iff
|
|
648 |
@[simp] theorem range_id : (alg_hom.id R A).range = ⊤ :=
|
649 |
set_like.coe_injective set.range_id
|
650 |
|
651 |
-
@[simp] theorem map_top (f : A →ₐ[R] B) :
|
652 |
set_like.coe_injective set.image_univ
|
653 |
|
654 |
-
@[simp] theorem map_bot (f : A →ₐ[R] B) :
|
655 |
set_like.coe_injective $
|
656 |
by simp only [← set.range_comp, (∘), algebra.coe_bot, subalgebra.coe_map, f.commutes]
|
657 |
|
658 |
-
@[simp] theorem comap_top (f : A →ₐ[R] B) :
|
659 |
eq_top_iff.2 $ λ x, mem_top
|
660 |
|
661 |
/-- `alg_hom` to `⊤ : subalgebra R A`. -/
|
@@ -810,12 +810,11 @@ variables (S₁ : subalgebra R B)
|
|
810 |
|
811 |
/-- The product of two subalgebras is a subalgebra. -/
|
812 |
def prod : subalgebra R (A × B) :=
|
813 |
-
{ carrier :=
|
814 |
algebra_map_mem' := λ r, ⟨algebra_map_mem _ _, algebra_map_mem _ _⟩,
|
815 |
.. S.to_subsemiring.prod S₁.to_subsemiring }
|
816 |
|
817 |
-
@[simp] lemma coe_prod :
|
818 |
-
(prod S S₁ : set (A × B)) = (S : set A) ×ˢ (S₁ : set B):= rfl
|
819 |
|
820 |
lemma prod_to_submodule :
|
821 |
(S.prod S₁).to_submodule = S.to_submodule.prod S₁.to_submodule := rfl
|
|
|
305 |
linear_equiv.of_eq _ _ rfl
|
306 |
|
307 |
/-- Transport a subalgebra via an algebra homomorphism. -/
|
308 |
+
def map (f : A →ₐ[R] B) (S : subalgebra R A) : subalgebra R B :=
|
309 |
{ algebra_map_mem' := λ r, f.commutes r ▸ set.mem_image_of_mem _ (S.algebra_map_mem r),
|
310 |
.. S.to_subsemiring.map (f : A →+* B) }
|
311 |
|
|
|
313 |
S₁ ≤ S₂ → S₁.map f ≤ S₂.map f :=
|
314 |
set.image_subset f
|
315 |
|
316 |
+
lemma map_injective {f : A →ₐ[R] B} (hf : function.injective f) :
|
317 |
+
function.injective (map f) :=
|
318 |
+
λ S₁ S₂ ih, ext $ set.ext_iff.1 $ set.image_injective.2 hf $ set.ext $ set_like.ext_iff.mp ih
|
319 |
|
320 |
@[simp] lemma map_id (S : subalgebra R A) : S.map (alg_hom.id R A) = S :=
|
321 |
set_like.coe_injective $ set.image_id _
|
|
|
325 |
set_like.coe_injective $ set.image_image _ _ _
|
326 |
|
327 |
lemma mem_map {S : subalgebra R A} {f : A →ₐ[R] B} {y : B} :
|
328 |
+
y ∈ map f S ↔ ∃ x ∈ S, f x = y :=
|
329 |
subsemiring.mem_map
|
330 |
|
331 |
lemma map_to_submodule {S : subalgebra R A} {f : A →ₐ[R] B} :
|
|
|
341 |
rfl
|
342 |
|
343 |
/-- Preimage of a subalgebra under an algebra homomorphism. -/
|
344 |
+
def comap (f : A →ₐ[R] B) (S : subalgebra R B) : subalgebra R A :=
|
345 |
{ algebra_map_mem' := λ r, show f (algebra_map R A r) ∈ S,
|
346 |
from (f.commutes r).symm ▸ S.algebra_map_mem r,
|
347 |
.. S.to_subsemiring.comap (f : A →+* B) }
|
348 |
|
349 |
theorem map_le {S : subalgebra R A} {f : A →ₐ[R] B} {U : subalgebra R B} :
|
350 |
+
map f S ≤ U ↔ S ≤ comap f U :=
|
351 |
set.image_subset_iff
|
352 |
|
353 |
+
lemma gc_map_comap (f : A →ₐ[R] B) : galois_connection (map f) (comap f) :=
|
354 |
λ S U, map_le
|
355 |
|
356 |
@[simp] lemma mem_comap (S : subalgebra R B) (f : A →ₐ[R] B) (x : A) :
|
|
|
648 |
@[simp] theorem range_id : (alg_hom.id R A).range = ⊤ :=
|
649 |
set_like.coe_injective set.range_id
|
650 |
|
651 |
+
@[simp] theorem map_top (f : A →ₐ[R] B) : (⊤ : subalgebra R A).map f = f.range :=
|
652 |
set_like.coe_injective set.image_univ
|
653 |
|
654 |
+
@[simp] theorem map_bot (f : A →ₐ[R] B) : (⊥ : subalgebra R A).map f = ⊥ :=
|
655 |
set_like.coe_injective $
|
656 |
by simp only [← set.range_comp, (∘), algebra.coe_bot, subalgebra.coe_map, f.commutes]
|
657 |
|
658 |
+
@[simp] theorem comap_top (f : A →ₐ[R] B) : (⊤ : subalgebra R B).comap f = ⊤ :=
|
659 |
eq_top_iff.2 $ λ x, mem_top
|
660 |
|
661 |
/-- `alg_hom` to `⊤ : subalgebra R A`. -/
|
|
|
810 |
|
811 |
/-- The product of two subalgebras is a subalgebra. -/
|
812 |
def prod : subalgebra R (A × B) :=
|
813 |
+
{ carrier := S ×ˢ S₁,
|
814 |
algebra_map_mem' := λ r, ⟨algebra_map_mem _ _, algebra_map_mem _ _⟩,
|
815 |
.. S.to_subsemiring.prod S₁.to_subsemiring }
|
816 |
|
817 |
+
@[simp] lemma coe_prod : (prod S S₁ : set (A × B)) = S ×ˢ S₁ := rfl
|
|
|
818 |
|
819 |
lemma prod_to_submodule :
|
820 |
(S.prod S₁).to_submodule = S.to_submodule.prod S₁.to_submodule := rfl
|
formal/lean/mathlib/algebra/algebra/tower.lean
CHANGED
@@ -48,7 +48,7 @@ def lsmul : A →ₐ[R] module.End R M :=
|
|
48 |
@[simp] lemma lsmul_coe (a : A) : (lsmul R M a : M → M) = (•) a := rfl
|
49 |
|
50 |
lemma lmul_algebra_map (x : R) :
|
51 |
-
lmul R A (algebra_map R A x) = algebra.lsmul R A x :=
|
52 |
eq.symm $ linear_map.ext $ smul_def x
|
53 |
|
54 |
end algebra
|
|
|
48 |
@[simp] lemma lsmul_coe (a : A) : (lsmul R M a : M → M) = (•) a := rfl
|
49 |
|
50 |
lemma lmul_algebra_map (x : R) :
|
51 |
+
algebra.lmul R A (algebra_map R A x) = algebra.lsmul R A x :=
|
52 |
eq.symm $ linear_map.ext $ smul_def x
|
53 |
|
54 |
end algebra
|
formal/lean/mathlib/algebra/algebra/unitization.lean
CHANGED
@@ -345,9 +345,8 @@ instance [comm_monoid R] [non_unital_semiring A] [distrib_mul_action R A] [is_sc
|
|
345 |
abel },
|
346 |
..unitization.mul_one_class }
|
347 |
|
348 |
-
|
349 |
-
|
350 |
-
[smul_comm_class R A A] : comm_monoid (unitization R A) :=
|
351 |
{ mul_comm := λ x₁ x₂, ext (mul_comm x₁.1 x₂.1) $
|
352 |
show x₁.1 • x₂.2 + x₂.1 • x₁.2 + x₁.2 * x₂.2 = x₂.1 • x₁.2 + x₁.1 • x₂.2 + x₂.2 * x₁.2,
|
353 |
by rw [add_comm (x₁.1 • x₂.2), mul_comm],
|
@@ -358,8 +357,7 @@ instance [comm_semiring R] [non_unital_semiring A] [module R A] [is_scalar_tower
|
|
358 |
{ ..unitization.monoid,
|
359 |
..unitization.non_assoc_semiring }
|
360 |
|
361 |
-
|
362 |
-
instance [comm_semiring R] [comm_semiring A] [module R A] [is_scalar_tower R A A]
|
363 |
[smul_comm_class R A A] : comm_semiring (unitization R A) :=
|
364 |
{ ..unitization.comm_monoid,
|
365 |
..unitization.non_assoc_semiring }
|
|
|
345 |
abel },
|
346 |
..unitization.mul_one_class }
|
347 |
|
348 |
+
instance [comm_monoid R] [non_unital_comm_semiring A] [distrib_mul_action R A]
|
349 |
+
[is_scalar_tower R A A] [smul_comm_class R A A] : comm_monoid (unitization R A) :=
|
|
|
350 |
{ mul_comm := λ x₁ x₂, ext (mul_comm x₁.1 x₂.1) $
|
351 |
show x₁.1 • x₂.2 + x₂.1 • x₁.2 + x₁.2 * x₂.2 = x₂.1 • x₁.2 + x₁.1 • x₂.2 + x₂.2 * x₁.2,
|
352 |
by rw [add_comm (x₁.1 • x₂.2), mul_comm],
|
|
|
357 |
{ ..unitization.monoid,
|
358 |
..unitization.non_assoc_semiring }
|
359 |
|
360 |
+
instance [comm_semiring R] [non_unital_comm_semiring A] [module R A] [is_scalar_tower R A A]
|
|
|
361 |
[smul_comm_class R A A] : comm_semiring (unitization R A) :=
|
362 |
{ ..unitization.comm_monoid,
|
363 |
..unitization.non_assoc_semiring }
|
formal/lean/mathlib/algebra/big_operators/basic.lean
CHANGED
@@ -39,7 +39,7 @@ See the documentation of `to_additive.attr` for more information.
|
|
39 |
-/
|
40 |
|
41 |
universes u v w
|
42 |
-
variables {β : Type u} {α : Type v} {γ : Type w}
|
43 |
|
44 |
open fin
|
45 |
|
@@ -512,24 +512,24 @@ eq.trans (by rw one_mul; refl) fold_op_distrib
|
|
512 |
|
513 |
@[to_additive]
|
514 |
lemma prod_product {s : finset γ} {t : finset α} {f : γ×α → β} :
|
515 |
-
(∏ x in s
|
516 |
-
prod_finset_product (s
|
517 |
|
518 |
/-- An uncurried version of `finset.prod_product`. -/
|
519 |
@[to_additive "An uncurried version of `finset.sum_product`"]
|
520 |
lemma prod_product' {s : finset γ} {t : finset α} {f : γ → α → β} :
|
521 |
-
(∏ x in s
|
522 |
prod_product
|
523 |
|
524 |
@[to_additive]
|
525 |
lemma prod_product_right {s : finset γ} {t : finset α} {f : γ×α → β} :
|
526 |
-
(∏ x in s
|
527 |
-
prod_finset_product_right (s
|
528 |
|
529 |
/-- An uncurried version of `finset.prod_product_right`. -/
|
530 |
@[to_additive "An uncurried version of `finset.prod_product_right`"]
|
531 |
lemma prod_product_right' {s : finset γ} {t : finset α} {f : γ → α → β} :
|
532 |
-
(∏ x in s
|
533 |
prod_product_right
|
534 |
|
535 |
/-- Generalization of `finset.prod_comm` to the case when the inner `finset`s depend on the outer
|
@@ -1015,6 +1015,10 @@ begin
|
|
1015 |
rw [count_eq_zero_of_not_mem hx, pow_zero],
|
1016 |
end
|
1017 |
|
|
|
|
|
|
|
|
|
1018 |
open multiset
|
1019 |
|
1020 |
@[to_additive] lemma prod_multiset_map_count [decidable_eq α] (s : multiset α)
|
@@ -1099,6 +1103,16 @@ lemma prod_range_div' {M : Type*} [comm_group M] (f : ℕ → M) (n : ℕ) :
|
|
1099 |
∏ i in range n, (f i / f (i + 1)) = f 0 / f n :=
|
1100 |
by apply prod_range_induction; simp
|
1101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1102 |
/--
|
1103 |
A telescoping sum along `{0, ..., n-1}` of an `ℕ`-valued function
|
1104 |
reduces to the difference of the last and first terms
|
@@ -1291,9 +1305,13 @@ begin
|
|
1291 |
end
|
1292 |
|
1293 |
/-- Taking a product over `s : finset α` is the same as multiplying the value on a single element
|
1294 |
-
`f a` by the product of `s.erase a`.
|
|
|
|
|
1295 |
@[to_additive "Taking a sum over `s : finset α` is the same as adding the value on a single element
|
1296 |
-
`f a` to the sum over `s.erase a`.
|
|
|
|
|
1297 |
lemma mul_prod_erase [decidable_eq α] (s : finset α) (f : α → β) {a : α} (h : a ∈ s) :
|
1298 |
f a * (∏ x in s.erase a, f x) = ∏ x in s, f x :=
|
1299 |
by rw [← prod_insert (not_mem_erase a s), insert_erase h]
|
@@ -1388,17 +1406,6 @@ lemma sum_boole {s : finset α} {p : α → Prop} [non_assoc_semiring β] {hp :
|
|
1388 |
(∑ x in s, if p x then (1 : β) else (0 : β)) = (s.filter p).card :=
|
1389 |
by simp [sum_ite]
|
1390 |
|
1391 |
-
lemma eq_sum_range_sub [add_comm_group β] (f : ℕ → β) (n : ℕ) :
|
1392 |
-
f n = f 0 + ∑ i in range n, (f (i+1) - f i) :=
|
1393 |
-
by rw [finset.sum_range_sub, add_sub_cancel'_right]
|
1394 |
-
|
1395 |
-
lemma eq_sum_range_sub' [add_comm_group β] (f : ℕ → β) (n : ℕ) :
|
1396 |
-
f n = ∑ i in range (n + 1), if i = 0 then f 0 else f i - f (i - 1) :=
|
1397 |
-
begin
|
1398 |
-
conv_lhs { rw [finset.eq_sum_range_sub f] },
|
1399 |
-
simp [finset.sum_range_succ', add_comm]
|
1400 |
-
end
|
1401 |
-
|
1402 |
lemma _root_.commute.sum_right [non_unital_non_assoc_semiring β] (s : finset α)
|
1403 |
(f : α → β) (b : β) (h : ∀ i ∈ s, commute b (f i)) :
|
1404 |
commute b (∑ i in s, f i) :=
|
@@ -1539,13 +1546,7 @@ end prod_eq_zero
|
|
1539 |
lemma prod_unique_nonempty {α β : Type*} [comm_monoid β] [unique α]
|
1540 |
(s : finset α) (f : α → β) (h : s.nonempty) :
|
1541 |
(∏ x in s, f x) = f default :=
|
1542 |
-
|
1543 |
-
obtain ⟨a, ha⟩ := h,
|
1544 |
-
have : s = {a},
|
1545 |
-
{ ext b,
|
1546 |
-
simpa [subsingleton.elim a b] using ha },
|
1547 |
-
rw [this, finset.prod_singleton, subsingleton.elim a default]
|
1548 |
-
end
|
1549 |
|
1550 |
end finset
|
1551 |
|
@@ -1596,8 +1597,8 @@ by rw [univ_unique, prod_singleton]
|
|
1596 |
(∏ x : α, f x) = 1 :=
|
1597 |
by rw [eq_empty_of_is_empty (univ : finset α), finset.prod_empty]
|
1598 |
|
1599 |
-
@[to_additive]
|
1600 |
-
|
1601 |
(∏ x : α, f x) = f a :=
|
1602 |
begin
|
1603 |
haveI : unique α := unique_of_subsingleton a,
|
@@ -1631,8 +1632,85 @@ end list
|
|
1631 |
|
1632 |
namespace multiset
|
1633 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1634 |
variables [decidable_eq α]
|
1635 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1636 |
@[simp] lemma to_finset_sum_count_eq (s : multiset α) :
|
1637 |
(∑ a in s.to_finset, s.count a) = s.card :=
|
1638 |
multiset.induction_on s rfl
|
@@ -1780,3 +1858,63 @@ begin
|
|
1780 |
simp only [his, finset.sum_insert, not_false_iff],
|
1781 |
exact (int.nat_abs_add_le _ _).trans (add_le_add le_rfl IH) }
|
1782 |
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
-/
|
40 |
|
41 |
universes u v w
|
42 |
+
variables {ι : Type*} {β : Type u} {α : Type v} {γ : Type w}
|
43 |
|
44 |
open fin
|
45 |
|
|
|
512 |
|
513 |
@[to_additive]
|
514 |
lemma prod_product {s : finset γ} {t : finset α} {f : γ×α → β} :
|
515 |
+
(∏ x in s ×ˢ t, f x) = ∏ x in s, ∏ y in t, f (x, y) :=
|
516 |
+
prod_finset_product (s ×ˢ t) s (λ a, t) (λ p, mem_product)
|
517 |
|
518 |
/-- An uncurried version of `finset.prod_product`. -/
|
519 |
@[to_additive "An uncurried version of `finset.sum_product`"]
|
520 |
lemma prod_product' {s : finset γ} {t : finset α} {f : γ → α → β} :
|
521 |
+
(∏ x in s ×ˢ t, f x.1 x.2) = ∏ x in s, ∏ y in t, f x y :=
|
522 |
prod_product
|
523 |
|
524 |
@[to_additive]
|
525 |
lemma prod_product_right {s : finset γ} {t : finset α} {f : γ×α → β} :
|
526 |
+
(∏ x in s ×ˢ t, f x) = ∏ y in t, ∏ x in s, f (x, y) :=
|
527 |
+
prod_finset_product_right (s ×ˢ t) t (λ a, s) (λ p, mem_product.trans and.comm)
|
528 |
|
529 |
/-- An uncurried version of `finset.prod_product_right`. -/
|
530 |
@[to_additive "An uncurried version of `finset.prod_product_right`"]
|
531 |
lemma prod_product_right' {s : finset γ} {t : finset α} {f : γ → α → β} :
|
532 |
+
(∏ x in s ×ˢ t, f x.1 x.2) = ∏ y in t, ∏ x in s, f x y :=
|
533 |
prod_product_right
|
534 |
|
535 |
/-- Generalization of `finset.prod_comm` to the case when the inner `finset`s depend on the outer
|
|
|
1015 |
rw [count_eq_zero_of_not_mem hx, pow_zero],
|
1016 |
end
|
1017 |
|
1018 |
+
lemma sum_filter_count_eq_countp [decidable_eq α] (p : α → Prop) [decidable_pred p] (l : list α) :
|
1019 |
+
∑ x in l.to_finset.filter p, l.count x = l.countp p :=
|
1020 |
+
by simp [finset.sum, sum_map_count_dedup_filter_eq_countp p l]
|
1021 |
+
|
1022 |
open multiset
|
1023 |
|
1024 |
@[to_additive] lemma prod_multiset_map_count [decidable_eq α] (s : multiset α)
|
|
|
1103 |
∏ i in range n, (f i / f (i + 1)) = f 0 / f n :=
|
1104 |
by apply prod_range_induction; simp
|
1105 |
|
1106 |
+
@[to_additive]
|
1107 |
+
lemma eq_prod_range_div {M : Type*} [comm_group M] (f : ℕ → M) (n : ℕ) :
|
1108 |
+
f n = f 0 * ∏ i in range n, (f (i + 1) / f i) :=
|
1109 |
+
by rw [prod_range_div, mul_div_cancel'_right]
|
1110 |
+
|
1111 |
+
@[to_additive]
|
1112 |
+
lemma eq_prod_range_div' {M : Type*} [comm_group M] (f : ℕ → M) (n : ℕ) :
|
1113 |
+
f n = ∏ i in range (n + 1), if i = 0 then f 0 else f i / f (i - 1) :=
|
1114 |
+
by { conv_lhs { rw [finset.eq_prod_range_div f] }, simp [finset.prod_range_succ', mul_comm] }
|
1115 |
+
|
1116 |
/--
|
1117 |
A telescoping sum along `{0, ..., n-1}` of an `ℕ`-valued function
|
1118 |
reduces to the difference of the last and first terms
|
|
|
1305 |
end
|
1306 |
|
1307 |
/-- Taking a product over `s : finset α` is the same as multiplying the value on a single element
|
1308 |
+
`f a` by the product of `s.erase a`.
|
1309 |
+
|
1310 |
+
See `multiset.prod_map_erase` for the `multiset` version. -/
|
1311 |
@[to_additive "Taking a sum over `s : finset α` is the same as adding the value on a single element
|
1312 |
+
`f a` to the sum over `s.erase a`.
|
1313 |
+
|
1314 |
+
See `multiset.sum_map_erase` for the `multiset` version."]
|
1315 |
lemma mul_prod_erase [decidable_eq α] (s : finset α) (f : α → β) {a : α} (h : a ∈ s) :
|
1316 |
f a * (∏ x in s.erase a, f x) = ∏ x in s, f x :=
|
1317 |
by rw [← prod_insert (not_mem_erase a s), insert_erase h]
|
|
|
1406 |
(∑ x in s, if p x then (1 : β) else (0 : β)) = (s.filter p).card :=
|
1407 |
by simp [sum_ite]
|
1408 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1409 |
lemma _root_.commute.sum_right [non_unital_non_assoc_semiring β] (s : finset α)
|
1410 |
(f : α → β) (b : β) (h : ∀ i ∈ s, commute b (f i)) :
|
1411 |
commute b (∑ i in s, f i) :=
|
|
|
1546 |
lemma prod_unique_nonempty {α β : Type*} [comm_monoid β] [unique α]
|
1547 |
(s : finset α) (f : α → β) (h : s.nonempty) :
|
1548 |
(∏ x in s, f x) = f default :=
|
1549 |
+
by rw [h.eq_singleton_default, finset.prod_singleton]
|
|
|
|
|
|
|
|
|
|
|
|
|
1550 |
|
1551 |
end finset
|
1552 |
|
|
|
1597 |
(∏ x : α, f x) = 1 :=
|
1598 |
by rw [eq_empty_of_is_empty (univ : finset α), finset.prod_empty]
|
1599 |
|
1600 |
+
@[to_additive] lemma prod_subsingleton {α β : Type*} [comm_monoid β] [subsingleton α] [fintype α]
|
1601 |
+
(f : α → β) (a : α) :
|
1602 |
(∏ x : α, f x) = f a :=
|
1603 |
begin
|
1604 |
haveI : unique α := unique_of_subsingleton a,
|
|
|
1632 |
|
1633 |
namespace multiset
|
1634 |
|
1635 |
+
lemma disjoint_list_sum_left {a : multiset α} {l : list (multiset α)} :
|
1636 |
+
multiset.disjoint l.sum a ↔ ∀ b ∈ l, multiset.disjoint b a :=
|
1637 |
+
begin
|
1638 |
+
induction l with b bs ih,
|
1639 |
+
{ simp only [zero_disjoint, list.not_mem_nil, is_empty.forall_iff, forall_const, list.sum_nil], },
|
1640 |
+
{ simp_rw [list.sum_cons, disjoint_add_left, list.mem_cons_iff, forall_eq_or_imp],
|
1641 |
+
simp [and.congr_left_iff, iff_self, ih], },
|
1642 |
+
end
|
1643 |
+
|
1644 |
+
lemma disjoint_list_sum_right {a : multiset α} {l : list (multiset α)} :
|
1645 |
+
multiset.disjoint a l.sum ↔ ∀ b ∈ l, multiset.disjoint a b :=
|
1646 |
+
by simpa only [disjoint_comm] using disjoint_list_sum_left
|
1647 |
+
|
1648 |
+
lemma disjoint_sum_left {a : multiset α} {i : multiset (multiset α)} :
|
1649 |
+
multiset.disjoint i.sum a ↔ ∀ b ∈ i, multiset.disjoint b a :=
|
1650 |
+
quotient.induction_on i $ λ l, begin
|
1651 |
+
rw [quot_mk_to_coe, multiset.coe_sum],
|
1652 |
+
exact disjoint_list_sum_left,
|
1653 |
+
end
|
1654 |
+
|
1655 |
+
lemma disjoint_sum_right {a : multiset α} {i : multiset (multiset α)} :
|
1656 |
+
multiset.disjoint a i.sum ↔ ∀ b ∈ i, multiset.disjoint a b :=
|
1657 |
+
by simpa only [disjoint_comm] using disjoint_sum_left
|
1658 |
+
|
1659 |
+
lemma disjoint_finset_sum_left {β : Type*} {i : finset β} {f : β → multiset α} {a : multiset α} :
|
1660 |
+
multiset.disjoint (i.sum f) a ↔ ∀ b ∈ i, multiset.disjoint (f b) a :=
|
1661 |
+
begin
|
1662 |
+
convert (@disjoint_sum_left _ a) (map f i.val),
|
1663 |
+
simp [finset.mem_def, and.congr_left_iff, iff_self],
|
1664 |
+
end
|
1665 |
+
|
1666 |
+
lemma disjoint_finset_sum_right {β : Type*} {i : finset β} {f : β → multiset α} {a : multiset α} :
|
1667 |
+
multiset.disjoint a (i.sum f) ↔ ∀ b ∈ i, multiset.disjoint a (f b) :=
|
1668 |
+
by simpa only [disjoint_comm] using disjoint_finset_sum_left
|
1669 |
+
|
1670 |
variables [decidable_eq α]
|
1671 |
|
1672 |
+
lemma add_eq_union_left_of_le {x y z : multiset α} (h : y ≤ x) :
|
1673 |
+
z + x = z ∪ y ↔ z.disjoint x ∧ x = y :=
|
1674 |
+
begin
|
1675 |
+
rw ←add_eq_union_iff_disjoint,
|
1676 |
+
split,
|
1677 |
+
{ intro h0,
|
1678 |
+
rw and_iff_right_of_imp,
|
1679 |
+
{ exact (le_of_add_le_add_left $ h0.trans_le $ union_le_add z y).antisymm h, },
|
1680 |
+
{ rintro rfl,
|
1681 |
+
exact h0, } },
|
1682 |
+
{ rintro ⟨h0, rfl⟩,
|
1683 |
+
exact h0, }
|
1684 |
+
end
|
1685 |
+
|
1686 |
+
lemma add_eq_union_right_of_le {x y z : multiset α} (h : z ≤ y) :
|
1687 |
+
x + y = x ∪ z ↔ y = z ∧ x.disjoint y :=
|
1688 |
+
by simpa only [and_comm] using add_eq_union_left_of_le h
|
1689 |
+
|
1690 |
+
lemma finset_sum_eq_sup_iff_disjoint {β : Type*} {i : finset β} {f : β → multiset α} :
|
1691 |
+
i.sum f = i.sup f ↔ ∀ x y ∈ i, x ≠ y → multiset.disjoint (f x) (f y) :=
|
1692 |
+
begin
|
1693 |
+
induction i using finset.cons_induction_on with z i hz hr,
|
1694 |
+
{ simp only [finset.not_mem_empty, is_empty.forall_iff, implies_true_iff,
|
1695 |
+
finset.sum_empty, finset.sup_empty, bot_eq_zero, eq_self_iff_true], },
|
1696 |
+
{ simp_rw [finset.sum_cons hz, finset.sup_cons, finset.mem_cons, multiset.sup_eq_union,
|
1697 |
+
forall_eq_or_imp, ne.def, eq_self_iff_true, not_true, is_empty.forall_iff, true_and,
|
1698 |
+
imp_and_distrib, forall_and_distrib, ←hr, @eq_comm _ z],
|
1699 |
+
have := λ x ∈ i, ne_of_mem_of_not_mem H hz,
|
1700 |
+
simp only [this, not_false_iff, true_implies_iff] {contextual := tt},
|
1701 |
+
simp_rw [←disjoint_finset_sum_left, ←disjoint_finset_sum_right, disjoint_comm, ←and_assoc,
|
1702 |
+
and_self],
|
1703 |
+
exact add_eq_union_left_of_le (finset.sup_le (λ x hx, le_sum_of_mem (mem_map_of_mem f hx))), },
|
1704 |
+
end
|
1705 |
+
|
1706 |
+
lemma sup_powerset_len {α : Type*} [decidable_eq α] (x : multiset α) :
|
1707 |
+
finset.sup (finset.range (x.card + 1)) (λ k, x.powerset_len k) = x.powerset :=
|
1708 |
+
begin
|
1709 |
+
convert bind_powerset_len x,
|
1710 |
+
rw [multiset.bind, multiset.join, ←finset.range_coe, ←finset.sum_eq_multiset_sum],
|
1711 |
+
exact eq.symm (finset_sum_eq_sup_iff_disjoint.mpr (λ _ _ _ _ h, disjoint_powerset_len x h)),
|
1712 |
+
end
|
1713 |
+
|
1714 |
@[simp] lemma to_finset_sum_count_eq (s : multiset α) :
|
1715 |
(∑ a in s.to_finset, s.count a) = s.card :=
|
1716 |
multiset.induction_on s rfl
|
|
|
1858 |
simp only [his, finset.sum_insert, not_false_iff],
|
1859 |
exact (int.nat_abs_add_le _ _).trans (add_le_add le_rfl IH) }
|
1860 |
end
|
1861 |
+
|
1862 |
+
/-! ### `additive`, `multiplicative` -/
|
1863 |
+
|
1864 |
+
open additive multiplicative
|
1865 |
+
|
1866 |
+
section monoid
|
1867 |
+
variables [monoid α]
|
1868 |
+
|
1869 |
+
@[simp] lemma of_mul_list_prod (s : list α) : of_mul s.prod = (s.map of_mul).sum :=
|
1870 |
+
by simpa [of_mul]
|
1871 |
+
|
1872 |
+
@[simp] lemma to_mul_list_sum (s : list (additive α)) :
|
1873 |
+
to_mul s.sum = (s.map to_mul).prod := by simpa [to_mul, of_mul]
|
1874 |
+
|
1875 |
+
end monoid
|
1876 |
+
|
1877 |
+
section add_monoid
|
1878 |
+
variables [add_monoid α]
|
1879 |
+
|
1880 |
+
@[simp] lemma of_add_list_prod (s : list α) : of_add s.sum = (s.map of_add).prod :=
|
1881 |
+
by simpa [of_add]
|
1882 |
+
|
1883 |
+
@[simp] lemma to_add_list_sum (s : list (multiplicative α)) :
|
1884 |
+
to_add s.prod = (s.map to_add).sum := by simpa [to_add, of_add]
|
1885 |
+
|
1886 |
+
end add_monoid
|
1887 |
+
|
1888 |
+
section comm_monoid
|
1889 |
+
variables [comm_monoid α]
|
1890 |
+
|
1891 |
+
@[simp] lemma of_mul_multiset_prod (s : multiset α) :
|
1892 |
+
of_mul s.prod = (s.map of_mul).sum := by simpa [of_mul]
|
1893 |
+
|
1894 |
+
@[simp] lemma to_mul_multiset_sum (s : multiset (additive α)) :
|
1895 |
+
to_mul s.sum = (s.map to_mul).prod := by simpa [to_mul, of_mul]
|
1896 |
+
|
1897 |
+
@[simp] lemma of_mul_prod (s : finset ι) (f : ι → α) :
|
1898 |
+
of_mul (∏ i in s, f i) = ∑ i in s, of_mul (f i) := rfl
|
1899 |
+
|
1900 |
+
@[simp] lemma to_mul_sum (s : finset ι) (f : ι → additive α) :
|
1901 |
+
to_mul (∑ i in s, f i) = ∏ i in s, to_mul (f i) := rfl
|
1902 |
+
|
1903 |
+
end comm_monoid
|
1904 |
+
|
1905 |
+
section add_comm_monoid
|
1906 |
+
variables [add_comm_monoid α]
|
1907 |
+
|
1908 |
+
@[simp] lemma of_add_multiset_prod (s : multiset α) :
|
1909 |
+
of_add s.sum = (s.map of_add).prod := by simpa [of_add]
|
1910 |
+
|
1911 |
+
@[simp] lemma to_add_multiset_sum (s : multiset (multiplicative α)) :
|
1912 |
+
to_add s.prod = (s.map to_add).sum := by simpa [to_add, of_add]
|
1913 |
+
|
1914 |
+
@[simp] lemma of_add_sum (s : finset ι) (f : ι → α) :
|
1915 |
+
of_add (∑ i in s, f i) = ∏ i in s, of_add (f i) := rfl
|
1916 |
+
|
1917 |
+
@[simp] lemma to_add_prod (s : finset ι) (f : ι → multiplicative α) :
|
1918 |
+
to_add (∏ i in s, f i) = ∑ i in s, to_add (f i) := rfl
|
1919 |
+
|
1920 |
+
end add_comm_monoid
|
formal/lean/mathlib/algebra/big_operators/fin.lean
CHANGED
@@ -95,6 +95,30 @@ by simp
|
|
95 |
∏ i, f i = f 0 * f 1 :=
|
96 |
by simp [prod_univ_succ]
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
lemma sum_pow_mul_eq_add_pow {n : ℕ} {R : Type*} [comm_semiring R] (a b : R) :
|
99 |
∑ s : finset (fin n), a ^ s.card * b ^ (n - s.card) = (a + b) ^ n :=
|
100 |
by simpa using fintype.sum_pow_mul_eq_add_pow (fin n) a b
|
@@ -157,6 +181,29 @@ by simp [partial_prod, list.take_succ, list.of_fn_nth_val, dif_pos j.is_lt, ←o
|
|
157 |
partial_prod f j.succ = f 0 * partial_prod (fin.tail f) j :=
|
158 |
by simpa [partial_prod]
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
end partial_prod
|
161 |
|
162 |
end fin
|
|
|
95 |
∏ i, f i = f 0 * f 1 :=
|
96 |
by simp [prod_univ_succ]
|
97 |
|
98 |
+
@[to_additive] theorem prod_univ_three [comm_monoid β] (f : fin 3 → β) :
|
99 |
+
∏ i, f i = f 0 * f 1 * f 2 :=
|
100 |
+
by { rw [prod_univ_cast_succ, prod_univ_two], refl }
|
101 |
+
|
102 |
+
@[to_additive] theorem prod_univ_four [comm_monoid β] (f : fin 4 → β) :
|
103 |
+
∏ i, f i = f 0 * f 1 * f 2 * f 3 :=
|
104 |
+
by { rw [prod_univ_cast_succ, prod_univ_three], refl }
|
105 |
+
|
106 |
+
@[to_additive] theorem prod_univ_five [comm_monoid β] (f : fin 5 → β) :
|
107 |
+
∏ i, f i = f 0 * f 1 * f 2 * f 3 * f 4 :=
|
108 |
+
by { rw [prod_univ_cast_succ, prod_univ_four], refl }
|
109 |
+
|
110 |
+
@[to_additive] theorem prod_univ_six [comm_monoid β] (f : fin 6 → β) :
|
111 |
+
∏ i, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 :=
|
112 |
+
by { rw [prod_univ_cast_succ, prod_univ_five], refl }
|
113 |
+
|
114 |
+
@[to_additive] theorem prod_univ_seven [comm_monoid β] (f : fin 7 → β) :
|
115 |
+
∏ i, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6 :=
|
116 |
+
by { rw [prod_univ_cast_succ, prod_univ_six], refl }
|
117 |
+
|
118 |
+
@[to_additive] theorem prod_univ_eight [comm_monoid β] (f : fin 8 → β) :
|
119 |
+
∏ i, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6 * f 7 :=
|
120 |
+
by { rw [prod_univ_cast_succ, prod_univ_seven], refl }
|
121 |
+
|
122 |
lemma sum_pow_mul_eq_add_pow {n : ℕ} {R : Type*} [comm_semiring R] (a b : R) :
|
123 |
∑ s : finset (fin n), a ^ s.card * b ^ (n - s.card) = (a + b) ^ n :=
|
124 |
by simpa using fintype.sum_pow_mul_eq_add_pow (fin n) a b
|
|
|
181 |
partial_prod f j.succ = f 0 * partial_prod (fin.tail f) j :=
|
182 |
by simpa [partial_prod]
|
183 |
|
184 |
+
@[to_additive] lemma partial_prod_left_inv {G : Type*} [group G] (f : fin (n + 1) → G) :
|
185 |
+
f 0 • partial_prod (λ i : fin n, (f i)⁻¹ * f i.succ) = f :=
|
186 |
+
funext $ λ x, fin.induction_on x (by simp) (λ x hx,
|
187 |
+
begin
|
188 |
+
simp only [coe_eq_cast_succ, pi.smul_apply, smul_eq_mul] at hx ⊢,
|
189 |
+
rw [partial_prod_succ, ←mul_assoc, hx, mul_inv_cancel_left],
|
190 |
+
end)
|
191 |
+
|
192 |
+
@[to_additive] lemma partial_prod_right_inv {G : Type*} [group G]
|
193 |
+
(g : G) (f : fin n → G) (i : fin n) :
|
194 |
+
((g • partial_prod f) i)⁻¹ * (g • partial_prod f) i.succ = f i :=
|
195 |
+
begin
|
196 |
+
cases i with i hn,
|
197 |
+
induction i with i hi generalizing hn,
|
198 |
+
{ simp [←fin.succ_mk, partial_prod_succ] },
|
199 |
+
{ specialize hi (lt_trans (nat.lt_succ_self i) hn),
|
200 |
+
simp only [mul_inv_rev, fin.coe_eq_cast_succ, fin.succ_mk, fin.cast_succ_mk,
|
201 |
+
smul_eq_mul, pi.smul_apply] at hi ⊢,
|
202 |
+
rw [←fin.succ_mk _ _ (lt_trans (nat.lt_succ_self _) hn), ←fin.succ_mk],
|
203 |
+
simp only [partial_prod_succ, mul_inv_rev, fin.cast_succ_mk],
|
204 |
+
assoc_rw [hi, inv_mul_cancel_left] }
|
205 |
+
end
|
206 |
+
|
207 |
end partial_prod
|
208 |
|
209 |
end fin
|
formal/lean/mathlib/algebra/big_operators/multiset.lean
CHANGED
@@ -58,6 +58,12 @@ lemma prod_cons (a : α) (s) : prod (a ::ₘ s) = a * prod s := foldr_cons _ _ _
|
|
58 |
lemma prod_erase [decidable_eq α] (h : a ∈ s) : a * (s.erase a).prod = s.prod :=
|
59 |
by rw [← s.coe_to_list, coe_erase, coe_prod, coe_prod, list.prod_erase ((s.mem_to_list a).2 h)]
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
@[simp, to_additive]
|
62 |
lemma prod_singleton (a : α) : prod {a} = a :=
|
63 |
by simp only [mul_one, prod_cons, singleton_eq_cons, eq_self_iff_true, prod_zero]
|
@@ -78,6 +84,22 @@ lemma prod_nsmul (m : multiset α) : ∀ (n : ℕ), (n • m).prod = m.prod ^ n
|
|
78 |
@[simp, to_additive] lemma prod_repeat (a : α) (n : ℕ) : (repeat a n).prod = a ^ n :=
|
79 |
by simp [repeat, list.prod_repeat]
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
@[to_additive]
|
82 |
lemma pow_count [decidable_eq α] (a : α) : a ^ s.count a = (s.filter (eq a)).prod :=
|
83 |
by rw [filter_eq, prod_repeat]
|
@@ -319,6 +341,15 @@ lemma prod_eq_one_iff [canonically_ordered_monoid α] {m : multiset α} :
|
|
319 |
m.prod = 1 ↔ ∀ x ∈ m, x = (1 : α) :=
|
320 |
quotient.induction_on m $ λ l, by simpa using list.prod_eq_one_iff l
|
321 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
@[to_additive]
|
323 |
lemma le_prod_of_mem [canonically_ordered_monoid α] {m : multiset α} {a : α} (h : a ∈ m) :
|
324 |
a ≤ m.prod :=
|
|
|
58 |
lemma prod_erase [decidable_eq α] (h : a ∈ s) : a * (s.erase a).prod = s.prod :=
|
59 |
by rw [← s.coe_to_list, coe_erase, coe_prod, coe_prod, list.prod_erase ((s.mem_to_list a).2 h)]
|
60 |
|
61 |
+
@[simp, to_additive]
|
62 |
+
lemma prod_map_erase [decidable_eq ι] {a : ι} (h : a ∈ m) :
|
63 |
+
f a * ((m.erase a).map f).prod = (m.map f).prod :=
|
64 |
+
by rw [← m.coe_to_list, coe_erase, coe_map, coe_map, coe_prod, coe_prod,
|
65 |
+
list.prod_map_erase f ((m.mem_to_list a).2 h)]
|
66 |
+
|
67 |
@[simp, to_additive]
|
68 |
lemma prod_singleton (a : α) : prod {a} = a :=
|
69 |
by simp only [mul_one, prod_cons, singleton_eq_cons, eq_self_iff_true, prod_zero]
|
|
|
84 |
@[simp, to_additive] lemma prod_repeat (a : α) (n : ℕ) : (repeat a n).prod = a ^ n :=
|
85 |
by simp [repeat, list.prod_repeat]
|
86 |
|
87 |
+
@[to_additive]
|
88 |
+
lemma prod_map_eq_pow_single [decidable_eq ι] (i : ι) (hf : ∀ i' ≠ i, i' ∈ m → f i' = 1) :
|
89 |
+
(m.map f).prod = f i ^ m.count i :=
|
90 |
+
begin
|
91 |
+
induction m using quotient.induction_on with l,
|
92 |
+
simp [list.prod_map_eq_pow_single i f hf],
|
93 |
+
end
|
94 |
+
|
95 |
+
@[to_additive]
|
96 |
+
lemma prod_eq_pow_single [decidable_eq α] (a : α) (h : ∀ a' ≠ a, a' ∈ s → a' = 1) :
|
97 |
+
s.prod = a ^ (s.count a) :=
|
98 |
+
begin
|
99 |
+
induction s using quotient.induction_on with l,
|
100 |
+
simp [list.prod_eq_pow_single a h],
|
101 |
+
end
|
102 |
+
|
103 |
@[to_additive]
|
104 |
lemma pow_count [decidable_eq α] (a : α) : a ^ s.count a = (s.filter (eq a)).prod :=
|
105 |
by rw [filter_eq, prod_repeat]
|
|
|
341 |
m.prod = 1 ↔ ∀ x ∈ m, x = (1 : α) :=
|
342 |
quotient.induction_on m $ λ l, by simpa using list.prod_eq_one_iff l
|
343 |
|
344 |
+
/-- Slightly more general version of `multiset.prod_eq_one_iff` for a non-ordered `monoid` -/
|
345 |
+
@[to_additive "Slightly more general version of `multiset.sum_eq_zero_iff`
|
346 |
+
for a non-ordered `add_monoid`"]
|
347 |
+
lemma prod_eq_one [comm_monoid α] {m : multiset α} (h : ∀ x ∈ m, x = (1 : α)) : m.prod = 1 :=
|
348 |
+
begin
|
349 |
+
induction m using quotient.induction_on with l,
|
350 |
+
simp [list.prod_eq_one h],
|
351 |
+
end
|
352 |
+
|
353 |
@[to_additive]
|
354 |
lemma le_prod_of_mem [canonically_ordered_monoid α] {m : multiset α} {a : α} (h : a ∈ m) :
|
355 |
a ≤ m.prod :=
|
formal/lean/mathlib/algebra/big_operators/norm_num.lean
CHANGED
@@ -83,72 +83,6 @@ meta def list.decide_mem (decide_eq : expr → expr → tactic (bool × expr)) :
|
|
83 |
pf ← i_to_expr ``(list.not_mem_cons %%head_pf %%tail_pf),
|
84 |
pure (ff, pf)
|
85 |
|
86 |
-
lemma finset.insert_eq_coe_list_of_mem {α : Type*} [decidable_eq α] (x : α) (xs : finset α)
|
87 |
-
{xs' : list α} (h : x ∈ xs') (nd_xs : xs'.nodup)
|
88 |
-
(hxs' : xs = finset.mk ↑xs' (multiset.coe_nodup.mpr nd_xs)) :
|
89 |
-
insert x xs = finset.mk ↑xs' (multiset.coe_nodup.mpr nd_xs) :=
|
90 |
-
have h : x ∈ xs, by simpa [hxs'] using h,
|
91 |
-
by rw [finset.insert_eq_of_mem h, hxs']
|
92 |
-
|
93 |
-
lemma finset.insert_eq_coe_list_cons {α : Type*} [decidable_eq α] (x : α) (xs : finset α)
|
94 |
-
{xs' : list α} (h : x ∉ xs') (nd_xs : xs'.nodup) (nd_xxs : (x :: xs').nodup)
|
95 |
-
(hxs' : xs = finset.mk ↑xs' (multiset.coe_nodup.mpr nd_xs)) :
|
96 |
-
insert x xs = finset.mk ↑(x :: xs') (multiset.coe_nodup.mpr nd_xxs) :=
|
97 |
-
have h : x ∉ xs, by simpa [hxs'] using h,
|
98 |
-
by { rw [← finset.val_inj, finset.insert_val_of_not_mem h, hxs'], simp only [multiset.cons_coe] }
|
99 |
-
|
100 |
-
/-- Convert an expression denoting a finset to a list of elements,
|
101 |
-
a proof that this list is equal to the original finset,
|
102 |
-
and a proof that the list contains no duplicates.
|
103 |
-
|
104 |
-
We return a list rather than a finset, so we can more easily iterate over it
|
105 |
-
(without having to prove that our tactics are independent of the order of iteration,
|
106 |
-
which is in general not true).
|
107 |
-
|
108 |
-
`decide_eq` is a (partial) decision procedure for determining whether two
|
109 |
-
elements of the finset are equal, for example to parse `{2, 1, 2}` into `[2, 1]`.
|
110 |
-
-/
|
111 |
-
meta def eval_finset (decide_eq : expr → expr → tactic (bool × expr)) :
|
112 |
-
expr → tactic (list expr × expr × expr)
|
113 |
-
| e@`(has_emptyc.emptyc) := do
|
114 |
-
eq ← mk_eq_refl e,
|
115 |
-
nd ← i_to_expr ``(list.nodup_nil),
|
116 |
-
pure ([], eq, nd)
|
117 |
-
| e@`(has_singleton.singleton %%x) := do
|
118 |
-
eq ← mk_eq_refl e,
|
119 |
-
nd ← i_to_expr ``(list.nodup_singleton %%x),
|
120 |
-
pure ([x], eq, nd)
|
121 |
-
| `(@@has_insert.insert (@@finset.has_insert %%dec) %%x %%xs) := do
|
122 |
-
(exs, xs_eq, xs_nd) ← eval_finset xs,
|
123 |
-
(is_mem, mem_pf) ← list.decide_mem decide_eq x exs,
|
124 |
-
if is_mem then do
|
125 |
-
pf ← i_to_expr ``(finset.insert_eq_coe_list_of_mem %%x %%xs %%mem_pf %%xs_nd %%xs_eq),
|
126 |
-
pure (exs, pf, xs_nd)
|
127 |
-
else do
|
128 |
-
nd ← i_to_expr ``(list.nodup_cons.mpr ⟨%%mem_pf, %%xs_nd⟩),
|
129 |
-
pf ← i_to_expr ``(finset.insert_eq_coe_list_cons %%x %%xs %%mem_pf %%xs_nd %%nd %%xs_eq),
|
130 |
-
pure (x :: exs, pf, nd)
|
131 |
-
| `(@@finset.univ %%ft) := do
|
132 |
-
-- Convert the fintype instance expression `ft` to a list of its elements.
|
133 |
-
-- Unfold it to the `fintype.mk` constructor and a list of arguments.
|
134 |
-
`fintype.mk ← get_app_fn_const_whnf ft
|
135 |
-
| fail (to_fmt "Unknown fintype expression" ++ format.line ++ to_fmt ft),
|
136 |
-
[_, args, _] ← get_app_args_whnf ft | fail (to_fmt "Expected 3 arguments to `fintype.mk`"),
|
137 |
-
eval_finset args
|
138 |
-
| e@`(finset.range %%en) := do
|
139 |
-
n ← expr.to_nat en,
|
140 |
-
eis ← (list.range n).mmap (λ i, expr.of_nat `(ℕ) i),
|
141 |
-
eq ← mk_eq_refl e,
|
142 |
-
nd ← i_to_expr ``(list.nodup_range %%en),
|
143 |
-
pure (eis, eq, nd)
|
144 |
-
| e@`(finset.fin_range %%en) := do
|
145 |
-
n ← expr.to_nat en,
|
146 |
-
eis ← (list.fin_range n).mmap (λ i, expr.of_nat `(fin %%en) i),
|
147 |
-
eq ← mk_eq_refl e,
|
148 |
-
nd ← i_to_expr ``(list.nodup_fin_range %%en),
|
149 |
-
pure (eis, eq, nd)
|
150 |
-
| e := fail (to_fmt "Unknown finset expression" ++ format.line ++ to_fmt e)
|
151 |
-
|
152 |
lemma list.map_cons_congr {α β : Type*} (f : α → β) {x : α} {xs : list α} {fx : β} {fxs : list β}
|
153 |
(h₁ : f x = fx) (h₂ : xs.map f = fxs) : (x :: xs).map f = fx :: fxs :=
|
154 |
by rw [list.map_cons, h₁, h₂]
|
@@ -164,6 +98,36 @@ meta def eval_list_map (ef : expr) : list expr → tactic (list expr × expr)
|
|
164 |
eq ← i_to_expr ``(list.map_cons_congr %%ef %%fx_eq %%fxs_eq),
|
165 |
pure (fx :: fxs, eq)
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
lemma multiset.cons_congr {α : Type*} (x : α) {xs : multiset α} {xs' : list α}
|
168 |
(xs_eq : (xs' : multiset α) = xs) : (list.cons x xs' : multiset α) = x ::ₘ xs :=
|
169 |
by rw [← xs_eq]; refl
|
@@ -209,35 +173,71 @@ meta def eval_multiset : expr → tactic (list expr × expr)
|
|
209 |
pure (ys, eq)
|
210 |
| e := fail (to_fmt "Unknown multiset expression" ++ format.line ++ to_fmt e)
|
211 |
|
212 |
-
lemma
|
213 |
-
x
|
214 |
-
|
|
|
|
|
|
|
215 |
|
216 |
-
lemma
|
217 |
-
{
|
218 |
-
xs.
|
219 |
-
|
|
|
|
|
220 |
|
221 |
-
/-- Convert an expression denoting a
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
eq ← mk_eq_refl e,
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
eq ←
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
n ← expr.to_nat en,
|
232 |
eis ← (list.range n).mmap (λ i, expr.of_nat `(ℕ) i),
|
233 |
eq ← mk_eq_refl e,
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
241 |
|
242 |
@[to_additive]
|
243 |
lemma list.prod_cons_congr {α : Type*} [monoid α] (xs : list α) (x y z : α)
|
|
|
83 |
pf ← i_to_expr ``(list.not_mem_cons %%head_pf %%tail_pf),
|
84 |
pure (ff, pf)
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
lemma list.map_cons_congr {α β : Type*} (f : α → β) {x : α} {xs : list α} {fx : β} {fxs : list β}
|
87 |
(h₁ : f x = fx) (h₂ : xs.map f = fxs) : (x :: xs).map f = fx :: fxs :=
|
88 |
by rw [list.map_cons, h₁, h₂]
|
|
|
98 |
eq ← i_to_expr ``(list.map_cons_congr %%ef %%fx_eq %%fxs_eq),
|
99 |
pure (fx :: fxs, eq)
|
100 |
|
101 |
+
lemma list.cons_congr {α : Type*} (x : α) {xs : list α} {xs' : list α} (xs_eq : xs' = xs) :
|
102 |
+
x :: xs' = x :: xs :=
|
103 |
+
by rw xs_eq
|
104 |
+
|
105 |
+
lemma list.map_congr {α β : Type*} (f : α → β) {xs xs' : list α}
|
106 |
+
{ys : list β} (xs_eq : xs = xs') (ys_eq : xs'.map f = ys) :
|
107 |
+
xs.map f = ys :=
|
108 |
+
by rw [← ys_eq, xs_eq]
|
109 |
+
|
110 |
+
/-- Convert an expression denoting a list to a list of elements. -/
|
111 |
+
meta def eval_list : expr → tactic (list expr × expr)
|
112 |
+
| e@`(list.nil) := do
|
113 |
+
eq ← mk_eq_refl e,
|
114 |
+
pure ([], eq)
|
115 |
+
| e@`(list.cons %%x %%xs) := do
|
116 |
+
(xs, xs_eq) ← eval_list xs,
|
117 |
+
eq ← i_to_expr ``(list.cons_congr %%x %%xs_eq),
|
118 |
+
pure (x :: xs, eq)
|
119 |
+
| e@`(list.range %%en) := do
|
120 |
+
n ← expr.to_nat en,
|
121 |
+
eis ← (list.range n).mmap (λ i, expr.of_nat `(ℕ) i),
|
122 |
+
eq ← mk_eq_refl e,
|
123 |
+
pure (eis, eq)
|
124 |
+
| `(@list.map %%α %%β %%ef %%exs) := do
|
125 |
+
(xs, xs_eq) ← eval_list exs,
|
126 |
+
(ys, ys_eq) ← eval_list_map ef xs,
|
127 |
+
eq ← i_to_expr ``(list.map_congr %%ef %%xs_eq %%ys_eq),
|
128 |
+
pure (ys, eq)
|
129 |
+
| e := fail (to_fmt "Unknown list expression" ++ format.line ++ to_fmt e)
|
130 |
+
|
131 |
lemma multiset.cons_congr {α : Type*} (x : α) {xs : multiset α} {xs' : list α}
|
132 |
(xs_eq : (xs' : multiset α) = xs) : (list.cons x xs' : multiset α) = x ::ₘ xs :=
|
133 |
by rw [← xs_eq]; refl
|
|
|
173 |
pure (ys, eq)
|
174 |
| e := fail (to_fmt "Unknown multiset expression" ++ format.line ++ to_fmt e)
|
175 |
|
176 |
+
lemma finset.insert_eq_coe_list_of_mem {α : Type*} [decidable_eq α] (x : α) (xs : finset α)
|
177 |
+
{xs' : list α} (h : x ∈ xs') (nd_xs : xs'.nodup)
|
178 |
+
(hxs' : xs = finset.mk ↑xs' (multiset.coe_nodup.mpr nd_xs)) :
|
179 |
+
insert x xs = finset.mk ↑xs' (multiset.coe_nodup.mpr nd_xs) :=
|
180 |
+
have h : x ∈ xs, by simpa [hxs'] using h,
|
181 |
+
by rw [finset.insert_eq_of_mem h, hxs']
|
182 |
|
183 |
+
lemma finset.insert_eq_coe_list_cons {α : Type*} [decidable_eq α] (x : α) (xs : finset α)
|
184 |
+
{xs' : list α} (h : x ∉ xs') (nd_xs : xs'.nodup) (nd_xxs : (x :: xs').nodup)
|
185 |
+
(hxs' : xs = finset.mk ↑xs' (multiset.coe_nodup.mpr nd_xs)) :
|
186 |
+
insert x xs = finset.mk ↑(x :: xs') (multiset.coe_nodup.mpr nd_xxs) :=
|
187 |
+
have h : x ∉ xs, by simpa [hxs'] using h,
|
188 |
+
by { rw [← finset.val_inj, finset.insert_val_of_not_mem h, hxs'], simp only [multiset.cons_coe] }
|
189 |
|
190 |
+
/-- Convert an expression denoting a finset to a list of elements,
|
191 |
+
a proof that this list is equal to the original finset,
|
192 |
+
and a proof that the list contains no duplicates.
|
193 |
+
|
194 |
+
We return a list rather than a finset, so we can more easily iterate over it
|
195 |
+
(without having to prove that our tactics are independent of the order of iteration,
|
196 |
+
which is in general not true).
|
197 |
+
|
198 |
+
`decide_eq` is a (partial) decision procedure for determining whether two
|
199 |
+
elements of the finset are equal, for example to parse `{2, 1, 2}` into `[2, 1]`.
|
200 |
+
-/
|
201 |
+
meta def eval_finset (decide_eq : expr → expr → tactic (bool × expr)) :
|
202 |
+
expr → tactic (list expr × expr × expr)
|
203 |
+
| e@`(has_emptyc.emptyc) := do
|
204 |
eq ← mk_eq_refl e,
|
205 |
+
nd ← i_to_expr ``(list.nodup_nil),
|
206 |
+
pure ([], eq, nd)
|
207 |
+
| e@`(has_singleton.singleton %%x) := do
|
208 |
+
eq ← mk_eq_refl e,
|
209 |
+
nd ← i_to_expr ``(list.nodup_singleton %%x),
|
210 |
+
pure ([x], eq, nd)
|
211 |
+
| `(@@has_insert.insert (@@finset.has_insert %%dec) %%x %%xs) := do
|
212 |
+
(exs, xs_eq, xs_nd) ← eval_finset xs,
|
213 |
+
(is_mem, mem_pf) ← list.decide_mem decide_eq x exs,
|
214 |
+
if is_mem then do
|
215 |
+
pf ← i_to_expr ``(finset.insert_eq_coe_list_of_mem %%x %%xs %%mem_pf %%xs_nd %%xs_eq),
|
216 |
+
pure (exs, pf, xs_nd)
|
217 |
+
else do
|
218 |
+
nd ← i_to_expr ``(list.nodup_cons.mpr ⟨%%mem_pf, %%xs_nd⟩),
|
219 |
+
pf ← i_to_expr ``(finset.insert_eq_coe_list_cons %%x %%xs %%mem_pf %%xs_nd %%nd %%xs_eq),
|
220 |
+
pure (x :: exs, pf, nd)
|
221 |
+
| `(@@finset.univ %%ft) := do
|
222 |
+
-- Convert the fintype instance expression `ft` to a list of its elements.
|
223 |
+
-- Unfold it to the `fintype.mk` constructor and a list of arguments.
|
224 |
+
`fintype.mk ← get_app_fn_const_whnf ft
|
225 |
+
| fail (to_fmt "Unknown fintype expression" ++ format.line ++ to_fmt ft),
|
226 |
+
[_, args, _] ← get_app_args_whnf ft | fail (to_fmt "Expected 3 arguments to `fintype.mk`"),
|
227 |
+
eval_finset args
|
228 |
+
| e@`(finset.range %%en) := do
|
229 |
n ← expr.to_nat en,
|
230 |
eis ← (list.range n).mmap (λ i, expr.of_nat `(ℕ) i),
|
231 |
eq ← mk_eq_refl e,
|
232 |
+
nd ← i_to_expr ``(list.nodup_range %%en),
|
233 |
+
pure (eis, eq, nd)
|
234 |
+
| e@`(finset.fin_range %%en) := do
|
235 |
+
n ← expr.to_nat en,
|
236 |
+
eis ← (list.fin_range n).mmap (λ i, expr.of_nat `(fin %%en) i),
|
237 |
+
eq ← mk_eq_refl e,
|
238 |
+
nd ← i_to_expr ``(list.nodup_fin_range %%en),
|
239 |
+
pure (eis, eq, nd)
|
240 |
+
| e := fail (to_fmt "Unknown finset expression" ++ format.line ++ to_fmt e)
|
241 |
|
242 |
@[to_additive]
|
243 |
lemma list.prod_cons_congr {α : Type*} [monoid α] (xs : list α) (x y z : α)
|
formal/lean/mathlib/algebra/big_operators/ring.lean
CHANGED
@@ -52,7 +52,7 @@ add_monoid_hom.map_sum (add_monoid_hom.mul_left b) _ s
|
|
52 |
|
53 |
lemma sum_mul_sum {ι₁ : Type*} {ι₂ : Type*} (s₁ : finset ι₁) (s₂ : finset ι₂)
|
54 |
(f₁ : ι₁ → β) (f₂ : ι₂ → β) :
|
55 |
-
(∑ x₁ in s₁, f₁ x₁) * (∑ x₂ in s₂, f₂ x₂) = ∑ p in s
|
56 |
by { rw [sum_product, sum_mul, sum_congr rfl], intros, rw mul_sum }
|
57 |
|
58 |
end semiring
|
|
|
52 |
|
53 |
lemma sum_mul_sum {ι₁ : Type*} {ι₂ : Type*} (s₁ : finset ι₁) (s₂ : finset ι₂)
|
54 |
(f₁ : ι₁ → β) (f₂ : ι₂ → β) :
|
55 |
+
(∑ x₁ in s₁, f₁ x₁) * (∑ x₂ in s₂, f₂ x₂) = ∑ p in s₁ ×ˢ s₂, f₁ p.1 * f₂ p.2 :=
|
56 |
by { rw [sum_product, sum_mul, sum_congr rfl], intros, rw mul_sum }
|
57 |
|
58 |
end semiring
|
formal/lean/mathlib/algebra/category/FinVect.lean
CHANGED
@@ -31,22 +31,21 @@ instance monoidal_predicate_finite_dimensional :
|
|
31 |
{ prop_id' := finite_dimensional.finite_dimensional_self K,
|
32 |
prop_tensor' := λ X Y hX hY, by exactI module.finite.tensor_product K X Y }
|
33 |
|
|
|
|
|
|
|
|
|
34 |
/-- Define `FinVect` as the subtype of `Module.{u} K` of finite dimensional vector spaces. -/
|
35 |
-
@[derive [large_category,
|
36 |
-
|
37 |
-
def FinVect :=
|
38 |
|
39 |
namespace FinVect
|
40 |
|
41 |
-
instance finite_dimensional (V : FinVect K) : finite_dimensional K V := V.
|
42 |
|
43 |
instance : inhabited (FinVect K) := ⟨⟨Module.of K K, finite_dimensional.finite_dimensional_self K⟩⟩
|
44 |
|
45 |
-
instance : has_coe (FinVect.{u} K) (Module.{u} K) := { coe := λ V, V.1, }
|
46 |
-
|
47 |
-
protected lemma coe_comp {U V W : FinVect K} (f : U ⟶ V) (g : V ⟶ W) :
|
48 |
-
((f ≫ g) : U → W) = (g : V → W) ∘ (f : U → V) := rfl
|
49 |
-
|
50 |
/-- Lift an unbundled vector space to `FinVect K`. -/
|
51 |
def of (V : Type u) [add_comm_group V] [module K V] [finite_dimensional K V] : FinVect K :=
|
52 |
⟨Module.of K V, by { change finite_dimensional K V, apply_instance }⟩
|
@@ -57,46 +56,45 @@ by { dsimp [FinVect], apply_instance, }
|
|
57 |
instance : full (forget₂ (FinVect K) (Module.{u} K)) :=
|
58 |
{ preimage := λ X Y f, f, }
|
59 |
|
60 |
-
variables (V : FinVect K)
|
|
|
|
|
61 |
|
62 |
/-- The dual module is the dual in the rigid monoidal category `FinVect K`. -/
|
63 |
def FinVect_dual : FinVect K :=
|
64 |
-
⟨Module.of K (module.dual K V), subspace.module.dual.finite_dimensional⟩
|
65 |
-
|
66 |
-
instance : has_coe_to_fun (FinVect_dual K V) (λ _, V → K) :=
|
67 |
-
{ coe := λ v, by { change V →ₗ[K] K at v, exact v, } }
|
68 |
|
69 |
open category_theory.monoidal_category
|
70 |
|
71 |
/-- The coevaluation map is defined in `linear_algebra.coevaluation`. -/
|
72 |
def FinVect_coevaluation : 𝟙_ (FinVect K) ⟶ V ⊗ (FinVect_dual K V) :=
|
73 |
-
by apply coevaluation K V
|
74 |
|
75 |
lemma FinVect_coevaluation_apply_one : FinVect_coevaluation K V (1 : K) =
|
76 |
-
∑ (i : basis.of_vector_space_index K V),
|
77 |
-
(basis.of_vector_space K V) i ⊗ₜ[K] (basis.of_vector_space K V).coord i :=
|
78 |
-
by apply coevaluation_apply_one K V
|
79 |
|
80 |
/-- The evaluation morphism is given by the contraction map. -/
|
81 |
def FinVect_evaluation : (FinVect_dual K V) ⊗ V ⟶ 𝟙_ (FinVect K) :=
|
82 |
-
by apply contract_left K V
|
83 |
|
84 |
@[simp]
|
85 |
-
lemma FinVect_evaluation_apply (f : (FinVect_dual K V)) (x : V) :
|
86 |
-
(FinVect_evaluation K V) (f ⊗ₜ x) = f x :=
|
87 |
by apply contract_left_apply f x
|
88 |
|
89 |
private theorem coevaluation_evaluation :
|
90 |
let V' : FinVect K := FinVect_dual K V in
|
91 |
(𝟙 V' ⊗ (FinVect_coevaluation K V)) ≫ (α_ V' V V').inv ≫ (FinVect_evaluation K V ⊗ 𝟙 V')
|
92 |
= (ρ_ V').hom ≫ (λ_ V').inv :=
|
93 |
-
by apply contract_left_assoc_coevaluation K V
|
94 |
|
95 |
private theorem evaluation_coevaluation :
|
96 |
(FinVect_coevaluation K V ⊗ 𝟙 V)
|
97 |
≫ (α_ V (FinVect_dual K V) V).hom ≫ (𝟙 V ⊗ FinVect_evaluation K V)
|
98 |
= (λ_ V).hom ≫ (ρ_ V).inv :=
|
99 |
-
by apply contract_left_assoc_coevaluation' K V
|
100 |
|
101 |
instance exact_pairing : exact_pairing V (FinVect_dual K V) :=
|
102 |
{ coevaluation := FinVect_coevaluation K V,
|
@@ -108,11 +106,11 @@ instance right_dual : has_right_dual V := ⟨FinVect_dual K V⟩
|
|
108 |
|
109 |
instance right_rigid_category : right_rigid_category (FinVect K) := { }
|
110 |
|
111 |
-
variables {K V}
|
112 |
|
113 |
/-- Converts and isomorphism in the category `FinVect` to a `linear_equiv` between the underlying
|
114 |
vector spaces. -/
|
115 |
-
def iso_to_linear_equiv {V W : FinVect K} (i : V ≅ W) : V ≃ₗ[K] W :=
|
116 |
((forget₂ (FinVect.{u} K) (Module.{u} K)).map_iso i).to_linear_equiv
|
117 |
|
118 |
lemma iso.conj_eq_conj {V W : FinVect K} (i : V ≅ W) (f : End V) :
|
|
|
31 |
{ prop_id' := finite_dimensional.finite_dimensional_self K,
|
32 |
prop_tensor' := λ X Y hX hY, by exactI module.finite.tensor_product K X Y }
|
33 |
|
34 |
+
instance closed_predicate_finite_dimensional :
|
35 |
+
monoidal_category.closed_predicate (λ V : Module.{u} K, finite_dimensional K V) :=
|
36 |
+
{ prop_ihom' := λ X Y hX hY, by exactI @linear_map.finite_dimensional K _ X _ _ hX Y _ _ hY }
|
37 |
+
|
38 |
/-- Define `FinVect` as the subtype of `Module.{u} K` of finite dimensional vector spaces. -/
|
39 |
+
@[derive [large_category, concrete_category, monoidal_category, symmetric_category,
|
40 |
+
monoidal_closed]]
|
41 |
+
def FinVect := full_subcategory (λ (V : Module.{u} K), finite_dimensional K V)
|
42 |
|
43 |
namespace FinVect
|
44 |
|
45 |
+
instance finite_dimensional (V : FinVect K) : finite_dimensional K V.obj := V.property
|
46 |
|
47 |
instance : inhabited (FinVect K) := ⟨⟨Module.of K K, finite_dimensional.finite_dimensional_self K⟩⟩
|
48 |
|
|
|
|
|
|
|
|
|
|
|
49 |
/-- Lift an unbundled vector space to `FinVect K`. -/
|
50 |
def of (V : Type u) [add_comm_group V] [module K V] [finite_dimensional K V] : FinVect K :=
|
51 |
⟨Module.of K V, by { change finite_dimensional K V, apply_instance }⟩
|
|
|
56 |
instance : full (forget₂ (FinVect K) (Module.{u} K)) :=
|
57 |
{ preimage := λ X Y f, f, }
|
58 |
|
59 |
+
variables (V W : FinVect K)
|
60 |
+
|
61 |
+
@[simp] lemma ihom_obj : (ihom V).obj W = FinVect.of K (V.obj →ₗ[K] W.obj) := rfl
|
62 |
|
63 |
/-- The dual module is the dual in the rigid monoidal category `FinVect K`. -/
|
64 |
def FinVect_dual : FinVect K :=
|
65 |
+
⟨Module.of K (module.dual K V.obj), subspace.module.dual.finite_dimensional⟩
|
|
|
|
|
|
|
66 |
|
67 |
open category_theory.monoidal_category
|
68 |
|
69 |
/-- The coevaluation map is defined in `linear_algebra.coevaluation`. -/
|
70 |
def FinVect_coevaluation : 𝟙_ (FinVect K) ⟶ V ⊗ (FinVect_dual K V) :=
|
71 |
+
by apply coevaluation K V.obj
|
72 |
|
73 |
lemma FinVect_coevaluation_apply_one : FinVect_coevaluation K V (1 : K) =
|
74 |
+
∑ (i : basis.of_vector_space_index K V.obj),
|
75 |
+
(basis.of_vector_space K V.obj) i ⊗ₜ[K] (basis.of_vector_space K V.obj).coord i :=
|
76 |
+
by apply coevaluation_apply_one K V.obj
|
77 |
|
78 |
/-- The evaluation morphism is given by the contraction map. -/
|
79 |
def FinVect_evaluation : (FinVect_dual K V) ⊗ V ⟶ 𝟙_ (FinVect K) :=
|
80 |
+
by apply contract_left K V.obj
|
81 |
|
82 |
@[simp]
|
83 |
+
lemma FinVect_evaluation_apply (f : (FinVect_dual K V).obj) (x : V.obj) :
|
84 |
+
(FinVect_evaluation K V) (f ⊗ₜ x) = f.to_fun x :=
|
85 |
by apply contract_left_apply f x
|
86 |
|
87 |
private theorem coevaluation_evaluation :
|
88 |
let V' : FinVect K := FinVect_dual K V in
|
89 |
(𝟙 V' ⊗ (FinVect_coevaluation K V)) ≫ (α_ V' V V').inv ≫ (FinVect_evaluation K V ⊗ 𝟙 V')
|
90 |
= (ρ_ V').hom ≫ (λ_ V').inv :=
|
91 |
+
by apply contract_left_assoc_coevaluation K V.obj
|
92 |
|
93 |
private theorem evaluation_coevaluation :
|
94 |
(FinVect_coevaluation K V ⊗ 𝟙 V)
|
95 |
≫ (α_ V (FinVect_dual K V) V).hom ≫ (𝟙 V ⊗ FinVect_evaluation K V)
|
96 |
= (λ_ V).hom ≫ (ρ_ V).inv :=
|
97 |
+
by apply contract_left_assoc_coevaluation' K V.obj
|
98 |
|
99 |
instance exact_pairing : exact_pairing V (FinVect_dual K V) :=
|
100 |
{ coevaluation := FinVect_coevaluation K V,
|
|
|
106 |
|
107 |
instance right_rigid_category : right_rigid_category (FinVect K) := { }
|
108 |
|
109 |
+
variables {K V}
|
110 |
|
111 |
/-- Converts and isomorphism in the category `FinVect` to a `linear_equiv` between the underlying
|
112 |
vector spaces. -/
|
113 |
+
def iso_to_linear_equiv {V W : FinVect K} (i : V ≅ W) : V.obj ≃ₗ[K] W.obj :=
|
114 |
((forget₂ (FinVect.{u} K) (Module.{u} K)).map_iso i).to_linear_equiv
|
115 |
|
116 |
lemma iso.conj_eq_conj {V W : FinVect K} (i : V ≅ W) (f : End V) :
|
formal/lean/mathlib/algebra/category/FinVect/limits.lean
CHANGED
@@ -48,7 +48,7 @@ instance (F : J ⥤ FinVect k) :
|
|
48 |
finite_dimensional k (limit (F ⋙ forget₂ (FinVect k) (Module.{v} k)) : Module.{v} k) :=
|
49 |
begin
|
50 |
haveI : ∀ j, finite_dimensional k ((F ⋙ forget₂ (FinVect k) (Module.{v} k)).obj j),
|
51 |
-
{ intro j, change finite_dimensional k (F.obj j), apply_instance, },
|
52 |
exact finite_dimensional.of_injective
|
53 |
(limit_subobject_product (F ⋙ forget₂ (FinVect k) (Module.{v} k)))
|
54 |
((Module.mono_iff_injective _).1 (by apply_instance)),
|
|
|
48 |
finite_dimensional k (limit (F ⋙ forget₂ (FinVect k) (Module.{v} k)) : Module.{v} k) :=
|
49 |
begin
|
50 |
haveI : ∀ j, finite_dimensional k ((F ⋙ forget₂ (FinVect k) (Module.{v} k)).obj j),
|
51 |
+
{ intro j, change finite_dimensional k (F.obj j).obj, apply_instance, },
|
52 |
exact finite_dimensional.of_injective
|
53 |
(limit_subobject_product (F ⋙ forget₂ (FinVect k) (Module.{v} k)))
|
54 |
((Module.mono_iff_injective _).1 (by apply_instance)),
|
formal/lean/mathlib/algebra/category/Group/epi_mono.lean
CHANGED
@@ -3,7 +3,7 @@ Copyright (c) 2022 Jujian Zhang. All rights reserved.
|
|
3 |
Released under Apache 2.0 license as described in the file LICENSE.
|
4 |
Authors: Jujian Zhang
|
5 |
-/
|
6 |
-
import algebra.category.Group.
|
7 |
import category_theory.epi_mono
|
8 |
import group_theory.quotient_group
|
9 |
|
@@ -23,6 +23,7 @@ open quotient_group
|
|
23 |
|
24 |
variables {A : Type u} {B : Type v}
|
25 |
|
|
|
26 |
variables [group A] [group B]
|
27 |
|
28 |
@[to_additive add_monoid_hom.ker_eq_bot_of_cancel]
|
@@ -30,6 +31,28 @@ lemma ker_eq_bot_of_cancel {f : A →* B} (h : ∀ (u v : f.ker →* A), f.comp
|
|
30 |
f.ker = ⊥ :=
|
31 |
by simpa using _root_.congr_arg range (h f.ker.subtype 1 (by tidy))
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
end monoid_hom
|
34 |
|
35 |
section
|
@@ -61,7 +84,7 @@ local notation `X` := set.range (function.swap left_coset f.range.carrier)
|
|
61 |
/--
|
62 |
Define `X'` to be the set of all left cosets with an extra point at "infinity".
|
63 |
-/
|
64 |
-
@[nolint
|
65 |
inductive X_with_infinity
|
66 |
| from_coset : set.range (function.swap left_coset f.range.carrier) → X_with_infinity
|
67 |
| infinity : X_with_infinity
|
@@ -281,4 +304,58 @@ iff.trans (epi_iff_surjective _) (subgroup.eq_top_iff' f.range).symm
|
|
281 |
|
282 |
end Group
|
283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
end
|
|
|
3 |
Released under Apache 2.0 license as described in the file LICENSE.
|
4 |
Authors: Jujian Zhang
|
5 |
-/
|
6 |
+
import algebra.category.Group.equivalence_Group_AddGroup
|
7 |
import category_theory.epi_mono
|
8 |
import group_theory.quotient_group
|
9 |
|
|
|
23 |
|
24 |
variables {A : Type u} {B : Type v}
|
25 |
|
26 |
+
section
|
27 |
variables [group A] [group B]
|
28 |
|
29 |
@[to_additive add_monoid_hom.ker_eq_bot_of_cancel]
|
|
|
31 |
f.ker = ⊥ :=
|
32 |
by simpa using _root_.congr_arg range (h f.ker.subtype 1 (by tidy))
|
33 |
|
34 |
+
end
|
35 |
+
|
36 |
+
section
|
37 |
+
variables [comm_group A] [comm_group B]
|
38 |
+
|
39 |
+
@[to_additive add_monoid_hom.range_eq_top_of_cancel]
|
40 |
+
lemma range_eq_top_of_cancel {f : A →* B}
|
41 |
+
(h : ∀ (u v : B →* B ⧸ f.range), u.comp f = v.comp f → u = v) :
|
42 |
+
f.range = ⊤ :=
|
43 |
+
begin
|
44 |
+
specialize h 1 (quotient_group.mk' _) _,
|
45 |
+
{ ext1,
|
46 |
+
simp only [one_apply, coe_comp, coe_mk', function.comp_app],
|
47 |
+
rw [show (1 : B ⧸ f.range) = (1 : B), from quotient_group.coe_one _, quotient_group.eq,
|
48 |
+
inv_one, one_mul],
|
49 |
+
exact ⟨x, rfl⟩, },
|
50 |
+
replace h : (quotient_group.mk' _).ker = (1 : B →* B ⧸ f.range).ker := by rw h,
|
51 |
+
rwa [ker_one, quotient_group.ker_mk] at h,
|
52 |
+
end
|
53 |
+
|
54 |
+
end
|
55 |
+
|
56 |
end monoid_hom
|
57 |
|
58 |
section
|
|
|
84 |
/--
|
85 |
Define `X'` to be the set of all left cosets with an extra point at "infinity".
|
86 |
-/
|
87 |
+
@[nolint has_nonempty_instance]
|
88 |
inductive X_with_infinity
|
89 |
| from_coset : set.range (function.swap left_coset f.range.carrier) → X_with_infinity
|
90 |
| infinity : X_with_infinity
|
|
|
304 |
|
305 |
end Group
|
306 |
|
307 |
+
namespace AddGroup
|
308 |
+
variables {A B : AddGroup.{u}} (f : A ⟶ B)
|
309 |
+
|
310 |
+
lemma epi_iff_surjective : epi f ↔ function.surjective f :=
|
311 |
+
begin
|
312 |
+
have i1 : epi f ↔ epi (Group_AddGroup_equivalence.inverse.map f),
|
313 |
+
{ refine ⟨_, Group_AddGroup_equivalence.inverse.epi_of_epi_map⟩,
|
314 |
+
introsI e',
|
315 |
+
apply Group_AddGroup_equivalence.inverse.map_epi },
|
316 |
+
rwa Group.epi_iff_surjective at i1,
|
317 |
+
end
|
318 |
+
|
319 |
+
lemma epi_iff_range_eq_top : epi f ↔ f.range = ⊤ :=
|
320 |
+
iff.trans (epi_iff_surjective _) (add_subgroup.eq_top_iff' f.range).symm
|
321 |
+
|
322 |
+
end AddGroup
|
323 |
+
|
324 |
+
namespace CommGroup
|
325 |
+
variables {A B : CommGroup.{u}} (f : A ⟶ B)
|
326 |
+
|
327 |
+
@[to_additive AddCommGroup.ker_eq_bot_of_mono]
|
328 |
+
lemma ker_eq_bot_of_mono [mono f] : f.ker = ⊥ :=
|
329 |
+
monoid_hom.ker_eq_bot_of_cancel $ λ u v,
|
330 |
+
(@cancel_mono _ _ _ _ _ f _ (show CommGroup.of f.ker ⟶ A, from u) _).1
|
331 |
+
|
332 |
+
@[to_additive AddCommGroup.mono_iff_ker_eq_bot]
|
333 |
+
lemma mono_iff_ker_eq_bot : mono f ↔ f.ker = ⊥ :=
|
334 |
+
⟨λ h, @@ker_eq_bot_of_mono f h,
|
335 |
+
λ h, concrete_category.mono_of_injective _ $ (monoid_hom.ker_eq_bot_iff f).1 h⟩
|
336 |
+
|
337 |
+
@[to_additive AddCommGroup.mono_iff_injective]
|
338 |
+
lemma mono_iff_injective : mono f ↔ function.injective f :=
|
339 |
+
iff.trans (mono_iff_ker_eq_bot f) $ monoid_hom.ker_eq_bot_iff f
|
340 |
+
|
341 |
+
@[to_additive]
|
342 |
+
lemma range_eq_top_of_epi [epi f] : f.range = ⊤ :=
|
343 |
+
monoid_hom.range_eq_top_of_cancel $ λ u v h,
|
344 |
+
(@cancel_epi _ _ _ _ _ f _ (show B ⟶ ⟨B ⧸ monoid_hom.range f⟩, from u) v).1 h
|
345 |
+
|
346 |
+
@[to_additive]
|
347 |
+
lemma epi_iff_range_eq_top : epi f ↔ f.range = ⊤ :=
|
348 |
+
⟨λ hf, by exactI range_eq_top_of_epi _,
|
349 |
+
λ hf, concrete_category.epi_of_surjective _ $ monoid_hom.range_top_iff_surjective.mp hf⟩
|
350 |
+
|
351 |
+
@[to_additive]
|
352 |
+
lemma epi_iff_surjective : epi f ↔ function.surjective f :=
|
353 |
+
by rw [epi_iff_range_eq_top, monoid_hom.range_top_iff_surjective]
|
354 |
+
|
355 |
+
@[to_additive]
|
356 |
+
instance : functor.preserves_epimorphisms (forget₂ CommGroup Group) :=
|
357 |
+
{ preserves := λ X Y f e, by rwa [epi_iff_surjective, ←@Group.epi_iff_surjective ⟨X⟩ ⟨Y⟩ f] at e }
|
358 |
+
|
359 |
+
end CommGroup
|
360 |
+
|
361 |
end
|
formal/lean/mathlib/algebra/category/Group/equivalence_Group_AddGroup.lean
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/-
|
2 |
+
Copyright (c) 2022 Jujian Zhang. All rights reserved.
|
3 |
+
Released under Apache 2.0 license as described in the file LICENSE.
|
4 |
+
Authors: Jujian Zhang
|
5 |
+
-/
|
6 |
+
import algebra.category.Group.basic
|
7 |
+
|
8 |
+
/-!
|
9 |
+
# Equivalence between `Group` and `AddGroup`
|
10 |
+
|
11 |
+
This file contains two equivalences:
|
12 |
+
* `Group_AddGroup_equivalence` : the equivalence between `Group` and `AddGroup` by sending
|
13 |
+
`X : Group` to `additive X` and `Y : AddGroup` to `multiplicative Y`.
|
14 |
+
* `CommGroup_AddCommGroup_equivlance` : the equivalence between `CommGroup` and `AddCommGroup` by
|
15 |
+
sending `X : CommGroup` to `additive X` and `Y : AddCommGroup` to `multiplicative Y`.
|
16 |
+
-/
|
17 |
+
|
18 |
+
open category_theory
|
19 |
+
|
20 |
+
namespace Group
|
21 |
+
|
22 |
+
/--
|
23 |
+
The functor `Group ⥤ AddGroup` by sending `X ↦ additive X` and `f ↦ f`.
|
24 |
+
-/
|
25 |
+
@[simps] def to_AddGroup : Group ⥤ AddGroup :=
|
26 |
+
{ obj := λ X, AddGroup.of (additive X),
|
27 |
+
map := λ X Y, monoid_hom.to_additive }
|
28 |
+
|
29 |
+
end Group
|
30 |
+
|
31 |
+
namespace CommGroup
|
32 |
+
|
33 |
+
/--
|
34 |
+
The functor `CommGroup ⥤ AddCommGroup` by sending `X ↦ additive X` and `f ↦ f`.
|
35 |
+
-/
|
36 |
+
@[simps] def to_AddCommGroup : CommGroup ⥤ AddCommGroup :=
|
37 |
+
{ obj := λ X, AddCommGroup.of (additive X),
|
38 |
+
map := λ X Y, monoid_hom.to_additive }
|
39 |
+
|
40 |
+
end CommGroup
|
41 |
+
|
42 |
+
namespace AddGroup
|
43 |
+
|
44 |
+
/--
|
45 |
+
The functor `AddGroup ⥤ Group` by sending `X ↦ multiplicative Y` and `f ↦ f`.
|
46 |
+
-/
|
47 |
+
@[simps] def to_Group : AddGroup ⥤ Group :=
|
48 |
+
{ obj := λ X, Group.of (multiplicative X),
|
49 |
+
map := λ X Y, add_monoid_hom.to_multiplicative }
|
50 |
+
|
51 |
+
end AddGroup
|
52 |
+
|
53 |
+
namespace AddCommGroup
|
54 |
+
|
55 |
+
/--
|
56 |
+
The functor `AddCommGroup ⥤ CommGroup` by sending `X ↦ multiplicative Y` and `f ↦ f`.
|
57 |
+
-/
|
58 |
+
@[simps] def to_CommGroup : AddCommGroup ⥤ CommGroup :=
|
59 |
+
{ obj := λ X, CommGroup.of (multiplicative X),
|
60 |
+
map := λ X Y, add_monoid_hom.to_multiplicative }
|
61 |
+
|
62 |
+
end AddCommGroup
|
63 |
+
|
64 |
+
/--
|
65 |
+
The equivalence of categories between `Group` and `AddGroup`
|
66 |
+
-/
|
67 |
+
@[simps] def Group_AddGroup_equivalence : Group ≌ AddGroup :=
|
68 |
+
equivalence.mk Group.to_AddGroup AddGroup.to_Group
|
69 |
+
(nat_iso.of_components
|
70 |
+
(λ X, mul_equiv.to_Group_iso (mul_equiv.multiplicative_additive X))
|
71 |
+
(λ X Y f, rfl))
|
72 |
+
(nat_iso.of_components
|
73 |
+
(λ X, add_equiv.to_AddGroup_iso (add_equiv.additive_multiplicative X))
|
74 |
+
(λ X Y f, rfl))
|
75 |
+
|
76 |
+
/--
|
77 |
+
The equivalence of categories between `CommGroup` and `AddCommGroup`.
|
78 |
+
-/
|
79 |
+
@[simps] def CommGroup_AddCommGroup_equivalence : CommGroup ≌ AddCommGroup :=
|
80 |
+
equivalence.mk CommGroup.to_AddCommGroup AddCommGroup.to_CommGroup
|
81 |
+
(nat_iso.of_components
|
82 |
+
(λ X, mul_equiv.to_CommGroup_iso (mul_equiv.multiplicative_additive X))
|
83 |
+
(λ X Y f, rfl))
|
84 |
+
(nat_iso.of_components
|
85 |
+
(λ X, add_equiv.to_AddCommGroup_iso (add_equiv.additive_multiplicative X))
|
86 |
+
(λ X Y f, rfl))
|
formal/lean/mathlib/algebra/category/Module/adjunctions.lean
CHANGED
@@ -156,7 +156,7 @@ universes v u
|
|
156 |
we will equip with a category structure where the morphisms are formal `R`-linear combinations
|
157 |
of the morphisms in `C`.
|
158 |
-/
|
159 |
-
@[nolint unused_arguments
|
160 |
def Free (R : Type*) (C : Type u) := C
|
161 |
|
162 |
/--
|
|
|
156 |
we will equip with a category structure where the morphisms are formal `R`-linear combinations
|
157 |
of the morphisms in `C`.
|
158 |
-/
|
159 |
+
@[nolint unused_arguments has_nonempty_instance]
|
160 |
def Free (R : Type*) (C : Type u) := C
|
161 |
|
162 |
/--
|
formal/lean/mathlib/algebra/category/Module/change_of_rings.lean
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/-
|
2 |
+
Copyright (c) 2022 Jujian Zhang. All rights reserved.
|
3 |
+
Released under Apache 2.0 license as described in the file LICENSE.
|
4 |
+
Authors: Jujian Zhang
|
5 |
+
-/
|
6 |
+
import algebra.category.Module.basic
|
7 |
+
|
8 |
+
/-!
|
9 |
+
# Change Of Rings
|
10 |
+
|
11 |
+
## Main definitions
|
12 |
+
|
13 |
+
* `category_theory.Module.restrict_scalars`: given rings `R, S` and a ring homomorphism `R ⟶ S`,
|
14 |
+
then `restrict_scalars : Module S ⥤ Module R` is defined by `M ↦ M` where `M : S-module` is seen
|
15 |
+
as `R-module` by `r • m := f r • m` and `S`-linear map `l : M ⟶ M'` is `R`-linear as well.
|
16 |
+
-/
|
17 |
+
|
18 |
+
|
19 |
+
namespace category_theory.Module
|
20 |
+
|
21 |
+
universes v u₁ u₂
|
22 |
+
|
23 |
+
namespace restrict_scalars
|
24 |
+
|
25 |
+
variables {R : Type u₁} {S : Type u₂} [ring R] [ring S] (f : R →+* S)
|
26 |
+
variable (M : Module.{v} S)
|
27 |
+
|
28 |
+
/-- Any `S`-module M is also an `R`-module via a ring homomorphism `f : R ⟶ S` by defining
|
29 |
+
`r • m := f r • m` (`module.comp_hom`). This is called restriction of scalars. -/
|
30 |
+
def obj' : Module R :=
|
31 |
+
{ carrier := M,
|
32 |
+
is_module := module.comp_hom M f }
|
33 |
+
|
34 |
+
/--
|
35 |
+
Given an `S`-linear map `g : M → M'` between `S`-modules, `g` is also `R`-linear between `M` and
|
36 |
+
`M'` by means of restriction of scalars.
|
37 |
+
-/
|
38 |
+
def map' {M M' : Module.{v} S} (g : M ⟶ M') :
|
39 |
+
obj' f M ⟶ obj' f M' :=
|
40 |
+
{ map_smul' := λ r, g.map_smul (f r), ..g }
|
41 |
+
|
42 |
+
end restrict_scalars
|
43 |
+
|
44 |
+
/--
|
45 |
+
The restriction of scalars operation is functorial. For any `f : R →+* S` a ring homomorphism,
|
46 |
+
* an `S`-module `M` can be considered as `R`-module by `r • m = f r • m`
|
47 |
+
* an `S`-linear map is also `R`-linear
|
48 |
+
-/
|
49 |
+
def restrict_scalars {R : Type u₁} {S : Type u₂} [ring R] [ring S] (f : R →+* S) :
|
50 |
+
Module.{v} S ⥤ Module.{v} R :=
|
51 |
+
{ obj := restrict_scalars.obj' f,
|
52 |
+
map := λ _ _, restrict_scalars.map' f,
|
53 |
+
map_id' := λ _, linear_map.ext $ λ m, rfl,
|
54 |
+
map_comp' := λ _ _ _ g h, linear_map.ext $ λ m, rfl }
|
55 |
+
|
56 |
+
@[simp] lemma restrict_scalars.map_apply {R : Type u₁} {S : Type u₂} [ring R] [ring S] (f : R →+* S)
|
57 |
+
{M M' : Module.{v} S} (g : M ⟶ M') (x) : (restrict_scalars f).map g x = g x := rfl
|
58 |
+
|
59 |
+
@[simp] lemma restrict_scalars.smul_def {R : Type u₁} {S : Type u₂} [ring R] [ring S] (f : R →+* S)
|
60 |
+
{M : Module.{v} S} (r : R) (m : (restrict_scalars f).obj M) : r • m = (f r • m : M) := rfl
|
61 |
+
|
62 |
+
@[simp] lemma restrict_scalars.smul_def' {R : Type u₁} {S : Type u₂} [ring R] [ring S] (f : R →+* S)
|
63 |
+
{M : Module.{v} S} (r : R) (m : M) : (r • m : (restrict_scalars f).obj M) = (f r • m : M) := rfl
|
64 |
+
|
65 |
+
end category_theory.Module
|
formal/lean/mathlib/algebra/char_p/algebra.lean
CHANGED
@@ -65,6 +65,9 @@ variables (K L : Type*) [field K] [comm_semiring L] [nontrivial L] [algebra K L]
|
|
65 |
lemma algebra.char_p_iff (p : ℕ) : char_p K p ↔ char_p L p :=
|
66 |
(algebra_map K L).char_p_iff_char_p p
|
67 |
|
|
|
|
|
|
|
68 |
end
|
69 |
|
70 |
namespace free_algebra
|
|
|
65 |
lemma algebra.char_p_iff (p : ℕ) : char_p K p ↔ char_p L p :=
|
66 |
(algebra_map K L).char_p_iff_char_p p
|
67 |
|
68 |
+
lemma algebra.ring_char_eq : ring_char K = ring_char L :=
|
69 |
+
by { rw [ring_char.eq_iff, algebra.char_p_iff K L], apply ring_char.char_p }
|
70 |
+
|
71 |
end
|
72 |
|
73 |
namespace free_algebra
|
formal/lean/mathlib/algebra/char_p/basic.lean
CHANGED
@@ -349,13 +349,16 @@ calc (k : R) = ↑(k % p + p * (k / p)) : by rw [nat.mod_add_div]
|
|
349 |
... = ↑(k % p) : by simp [cast_eq_zero]
|
350 |
|
351 |
/-- The characteristic of a finite ring cannot be zero. -/
|
352 |
-
theorem
|
353 |
-
|
354 |
-
|
355 |
-
|
|
|
|
|
|
|
356 |
|
357 |
-
lemma
|
358 |
-
|
359 |
|
360 |
end
|
361 |
|
@@ -432,11 +435,11 @@ end semiring
|
|
432 |
|
433 |
section ring
|
434 |
|
435 |
-
variables (R) [ring R] [no_zero_divisors R] [nontrivial R] [
|
436 |
|
437 |
theorem char_is_prime (p : ℕ) [char_p R p] :
|
438 |
p.prime :=
|
439 |
-
or.resolve_right (char_is_prime_or_zero R p) (
|
440 |
|
441 |
end ring
|
442 |
|
|
|
349 |
... = ↑(k % p) : by simp [cast_eq_zero]
|
350 |
|
351 |
/-- The characteristic of a finite ring cannot be zero. -/
|
352 |
+
theorem char_ne_zero_of_finite (p : ℕ) [char_p R p] [finite R] : p ≠ 0 :=
|
353 |
+
begin
|
354 |
+
unfreezingI { rintro rfl },
|
355 |
+
haveI : char_zero R := char_p_to_char_zero R,
|
356 |
+
casesI nonempty_fintype R,
|
357 |
+
exact absurd nat.cast_injective (not_injective_infinite_fintype (coe : ℕ → R))
|
358 |
+
end
|
359 |
|
360 |
+
lemma ring_char_ne_zero_of_finite [finite R] : ring_char R ≠ 0 :=
|
361 |
+
char_ne_zero_of_finite R (ring_char R)
|
362 |
|
363 |
end
|
364 |
|
|
|
435 |
|
436 |
section ring
|
437 |
|
438 |
+
variables (R) [ring R] [no_zero_divisors R] [nontrivial R] [finite R]
|
439 |
|
440 |
theorem char_is_prime (p : ℕ) [char_p R p] :
|
441 |
p.prime :=
|
442 |
+
or.resolve_right (char_is_prime_or_zero R p) (char_ne_zero_of_finite R p)
|
443 |
|
444 |
end ring
|
445 |
|
formal/lean/mathlib/algebra/char_p/char_and_card.lean
CHANGED
@@ -15,12 +15,14 @@ We prove some results relating characteristic and cardinality of finite rings
|
|
15 |
characterstic, cardinality, ring
|
16 |
-/
|
17 |
|
18 |
-
/-- A prime `p` is a unit in a
|
19 |
-
|
20 |
-
lemma
|
|
|
21 |
is_unit (p : R) ↔ ¬ p ∣ ring_char R :=
|
22 |
begin
|
23 |
have hch := char_p.cast_eq_zero R (ring_char R),
|
|
|
24 |
split,
|
25 |
{ rintros h₁ ⟨q, hq⟩,
|
26 |
rcases is_unit.exists_left_inv h₁ with ⟨a, ha⟩,
|
@@ -29,8 +31,7 @@ begin
|
|
29 |
rintro ⟨r, hr⟩,
|
30 |
rw [hr, ← mul_assoc, mul_comm p, mul_assoc] at hq,
|
31 |
nth_rewrite 0 ← mul_one (ring_char R) at hq,
|
32 |
-
exact nat.prime.not_dvd_one
|
33 |
-
⟨r, mul_left_cancel₀ (char_p.char_ne_zero_of_fintype R (ring_char R)) hq⟩,
|
34 |
end,
|
35 |
have h₄ := mt (char_p.int_cast_eq_zero_iff R (ring_char R) q).mp,
|
36 |
apply_fun (coe : ℕ → R) at hq,
|
@@ -39,14 +40,19 @@ begin
|
|
39 |
norm_cast at h₄,
|
40 |
exact h₄ h₃ hq.symm, },
|
41 |
{ intro h,
|
42 |
-
rcases
|
43 |
-
with ⟨a, b, hab⟩,
|
44 |
apply_fun (coe : ℤ → R) at hab,
|
45 |
push_cast at hab,
|
46 |
rw [hch, mul_zero, add_zero, mul_comm] at hab,
|
47 |
exact is_unit_of_mul_eq_one (p : R) a hab, },
|
48 |
end
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
/-- The prime divisors of the characteristic of a finite commutative ring are exactly
|
51 |
the prime divisors of its cardinality. -/
|
52 |
lemma prime_dvd_char_iff_dvd_card {R : Type*} [comm_ring R] [fintype R] (p : ℕ) [fact p.prime] :
|
|
|
15 |
characterstic, cardinality, ring
|
16 |
-/
|
17 |
|
18 |
+
/-- A prime `p` is a unit in a commutative ring `R` of nonzero characterstic iff it does not divide
|
19 |
+
the characteristic. -/
|
20 |
+
lemma is_unit_iff_not_dvd_char_of_ring_char_ne_zero (R : Type*) [comm_ring R] (p : ℕ) [fact p.prime]
|
21 |
+
(hR : ring_char R ≠ 0) :
|
22 |
is_unit (p : R) ↔ ¬ p ∣ ring_char R :=
|
23 |
begin
|
24 |
have hch := char_p.cast_eq_zero R (ring_char R),
|
25 |
+
have hp : p.prime := fact.out p.prime,
|
26 |
split,
|
27 |
{ rintros h₁ ⟨q, hq⟩,
|
28 |
rcases is_unit.exists_left_inv h₁ with ⟨a, ha⟩,
|
|
|
31 |
rintro ⟨r, hr⟩,
|
32 |
rw [hr, ← mul_assoc, mul_comm p, mul_assoc] at hq,
|
33 |
nth_rewrite 0 ← mul_one (ring_char R) at hq,
|
34 |
+
exact nat.prime.not_dvd_one hp ⟨r, mul_left_cancel₀ hR hq⟩,
|
|
|
35 |
end,
|
36 |
have h₄ := mt (char_p.int_cast_eq_zero_iff R (ring_char R) q).mp,
|
37 |
apply_fun (coe : ℕ → R) at hq,
|
|
|
40 |
norm_cast at h₄,
|
41 |
exact h₄ h₃ hq.symm, },
|
42 |
{ intro h,
|
43 |
+
rcases (hp.coprime_iff_not_dvd.mpr h).is_coprime with ⟨a, b, hab⟩,
|
|
|
44 |
apply_fun (coe : ℤ → R) at hab,
|
45 |
push_cast at hab,
|
46 |
rw [hch, mul_zero, add_zero, mul_comm] at hab,
|
47 |
exact is_unit_of_mul_eq_one (p : R) a hab, },
|
48 |
end
|
49 |
|
50 |
+
/-- A prime `p` is a unit in a finite commutative ring `R`
|
51 |
+
iff it does not divide the characteristic. -/
|
52 |
+
lemma is_unit_iff_not_dvd_char (R : Type*) [comm_ring R] (p : ℕ) [fact p.prime] [finite R] :
|
53 |
+
is_unit (p : R) ↔ ¬ p ∣ ring_char R :=
|
54 |
+
is_unit_iff_not_dvd_char_of_ring_char_ne_zero R p $ char_p.char_ne_zero_of_finite R (ring_char R)
|
55 |
+
|
56 |
/-- The prime divisors of the characteristic of a finite commutative ring are exactly
|
57 |
the prime divisors of its cardinality. -/
|
58 |
lemma prime_dvd_char_iff_dvd_card {R : Type*} [comm_ring R] [fintype R] (p : ℕ) [fact p.prime] :
|
formal/lean/mathlib/algebra/direct_sum/internal.lean
CHANGED
@@ -152,8 +152,7 @@ lemma direct_sum.coe_mul_apply [add_monoid ι] [semiring R] [set_like σ R]
|
|
152 |
[add_submonoid_class σ R] (A : ι → σ) [set_like.graded_monoid A]
|
153 |
[Π (i : ι) (x : A i), decidable (x ≠ 0)] (r r' : ⨁ i, A i) (i : ι) :
|
154 |
((r * r') i : R) =
|
155 |
-
∑ ij in
|
156 |
-
r ij.1 * r' ij.2 :=
|
157 |
begin
|
158 |
rw [direct_sum.mul_eq_sum_support_ghas_mul, dfinsupp.finset_sum_apply,
|
159 |
add_submonoid_class.coe_finset_sum],
|
|
|
152 |
[add_submonoid_class σ R] (A : ι → σ) [set_like.graded_monoid A]
|
153 |
[Π (i : ι) (x : A i), decidable (x ≠ 0)] (r r' : ⨁ i, A i) (i : ι) :
|
154 |
((r * r') i : R) =
|
155 |
+
∑ ij in (r.support ×ˢ r'.support).filter (λ ij : ι × ι, ij.1 + ij.2 = i), r ij.1 * r' ij.2 :=
|
|
|
156 |
begin
|
157 |
rw [direct_sum.mul_eq_sum_support_ghas_mul, dfinsupp.finset_sum_apply,
|
158 |
add_submonoid_class.coe_finset_sum],
|
formal/lean/mathlib/algebra/direct_sum/ring.lean
CHANGED
@@ -269,7 +269,7 @@ open_locale big_operators
|
|
269 |
lemma mul_eq_sum_support_ghas_mul
|
270 |
[Π (i : ι) (x : A i), decidable (x ≠ 0)] (a a' : ⨁ i, A i) :
|
271 |
a * a' =
|
272 |
-
∑
|
273 |
direct_sum.of _ _ (graded_monoid.ghas_mul.mul (a ij.fst) (a' ij.snd)) :=
|
274 |
begin
|
275 |
change direct_sum.mul_hom _ a a' = _,
|
|
|
269 |
lemma mul_eq_sum_support_ghas_mul
|
270 |
[Π (i : ι) (x : A i), decidable (x ≠ 0)] (a a' : ⨁ i, A i) :
|
271 |
a * a' =
|
272 |
+
∑ ij in dfinsupp.support a ×ˢ dfinsupp.support a',
|
273 |
direct_sum.of _ _ (graded_monoid.ghas_mul.mul (a ij.fst) (a' ij.snd)) :=
|
274 |
begin
|
275 |
change direct_sum.mul_hom _ a a' = _,
|
formal/lean/mathlib/algebra/field/basic.lean
CHANGED
@@ -144,36 +144,8 @@ by rwa [add_comm, add_div', add_comm]
|
|
144 |
|
145 |
end division_semiring
|
146 |
|
147 |
-
section
|
148 |
-
variables [
|
149 |
-
|
150 |
-
namespace rat
|
151 |
-
|
152 |
-
/-- Construct the canonical injection from `ℚ` into an arbitrary
|
153 |
-
division ring. If the field has positive characteristic `p`,
|
154 |
-
we define `1 / p = 1 / 0 = 0` for consistency with our
|
155 |
-
division by zero convention. -/
|
156 |
-
-- see Note [coercion into rings]
|
157 |
-
@[priority 900] instance cast_coe {K : Type*} [has_rat_cast K] : has_coe_t ℚ K :=
|
158 |
-
⟨has_rat_cast.rat_cast⟩
|
159 |
-
|
160 |
-
theorem cast_mk' (a b h1 h2) : ((⟨a, b, h1, h2⟩ : ℚ) : K) = a * b⁻¹ :=
|
161 |
-
division_ring.rat_cast_mk _ _ _ _
|
162 |
-
|
163 |
-
theorem cast_def : ∀ (r : ℚ), (r : K) = r.num / r.denom
|
164 |
-
| ⟨a, b, h1, h2⟩ := (cast_mk' _ _ _ _).trans (div_eq_mul_inv _ _).symm
|
165 |
-
|
166 |
-
@[priority 100]
|
167 |
-
instance smul_division_ring : has_smul ℚ K :=
|
168 |
-
⟨division_ring.qsmul⟩
|
169 |
-
|
170 |
-
lemma smul_def (a : ℚ) (x : K) : a • x = ↑a * x := division_ring.qsmul_eq_mul' a x
|
171 |
-
|
172 |
-
end rat
|
173 |
-
|
174 |
-
local attribute [simp]
|
175 |
-
division_def mul_comm mul_assoc
|
176 |
-
mul_left_comm mul_inv_cancel inv_mul_cancel
|
177 |
|
178 |
lemma one_div_neg_one_eq_neg_one : (1:K) / (-1) = -1 :=
|
179 |
have (-1) * (-1) = (1:K), by rw [neg_mul_neg, one_mul],
|
@@ -202,6 +174,44 @@ by simp [neg_div]
|
|
202 |
lemma neg_div_neg_eq (a b : K) : (-a) / (-b) = a / b :=
|
203 |
by rw [div_neg_eq_neg_div, neg_div, neg_neg]
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
@[simp] lemma div_neg_self {a : K} (h : a ≠ 0) : a / -a = -1 :=
|
206 |
by rw [div_neg_eq_neg_div, div_self h]
|
207 |
|
@@ -221,18 +231,9 @@ by simpa only [← @div_self _ _ b h] using (div_sub_div_same a b b).symm
|
|
221 |
|
222 |
lemma div_sub_one {a b : K} (h : b ≠ 0) : a / b - 1 = (a - b) / b := (div_sub_same h).symm
|
223 |
|
224 |
-
lemma neg_inv : - a⁻¹ = (- a)⁻¹ :=
|
225 |
-
by rw [inv_eq_one_div, inv_eq_one_div, div_neg_eq_neg_div]
|
226 |
-
|
227 |
lemma sub_div (a b c : K) : (a - b) / c = a / c - b / c :=
|
228 |
(div_sub_div_same _ _ _).symm
|
229 |
|
230 |
-
lemma div_neg (a : K) : a / -b = -(a / b) :=
|
231 |
-
by rw [← div_neg_eq_neg_div]
|
232 |
-
|
233 |
-
lemma inv_neg : (-a)⁻¹ = -(a⁻¹) :=
|
234 |
-
by rw neg_inv
|
235 |
-
|
236 |
lemma one_div_mul_sub_mul_one_div_eq_one_div_add_one_div (ha : a ≠ 0) (hb : b ≠ 0) :
|
237 |
(1 / a) * (b - a) * (1 / b) = 1 / a - 1 / b :=
|
238 |
by rw [(mul_sub_left_distrib (1 / a)), (one_div_mul_cancel ha), mul_sub_right_distrib,
|
|
|
144 |
|
145 |
end division_semiring
|
146 |
|
147 |
+
section division_monoid
|
148 |
+
variables [division_monoid K] [has_distrib_neg K] {a b : K}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
lemma one_div_neg_one_eq_neg_one : (1:K) / (-1) = -1 :=
|
151 |
have (-1) * (-1) = (1:K), by rw [neg_mul_neg, one_mul],
|
|
|
174 |
lemma neg_div_neg_eq (a b : K) : (-a) / (-b) = a / b :=
|
175 |
by rw [div_neg_eq_neg_div, neg_div, neg_neg]
|
176 |
|
177 |
+
lemma neg_inv : - a⁻¹ = (- a)⁻¹ :=
|
178 |
+
by rw [inv_eq_one_div, inv_eq_one_div, div_neg_eq_neg_div]
|
179 |
+
|
180 |
+
lemma div_neg (a : K) : a / -b = -(a / b) :=
|
181 |
+
by rw [← div_neg_eq_neg_div]
|
182 |
+
|
183 |
+
lemma inv_neg : (-a)⁻¹ = -(a⁻¹) :=
|
184 |
+
by rw neg_inv
|
185 |
+
|
186 |
+
end division_monoid
|
187 |
+
|
188 |
+
section division_ring
|
189 |
+
variables [division_ring K] {a b : K}
|
190 |
+
|
191 |
+
namespace rat
|
192 |
+
|
193 |
+
/-- Construct the canonical injection from `ℚ` into an arbitrary
|
194 |
+
division ring. If the field has positive characteristic `p`,
|
195 |
+
we define `1 / p = 1 / 0 = 0` for consistency with our
|
196 |
+
division by zero convention. -/
|
197 |
+
-- see Note [coercion into rings]
|
198 |
+
@[priority 900] instance cast_coe {K : Type*} [has_rat_cast K] : has_coe_t ℚ K :=
|
199 |
+
⟨has_rat_cast.rat_cast⟩
|
200 |
+
|
201 |
+
theorem cast_mk' (a b h1 h2) : ((⟨a, b, h1, h2⟩ : ℚ) : K) = a * b⁻¹ :=
|
202 |
+
division_ring.rat_cast_mk _ _ _ _
|
203 |
+
|
204 |
+
theorem cast_def : ∀ (r : ℚ), (r : K) = r.num / r.denom
|
205 |
+
| ⟨a, b, h1, h2⟩ := (cast_mk' _ _ _ _).trans (div_eq_mul_inv _ _).symm
|
206 |
+
|
207 |
+
@[priority 100]
|
208 |
+
instance smul_division_ring : has_smul ℚ K :=
|
209 |
+
⟨division_ring.qsmul⟩
|
210 |
+
|
211 |
+
lemma smul_def (a : ℚ) (x : K) : a • x = ↑a * x := division_ring.qsmul_eq_mul' a x
|
212 |
+
|
213 |
+
end rat
|
214 |
+
|
215 |
@[simp] lemma div_neg_self {a : K} (h : a ≠ 0) : a / -a = -1 :=
|
216 |
by rw [div_neg_eq_neg_div, div_self h]
|
217 |
|
|
|
231 |
|
232 |
lemma div_sub_one {a b : K} (h : b ≠ 0) : a / b - 1 = (a - b) / b := (div_sub_same h).symm
|
233 |
|
|
|
|
|
|
|
234 |
lemma sub_div (a b c : K) : (a - b) / c = a / c - b / c :=
|
235 |
(div_sub_div_same _ _ _).symm
|
236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
lemma one_div_mul_sub_mul_one_div_eq_one_div_add_one_div (ha : a ≠ 0) (hb : b ≠ 0) :
|
238 |
(1 / a) * (b - a) * (1 / b) = 1 / a - 1 / b :=
|
239 |
by rw [(mul_sub_left_distrib (1 / a)), (one_div_mul_cancel ha), mul_sub_right_distrib,
|
formal/lean/mathlib/algebra/field_power.lean
CHANGED
@@ -48,19 +48,11 @@ lemma zpow_pos_of_pos (ha : 0 < a) : ∀ (z : ℤ), 0 < a ^ z
|
|
48 |
|
49 |
lemma zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
|
50 |
begin
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
apply le_trans (inv_le_one _); apply one_le_pow_of_one_le ha },
|
57 |
-
{ simp only [zpow_neg_succ_of_nat],
|
58 |
-
apply (inv_le_inv _ _).2,
|
59 |
-
{ apply pow_le_pow ha,
|
60 |
-
have : -(↑(m+1) : ℤ) ≤ -(↑(n+1) : ℤ), from h,
|
61 |
-
have h' := le_of_neg_le_neg this,
|
62 |
-
apply le_of_coe_nat_le_coe_nat h' },
|
63 |
-
repeat { apply pow_pos (zero_lt_one.trans_le ha) } }
|
64 |
end
|
65 |
|
66 |
lemma pow_le_max_of_min_le (hx : 1 ≤ x) {a b c : ℤ} (h : min a b ≤ c) :
|
@@ -159,17 +151,7 @@ lemma zpow_two_pos_of_ne_zero (h : a ≠ 0) : 0 < a ^ (2 : ℤ) := zpow_bit0_pos
|
|
159 |
le_iff_le_iff_lt_iff_lt.2 zpow_bit1_neg_iff
|
160 |
|
161 |
@[simp] theorem zpow_bit1_nonpos_iff : a ^ bit1 n ≤ 0 ↔ a ≤ 0 :=
|
162 |
-
|
163 |
-
rw [le_iff_lt_or_eq, zpow_bit1_neg_iff],
|
164 |
-
split,
|
165 |
-
{ rintro (h | h),
|
166 |
-
{ exact h.le },
|
167 |
-
{ exact (zpow_eq_zero h).le } },
|
168 |
-
{ intro h,
|
169 |
-
rcases eq_or_lt_of_le h with rfl|h,
|
170 |
-
{ exact or.inr (zero_zpow _ (bit1_ne_zero n)) },
|
171 |
-
{ exact or.inl h } }
|
172 |
-
end
|
173 |
|
174 |
@[simp] theorem zpow_bit1_pos_iff : 0 < a ^ bit1 n ↔ 0 < a :=
|
175 |
lt_iff_lt_of_le_iff_le zpow_bit1_nonpos_iff
|
|
|
48 |
|
49 |
lemma zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
|
50 |
begin
|
51 |
+
have ha₀ : 0 < a, from one_pos.trans_le ha,
|
52 |
+
lift n - m to ℕ using sub_nonneg.2 h with k hk,
|
53 |
+
calc a ^ m = a ^ m * 1 : (mul_one _).symm
|
54 |
+
... ≤ a ^ m * a ^ k : mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _)
|
55 |
+
... = a ^ n : by rw [← zpow_coe_nat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
end
|
57 |
|
58 |
lemma pow_le_max_of_min_le (hx : 1 ≤ x) {a b c : ℤ} (h : min a b ≤ c) :
|
|
|
151 |
le_iff_le_iff_lt_iff_lt.2 zpow_bit1_neg_iff
|
152 |
|
153 |
@[simp] theorem zpow_bit1_nonpos_iff : a ^ bit1 n ≤ 0 ↔ a ≤ 0 :=
|
154 |
+
by rw [le_iff_lt_or_eq, le_iff_lt_or_eq, zpow_bit1_neg_iff, zpow_eq_zero_iff (bit1_ne_zero n)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
@[simp] theorem zpow_bit1_pos_iff : 0 < a ^ bit1 n ↔ 0 < a :=
|
157 |
lt_iff_lt_of_le_iff_le zpow_bit1_nonpos_iff
|
formal/lean/mathlib/algebra/group/prod.lean
CHANGED
@@ -495,7 +495,7 @@ open mul_opposite
|
|
495 |
/-- Canonical homomorphism of monoids from `αˣ` into `α × αᵐᵒᵖ`.
|
496 |
Used mainly to define the natural topology of `αˣ`. -/
|
497 |
@[to_additive "Canonical homomorphism of additive monoids from `add_units α` into `α × αᵃᵒᵖ`.
|
498 |
-
Used mainly to define the natural topology of `add_units α`."]
|
499 |
def embed_product (α : Type*) [monoid α] : αˣ →* α × αᵐᵒᵖ :=
|
500 |
{ to_fun := λ x, ⟨x, op ↑x⁻¹⟩,
|
501 |
map_one' := by simp only [inv_one, eq_self_iff_true, units.coe_one, op_one, prod.mk_eq_one,
|
|
|
495 |
/-- Canonical homomorphism of monoids from `αˣ` into `α × αᵐᵒᵖ`.
|
496 |
Used mainly to define the natural topology of `αˣ`. -/
|
497 |
@[to_additive "Canonical homomorphism of additive monoids from `add_units α` into `α × αᵃᵒᵖ`.
|
498 |
+
Used mainly to define the natural topology of `add_units α`.", simps]
|
499 |
def embed_product (α : Type*) [monoid α] : αˣ →* α × αᵐᵒᵖ :=
|
500 |
{ to_fun := λ x, ⟨x, op ↑x⁻¹⟩,
|
501 |
map_one' := by simp only [inv_one, eq_self_iff_true, units.coe_one, op_one, prod.mk_eq_one,
|
formal/lean/mathlib/algebra/group/to_additive.lean
CHANGED
@@ -219,6 +219,8 @@ meta def tr : bool → list string → list string
|
|
219 |
| is_comm ("npow" :: s) := add_comm_prefix is_comm "nsmul" :: tr ff s
|
220 |
| is_comm ("zpow" :: s) := add_comm_prefix is_comm "zsmul" :: tr ff s
|
221 |
| is_comm ("is" :: "square" :: s) := add_comm_prefix is_comm "even" :: tr ff s
|
|
|
|
|
222 |
| is_comm ("is" :: "regular" :: s) := add_comm_prefix is_comm "is_add_regular" :: tr ff s
|
223 |
| is_comm ("is" :: "left" :: "regular" :: s) :=
|
224 |
add_comm_prefix is_comm "is_add_left_regular" :: tr ff s
|
|
|
219 |
| is_comm ("npow" :: s) := add_comm_prefix is_comm "nsmul" :: tr ff s
|
220 |
| is_comm ("zpow" :: s) := add_comm_prefix is_comm "zsmul" :: tr ff s
|
221 |
| is_comm ("is" :: "square" :: s) := add_comm_prefix is_comm "even" :: tr ff s
|
222 |
+
| is_comm ("is" :: "scalar" :: "tower" :: s) :=
|
223 |
+
add_comm_prefix is_comm "vadd_assoc_class" :: tr ff s
|
224 |
| is_comm ("is" :: "regular" :: s) := add_comm_prefix is_comm "is_add_regular" :: tr ff s
|
225 |
| is_comm ("is" :: "left" :: "regular" :: s) :=
|
226 |
add_comm_prefix is_comm "is_add_left_regular" :: tr ff s
|
formal/lean/mathlib/algebra/group/units.lean
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
/-
|
2 |
Copyright (c) 2017 Kenny Lau. All rights reserved.
|
3 |
Released under Apache 2.0 license as described in the file LICENSE.
|
4 |
-
Authors: Kenny Lau, Mario Carneiro, Johannes Hölzl, Chris Hughes, Jens Wagemaker
|
5 |
-/
|
6 |
import algebra.group.basic
|
7 |
import logic.nontrivial
|
@@ -250,6 +250,10 @@ infix ` /ₚ `:70 := divp
|
|
250 |
theorem divp_assoc (a b : α) (u : αˣ) : a * b /ₚ u = a * (b /ₚ u) :=
|
251 |
mul_assoc _ _ _
|
252 |
|
|
|
|
|
|
|
|
|
253 |
@[simp] theorem divp_inv (u : αˣ) : a /ₚ u⁻¹ = a * u := rfl
|
254 |
|
255 |
@[simp] theorem divp_mul_cancel (a : α) (u : αˣ) : a /ₚ u * u = a :=
|
@@ -261,31 +265,60 @@ mul_assoc _ _ _
|
|
261 |
@[simp] theorem divp_left_inj (u : αˣ) {a b : α} : a /ₚ u = b /ₚ u ↔ a = b :=
|
262 |
units.mul_left_inj _
|
263 |
|
264 |
-
theorem divp_divp_eq_divp_mul (x : α) (u₁ u₂ : αˣ) :
|
|
|
265 |
by simp only [divp, mul_inv_rev, units.coe_mul, mul_assoc]
|
266 |
|
267 |
-
theorem divp_eq_iff_mul_eq {x : α} {u : αˣ} {y : α} : x /ₚ u = y ↔ y * u = x :=
|
268 |
u.mul_left_inj.symm.trans $ by rw [divp_mul_cancel]; exact ⟨eq.symm, eq.symm⟩
|
269 |
|
|
|
|
|
|
|
270 |
theorem divp_eq_one_iff_eq {a : α} {u : αˣ} : a /ₚ u = 1 ↔ a = u :=
|
271 |
(units.mul_left_inj u).symm.trans $ by rw [divp_mul_cancel, one_mul]
|
272 |
|
273 |
@[simp] theorem one_divp (u : αˣ) : 1 /ₚ u = ↑u⁻¹ :=
|
274 |
one_mul _
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
end monoid
|
277 |
|
278 |
section comm_monoid
|
279 |
|
280 |
variables [comm_monoid α]
|
281 |
|
282 |
-
theorem
|
|
|
|
|
|
|
|
|
283 |
x /ₚ ux = y /ₚ uy ↔ x * uy = y * ux :=
|
284 |
-
by rw [divp_eq_iff_mul_eq,
|
285 |
|
286 |
-
|
|
|
287 |
(x /ₚ ux) * (y /ₚ uy) = (x * y) /ₚ (ux * uy) :=
|
288 |
-
by rw [
|
289 |
|
290 |
end comm_monoid
|
291 |
|
|
|
1 |
/-
|
2 |
Copyright (c) 2017 Kenny Lau. All rights reserved.
|
3 |
Released under Apache 2.0 license as described in the file LICENSE.
|
4 |
+
Authors: Kenny Lau, Mario Carneiro, Johannes Hölzl, Chris Hughes, Jens Wagemaker, Jon Eugster
|
5 |
-/
|
6 |
import algebra.group.basic
|
7 |
import logic.nontrivial
|
|
|
250 |
theorem divp_assoc (a b : α) (u : αˣ) : a * b /ₚ u = a * (b /ₚ u) :=
|
251 |
mul_assoc _ _ _
|
252 |
|
253 |
+
/-- `field_simp` needs the reverse direction of `divp_assoc` to move all `/ₚ` to the right. -/
|
254 |
+
@[field_simps] lemma divp_assoc' (x y : α) (u : αˣ) : x * (y /ₚ u) = (x * y) /ₚ u :=
|
255 |
+
(divp_assoc _ _ _).symm
|
256 |
+
|
257 |
@[simp] theorem divp_inv (u : αˣ) : a /ₚ u⁻¹ = a * u := rfl
|
258 |
|
259 |
@[simp] theorem divp_mul_cancel (a : α) (u : αˣ) : a /ₚ u * u = a :=
|
|
|
265 |
@[simp] theorem divp_left_inj (u : αˣ) {a b : α} : a /ₚ u = b /ₚ u ↔ a = b :=
|
266 |
units.mul_left_inj _
|
267 |
|
268 |
+
@[field_simps] theorem divp_divp_eq_divp_mul (x : α) (u₁ u₂ : αˣ) :
|
269 |
+
(x /ₚ u₁) /ₚ u₂ = x /ₚ (u₂ * u₁) :=
|
270 |
by simp only [divp, mul_inv_rev, units.coe_mul, mul_assoc]
|
271 |
|
272 |
+
@[field_simps] theorem divp_eq_iff_mul_eq {x : α} {u : αˣ} {y : α} : x /ₚ u = y ↔ y * u = x :=
|
273 |
u.mul_left_inj.symm.trans $ by rw [divp_mul_cancel]; exact ⟨eq.symm, eq.symm⟩
|
274 |
|
275 |
+
@[field_simps] theorem eq_divp_iff_mul_eq {x : α} {u : αˣ} {y : α} : x = y /ₚ u ↔ x * u = y :=
|
276 |
+
by rw [eq_comm, divp_eq_iff_mul_eq]
|
277 |
+
|
278 |
theorem divp_eq_one_iff_eq {a : α} {u : αˣ} : a /ₚ u = 1 ↔ a = u :=
|
279 |
(units.mul_left_inj u).symm.trans $ by rw [divp_mul_cancel, one_mul]
|
280 |
|
281 |
@[simp] theorem one_divp (u : αˣ) : 1 /ₚ u = ↑u⁻¹ :=
|
282 |
one_mul _
|
283 |
|
284 |
+
/-- Used for `field_simp` to deal with inverses of units. -/
|
285 |
+
@[field_simps] lemma inv_eq_one_divp (u : αˣ) : ↑u⁻¹ = 1 /ₚ u :=
|
286 |
+
by rw one_divp
|
287 |
+
|
288 |
+
/--
|
289 |
+
Used for `field_simp` to deal with inverses of units. This form of the lemma
|
290 |
+
is essential since `field_simp` likes to use `inv_eq_one_div` to rewrite
|
291 |
+
`↑u⁻¹ = ↑(1 / u)`.
|
292 |
+
-/
|
293 |
+
@[field_simps] lemma inv_eq_one_divp' (u : αˣ) :
|
294 |
+
((1 / u : αˣ) : α) = 1 /ₚ u :=
|
295 |
+
by rw [one_div, one_divp]
|
296 |
+
|
297 |
+
/--
|
298 |
+
`field_simp` moves division inside `αˣ` to the right, and this lemma
|
299 |
+
lifts the calculation to `α`.
|
300 |
+
-/
|
301 |
+
@[field_simps] lemma coe_div_eq_divp (u₁ u₂ : αˣ) : ↑(u₁ / u₂) = ↑u₁ /ₚ u₂ :=
|
302 |
+
by rw [divp, division_def, units.coe_mul]
|
303 |
+
|
304 |
end monoid
|
305 |
|
306 |
section comm_monoid
|
307 |
|
308 |
variables [comm_monoid α]
|
309 |
|
310 |
+
@[field_simps] theorem divp_mul_eq_mul_divp (x y : α) (u : αˣ) : x /ₚ u * y = x * y /ₚ u :=
|
311 |
+
by simp_rw [divp, mul_assoc, mul_comm]
|
312 |
+
|
313 |
+
-- Theoretically redundant as `field_simp` lemma.
|
314 |
+
@[field_simps] lemma divp_eq_divp_iff {x y : α} {ux uy : αˣ} :
|
315 |
x /ₚ ux = y /ₚ uy ↔ x * uy = y * ux :=
|
316 |
+
by rw [divp_eq_iff_mul_eq, divp_mul_eq_mul_divp, divp_eq_iff_mul_eq]
|
317 |
|
318 |
+
-- Theoretically redundant as `field_simp` lemma.
|
319 |
+
@[field_simps] lemma divp_mul_divp (x y : α) (ux uy : αˣ) :
|
320 |
(x /ₚ ux) * (y /ₚ uy) = (x * y) /ₚ (ux * uy) :=
|
321 |
+
by rw [divp_mul_eq_mul_divp, divp_assoc', divp_divp_eq_divp_mul]
|
322 |
|
323 |
end comm_monoid
|
324 |
|
formal/lean/mathlib/algebra/group_with_zero/power.lean
CHANGED
@@ -134,13 +134,9 @@ by rw [zpow_bit1₀, (commute.refl a).mul_zpow]
|
|
134 |
lemma zpow_eq_zero {x : G₀} {n : ℤ} (h : x ^ n = 0) : x = 0 :=
|
135 |
classical.by_contradiction $ λ hx, zpow_ne_zero_of_ne_zero hx n h
|
136 |
|
137 |
-
lemma zpow_eq_zero_iff {a : G₀} {n : ℤ} (hn :
|
138 |
a ^ n = 0 ↔ a = 0 :=
|
139 |
-
|
140 |
-
refine ⟨zpow_eq_zero, _⟩,
|
141 |
-
rintros rfl,
|
142 |
-
exact zero_zpow _ hn.ne'
|
143 |
-
end
|
144 |
|
145 |
lemma zpow_ne_zero {x : G₀} (n : ℤ) : x ≠ 0 → x ^ n ≠ 0 :=
|
146 |
mt zpow_eq_zero
|
|
|
134 |
lemma zpow_eq_zero {x : G₀} {n : ℤ} (h : x ^ n = 0) : x = 0 :=
|
135 |
classical.by_contradiction $ λ hx, zpow_ne_zero_of_ne_zero hx n h
|
136 |
|
137 |
+
lemma zpow_eq_zero_iff {a : G₀} {n : ℤ} (hn : n ≠ 0) :
|
138 |
a ^ n = 0 ↔ a = 0 :=
|
139 |
+
⟨zpow_eq_zero, λ ha, ha.symm ▸ zero_zpow _ hn⟩
|
|
|
|
|
|
|
|
|
140 |
|
141 |
lemma zpow_ne_zero {x : G₀} (n : ℤ) : x ≠ 0 → x ^ n ≠ 0 :=
|
142 |
mt zpow_eq_zero
|
formal/lean/mathlib/algebra/hom/equiv.lean
CHANGED
@@ -729,3 +729,16 @@ def mul_equiv.to_additive'' [add_zero_class G] [mul_one_class H] :
|
|
729 |
add_equiv.to_multiplicative''.symm
|
730 |
|
731 |
end type_tags
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
729 |
add_equiv.to_multiplicative''.symm
|
730 |
|
731 |
end type_tags
|
732 |
+
|
733 |
+
section
|
734 |
+
variables (G) (H)
|
735 |
+
|
736 |
+
/-- `additive (multiplicative G)` is just `G`. -/
|
737 |
+
def add_equiv.additive_multiplicative [add_zero_class G] : additive (multiplicative G) ≃+ G :=
|
738 |
+
mul_equiv.to_additive'' (mul_equiv.refl (multiplicative G))
|
739 |
+
|
740 |
+
/-- `multiplicative (additive H)` is just `H`. -/
|
741 |
+
def mul_equiv.multiplicative_additive [mul_one_class H] : multiplicative (additive H) ≃* H :=
|
742 |
+
add_equiv.to_multiplicative'' (add_equiv.refl (additive H))
|
743 |
+
|
744 |
+
end
|
formal/lean/mathlib/algebra/hom/group_action.lean
CHANGED
@@ -54,7 +54,7 @@ variables (G : Type*) [group G] (H : subgroup G)
|
|
54 |
set_option old_structure_cmd true
|
55 |
|
56 |
/-- Equivariant functions. -/
|
57 |
-
@[nolint
|
58 |
structure mul_action_hom :=
|
59 |
(to_fun : X → Y)
|
60 |
(map_smul' : ∀ (m : M') (x : X), to_fun (m • x) = m • to_fun x)
|
@@ -258,7 +258,7 @@ end semiring
|
|
258 |
end distrib_mul_action_hom
|
259 |
|
260 |
/-- Equivariant ring homomorphisms. -/
|
261 |
-
@[nolint
|
262 |
structure mul_semiring_action_hom extends R →+[M] S, R →+* S.
|
263 |
|
264 |
/-- Reinterpret an equivariant ring homomorphism as a ring homomorphism. -/
|
|
|
54 |
set_option old_structure_cmd true
|
55 |
|
56 |
/-- Equivariant functions. -/
|
57 |
+
@[nolint has_nonempty_instance]
|
58 |
structure mul_action_hom :=
|
59 |
(to_fun : X → Y)
|
60 |
(map_smul' : ∀ (m : M') (x : X), to_fun (m • x) = m • to_fun x)
|
|
|
258 |
end distrib_mul_action_hom
|
259 |
|
260 |
/-- Equivariant ring homomorphisms. -/
|
261 |
+
@[nolint has_nonempty_instance]
|
262 |
structure mul_semiring_action_hom extends R →+[M] S, R →+* S.
|
263 |
|
264 |
/-- Reinterpret an equivariant ring homomorphism as a ring homomorphism. -/
|
formal/lean/mathlib/algebra/hom/group_instances.lean
CHANGED
@@ -69,10 +69,24 @@ instance [add_comm_monoid M] : semiring (add_monoid.End M) :=
|
|
69 |
.. add_monoid.End.monoid M,
|
70 |
.. add_monoid_hom.add_comm_monoid }
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
instance [add_comm_group M] : ring (add_monoid.End M) :=
|
73 |
-
{
|
|
|
|
|
|
|
74 |
.. add_monoid_hom.add_comm_group }
|
75 |
|
|
|
|
|
|
|
|
|
76 |
/-!
|
77 |
### Morphisms of morphisms
|
78 |
|
@@ -208,7 +222,8 @@ variables {R S : Type*} [non_unital_non_assoc_semiring R] [non_unital_non_assoc_
|
|
208 |
|
209 |
This is a more-strongly bundled version of `add_monoid_hom.mul_left` and `add_monoid_hom.mul_right`.
|
210 |
|
211 |
-
|
|
|
212 |
-/
|
213 |
def add_monoid_hom.mul : R →+ R →+ R :=
|
214 |
{ to_fun := add_monoid_hom.mul_left,
|
|
|
69 |
.. add_monoid.End.monoid M,
|
70 |
.. add_monoid_hom.add_comm_monoid }
|
71 |
|
72 |
+
/-- See also `add_monoid.End.nat_cast_def`. -/
|
73 |
+
@[simp] lemma add_monoid.End.nat_cast_apply [add_comm_monoid M] (n : ℕ) (m : M) :
|
74 |
+
(↑n : add_monoid.End M) m = n • m := rfl
|
75 |
+
|
76 |
+
instance [add_comm_group M] : add_comm_group (add_monoid.End M) :=
|
77 |
+
add_monoid_hom.add_comm_group
|
78 |
+
|
79 |
instance [add_comm_group M] : ring (add_monoid.End M) :=
|
80 |
+
{ int_cast := λ z, z • 1,
|
81 |
+
int_cast_of_nat := of_nat_zsmul _,
|
82 |
+
int_cast_neg_succ_of_nat := zsmul_neg_succ_of_nat _,
|
83 |
+
.. add_monoid.End.semiring,
|
84 |
.. add_monoid_hom.add_comm_group }
|
85 |
|
86 |
+
/-- See also `add_monoid.End.int_cast_def`. -/
|
87 |
+
@[simp] lemma add_monoid.End.int_cast_apply [add_comm_group M] (z : ℤ) (m : M) :
|
88 |
+
(↑z : add_monoid.End M) m = z • m := rfl
|
89 |
+
|
90 |
/-!
|
91 |
### Morphisms of morphisms
|
92 |
|
|
|
222 |
|
223 |
This is a more-strongly bundled version of `add_monoid_hom.mul_left` and `add_monoid_hom.mul_right`.
|
224 |
|
225 |
+
Stronger versions of this exists for algebras as `linear_map.mul`, `non_unital_alg_hom.mul`
|
226 |
+
and `algebra.lmul`.
|
227 |
-/
|
228 |
def add_monoid_hom.mul : R →+ R →+ R :=
|
229 |
{ to_fun := add_monoid_hom.mul_left,
|
formal/lean/mathlib/algebra/hom/ring.lean
CHANGED
@@ -413,6 +413,10 @@ mt f.codomain_trivial_iff_map_one_eq_zero.mpr zero_ne_one
|
|
413 |
lemma domain_nontrivial [nontrivial β] : nontrivial α :=
|
414 |
⟨⟨1, 0, mt (λ h, show f 1 = 0, by rw [h, map_zero]) f.map_one_ne_zero⟩⟩
|
415 |
|
|
|
|
|
|
|
|
|
416 |
end
|
417 |
|
418 |
/-- Ring homomorphisms preserve additive inverse. -/
|
|
|
413 |
lemma domain_nontrivial [nontrivial β] : nontrivial α :=
|
414 |
⟨⟨1, 0, mt (λ h, show f 1 = 0, by rw [h, map_zero]) f.map_one_ne_zero⟩⟩
|
415 |
|
416 |
+
lemma codomain_trivial (f : α →+* β) [h : subsingleton α] : subsingleton β :=
|
417 |
+
(subsingleton_or_nontrivial β).resolve_right
|
418 |
+
(λ _, by exactI not_nontrivial_iff_subsingleton.mpr h f.domain_nontrivial)
|
419 |
+
|
420 |
end
|
421 |
|
422 |
/-- Ring homomorphisms preserve additive inverse. -/
|
formal/lean/mathlib/algebra/hom/units.lean
CHANGED
@@ -76,7 +76,7 @@ variables [division_monoid α]
|
|
76 |
@[simp, norm_cast, to_additive] lemma coe_zpow : ∀ (u : αˣ) (n : ℤ), ((u ^ n : αˣ) : α) = u ^ n :=
|
77 |
(units.coe_hom α).map_zpow
|
78 |
|
79 |
-
lemma _root_.divp_eq_div (a : α) (u : αˣ) : a /ₚ u = a / u :=
|
80 |
by rw [div_eq_mul_inv, divp, u.coe_inv]
|
81 |
|
82 |
end division_monoid
|
|
|
76 |
@[simp, norm_cast, to_additive] lemma coe_zpow : ∀ (u : αˣ) (n : ℤ), ((u ^ n : αˣ) : α) = u ^ n :=
|
77 |
(units.coe_hom α).map_zpow
|
78 |
|
79 |
+
@[field_simps] lemma _root_.divp_eq_div (a : α) (u : αˣ) : a /ₚ u = a / u :=
|
80 |
by rw [div_eq_mul_inv, divp, u.coe_inv]
|
81 |
|
82 |
end division_monoid
|
formal/lean/mathlib/algebra/homology/complex_shape.lean
CHANGED
@@ -55,7 +55,7 @@ This means that the shape consists of some union of lines, rays, intervals, and
|
|
55 |
|
56 |
Below we define `c.next` and `c.prev` which provide these related elements.
|
57 |
-/
|
58 |
-
@[ext, nolint
|
59 |
structure complex_shape (ι : Type*) :=
|
60 |
(rel : ι → ι → Prop)
|
61 |
(next_eq : ∀ {i j j'}, rel i j → rel i j' → j = j')
|
|
|
55 |
|
56 |
Below we define `c.next` and `c.prev` which provide these related elements.
|
57 |
-/
|
58 |
+
@[ext, nolint has_nonempty_instance]
|
59 |
structure complex_shape (ι : Type*) :=
|
60 |
(rel : ι → ι → Prop)
|
61 |
(next_eq : ∀ {i j j'}, rel i j → rel i j' → j = j')
|
formal/lean/mathlib/algebra/homology/homological_complex.lean
CHANGED
@@ -27,7 +27,7 @@ and similarly `cochain_complex V α`, with `i = j + 1`.
|
|
27 |
There is a category structure, where morphisms are chain maps.
|
28 |
|
29 |
For `C : homological_complex V c`, we define `C.X_next i`, which is either `C.X j` for some
|
30 |
-
arbitrarily chosen `j` such that `c.r i j`, or
|
31 |
Similarly we have `C.X_prev j`.
|
32 |
Defined in terms of these we have `C.d_from i : C.X i ⟶ C.X_next i` and
|
33 |
`C.d_to j : C.X_prev j ⟶ C.X j`, which are either defined as `C.d i j`, or zero, as needed.
|
@@ -299,7 +299,7 @@ def X_prev_iso {i j : ι} (r : c.rel i j) :
|
|
299 |
eq_to_iso $ by rw ← c.prev_eq' r
|
300 |
|
301 |
/-- If there is no `i` so `c.rel i j`, then `C.X_prev j` is isomorphic to `C.X j`. -/
|
302 |
-
def
|
303 |
C.X_prev j ≅ C.X j :=
|
304 |
eq_to_iso $ congr_arg C.X begin
|
305 |
dsimp [complex_shape.prev],
|
@@ -308,7 +308,7 @@ eq_to_iso $ congr_arg C.X begin
|
|
308 |
rw this at h, contradiction,
|
309 |
end
|
310 |
|
311 |
-
/-- Either `C.X j`, if there is some `j` with `c.rel i j`, or `C.X
|
312 |
abbreviation X_next (i : ι) : V := C.X (c.next i)
|
313 |
|
314 |
/-- If `c.rel i j`, then `C.X_next i` is isomorphic to `C.X j`. -/
|
@@ -316,8 +316,8 @@ def X_next_iso {i j : ι} (r : c.rel i j) :
|
|
316 |
C.X_next i ≅ C.X j :=
|
317 |
eq_to_iso $ by rw ← c.next_eq' r
|
318 |
|
319 |
-
/-- If there is no `j` so `c.rel i j`, then `C.X_next i` is isomorphic to `
|
320 |
-
def
|
321 |
C.X_next i ≅ C.X i :=
|
322 |
eq_to_iso $ congr_arg C.X begin
|
323 |
dsimp [complex_shape.next],
|
@@ -364,16 +364,16 @@ C.shape _ _ h
|
|
364 |
(C.X_prev_iso r).inv ≫ C.d_to j = C.d i j :=
|
365 |
by simp [C.d_to_eq r]
|
366 |
|
367 |
-
@[simp, reassoc] lemma
|
368 |
-
(C.
|
369 |
by simp [h]
|
370 |
|
371 |
@[simp, reassoc] lemma d_from_comp_X_next_iso {i j : ι} (r : c.rel i j) :
|
372 |
C.d_from i ≫ (C.X_next_iso r).hom = C.d i j :=
|
373 |
by simp [C.d_from_eq r]
|
374 |
|
375 |
-
@[simp, reassoc] lemma
|
376 |
-
C.d_from i ≫ (C.
|
377 |
by simp [h]
|
378 |
|
379 |
@[simp]
|
@@ -430,7 +430,7 @@ by { ext, simp, }
|
|
430 |
|
431 |
/-! Lemmas relating chain maps and `d_to`/`d_from`. -/
|
432 |
|
433 |
-
/-- `f.prev j` is `f.f i` if there is some `r i j`, and
|
434 |
abbreviation prev (f : hom C₁ C₂) (j : ι) : C₁.X_prev j ⟶ C₂.X_prev j := f.f _
|
435 |
|
436 |
lemma prev_eq (f : hom C₁ C₂) {i j : ι} (w : c.rel i j) :
|
@@ -440,7 +440,7 @@ begin
|
|
440 |
simp only [X_prev_iso, eq_to_iso_refl, iso.refl_hom, iso.refl_inv, id_comp, comp_id],
|
441 |
end
|
442 |
|
443 |
-
/-- `f.next i` is `f.f j` if there is some `r i j`, and
|
444 |
abbreviation next (f : hom C₁ C₂) (i : ι) : C₁.X_next i ⟶ C₂.X_next i := f.f _
|
445 |
|
446 |
lemma next_eq (f : hom C₁ C₂) {i j : ι} (w : c.rel i j) :
|
@@ -552,7 +552,7 @@ Auxiliary structure for setting up the recursion in `mk`.
|
|
552 |
This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
|
553 |
results in `mk_aux` taking much longer (well over the `-T100000` limit) to elaborate.
|
554 |
-/
|
555 |
-
@[nolint
|
556 |
structure mk_struct :=
|
557 |
(X₀ X₁ X₂ : V)
|
558 |
(d₀ : X₁ ⟶ X₀)
|
@@ -745,7 +745,7 @@ Auxiliary structure for setting up the recursion in `mk`.
|
|
745 |
This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
|
746 |
results in `mk_aux` taking much longer (well over the `-T100000` limit) to elaborate.
|
747 |
-/
|
748 |
-
@[nolint
|
749 |
structure mk_struct :=
|
750 |
(X₀ X₁ X₂ : V)
|
751 |
(d₀ : X₀ ⟶ X₁)
|
|
|
27 |
There is a category structure, where morphisms are chain maps.
|
28 |
|
29 |
For `C : homological_complex V c`, we define `C.X_next i`, which is either `C.X j` for some
|
30 |
+
arbitrarily chosen `j` such that `c.r i j`, or `C.X i` if there is no such `j`.
|
31 |
Similarly we have `C.X_prev j`.
|
32 |
Defined in terms of these we have `C.d_from i : C.X i ⟶ C.X_next i` and
|
33 |
`C.d_to j : C.X_prev j ⟶ C.X j`, which are either defined as `C.d i j`, or zero, as needed.
|
|
|
299 |
eq_to_iso $ by rw ← c.prev_eq' r
|
300 |
|
301 |
/-- If there is no `i` so `c.rel i j`, then `C.X_prev j` is isomorphic to `C.X j`. -/
|
302 |
+
def X_prev_iso_self {j : ι} (h : ¬c.rel (c.prev j) j) :
|
303 |
C.X_prev j ≅ C.X j :=
|
304 |
eq_to_iso $ congr_arg C.X begin
|
305 |
dsimp [complex_shape.prev],
|
|
|
308 |
rw this at h, contradiction,
|
309 |
end
|
310 |
|
311 |
+
/-- Either `C.X j`, if there is some `j` with `c.rel i j`, or `C.X i`. -/
|
312 |
abbreviation X_next (i : ι) : V := C.X (c.next i)
|
313 |
|
314 |
/-- If `c.rel i j`, then `C.X_next i` is isomorphic to `C.X j`. -/
|
|
|
316 |
C.X_next i ≅ C.X j :=
|
317 |
eq_to_iso $ by rw ← c.next_eq' r
|
318 |
|
319 |
+
/-- If there is no `j` so `c.rel i j`, then `C.X_next i` is isomorphic to `C.X i`. -/
|
320 |
+
def X_next_iso_self {i : ι} (h : ¬c.rel i (c.next i)) :
|
321 |
C.X_next i ≅ C.X i :=
|
322 |
eq_to_iso $ congr_arg C.X begin
|
323 |
dsimp [complex_shape.next],
|
|
|
364 |
(C.X_prev_iso r).inv ≫ C.d_to j = C.d i j :=
|
365 |
by simp [C.d_to_eq r]
|
366 |
|
367 |
+
@[simp, reassoc] lemma X_prev_iso_self_comp_d_to {j : ι} (h : ¬c.rel (c.prev j) j) :
|
368 |
+
(C.X_prev_iso_self h).inv ≫ C.d_to j = 0 :=
|
369 |
by simp [h]
|
370 |
|
371 |
@[simp, reassoc] lemma d_from_comp_X_next_iso {i j : ι} (r : c.rel i j) :
|
372 |
C.d_from i ≫ (C.X_next_iso r).hom = C.d i j :=
|
373 |
by simp [C.d_from_eq r]
|
374 |
|
375 |
+
@[simp, reassoc] lemma d_from_comp_X_next_iso_self {i : ι} (h : ¬c.rel i (c.next i)) :
|
376 |
+
C.d_from i ≫ (C.X_next_iso_self h).hom = 0 :=
|
377 |
by simp [h]
|
378 |
|
379 |
@[simp]
|
|
|
430 |
|
431 |
/-! Lemmas relating chain maps and `d_to`/`d_from`. -/
|
432 |
|
433 |
+
/-- `f.prev j` is `f.f i` if there is some `r i j`, and `f.f j` otherwise. -/
|
434 |
abbreviation prev (f : hom C₁ C₂) (j : ι) : C₁.X_prev j ⟶ C₂.X_prev j := f.f _
|
435 |
|
436 |
lemma prev_eq (f : hom C₁ C₂) {i j : ι} (w : c.rel i j) :
|
|
|
440 |
simp only [X_prev_iso, eq_to_iso_refl, iso.refl_hom, iso.refl_inv, id_comp, comp_id],
|
441 |
end
|
442 |
|
443 |
+
/-- `f.next i` is `f.f j` if there is some `r i j`, and `f.f j` otherwise. -/
|
444 |
abbreviation next (f : hom C₁ C₂) (i : ι) : C₁.X_next i ⟶ C₂.X_next i := f.f _
|
445 |
|
446 |
lemma next_eq (f : hom C₁ C₂) {i j : ι} (w : c.rel i j) :
|
|
|
552 |
This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
|
553 |
results in `mk_aux` taking much longer (well over the `-T100000` limit) to elaborate.
|
554 |
-/
|
555 |
+
@[nolint has_nonempty_instance]
|
556 |
structure mk_struct :=
|
557 |
(X₀ X₁ X₂ : V)
|
558 |
(d₀ : X₁ ⟶ X₀)
|
|
|
745 |
This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
|
746 |
results in `mk_aux` taking much longer (well over the `-T100000` limit) to elaborate.
|
747 |
-/
|
748 |
+
@[nolint has_nonempty_instance]
|
749 |
structure mk_struct :=
|
750 |
(X₀ X₁ X₂ : V)
|
751 |
(d₀ : X₀ ⟶ X₁)
|
formal/lean/mathlib/algebra/homology/homotopy.lean
CHANGED
@@ -113,7 +113,7 @@ end
|
|
113 |
A homotopy `h` between chain maps `f` and `g` consists of components `h i j : C.X i ⟶ D.X j`
|
114 |
which are zero unless `c.rel j i`, satisfying the homotopy condition.
|
115 |
-/
|
116 |
-
@[ext, nolint
|
117 |
structure homotopy (f g : C ⟶ D) :=
|
118 |
(hom : Π i j, C.X i ⟶ D.X j)
|
119 |
(zero' : ∀ i j, ¬ c.rel j i → hom i j = 0 . obviously)
|
|
|
113 |
A homotopy `h` between chain maps `f` and `g` consists of components `h i j : C.X i ⟶ D.X j`
|
114 |
which are zero unless `c.rel j i`, satisfying the homotopy condition.
|
115 |
-/
|
116 |
+
@[ext, nolint has_nonempty_instance]
|
117 |
structure homotopy (f g : C ⟶ D) :=
|
118 |
(hom : Π i j, C.X i ⟶ D.X j)
|
119 |
(zero' : ∀ i j, ¬ c.rel j i → hom i j = 0 . obviously)
|
formal/lean/mathlib/algebra/homology/short_exact/preadditive.lean
CHANGED
@@ -167,7 +167,7 @@ end preadditive
|
|
167 |
/-- A *splitting* of a sequence `A -f⟶ B -g⟶ C` is an isomorphism
|
168 |
to the short exact sequence `0 ⟶ A ⟶ A ⊞ C ⟶ C ⟶ 0` such that
|
169 |
the vertical maps on the left and the right are the identity. -/
|
170 |
-
@[nolint
|
171 |
structure splitting [has_zero_morphisms 𝒜] [has_binary_biproducts 𝒜] :=
|
172 |
(iso : B ≅ A ⊞ C)
|
173 |
(comp_iso_eq_inl : f ≫ iso.hom = biprod.inl)
|
|
|
167 |
/-- A *splitting* of a sequence `A -f⟶ B -g⟶ C` is an isomorphism
|
168 |
to the short exact sequence `0 ⟶ A ⟶ A ⊞ C ⟶ C ⟶ 0` such that
|
169 |
the vertical maps on the left and the right are the identity. -/
|
170 |
+
@[nolint has_nonempty_instance]
|
171 |
structure splitting [has_zero_morphisms 𝒜] [has_binary_biproducts 𝒜] :=
|
172 |
(iso : B ≅ A ⊞ C)
|
173 |
(comp_iso_eq_inl : f ≫ iso.hom = biprod.inl)
|
formal/lean/mathlib/algebra/indicator_function.lean
CHANGED
@@ -457,12 +457,8 @@ lemma inter_indicator_one {s t : set α} :
|
|
457 |
funext (λ _, by simpa only [← inter_indicator_mul, pi.mul_apply, pi.one_apply, one_mul])
|
458 |
|
459 |
lemma indicator_prod_one {s : set α} {t : set β} {x : α} {y : β} :
|
460 |
-
(s ×ˢ t
|
461 |
-
|
462 |
-
letI := classical.dec_pred (∈ s),
|
463 |
-
letI := classical.dec_pred (∈ t),
|
464 |
-
simp [indicator_apply, ← ite_and],
|
465 |
-
end
|
466 |
|
467 |
variables (M) [nontrivial M]
|
468 |
|
|
|
457 |
funext (λ _, by simpa only [← inter_indicator_mul, pi.mul_apply, pi.one_apply, one_mul])
|
458 |
|
459 |
lemma indicator_prod_one {s : set α} {t : set β} {x : α} {y : β} :
|
460 |
+
(s ×ˢ t).indicator (1 : _ → M) (x, y) = s.indicator 1 x * t.indicator 1 y :=
|
461 |
+
by { classical, simp [indicator_apply, ←ite_and] }
|
|
|
|
|
|
|
|
|
462 |
|
463 |
variables (M) [nontrivial M]
|
464 |
|
formal/lean/mathlib/algebra/lie/base_change.lean
CHANGED
@@ -40,7 +40,7 @@ support in the tensor product library, it is far easier to bootstrap like this,
|
|
40 |
definition below. -/
|
41 |
private def bracket' : (A ⊗[R] L) →ₗ[R] (A ⊗[R] L) →ₗ[R] A ⊗[R] L :=
|
42 |
tensor_product.curry $
|
43 |
-
(tensor_product.map (
|
44 |
∘ₗ ↑(tensor_product.tensor_tensor_tensor_comm R A L A L)
|
45 |
|
46 |
@[simp] private lemma bracket'_tmul (s t : A) (x y : L) :
|
@@ -115,8 +115,8 @@ begin
|
|
115 |
{ simp only [lie_zero, smul_zero], },
|
116 |
{ intros a₂ l₂,
|
117 |
simp only [bracket_def, bracket', tensor_product.smul_tmul', mul_left_comm a₁ a a₂,
|
118 |
-
tensor_product.curry_apply,
|
119 |
-
linear_equiv.coe_coe, linear_map.coe_comp, tensor_product.map_tmul,
|
120 |
tensor_product.tensor_tensor_tensor_comm_tmul], },
|
121 |
{ intros z₁ z₂ h₁ h₂,
|
122 |
simp only [h₁, h₂, smul_add, lie_add], }, },
|
|
|
40 |
definition below. -/
|
41 |
private def bracket' : (A ⊗[R] L) →ₗ[R] (A ⊗[R] L) →ₗ[R] A ⊗[R] L :=
|
42 |
tensor_product.curry $
|
43 |
+
(tensor_product.map (linear_map.mul' R _) (lie_module.to_module_hom R L L : L ⊗[R] L →ₗ[R] L))
|
44 |
∘ₗ ↑(tensor_product.tensor_tensor_tensor_comm R A L A L)
|
45 |
|
46 |
@[simp] private lemma bracket'_tmul (s t : A) (x y : L) :
|
|
|
115 |
{ simp only [lie_zero, smul_zero], },
|
116 |
{ intros a₂ l₂,
|
117 |
simp only [bracket_def, bracket', tensor_product.smul_tmul', mul_left_comm a₁ a a₂,
|
118 |
+
tensor_product.curry_apply, linear_map.mul'_apply, algebra.id.smul_eq_mul,
|
119 |
+
function.comp_app, linear_equiv.coe_coe, linear_map.coe_comp, tensor_product.map_tmul,
|
120 |
tensor_product.tensor_tensor_tensor_comm_tmul], },
|
121 |
{ intros z₁ z₂ h₁ h₂,
|
122 |
simp only [h₁, h₂, smul_add, lie_add], }, },
|
formal/lean/mathlib/algebra/lie/nilpotent.lean
CHANGED
@@ -691,9 +691,12 @@ lemma lie_algebra.ad_nilpotent_of_nilpotent {a : A} (h : is_nilpotent a) :
|
|
691 |
is_nilpotent (lie_algebra.ad R A a) :=
|
692 |
begin
|
693 |
rw lie_algebra.ad_eq_lmul_left_sub_lmul_right,
|
694 |
-
have hl : is_nilpotent (
|
695 |
-
|
696 |
-
|
|
|
|
|
|
|
697 |
end
|
698 |
|
699 |
variables {R}
|
|
|
691 |
is_nilpotent (lie_algebra.ad R A a) :=
|
692 |
begin
|
693 |
rw lie_algebra.ad_eq_lmul_left_sub_lmul_right,
|
694 |
+
have hl : is_nilpotent (linear_map.mul_left R a),
|
695 |
+
{ rwa linear_map.is_nilpotent_mul_left_iff, },
|
696 |
+
have hr : is_nilpotent (linear_map.mul_right R a),
|
697 |
+
{ rwa linear_map.is_nilpotent_mul_right_iff, },
|
698 |
+
have := @linear_map.commute_mul_left_right R A _ _ _ _ _ a a,
|
699 |
+
exact this.is_nilpotent_sub hl hr,
|
700 |
end
|
701 |
|
702 |
variables {R}
|
formal/lean/mathlib/algebra/lie/of_associative.lean
CHANGED
@@ -234,7 +234,7 @@ end lie_submodule
|
|
234 |
open lie_algebra
|
235 |
|
236 |
lemma lie_algebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [ring A] [algebra R A] :
|
237 |
-
(ad R A : A → module.End R A) =
|
238 |
by { ext a b, simp [lie_ring.of_associative_ring_bracket], }
|
239 |
|
240 |
lemma lie_subalgebra.ad_comp_incl_eq (K : lie_subalgebra R L) (x : K) :
|
|
|
234 |
open lie_algebra
|
235 |
|
236 |
lemma lie_algebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [ring A] [algebra R A] :
|
237 |
+
(ad R A : A → module.End R A) = linear_map.mul_left R - linear_map.mul_right R :=
|
238 |
by { ext a b, simp [lie_ring.of_associative_ring_bracket], }
|
239 |
|
240 |
lemma lie_subalgebra.ad_comp_incl_eq (K : lie_subalgebra R L) (x : K) :
|
formal/lean/mathlib/algebra/module/basic.lean
CHANGED
@@ -71,6 +71,9 @@ instance add_comm_monoid.nat_module : module ℕ M :=
|
|
71 |
zero_smul := zero_nsmul,
|
72 |
add_smul := λ r s x, add_nsmul x r s }
|
73 |
|
|
|
|
|
|
|
74 |
theorem add_smul : (r + s) • x = r • x + s • x := module.add_smul r s x
|
75 |
|
76 |
lemma convex.combo_self {a b : R} (h : a + b = 1) (x : M) : a • x + b • x = x :=
|
@@ -197,11 +200,14 @@ instance add_comm_group.int_module : module ℤ M :=
|
|
197 |
zero_smul := zero_zsmul,
|
198 |
add_smul := λ r s x, add_zsmul x r s }
|
199 |
|
|
|
|
|
|
|
200 |
/-- A structure containing most informations as in a module, except the fields `zero_smul`
|
201 |
and `smul_zero`. As these fields can be deduced from the other ones when `M` is an `add_comm_group`,
|
202 |
this provides a way to construct a module structure by checking less properties, in
|
203 |
`module.of_core`. -/
|
204 |
-
@[nolint
|
205 |
structure module.core extends has_smul R M :=
|
206 |
(smul_add : ∀(r : R) (x y : M), r • (x + y) = r • x + r • y)
|
207 |
(add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x)
|
|
|
71 |
zero_smul := zero_nsmul,
|
72 |
add_smul := λ r s x, add_nsmul x r s }
|
73 |
|
74 |
+
lemma add_monoid.End.nat_cast_def (n : ℕ) :
|
75 |
+
(↑n : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℕ M n := rfl
|
76 |
+
|
77 |
theorem add_smul : (r + s) • x = r • x + s • x := module.add_smul r s x
|
78 |
|
79 |
lemma convex.combo_self {a b : R} (h : a + b = 1) (x : M) : a • x + b • x = x :=
|
|
|
200 |
zero_smul := zero_zsmul,
|
201 |
add_smul := λ r s x, add_zsmul x r s }
|
202 |
|
203 |
+
lemma add_monoid.End.int_cast_def (z : ℤ) :
|
204 |
+
(↑z : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℤ M z := rfl
|
205 |
+
|
206 |
/-- A structure containing most informations as in a module, except the fields `zero_smul`
|
207 |
and `smul_zero`. As these fields can be deduced from the other ones when `M` is an `add_comm_group`,
|
208 |
this provides a way to construct a module structure by checking less properties, in
|
209 |
`module.of_core`. -/
|
210 |
+
@[nolint has_nonempty_instance]
|
211 |
structure module.core extends has_smul R M :=
|
212 |
(smul_add : ∀(r : R) (x y : M), r • (x + y) = r • x + r • y)
|
213 |
(add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x)
|
formal/lean/mathlib/algebra/module/bimodule.lean
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/-
|
2 |
+
Copyright (c) 2022 Oliver Nash. All rights reserved.
|
3 |
+
Released under Apache 2.0 license as described in the file LICENSE.
|
4 |
+
Authors: Oliver Nash
|
5 |
+
-/
|
6 |
+
import ring_theory.tensor_product
|
7 |
+
|
8 |
+
/-!
|
9 |
+
# Bimodules
|
10 |
+
|
11 |
+
One frequently encounters situations in which several sets of scalars act on a single space, subject
|
12 |
+
to compatibility condition(s). A distinguished instance of this is the theory of bimodules: one has
|
13 |
+
two rings `R`, `S` acting on an additive group `M`, with `R` acting covariantly ("on the left")
|
14 |
+
and `S` acting contravariantly ("on the right"). The compatibility condition is just:
|
15 |
+
`(r • m) • s = r • (m • s)` for all `r : R`, `s : S`, `m : M`.
|
16 |
+
|
17 |
+
This situation can be set up in Mathlib as:
|
18 |
+
```lean
|
19 |
+
variables (R S M : Type*) [ring R] [ring S]
|
20 |
+
variables [add_comm_group M] [module R M] [module Sᵐᵒᵖ M] [smul_comm_class R Sᵐᵒᵖ M]
|
21 |
+
```
|
22 |
+
The key fact is:
|
23 |
+
```lean
|
24 |
+
example : module (R ⊗[ℕ] Sᵐᵒᵖ) M := tensor_product.algebra.module
|
25 |
+
```
|
26 |
+
Note that the corresponding result holds for the canonically isomorphic ring `R ⊗[ℤ] Sᵐᵒᵖ` but it is
|
27 |
+
preferable to use the `R ⊗[ℕ] Sᵐᵒᵖ` instance since it works without additive inverses.
|
28 |
+
|
29 |
+
Bimodules are thus just a special case of `module`s and most of their properties follow from the
|
30 |
+
theory of `module`s`. In particular a two-sided submodule of a bimodule is simply a term of type
|
31 |
+
`submodule (R ⊗[ℕ] Sᵐᵒᵖ) M`.
|
32 |
+
|
33 |
+
This file is a place to collect results which are specific to bimodules.
|
34 |
+
|
35 |
+
## Main definitions
|
36 |
+
|
37 |
+
* `subbimodule.mk`
|
38 |
+
* `subbimodule.smul_mem`
|
39 |
+
* `subbimodule.smul_mem'`
|
40 |
+
* `subbimodule.to_submodule`
|
41 |
+
* `subbimodule.to_submodule'`
|
42 |
+
|
43 |
+
## Implementation details
|
44 |
+
|
45 |
+
For many definitions and lemmas it is preferable to set things up without opposites, i.e., as:
|
46 |
+
`[module S M] [smul_comm_class R S M]` rather than `[module Sᵐᵒᵖ M] [smul_comm_class R Sᵐᵒᵖ M]`.
|
47 |
+
The corresponding results for opposites then follow automatically and do not require taking
|
48 |
+
advantage of the fact that `(Sᵐᵒᵖ)ᵐᵒᵖ` is defeq to `S`.
|
49 |
+
|
50 |
+
## TODO
|
51 |
+
|
52 |
+
Develop the theory of two-sided ideals, which have type `submodule (R ⊗[ℕ] Rᵐᵒᵖ) R`.
|
53 |
+
|
54 |
+
-/
|
55 |
+
|
56 |
+
open_locale tensor_product
|
57 |
+
|
58 |
+
local attribute [instance] tensor_product.algebra.module
|
59 |
+
|
60 |
+
namespace subbimodule
|
61 |
+
|
62 |
+
section algebra
|
63 |
+
|
64 |
+
variables {R A B M : Type*}
|
65 |
+
variables [comm_semiring R] [add_comm_monoid M] [module R M]
|
66 |
+
variables [semiring A] [semiring B] [module A M] [module B M]
|
67 |
+
variables [algebra R A] [algebra R B]
|
68 |
+
variables [is_scalar_tower R A M] [is_scalar_tower R B M]
|
69 |
+
variables [smul_comm_class A B M]
|
70 |
+
|
71 |
+
/-- A constructor for a subbimodule which demands closure under the two sets of scalars
|
72 |
+
individually, rather than jointly via their tensor product.
|
73 |
+
|
74 |
+
Note that `R` plays no role but it is convenient to make this generalisation to support the cases
|
75 |
+
`R = ℕ` and `R = ℤ` which both show up naturally. See also `base_change`. -/
|
76 |
+
@[simps] def mk (p : add_submonoid M)
|
77 |
+
(hA : ∀ (a : A) {m : M}, m ∈ p → a • m ∈ p)
|
78 |
+
(hB : ∀ (b : B) {m : M}, m ∈ p → b • m ∈ p) : submodule (A ⊗[R] B) M :=
|
79 |
+
{ carrier := p,
|
80 |
+
smul_mem' := λ ab m, tensor_product.induction_on ab
|
81 |
+
(λ hm, by simpa only [zero_smul] using p.zero_mem)
|
82 |
+
(λ a b hm, by simpa only [tensor_product.algebra.smul_def] using hA a (hB b hm))
|
83 |
+
(λ z w hz hw hm, by simpa only [add_smul] using p.add_mem (hz hm) (hw hm)),
|
84 |
+
.. p }
|
85 |
+
|
86 |
+
lemma smul_mem (p : submodule (A ⊗[R] B) M) (a : A) {m : M} (hm : m ∈ p) : a • m ∈ p :=
|
87 |
+
begin
|
88 |
+
suffices : a • m = a ⊗ₜ[R] (1 : B) • m, { exact this.symm ▸ p.smul_mem _ hm, },
|
89 |
+
simp [tensor_product.algebra.smul_def],
|
90 |
+
end
|
91 |
+
|
92 |
+
lemma smul_mem' (p : submodule (A ⊗[R] B) M) (b : B) {m : M} (hm : m ∈ p) : b • m ∈ p :=
|
93 |
+
begin
|
94 |
+
suffices : b • m = (1 : A) ⊗ₜ[R] b • m, { exact this.symm ▸ p.smul_mem _ hm, },
|
95 |
+
simp [tensor_product.algebra.smul_def],
|
96 |
+
end
|
97 |
+
|
98 |
+
/-- If `A` and `B` are also `algebra`s over yet another set of scalars `S` then we may "base change"
|
99 |
+
from `R` to `S`. -/
|
100 |
+
@[simps] def base_change (S : Type*) [comm_semiring S] [module S M] [algebra S A] [algebra S B]
|
101 |
+
[is_scalar_tower S A M] [is_scalar_tower S B M] (p : submodule (A ⊗[R] B) M) :
|
102 |
+
submodule (A ⊗[S] B) M :=
|
103 |
+
mk p.to_add_submonoid (smul_mem p) (smul_mem' p)
|
104 |
+
|
105 |
+
/-- Forgetting the `B` action, a `submodule` over `A ⊗[R] B` is just a `submodule` over `A`. -/
|
106 |
+
@[simps] def to_submodule (p : submodule (A ⊗[R] B) M) : submodule A M :=
|
107 |
+
{ carrier := p,
|
108 |
+
smul_mem' := smul_mem p,
|
109 |
+
.. p }
|
110 |
+
|
111 |
+
/-- Forgetting the `A` action, a `submodule` over `A ⊗[R] B` is just a `submodule` over `B`. -/
|
112 |
+
@[simps] def to_submodule' (p : submodule (A ⊗[R] B) M) : submodule B M :=
|
113 |
+
{ carrier := p,
|
114 |
+
smul_mem' := smul_mem' p,
|
115 |
+
.. p }
|
116 |
+
|
117 |
+
end algebra
|
118 |
+
|
119 |
+
section ring
|
120 |
+
|
121 |
+
variables (R S M : Type*) [ring R] [ring S]
|
122 |
+
variables [add_comm_group M] [module R M] [module S M] [smul_comm_class R S M]
|
123 |
+
|
124 |
+
/-- A `submodule` over `R ⊗[ℕ] S` is naturally also a `submodule` over the canonically-isomorphic
|
125 |
+
ring `R ⊗[ℤ] S`. -/
|
126 |
+
@[simps] def to_subbimodule_int (p : submodule (R ⊗[ℕ] S) M) : submodule (R ⊗[ℤ] S) M :=
|
127 |
+
base_change ℤ p
|
128 |
+
|
129 |
+
/-- A `submodule` over `R ⊗[ℤ] S` is naturally also a `submodule` over the canonically-isomorphic
|
130 |
+
ring `R ⊗[ℕ] S`. -/
|
131 |
+
@[simps] def to_subbimodule_nat (p : submodule (R ⊗[ℤ] S) M) : submodule (R ⊗[ℕ] S) M :=
|
132 |
+
base_change ℕ p
|
133 |
+
|
134 |
+
end ring
|
135 |
+
|
136 |
+
end subbimodule
|
formal/lean/mathlib/algebra/module/equiv.lean
CHANGED
@@ -45,13 +45,12 @@ section
|
|
45 |
set_option old_structure_cmd true
|
46 |
|
47 |
/-- A linear equivalence is an invertible linear map. -/
|
48 |
-
@[nolint
|
49 |
structure linear_equiv {R : Type*} {S : Type*} [semiring R] [semiring S] (σ : R →+* S)
|
50 |
{σ' : S →+* R} [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ]
|
51 |
(M : Type*) (M₂ : Type*)
|
52 |
[add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module S M₂]
|
53 |
extends linear_map σ M M₂, M ≃+ M₂
|
54 |
-
end
|
55 |
|
56 |
attribute [nolint doc_blame] linear_equiv.to_linear_map
|
57 |
attribute [nolint doc_blame] linear_equiv.to_add_equiv
|
@@ -60,6 +59,49 @@ notation M ` ≃ₛₗ[`:50 σ `] ` M₂ := linear_equiv σ M M₂
|
|
60 |
notation M ` ≃ₗ[`:50 R `] ` M₂ := linear_equiv (ring_hom.id R) M M₂
|
61 |
notation M ` ≃ₗ⋆[`:50 R `] ` M₂ := linear_equiv (star_ring_end R) M M₂
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
namespace linear_equiv
|
64 |
|
65 |
section add_comm_monoid
|
@@ -101,9 +143,12 @@ lemma to_linear_map_injective :
|
|
101 |
(e₁ : M →ₛₗ[σ] M₂) = e₂ ↔ e₁ = e₂ :=
|
102 |
to_linear_map_injective.eq_iff
|
103 |
|
104 |
-
instance :
|
105 |
{ coe := linear_equiv.to_fun,
|
106 |
-
|
|
|
|
|
|
|
107 |
map_add := map_add',
|
108 |
map_smulₛₗ := map_smul' }
|
109 |
|
|
|
45 |
set_option old_structure_cmd true
|
46 |
|
47 |
/-- A linear equivalence is an invertible linear map. -/
|
48 |
+
@[nolint has_nonempty_instance]
|
49 |
structure linear_equiv {R : Type*} {S : Type*} [semiring R] [semiring S] (σ : R →+* S)
|
50 |
{σ' : S →+* R} [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ]
|
51 |
(M : Type*) (M₂ : Type*)
|
52 |
[add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module S M₂]
|
53 |
extends linear_map σ M M₂, M ≃+ M₂
|
|
|
54 |
|
55 |
attribute [nolint doc_blame] linear_equiv.to_linear_map
|
56 |
attribute [nolint doc_blame] linear_equiv.to_add_equiv
|
|
|
59 |
notation M ` ≃ₗ[`:50 R `] ` M₂ := linear_equiv (ring_hom.id R) M M₂
|
60 |
notation M ` ≃ₗ⋆[`:50 R `] ` M₂ := linear_equiv (star_ring_end R) M M₂
|
61 |
|
62 |
+
/-- `semilinear_equiv_class F σ M M₂` asserts `F` is a type of bundled `σ`-semilinear equivs
|
63 |
+
`M → M₂`.
|
64 |
+
|
65 |
+
See also `linear_equiv_class F R M M₂` for the case where `σ` is the identity map on `R`.
|
66 |
+
|
67 |
+
A map `f` between an `R`-module and an `S`-module over a ring homomorphism `σ : R →+* S`
|
68 |
+
is semilinear if it satisfies the two properties `f (x + y) = f x + f y` and
|
69 |
+
`f (c • x) = (σ c) • f x`. -/
|
70 |
+
class semilinear_equiv_class (F : Type*) {R S : out_param Type*} [semiring R] [semiring S]
|
71 |
+
(σ : out_param $ R →+* S) {σ' : out_param $ S →+* R}
|
72 |
+
[ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ] (M M₂ : out_param Type*)
|
73 |
+
[add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module S M₂]
|
74 |
+
extends add_equiv_class F M M₂ :=
|
75 |
+
(map_smulₛₗ : ∀ (f : F) (r : R) (x : M), f (r • x) = (σ r) • f x)
|
76 |
+
|
77 |
+
-- `R, S, σ, σ'` become metavars, but it's OK since they are outparams.
|
78 |
+
attribute [nolint dangerous_instance] semilinear_equiv_class.to_add_equiv_class
|
79 |
+
|
80 |
+
/-- `linear_equiv_class F R M M₂` asserts `F` is a type of bundled `R`-linear equivs `M → M₂`.
|
81 |
+
This is an abbreviation for `semilinear_equiv_class F (ring_hom.id R) M M₂`.
|
82 |
+
-/
|
83 |
+
abbreviation linear_equiv_class (F : Type*) (R M M₂ : out_param Type*)
|
84 |
+
[semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] :=
|
85 |
+
semilinear_equiv_class F (ring_hom.id R) M M₂
|
86 |
+
|
87 |
+
end
|
88 |
+
|
89 |
+
namespace semilinear_equiv_class
|
90 |
+
|
91 |
+
variables (F : Type*) [semiring R] [semiring S]
|
92 |
+
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂]
|
93 |
+
variables [module R M] [module S M₂] {σ : R →+* S} {σ' : S →+* R}
|
94 |
+
|
95 |
+
-- `σ'` becomes a metavariable, but it's OK since it's an outparam
|
96 |
+
@[priority 100, nolint dangerous_instance]
|
97 |
+
instance [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ] [s : semilinear_equiv_class F σ M M₂] :
|
98 |
+
semilinear_map_class F σ M M₂ :=
|
99 |
+
{ coe := (coe : F → M → M₂),
|
100 |
+
coe_injective' := @fun_like.coe_injective F _ _ _,
|
101 |
+
..s }
|
102 |
+
|
103 |
+
end semilinear_equiv_class
|
104 |
+
|
105 |
namespace linear_equiv
|
106 |
|
107 |
section add_comm_monoid
|
|
|
143 |
(e₁ : M →ₛₗ[σ] M₂) = e₂ ↔ e₁ = e₂ :=
|
144 |
to_linear_map_injective.eq_iff
|
145 |
|
146 |
+
instance : semilinear_equiv_class (M ≃ₛₗ[σ] M₂) σ M M₂ :=
|
147 |
{ coe := linear_equiv.to_fun,
|
148 |
+
inv := linear_equiv.inv_fun,
|
149 |
+
coe_injective' := λ f g h₁ h₂, by { cases f, cases g, congr' },
|
150 |
+
left_inv := linear_equiv.left_inv,
|
151 |
+
right_inv := linear_equiv.right_inv,
|
152 |
map_add := map_add',
|
153 |
map_smulₛₗ := map_smul' }
|
154 |
|
formal/lean/mathlib/algebra/module/linear_map.lean
CHANGED
@@ -811,12 +811,26 @@ instance _root_.module.End.semiring : semiring (module.End R M) :=
|
|
811 |
zero_mul := zero_comp,
|
812 |
left_distrib := λ f g h, comp_add _ _ _,
|
813 |
right_distrib := λ f g h, add_comp _ _ _,
|
|
|
|
|
|
|
814 |
.. add_monoid_with_one.unary,
|
815 |
.. _root_.module.End.monoid,
|
816 |
.. linear_map.add_comm_monoid }
|
817 |
|
|
|
|
|
|
|
|
|
818 |
instance _root_.module.End.ring : ring (module.End R N₁) :=
|
819 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
820 |
|
821 |
section
|
822 |
variables [monoid S] [distrib_mul_action S M] [smul_comm_class R S M]
|
@@ -930,4 +944,10 @@ def module_End_self_op : R ≃+* module.End Rᵐᵒᵖ R :=
|
|
930 |
right_inv := λ f, linear_map.ext_ring_op $ mul_one _,
|
931 |
..module.to_module_End _ _ }
|
932 |
|
|
|
|
|
|
|
|
|
|
|
|
|
933 |
end module
|
|
|
811 |
zero_mul := zero_comp,
|
812 |
left_distrib := λ f g h, comp_add _ _ _,
|
813 |
right_distrib := λ f g h, add_comp _ _ _,
|
814 |
+
nat_cast := λ n, n • 1,
|
815 |
+
nat_cast_zero := add_monoid.nsmul_zero' _,
|
816 |
+
nat_cast_succ := λ n, (add_monoid.nsmul_succ' n 1).trans (add_comm _ _),
|
817 |
.. add_monoid_with_one.unary,
|
818 |
.. _root_.module.End.monoid,
|
819 |
.. linear_map.add_comm_monoid }
|
820 |
|
821 |
+
/-- See also `module.End.nat_cast_def`. -/
|
822 |
+
@[simp] lemma _root_.module.End.nat_cast_apply (n : ℕ) (m : M) :
|
823 |
+
(↑n : module.End R M) m = n • m := rfl
|
824 |
+
|
825 |
instance _root_.module.End.ring : ring (module.End R N₁) :=
|
826 |
+
{ int_cast := λ z, z • 1,
|
827 |
+
int_cast_of_nat := of_nat_zsmul _,
|
828 |
+
int_cast_neg_succ_of_nat := zsmul_neg_succ_of_nat _,
|
829 |
+
..module.End.semiring, ..linear_map.add_comm_group }
|
830 |
+
|
831 |
+
/-- See also `module.End.int_cast_def`. -/
|
832 |
+
@[simp] lemma _root_.module.End.int_cast_apply (z : ℤ) (m : N₁) :
|
833 |
+
(↑z : module.End R N₁) m = z • m := rfl
|
834 |
|
835 |
section
|
836 |
variables [monoid S] [distrib_mul_action S M] [smul_comm_class R S M]
|
|
|
944 |
right_inv := λ f, linear_map.ext_ring_op $ mul_one _,
|
945 |
..module.to_module_End _ _ }
|
946 |
|
947 |
+
lemma End.nat_cast_def (n : ℕ) [add_comm_monoid N₁] [module R N₁] :
|
948 |
+
(↑n : module.End R N₁) = module.to_module_End R N₁ n := rfl
|
949 |
+
|
950 |
+
lemma End.int_cast_def (z : ℤ) [add_comm_group N₁] [module R N₁] :
|
951 |
+
(↑z : module.End R N₁) = module.to_module_End R N₁ z := rfl
|
952 |
+
|
953 |
end module
|
formal/lean/mathlib/algebra/module/localized_module.lean
CHANGED
@@ -70,7 +70,7 @@ instance r.setoid : setoid (M × S) :=
|
|
70 |
If `S` is a multiplicative subset of a ring `R` and `M` an `R`-module, then
|
71 |
we can localize `M` by `S`.
|
72 |
-/
|
73 |
-
@[nolint
|
74 |
def _root_.localized_module : Type (max u v) := quotient (r.setoid S M)
|
75 |
|
76 |
section
|
|
|
70 |
If `S` is a multiplicative subset of a ring `R` and `M` an `R`-module, then
|
71 |
we can localize `M` by `S`.
|
72 |
-/
|
73 |
+
@[nolint has_nonempty_instance]
|
74 |
def _root_.localized_module : Type (max u v) := quotient (r.setoid S M)
|
75 |
|
76 |
section
|
formal/lean/mathlib/algebra/monoid_algebra/basic.lean
CHANGED
@@ -183,6 +183,8 @@ instance : non_assoc_semiring (monoid_algebra k G) :=
|
|
183 |
single_zero, sum_zero, add_zero, mul_one, sum_single],
|
184 |
..monoid_algebra.non_unital_non_assoc_semiring }
|
185 |
|
|
|
|
|
186 |
end mul_one_class
|
187 |
|
188 |
/-! #### Semiring structure -/
|
@@ -244,11 +246,16 @@ instance [ring k] [semigroup G] : non_unital_ring (monoid_algebra k G) :=
|
|
244 |
.. monoid_algebra.non_unital_semiring }
|
245 |
|
246 |
instance [ring k] [mul_one_class G] : non_assoc_ring (monoid_algebra k G) :=
|
247 |
-
{
|
|
|
|
|
|
|
248 |
.. monoid_algebra.non_assoc_semiring }
|
249 |
|
|
|
|
|
250 |
instance [ring k] [monoid G] : ring (monoid_algebra k G) :=
|
251 |
-
{ .. monoid_algebra.
|
252 |
.. monoid_algebra.semiring }
|
253 |
|
254 |
instance [comm_ring k] [comm_semigroup G] : non_unital_comm_ring (monoid_algebra k G) :=
|
@@ -318,8 +325,8 @@ lemma mul_apply_antidiagonal [has_mul G] (f g : monoid_algebra k G) (x : G) (s :
|
|
318 |
let F : G × G → k := λ p, by classical; exact if p.1 * p.2 = x then f p.1 * g p.2 else 0 in
|
319 |
calc (f * g) x = (∑ a₁ in f.support, ∑ a₂ in g.support, F (a₁, a₂)) :
|
320 |
mul_apply f g x
|
321 |
-
... = ∑ p in f.support
|
322 |
-
... = ∑ p in (f.support
|
323 |
(finset.sum_filter _ _).symm
|
324 |
... = ∑ p in s.filter (λ p : G × G, p.1 ∈ f.support ∧ p.2 ∈ g.support), f p.1 * g p.2 :
|
325 |
sum_congr (by { ext, simp only [mem_filter, mem_product, hs, and_comm] }) (λ _ _, rfl)
|
@@ -1029,6 +1036,8 @@ instance : non_assoc_semiring (add_monoid_algebra k G) :=
|
|
1029 |
single_zero, sum_zero, add_zero, mul_one, sum_single],
|
1030 |
.. add_monoid_algebra.non_unital_non_assoc_semiring }
|
1031 |
|
|
|
|
|
1032 |
end mul_one_class
|
1033 |
|
1034 |
/-! #### Semiring structure -/
|
@@ -1091,11 +1100,17 @@ instance [ring k] [add_semigroup G] : non_unital_ring (add_monoid_algebra k G) :
|
|
1091 |
.. add_monoid_algebra.non_unital_semiring }
|
1092 |
|
1093 |
instance [ring k] [add_zero_class G] : non_assoc_ring (add_monoid_algebra k G) :=
|
1094 |
-
{
|
|
|
|
|
|
|
1095 |
.. add_monoid_algebra.non_assoc_semiring }
|
1096 |
|
|
|
|
|
|
|
1097 |
instance [ring k] [add_monoid G] : ring (add_monoid_algebra k G) :=
|
1098 |
-
{ .. add_monoid_algebra.
|
1099 |
.. add_monoid_algebra.semiring }
|
1100 |
|
1101 |
instance [comm_ring k] [add_comm_semigroup G] : non_unital_comm_ring (add_monoid_algebra k G) :=
|
|
|
183 |
single_zero, sum_zero, add_zero, mul_one, sum_single],
|
184 |
..monoid_algebra.non_unital_non_assoc_semiring }
|
185 |
|
186 |
+
lemma nat_cast_def (n : ℕ) : (n : monoid_algebra k G) = single 1 n := rfl
|
187 |
+
|
188 |
end mul_one_class
|
189 |
|
190 |
/-! #### Semiring structure -/
|
|
|
246 |
.. monoid_algebra.non_unital_semiring }
|
247 |
|
248 |
instance [ring k] [mul_one_class G] : non_assoc_ring (monoid_algebra k G) :=
|
249 |
+
{ int_cast := λ z, single 1 (z : k),
|
250 |
+
int_cast_of_nat := λ n, by simpa,
|
251 |
+
int_cast_neg_succ_of_nat := λ n, by simpa,
|
252 |
+
.. monoid_algebra.add_comm_group,
|
253 |
.. monoid_algebra.non_assoc_semiring }
|
254 |
|
255 |
+
lemma int_cast_def [ring k] [mul_one_class G] (z : ℤ) : (z : monoid_algebra k G) = single 1 z := rfl
|
256 |
+
|
257 |
instance [ring k] [monoid G] : ring (monoid_algebra k G) :=
|
258 |
+
{ .. monoid_algebra.non_assoc_ring,
|
259 |
.. monoid_algebra.semiring }
|
260 |
|
261 |
instance [comm_ring k] [comm_semigroup G] : non_unital_comm_ring (monoid_algebra k G) :=
|
|
|
325 |
let F : G × G → k := λ p, by classical; exact if p.1 * p.2 = x then f p.1 * g p.2 else 0 in
|
326 |
calc (f * g) x = (∑ a₁ in f.support, ∑ a₂ in g.support, F (a₁, a₂)) :
|
327 |
mul_apply f g x
|
328 |
+
... = ∑ p in f.support ×ˢ g.support, F p : finset.sum_product.symm
|
329 |
+
... = ∑ p in (f.support ×ˢ g.support).filter (λ p : G × G, p.1 * p.2 = x), f p.1 * g p.2 :
|
330 |
(finset.sum_filter _ _).symm
|
331 |
... = ∑ p in s.filter (λ p : G × G, p.1 ∈ f.support ∧ p.2 ∈ g.support), f p.1 * g p.2 :
|
332 |
sum_congr (by { ext, simp only [mem_filter, mem_product, hs, and_comm] }) (λ _ _, rfl)
|
|
|
1036 |
single_zero, sum_zero, add_zero, mul_one, sum_single],
|
1037 |
.. add_monoid_algebra.non_unital_non_assoc_semiring }
|
1038 |
|
1039 |
+
lemma nat_cast_def (n : ℕ) : (n : add_monoid_algebra k G) = single 0 n := rfl
|
1040 |
+
|
1041 |
end mul_one_class
|
1042 |
|
1043 |
/-! #### Semiring structure -/
|
|
|
1100 |
.. add_monoid_algebra.non_unital_semiring }
|
1101 |
|
1102 |
instance [ring k] [add_zero_class G] : non_assoc_ring (add_monoid_algebra k G) :=
|
1103 |
+
{ int_cast := λ z, single 0 (z : k),
|
1104 |
+
int_cast_of_nat := λ n, by simpa,
|
1105 |
+
int_cast_neg_succ_of_nat := λ n, by simpa,
|
1106 |
+
.. add_monoid_algebra.add_comm_group,
|
1107 |
.. add_monoid_algebra.non_assoc_semiring }
|
1108 |
|
1109 |
+
lemma int_cast_def [ring k] [add_zero_class G] (z : ℤ) :
|
1110 |
+
(z : add_monoid_algebra k G) = single 0 z := rfl
|
1111 |
+
|
1112 |
instance [ring k] [add_monoid G] : ring (add_monoid_algebra k G) :=
|
1113 |
+
{ .. add_monoid_algebra.non_assoc_ring,
|
1114 |
.. add_monoid_algebra.semiring }
|
1115 |
|
1116 |
instance [comm_ring k] [add_comm_semigroup G] : non_unital_comm_ring (add_monoid_algebra k G) :=
|
formal/lean/mathlib/algebra/monoid_algebra/degree.lean
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/-
|
2 |
+
Copyright (c) 2022 Damiano Testa. All rights reserved.
|
3 |
+
Released under Apache 2.0 license as described in the file LICENSE.
|
4 |
+
Authors: Damiano Testa
|
5 |
+
-/
|
6 |
+
import algebra.monoid_algebra.basic
|
7 |
+
|
8 |
+
/-!
|
9 |
+
# Lemmas about the `sup` and `inf` of the support of `add_monoid_algebra`
|
10 |
+
|
11 |
+
## TODO
|
12 |
+
The current plan is to state and prove lemmas about `finset.sup (finsupp.support f) D` with a
|
13 |
+
"generic" degree/weight function `D` from the grading Type `A` to a somewhat ordered Type `B`.
|
14 |
+
|
15 |
+
Next, the general lemmas get specialized for some yet-to-be-defined `degree`s.
|
16 |
+
-/
|
17 |
+
|
18 |
+
variables {R A T B ι : Type*}
|
19 |
+
|
20 |
+
namespace add_monoid_algebra
|
21 |
+
open_locale classical big_operators
|
22 |
+
|
23 |
+
/-! ### Results about the `finset.sup` and `finset.inf` of `finsupp.support` -/
|
24 |
+
|
25 |
+
section general_results_assuming_semilattice_sup
|
26 |
+
variables [semilattice_sup B] [order_bot B] [semilattice_inf T] [order_top T]
|
27 |
+
|
28 |
+
section semiring
|
29 |
+
variables [semiring R]
|
30 |
+
|
31 |
+
section explicit_degrees
|
32 |
+
/-!
|
33 |
+
|
34 |
+
In this section, we use `degb` and `degt` to denote "degree functions" on `A` with values in
|
35 |
+
a type with *b*ot or *t*op respectively.
|
36 |
+
-/
|
37 |
+
variables (degb : A → B) (degt : A → T) (f g : add_monoid_algebra R A)
|
38 |
+
|
39 |
+
lemma sup_support_add_le : (f + g).support.sup degb ≤ (f.support.sup degb) ⊔ (g.support.sup degb) :=
|
40 |
+
(finset.sup_mono finsupp.support_add).trans_eq finset.sup_union
|
41 |
+
|
42 |
+
lemma le_inf_support_add : f.support.inf degt ⊓ g.support.inf degt ≤ (f + g).support.inf degt :=
|
43 |
+
sup_support_add_le (λ a : A, order_dual.to_dual (degt a)) f g
|
44 |
+
|
45 |
+
end explicit_degrees
|
46 |
+
|
47 |
+
section add_only
|
48 |
+
variables [has_add A] [has_add B] [has_add T]
|
49 |
+
[covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)]
|
50 |
+
[covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)]
|
51 |
+
|
52 |
+
lemma sup_support_mul_le {degb : A → B} (degbm : ∀ {a b}, degb (a + b) ≤ degb a + degb b)
|
53 |
+
(f g : add_monoid_algebra R A) :
|
54 |
+
(f * g).support.sup degb ≤ f.support.sup degb + g.support.sup degb :=
|
55 |
+
begin
|
56 |
+
refine (finset.sup_mono $ support_mul _ _).trans _,
|
57 |
+
simp_rw [finset.sup_bUnion, finset.sup_singleton],
|
58 |
+
refine (finset.sup_le $ λ fd fds, finset.sup_le $ λ gd gds, degbm.trans $ add_le_add _ _);
|
59 |
+
exact finset.le_sup ‹_›,
|
60 |
+
end
|
61 |
+
|
62 |
+
lemma le_inf_support_mul {degt : A → T} (degtm : ∀ {a b}, degt a + degt b ≤ degt (a + b))
|
63 |
+
(f g : add_monoid_algebra R A) :
|
64 |
+
f.support.inf degt + g.support.inf degt ≤ (f * g).support.inf degt :=
|
65 |
+
order_dual.of_dual_le_of_dual.mpr $
|
66 |
+
sup_support_mul_le (λ a b, order_dual.of_dual_le_of_dual.mp degtm) f g
|
67 |
+
|
68 |
+
end add_only
|
69 |
+
|
70 |
+
section add_monoids
|
71 |
+
variables [add_monoid A]
|
72 |
+
[add_monoid B] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)]
|
73 |
+
[add_monoid T] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)]
|
74 |
+
{degb : A → B} {degt : A → T}
|
75 |
+
|
76 |
+
lemma sup_support_list_prod_le (degb0 : degb 0 ≤ 0)
|
77 |
+
(degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) :
|
78 |
+
∀ l : list (add_monoid_algebra R A),
|
79 |
+
l.prod.support.sup degb ≤ (l.map (λ f : add_monoid_algebra R A, f.support.sup degb)).sum
|
80 |
+
| [] := begin
|
81 |
+
rw [list.map_nil, finset.sup_le_iff, list.prod_nil, list.sum_nil],
|
82 |
+
exact λ a ha, by rwa [finset.mem_singleton.mp (finsupp.support_single_subset ha)]
|
83 |
+
end
|
84 |
+
| (f::fs) := begin
|
85 |
+
rw [list.prod_cons, list.map_cons, list.sum_cons],
|
86 |
+
exact (sup_support_mul_le degbm _ _).trans (add_le_add_left (sup_support_list_prod_le _) _)
|
87 |
+
end
|
88 |
+
|
89 |
+
lemma le_inf_support_list_prod (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
|
90 |
+
(l : list (add_monoid_algebra R A)) :
|
91 |
+
(l.map (λ f : add_monoid_algebra R A, f.support.inf degt)).sum ≤ l.prod.support.inf degt :=
|
92 |
+
order_dual.of_dual_le_of_dual.mpr $ sup_support_list_prod_le
|
93 |
+
(order_dual.of_dual_le_of_dual.mp degt0) (λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) l
|
94 |
+
|
95 |
+
lemma sup_support_pow_le (degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b)
|
96 |
+
(n : ℕ) (f : add_monoid_algebra R A) :
|
97 |
+
(f ^ n).support.sup degb ≤ n • (f.support.sup degb) :=
|
98 |
+
begin
|
99 |
+
rw [← list.prod_repeat, ←list.sum_repeat],
|
100 |
+
refine (sup_support_list_prod_le degb0 degbm _).trans_eq _,
|
101 |
+
rw list.map_repeat,
|
102 |
+
end
|
103 |
+
|
104 |
+
lemma le_inf_support_pow (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
|
105 |
+
(n : ℕ) (f : add_monoid_algebra R A) :
|
106 |
+
n • (f.support.inf degt) ≤ (f ^ n).support.inf degt :=
|
107 |
+
order_dual.of_dual_le_of_dual.mpr $ sup_support_pow_le (order_dual.of_dual_le_of_dual.mp degt0)
|
108 |
+
(λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) n f
|
109 |
+
|
110 |
+
end add_monoids
|
111 |
+
|
112 |
+
end semiring
|
113 |
+
|
114 |
+
section commutative_lemmas
|
115 |
+
variables [comm_semiring R] [add_comm_monoid A]
|
116 |
+
[add_comm_monoid B] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)]
|
117 |
+
[add_comm_monoid T] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)]
|
118 |
+
{degb : A → B} {degt : A → T}
|
119 |
+
|
120 |
+
lemma sup_support_multiset_prod_le
|
121 |
+
(degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b)
|
122 |
+
(m : multiset (add_monoid_algebra R A)) :
|
123 |
+
m.prod.support.sup degb ≤ (m.map (λ f : add_monoid_algebra R A, f.support.sup degb)).sum :=
|
124 |
+
begin
|
125 |
+
induction m using quot.induction_on,
|
126 |
+
rw [multiset.quot_mk_to_coe'', multiset.coe_map, multiset.coe_sum, multiset.coe_prod],
|
127 |
+
exact sup_support_list_prod_le degb0 degbm m,
|
128 |
+
end
|
129 |
+
|
130 |
+
lemma le_inf_support_multiset_prod
|
131 |
+
(degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
|
132 |
+
(m : multiset (add_monoid_algebra R A)) :
|
133 |
+
(m.map (λ f : add_monoid_algebra R A, f.support.inf degt)).sum ≤ m.prod.support.inf degt :=
|
134 |
+
order_dual.of_dual_le_of_dual.mpr $
|
135 |
+
sup_support_multiset_prod_le (order_dual.of_dual_le_of_dual.mp degt0)
|
136 |
+
(λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) m
|
137 |
+
|
138 |
+
lemma sup_support_finset_prod_le
|
139 |
+
(degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b)
|
140 |
+
(s : finset ι) (f : ι → add_monoid_algebra R A) :
|
141 |
+
(∏ i in s, f i).support.sup degb ≤ ∑ i in s, (f i).support.sup degb :=
|
142 |
+
(sup_support_multiset_prod_le degb0 degbm _).trans_eq $ congr_arg _ $ multiset.map_map _ _ _
|
143 |
+
|
144 |
+
lemma le_inf_support_finset_prod
|
145 |
+
(degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
|
146 |
+
(s : finset ι) (f : ι → add_monoid_algebra R A) :
|
147 |
+
∑ i in s, (f i).support.inf degt ≤ (∏ i in s, f i).support.inf degt :=
|
148 |
+
le_of_eq_of_le (by rw [multiset.map_map]; refl) (le_inf_support_multiset_prod degt0 degtm _)
|
149 |
+
|
150 |
+
end commutative_lemmas
|
151 |
+
|
152 |
+
end general_results_assuming_semilattice_sup
|
153 |
+
|
154 |
+
end add_monoid_algebra
|
formal/lean/mathlib/algebra/order/archimedean.lean
CHANGED
@@ -109,26 +109,13 @@ let ⟨n, h⟩ := archimedean.arch x hy in
|
|
109 |
(add_nonneg zero_le_two hy.le) _
|
110 |
... = (y + 1) ^ n : by rw [add_comm]⟩
|
111 |
|
112 |
-
section
|
113 |
-
variables [
|
114 |
|
115 |
lemma pow_unbounded_of_one_lt (x : α) {y : α} (hy1 : 1 < y) :
|
116 |
∃ n : ℕ, x < y ^ n :=
|
117 |
sub_add_cancel y 1 ▸ add_one_pow_unbounded_of_pos _ (sub_pos.2 hy1)
|
118 |
|
119 |
-
/-- Every x greater than or equal to 1 is between two successive
|
120 |
-
natural-number powers of every y greater than one. -/
|
121 |
-
lemma exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
|
122 |
-
∃ n : ℕ, y ^ n ≤ x ∧ x < y ^ (n + 1) :=
|
123 |
-
have h : ∃ n : ℕ, x < y ^ n, from pow_unbounded_of_one_lt _ hy,
|
124 |
-
by classical; exact let n := nat.find h in
|
125 |
-
have hn : x < y ^ n, from nat.find_spec h,
|
126 |
-
have hnp : 0 < n, from pos_iff_ne_zero.2 (λ hn0,
|
127 |
-
by rw [hn0, pow_zero] at hn; exact (not_le_of_gt hn hx)),
|
128 |
-
have hnsp : nat.pred n + 1 = n, from nat.succ_pred_eq_of_pos hnp,
|
129 |
-
have hltn : nat.pred n < n, from nat.pred_lt (ne_of_gt hnp),
|
130 |
-
⟨nat.pred n, le_of_not_lt (nat.find_min h hltn), by rwa hnsp⟩
|
131 |
-
|
132 |
theorem exists_int_gt (x : α) : ∃ n : ℤ, x < n :=
|
133 |
let ⟨n, h⟩ := exists_nat_gt x in ⟨n, by rwa int.cast_coe_nat⟩
|
134 |
|
@@ -149,6 +136,24 @@ begin
|
|
149 |
exact ⟨λ h, le_trans (int.cast_le.2 h) h₁, h₂ z⟩,
|
150 |
end
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
end linear_ordered_ring
|
153 |
|
154 |
section linear_ordered_field
|
@@ -276,6 +281,22 @@ archimedean_iff_nat_lt.trans
|
|
276 |
λ H x, let ⟨n, h⟩ := H x in ⟨n+1,
|
277 |
lt_of_le_of_lt h (nat.cast_lt.2 (lt_add_one _))⟩⟩
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
lemma archimedean_iff_rat_lt : archimedean α ↔ ∀ x : α, ∃ q : ℚ, x < q :=
|
280 |
⟨@exists_rat_gt α _,
|
281 |
λ H, archimedean_iff_nat_lt.2 $ λ x,
|
@@ -308,3 +329,10 @@ noncomputable def archimedean.floor_ring (α) [linear_ordered_ring α] [archimed
|
|
308 |
floor_ring α :=
|
309 |
floor_ring.of_floor α (λ a, classical.some (exists_floor a))
|
310 |
(λ z a, (classical.some_spec (exists_floor a) z).symm)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
(add_nonneg zero_le_two hy.le) _
|
110 |
... = (y + 1) ^ n : by rw [add_comm]⟩
|
111 |
|
112 |
+
section ordered_ring
|
113 |
+
variables [ordered_ring α] [nontrivial α] [archimedean α]
|
114 |
|
115 |
lemma pow_unbounded_of_one_lt (x : α) {y : α} (hy1 : 1 < y) :
|
116 |
∃ n : ℕ, x < y ^ n :=
|
117 |
sub_add_cancel y 1 ▸ add_one_pow_unbounded_of_pos _ (sub_pos.2 hy1)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
theorem exists_int_gt (x : α) : ∃ n : ℤ, x < n :=
|
120 |
let ⟨n, h⟩ := exists_nat_gt x in ⟨n, by rwa int.cast_coe_nat⟩
|
121 |
|
|
|
136 |
exact ⟨λ h, le_trans (int.cast_le.2 h) h₁, h₂ z⟩,
|
137 |
end
|
138 |
|
139 |
+
end ordered_ring
|
140 |
+
|
141 |
+
section linear_ordered_ring
|
142 |
+
variables [linear_ordered_ring α] [archimedean α]
|
143 |
+
|
144 |
+
/-- Every x greater than or equal to 1 is between two successive
|
145 |
+
natural-number powers of every y greater than one. -/
|
146 |
+
lemma exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
|
147 |
+
∃ n : ℕ, y ^ n ≤ x ∧ x < y ^ (n + 1) :=
|
148 |
+
have h : ∃ n : ℕ, x < y ^ n, from pow_unbounded_of_one_lt _ hy,
|
149 |
+
by classical; exact let n := nat.find h in
|
150 |
+
have hn : x < y ^ n, from nat.find_spec h,
|
151 |
+
have hnp : 0 < n, from pos_iff_ne_zero.2 (λ hn0,
|
152 |
+
by rw [hn0, pow_zero] at hn; exact (not_le_of_gt hn hx)),
|
153 |
+
have hnsp : nat.pred n + 1 = n, from nat.succ_pred_eq_of_pos hnp,
|
154 |
+
have hltn : nat.pred n < n, from nat.pred_lt (ne_of_gt hnp),
|
155 |
+
⟨nat.pred n, le_of_not_lt (nat.find_min h hltn), by rwa hnsp⟩
|
156 |
+
|
157 |
end linear_ordered_ring
|
158 |
|
159 |
section linear_ordered_field
|
|
|
281 |
λ H x, let ⟨n, h⟩ := H x in ⟨n+1,
|
282 |
lt_of_le_of_lt h (nat.cast_lt.2 (lt_add_one _))⟩⟩
|
283 |
|
284 |
+
lemma archimedean_iff_int_lt : archimedean α ↔ ∀ x : α, ∃ n : ℤ, x < n :=
|
285 |
+
⟨@exists_int_gt α _ _,
|
286 |
+
begin
|
287 |
+
rw archimedean_iff_nat_lt,
|
288 |
+
intros h x,
|
289 |
+
obtain ⟨n, h⟩ := h x,
|
290 |
+
refine ⟨n.to_nat, h.trans_le _⟩,
|
291 |
+
exact_mod_cast int.le_to_nat _,
|
292 |
+
end⟩
|
293 |
+
|
294 |
+
lemma archimedean_iff_int_le : archimedean α ↔ ∀ x : α, ∃ n : ℤ, x ≤ n :=
|
295 |
+
archimedean_iff_int_lt.trans
|
296 |
+
⟨λ H x, (H x).imp $ λ _, le_of_lt,
|
297 |
+
λ H x, let ⟨n, h⟩ := H x in ⟨n+1,
|
298 |
+
lt_of_le_of_lt h (int.cast_lt.2 (lt_add_one _))⟩⟩
|
299 |
+
|
300 |
lemma archimedean_iff_rat_lt : archimedean α ↔ ∀ x : α, ∃ q : ℚ, x < q :=
|
301 |
⟨@exists_rat_gt α _,
|
302 |
λ H, archimedean_iff_nat_lt.2 $ λ x,
|
|
|
329 |
floor_ring α :=
|
330 |
floor_ring.of_floor α (λ a, classical.some (exists_floor a))
|
331 |
(λ z a, (classical.some_spec (exists_floor a) z).symm)
|
332 |
+
|
333 |
+
/-- A linear ordered field that is a floor ring is archimedean. -/
|
334 |
+
lemma floor_ring.archimedean (α) [linear_ordered_field α] [floor_ring α] : archimedean α :=
|
335 |
+
begin
|
336 |
+
rw archimedean_iff_int_le,
|
337 |
+
exact λ x, ⟨⌈x⌉, int.le_ceil x⟩
|
338 |
+
end
|