Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 4,542 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
/-
Copyright (c) 2022 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import representation_theory.Rep
import algebra.category.FinVect
import representation_theory.basic
/-!
# `fdRep k G` is the category of finite dimensional `k`-linear representations of `G`.
If `V : fdRep k G`, there is a coercion that allows you to treat `V` as a type,
and this type comes equipped with `module k V` and `finite_dimensional k V` instances.
Also `V.Ο` gives the homomorphism `G β* (V ββ[k] V)`.
Conversely, given a homomorphism `Ο : G β* (V ββ[k] V)`,
you can construct the bundled representation as `Rep.of Ο`.
We verify that `fdRep k G` is a rigid monoidal category.
## TODO
* `fdRep k G` has all finite (co)limits.
* `fdRep k G` is abelian.
* `fdRep k G β FinVect (monoid_algebra k G)` (this will require generalising `FinVect` first).
* Upgrade the right rigid structure to a rigid structure.
-/
universes u
open category_theory
open category_theory.limits
/-- The category of finite dimensional `k`-linear representations of a monoid `G`. -/
@[derive [large_category, concrete_category/-, has_limits, has_colimits-/]]
abbreviation fdRep (k G : Type u) [field k] [monoid G] :=
Action (FinVect.{u} k) (Mon.of G)
namespace fdRep
variables {k G : Type u} [field k] [monoid G]
instance : has_coe_to_sort (fdRep k G) (Type u) := concrete_category.has_coe_to_sort _
instance (V : fdRep k G) : add_comm_group V :=
by { change add_comm_group ((forgetβ (fdRep k G) (FinVect k)).obj V).obj, apply_instance, }
instance (V : fdRep k G) : module k V :=
by { change module k ((forgetβ (fdRep k G) (FinVect k)).obj V).obj, apply_instance, }
instance (V : fdRep k G) : finite_dimensional k V :=
by { change finite_dimensional k ((forgetβ (fdRep k G) (FinVect k)).obj V).obj, apply_instance, }
/-- The monoid homomorphism corresponding to the action of `G` onto `V : fdRep k G`. -/
def Ο (V : fdRep k G) : G β* (V ββ[k] V) := V.Ο
/-- The underlying `linear_equiv` of an isomorphism of representations. -/
def iso_to_linear_equiv {V W : fdRep k G} (i : V β
W) : V ββ[k] W :=
FinVect.iso_to_linear_equiv ((Action.forget (FinVect k) (Mon.of G)).map_iso i)
lemma iso.conj_Ο {V W : fdRep k G} (i : V β
W) (g : G) :
W.Ο g = (fdRep.iso_to_linear_equiv i).conj (V.Ο g) :=
begin
rw [fdRep.iso_to_linear_equiv, βFinVect.iso.conj_eq_conj, iso.conj_apply],
rw [iso.eq_inv_comp ((Action.forget (FinVect k) (Mon.of G)).map_iso i)],
exact (i.hom.comm g).symm,
end
-- This works well with the new design for representations:
example (V : fdRep k G) : G β* (V ββ[k] V) := V.Ο
/-- Lift an unbundled representation to `fdRep`. -/
@[simps Ο]
def of {V : Type u} [add_comm_group V] [module k V] [finite_dimensional k V]
(Ο : representation k G V) : fdRep k G :=
β¨FinVect.of k V, Οβ©
instance : has_forgetβ (fdRep k G) (Rep k G) :=
{ forgetβ := (forgetβ (FinVect k) (Module k)).map_Action (Mon.of G), }
-- Verify that the monoidal structure is available.
example : monoidal_category (fdRep k G) := by apply_instance
end fdRep
namespace fdRep
variables {k G : Type u} [field k] [group G]
-- Verify that the rigid structure is available when the monoid is a group.
noncomputable instance : right_rigid_category (fdRep k G) :=
by { change right_rigid_category (Action (FinVect k) (Group.of G)), apply_instance, }
end fdRep
namespace fdRep
open representation
variables {k G V W : Type u} [field k] [group G]
variables [add_comm_group V] [module k V] [add_comm_group W] [module k W]
variables [finite_dimensional k V] [finite_dimensional k W]
variables (ΟV : representation k G V) (ΟW : representation k G W)
/-- Auxiliary definition for `fdRep.dual_tensor_iso_lin_hom`. -/
noncomputable def dual_tensor_iso_lin_hom_aux :
((fdRep.of ΟV.dual) β (fdRep.of ΟW)).V β
(fdRep.of (lin_hom ΟV ΟW)).V :=
(dual_tensor_hom_equiv k V W).to_FinVect_iso
/-- When `V` and `W` are finite dimensional representations of a group `G`, the isomorphism
`dual_tensor_hom_equiv k V W` of vector spaces induces an isomorphism of representations. -/
noncomputable def dual_tensor_iso_lin_hom :
(fdRep.of ΟV.dual) β (fdRep.of ΟW) β
fdRep.of (lin_hom ΟV ΟW) :=
begin
apply Action.mk_iso (dual_tensor_iso_lin_hom_aux ΟV ΟW),
convert (dual_tensor_hom_comm ΟV ΟW),
end
@[simp] lemma dual_tensor_iso_lin_hom_hom_hom :
(dual_tensor_iso_lin_hom ΟV ΟW).hom.hom = dual_tensor_hom k V W := rfl
end fdRep
|