/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import representation_theory.Rep import algebra.category.FinVect import representation_theory.basic /-! # `fdRep k G` is the category of finite dimensional `k`-linear representations of `G`. If `V : fdRep k G`, there is a coercion that allows you to treat `V` as a type, and this type comes equipped with `module k V` and `finite_dimensional k V` instances. Also `V.ρ` gives the homomorphism `G →* (V →ₗ[k] V)`. Conversely, given a homomorphism `ρ : G →* (V →ₗ[k] V)`, you can construct the bundled representation as `Rep.of ρ`. We verify that `fdRep k G` is a rigid monoidal category. ## TODO * `fdRep k G` has all finite (co)limits. * `fdRep k G` is abelian. * `fdRep k G ≌ FinVect (monoid_algebra k G)` (this will require generalising `FinVect` first). * Upgrade the right rigid structure to a rigid structure. -/ universes u open category_theory open category_theory.limits /-- The category of finite dimensional `k`-linear representations of a monoid `G`. -/ @[derive [large_category, concrete_category/-, has_limits, has_colimits-/]] abbreviation fdRep (k G : Type u) [field k] [monoid G] := Action (FinVect.{u} k) (Mon.of G) namespace fdRep variables {k G : Type u} [field k] [monoid G] instance : has_coe_to_sort (fdRep k G) (Type u) := concrete_category.has_coe_to_sort _ instance (V : fdRep k G) : add_comm_group V := by { change add_comm_group ((forget₂ (fdRep k G) (FinVect k)).obj V).obj, apply_instance, } instance (V : fdRep k G) : module k V := by { change module k ((forget₂ (fdRep k G) (FinVect k)).obj V).obj, apply_instance, } instance (V : fdRep k G) : finite_dimensional k V := by { change finite_dimensional k ((forget₂ (fdRep k G) (FinVect k)).obj V).obj, apply_instance, } /-- The monoid homomorphism corresponding to the action of `G` onto `V : fdRep k G`. -/ def ρ (V : fdRep k G) : G →* (V →ₗ[k] V) := V.ρ /-- The underlying `linear_equiv` of an isomorphism of representations. -/ def iso_to_linear_equiv {V W : fdRep k G} (i : V ≅ W) : V ≃ₗ[k] W := FinVect.iso_to_linear_equiv ((Action.forget (FinVect k) (Mon.of G)).map_iso i) lemma iso.conj_ρ {V W : fdRep k G} (i : V ≅ W) (g : G) : W.ρ g = (fdRep.iso_to_linear_equiv i).conj (V.ρ g) := begin rw [fdRep.iso_to_linear_equiv, ←FinVect.iso.conj_eq_conj, iso.conj_apply], rw [iso.eq_inv_comp ((Action.forget (FinVect k) (Mon.of G)).map_iso i)], exact (i.hom.comm g).symm, end -- This works well with the new design for representations: example (V : fdRep k G) : G →* (V →ₗ[k] V) := V.ρ /-- Lift an unbundled representation to `fdRep`. -/ @[simps ρ] def of {V : Type u} [add_comm_group V] [module k V] [finite_dimensional k V] (ρ : representation k G V) : fdRep k G := ⟨FinVect.of k V, ρ⟩ instance : has_forget₂ (fdRep k G) (Rep k G) := { forget₂ := (forget₂ (FinVect k) (Module k)).map_Action (Mon.of G), } -- Verify that the monoidal structure is available. example : monoidal_category (fdRep k G) := by apply_instance end fdRep namespace fdRep variables {k G : Type u} [field k] [group G] -- Verify that the rigid structure is available when the monoid is a group. noncomputable instance : right_rigid_category (fdRep k G) := by { change right_rigid_category (Action (FinVect k) (Group.of G)), apply_instance, } end fdRep namespace fdRep open representation variables {k G V W : Type u} [field k] [group G] variables [add_comm_group V] [module k V] [add_comm_group W] [module k W] variables [finite_dimensional k V] [finite_dimensional k W] variables (ρV : representation k G V) (ρW : representation k G W) /-- Auxiliary definition for `fdRep.dual_tensor_iso_lin_hom`. -/ noncomputable def dual_tensor_iso_lin_hom_aux : ((fdRep.of ρV.dual) ⊗ (fdRep.of ρW)).V ≅ (fdRep.of (lin_hom ρV ρW)).V := (dual_tensor_hom_equiv k V W).to_FinVect_iso /-- When `V` and `W` are finite dimensional representations of a group `G`, the isomorphism `dual_tensor_hom_equiv k V W` of vector spaces induces an isomorphism of representations. -/ noncomputable def dual_tensor_iso_lin_hom : (fdRep.of ρV.dual) ⊗ (fdRep.of ρW) ≅ fdRep.of (lin_hom ρV ρW) := begin apply Action.mk_iso (dual_tensor_iso_lin_hom_aux ρV ρW), convert (dual_tensor_hom_comm ρV ρW), end @[simp] lemma dual_tensor_iso_lin_hom_hom_hom : (dual_tensor_iso_lin_hom ρV ρW).hom.hom = dual_tensor_hom k V W := rfl end fdRep