Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
37.1 kB
/-
Copyright (c) 2021 Aaron Anderson, Jesse Michael Han, Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jesse Michael Han, Floris van Doorn
-/
import data.finset.basic
import model_theory.syntax
/-!
# Basics on First-Order Semantics
This file defines the interpretations of first-order terms, formulas, sentences, and theories
in a style inspired by the [Flypitch project](https://flypitch.github.io/).
## Main Definitions
* `first_order.language.term.realize` is defined so that `t.realize v` is the term `t` evaluated at
variables `v`.
* `first_order.language.bounded_formula.realize` is defined so that `φ.realize v xs` is the bounded
formula `φ` evaluated at tuples of variables `v` and `xs`.
* `first_order.language.formula.realize` is defined so that `φ.realize v` is the formula `φ`
evaluated at variables `v`.
* `first_order.language.sentence.realize` is defined so that `φ.realize M` is the sentence `φ`
evaluated in the structure `M`. Also denoted `M ⊨ φ`.
* `first_order.language.Theory.model` is defined so that `T.model M` is true if and only if every
sentence of `T` is realized in `M`. Also denoted `T ⊨ φ`.
## Main Results
* `first_order.language.bounded_formula.realize_to_prenex` shows that the prenex normal form of a
formula has the same realization as the original formula.
* Several results in this file show that syntactic constructions such as `relabel`, `cast_le`,
`lift_at`, `subst`, and the actions of language maps commute with realization of terms, formulas,
sentences, and theories.
## Implementation Notes
* Formulas use a modified version of de Bruijn variables. Specifically, a `L.bounded_formula α n`
is a formula with some variables indexed by a type `α`, which cannot be quantified over, and some
indexed by `fin n`, which can. For any `φ : L.bounded_formula α (n + 1)`, we define the formula
`∀' φ : L.bounded_formula α n` by universally quantifying over the variable indexed by
`n : fin (n + 1)`.
## References
For the Flypitch project:
- [J. Han, F. van Doorn, *A formal proof of the independence of the continuum hypothesis*]
[flypitch_cpp]
- [J. Han, F. van Doorn, *A formalization of forcing and the unprovability of
the continuum hypothesis*][flypitch_itp]
-/
universes u v w u' v'
namespace first_order
namespace language
variables {L : language.{u v}} {L' : language}
variables {M : Type w} {N P : Type*} [L.Structure M] [L.Structure N] [L.Structure P]
variables {α : Type u'} {β : Type v'}
open_locale first_order cardinal
open Structure cardinal fin
namespace term
/-- A term `t` with variables indexed by `α` can be evaluated by giving a value to each variable. -/
@[simp] def realize (v : α → M) :
∀ (t : L.term α), M
| (var k) := v k
| (func f ts) := fun_map f (λ i, (ts i).realize)
@[simp] lemma realize_relabel {t : L.term α} {g : α → β} {v : β → M} :
(t.relabel g).realize v = t.realize (v ∘ g) :=
begin
induction t with _ n f ts ih,
{ refl, },
{ simp [ih] }
end
@[simp] lemma realize_lift_at {n n' m : ℕ} {t : L.term (α ⊕ fin n)}
{v : α ⊕ fin (n + n') → M} :
(t.lift_at n' m).realize v = t.realize (v ∘
(sum.map id (λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i))) :=
realize_relabel
@[simp] lemma realize_constants {c : L.constants} {v : α → M} :
c.term.realize v = c :=
fun_map_eq_coe_constants
@[simp] lemma realize_functions_apply₁ {f : L.functions 1} {t : L.term α} {v : α → M} :
(f.apply₁ t).realize v = fun_map f ![t.realize v] :=
begin
rw [functions.apply₁, term.realize],
refine congr rfl (funext (λ i, _)),
simp only [matrix.cons_val_fin_one],
end
@[simp] lemma realize_functions_apply₂ {f : L.functions 2} {t₁ t₂ : L.term α} {v : α → M} :
(f.apply₂ t₁ t₂).realize v = fun_map f ![t₁.realize v, t₂.realize v] :=
begin
rw [functions.apply₂, term.realize],
refine congr rfl (funext (fin.cases _ _)),
{ simp only [matrix.cons_val_zero], },
{ simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] }
end
lemma realize_con {A : set M} {a : A} {v : α → M} :
(L.con a).term.realize v = a := rfl
@[simp] lemma realize_subst {t : L.term α} {tf : α → L.term β} {v : β → M} :
(t.subst tf).realize v = t.realize (λ a, (tf a).realize v) :=
begin
induction t with _ _ _ _ ih,
{ refl },
{ simp [ih] }
end
@[simp] lemma realize_restrict_var [decidable_eq α] {t : L.term α} {s : set α}
(h : ↑t.var_finset ⊆ s) {v : α → M} :
(t.restrict_var (set.inclusion h)).realize (v ∘ coe) = t.realize v :=
begin
induction t with _ _ _ _ ih,
{ refl },
{ simp_rw [var_finset, finset.coe_bUnion, set.Union_subset_iff] at h,
exact congr rfl (funext (λ i, ih i (h i (finset.mem_univ i)))) },
end
@[simp] lemma realize_restrict_var_left [decidable_eq α] {γ : Type*}
{t : L.term (α ⊕ γ)} {s : set α}
(h : ↑t.var_finset_left ⊆ s) {v : α → M} {xs : γ → M} :
(t.restrict_var_left (set.inclusion h)).realize (sum.elim (v ∘ coe) xs) =
t.realize (sum.elim v xs) :=
begin
induction t with a _ _ _ ih,
{ cases a;
refl },
{ simp_rw [var_finset_left, finset.coe_bUnion, set.Union_subset_iff] at h,
exact congr rfl (funext (λ i, ih i (h i (finset.mem_univ i)))) },
end
@[simp] lemma realize_constants_to_vars [L[[α]].Structure M]
[(Lhom_with_constants L α).is_expansion_on M]
{t : L[[α]].term β} {v : β → M} :
t.constants_to_vars.realize (sum.elim (λ a, ↑(L.con a)) v) = t.realize v :=
begin
induction t with _ n f _ ih,
{ simp },
{ cases n,
{ cases f,
{ simp [ih], },
{ simp only [realize, constants_to_vars, sum.elim_inl, fun_map_eq_coe_constants],
refl } },
{ cases f,
{ simp [ih] },
{ exact is_empty_elim f } } }
end
@[simp] lemma realize_vars_to_constants [L[[α]].Structure M]
[(Lhom_with_constants L α).is_expansion_on M]
{t : L.term (α ⊕ β)} {v : β → M} :
t.vars_to_constants.realize v = t.realize (sum.elim (λ a, ↑(L.con a)) v) :=
begin
induction t with ab n f ts ih,
{ cases ab;
simp [language.con], },
{ simp [ih], }
end
lemma realize_constants_vars_equiv_left [L[[α]].Structure M]
[(Lhom_with_constants L α).is_expansion_on M]
{n} {t : L[[α]].term (β ⊕ fin n)} {v : β → M} {xs : fin n → M} :
(constants_vars_equiv_left t).realize (sum.elim (sum.elim (λ a, ↑(L.con a)) v) xs) =
t.realize (sum.elim v xs) :=
begin
simp only [constants_vars_equiv_left, realize_relabel, equiv.coe_trans, function.comp_app,
constants_vars_equiv_apply, relabel_equiv_symm_apply],
refine trans _ (realize_constants_to_vars),
rcongr,
rcases x with (a | (b | i));
simp,
end
end term
namespace Lhom
@[simp] lemma realize_on_term [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
(t : L.term α) (v : α → M) :
(φ.on_term t).realize v = t.realize v :=
begin
induction t with _ n f ts ih,
{ refl },
{ simp only [term.realize, Lhom.on_term, Lhom.map_on_function, ih] }
end
end Lhom
@[simp] lemma hom.realize_term (g : M →[L] N) {t : L.term α} {v : α → M} :
t.realize (g ∘ v) = g (t.realize v) :=
begin
induction t,
{ refl },
{ rw [term.realize, term.realize, g.map_fun],
refine congr rfl _,
ext x,
simp [t_ih x], },
end
@[simp] lemma embedding.realize_term {v : α → M}
(t : L.term α) (g : M ↪[L] N) :
t.realize (g ∘ v) = g (t.realize v) :=
g.to_hom.realize_term
@[simp] lemma equiv.realize_term {v : α → M}
(t : L.term α) (g : M ≃[L] N) :
t.realize (g ∘ v) = g (t.realize v) :=
g.to_hom.realize_term
variables {L} {α} {n : ℕ}
namespace bounded_formula
open term
/-- A bounded formula can be evaluated as true or false by giving values to each free variable. -/
def realize :
∀ {l} (f : L.bounded_formula α l) (v : α → M) (xs : fin l → M), Prop
| _ falsum v xs := false
| _ (bounded_formula.equal t₁ t₂) v xs := t₁.realize (sum.elim v xs) = t₂.realize (sum.elim v xs)
| _ (bounded_formula.rel R ts) v xs := rel_map R (λ i, (ts i).realize (sum.elim v xs))
| _ (bounded_formula.imp f₁ f₂) v xs := realize f₁ v xs → realize f₂ v xs
| _ (bounded_formula.all f) v xs := ∀(x : M), realize f v (snoc xs x)
variables {l : ℕ} {φ ψ : L.bounded_formula α l} {θ : L.bounded_formula α l.succ}
variables {v : α → M} {xs : fin l → M}
@[simp] lemma realize_bot :
(⊥ : L.bounded_formula α l).realize v xs ↔ false :=
iff.rfl
@[simp] lemma realize_not :
φ.not.realize v xs ↔ ¬ φ.realize v xs :=
iff.rfl
@[simp] lemma realize_bd_equal (t₁ t₂ : L.term (α ⊕ fin l)) :
(t₁.bd_equal t₂).realize v xs ↔
(t₁.realize (sum.elim v xs) = t₂.realize (sum.elim v xs)) :=
iff.rfl
@[simp] lemma realize_top :
(⊤ : L.bounded_formula α l).realize v xs ↔ true :=
by simp [has_top.top]
@[simp] lemma realize_inf : (φ ⊓ ψ).realize v xs ↔ (φ.realize v xs ∧ ψ.realize v xs) :=
by simp [has_inf.inf, realize]
@[simp] lemma realize_foldr_inf (l : list (L.bounded_formula α n))
(v : α → M) (xs : fin n → M) :
(l.foldr (⊓) ⊤).realize v xs ↔ ∀ φ ∈ l, bounded_formula.realize φ v xs :=
begin
induction l with φ l ih,
{ simp },
{ simp [ih] }
end
@[simp] lemma realize_imp : (φ.imp ψ).realize v xs ↔ (φ.realize v xs → ψ.realize v xs) :=
by simp only [realize]
@[simp] lemma realize_rel {k : ℕ} {R : L.relations k} {ts : fin k → L.term _} :
(R.bounded_formula ts).realize v xs ↔ rel_map R (λ i, (ts i).realize (sum.elim v xs)) :=
iff.rfl
@[simp] lemma realize_rel₁ {R : L.relations 1} {t : L.term _} :
(R.bounded_formula₁ t).realize v xs ↔ rel_map R ![t.realize (sum.elim v xs)] :=
begin
rw [relations.bounded_formula₁, realize_rel, iff_eq_eq],
refine congr rfl (funext (λ _, _)),
simp only [matrix.cons_val_fin_one],
end
@[simp] lemma realize_rel₂ {R : L.relations 2} {t₁ t₂ : L.term _} :
(R.bounded_formula₂ t₁ t₂).realize v xs ↔
rel_map R ![t₁.realize (sum.elim v xs), t₂.realize (sum.elim v xs)] :=
begin
rw [relations.bounded_formula₂, realize_rel, iff_eq_eq],
refine congr rfl (funext (fin.cases _ _)),
{ simp only [matrix.cons_val_zero]},
{ simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] }
end
@[simp] lemma realize_sup : (φ ⊔ ψ).realize v xs ↔ (φ.realize v xs ∨ ψ.realize v xs) :=
begin
simp only [realize, has_sup.sup, realize_not, eq_iff_iff],
tauto,
end
@[simp] lemma realize_foldr_sup (l : list (L.bounded_formula α n))
(v : α → M) (xs : fin n → M) :
(l.foldr (⊔) ⊥).realize v xs ↔ ∃ φ ∈ l, bounded_formula.realize φ v xs :=
begin
induction l with φ l ih,
{ simp },
{ simp_rw [list.foldr_cons, realize_sup, ih, exists_prop, list.mem_cons_iff,
or_and_distrib_right, exists_or_distrib, exists_eq_left] }
end
@[simp] lemma realize_all : (all θ).realize v xs ↔ ∀ (a : M), (θ.realize v (fin.snoc xs a)) :=
iff.rfl
@[simp] lemma realize_ex : θ.ex.realize v xs ↔ ∃ (a : M), (θ.realize v (fin.snoc xs a)) :=
begin
rw [bounded_formula.ex, realize_not, realize_all, not_forall],
simp_rw [realize_not, not_not],
end
@[simp] lemma realize_iff : (φ.iff ψ).realize v xs ↔ (φ.realize v xs ↔ ψ.realize v xs) :=
by simp only [bounded_formula.iff, realize_inf, realize_imp, and_imp, ← iff_def]
lemma realize_cast_le_of_eq {m n : ℕ} (h : m = n) {h' : m ≤ n} {φ : L.bounded_formula α m}
{v : α → M} {xs : fin n → M} :
(φ.cast_le h').realize v xs ↔ φ.realize v (xs ∘ fin.cast h) :=
begin
subst h,
simp only [cast_le_rfl, cast_refl, order_iso.coe_refl, function.comp.right_id],
end
lemma realize_map_term_rel_id [L'.Structure M]
{ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin n)}
{fr : ∀ n, L.relations n → L'.relations n}
{n} {φ : L.bounded_formula α n} {v : α → M} {v' : β → M} {xs : fin n → M}
(h1 : ∀ n (t : L.term (α ⊕ fin n)) (xs : fin n → M),
(ft n t).realize (sum.elim v' xs) = t.realize (sum.elim v xs))
(h2 : ∀ n (R : L.relations n) (x : fin n → M), rel_map (fr n R) x = rel_map R x) :
(φ.map_term_rel ft fr (λ _, id)).realize v' xs ↔ φ.realize v xs :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih,
{ refl },
{ simp [map_term_rel, realize, h1] },
{ simp [map_term_rel, realize, h1, h2] },
{ simp [map_term_rel, realize, ih1, ih2], },
{ simp only [map_term_rel, realize, ih, id.def] },
end
lemma realize_map_term_rel_add_cast_le [L'.Structure M]
{k : ℕ}
{ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin (k + n))}
{fr : ∀ n, L.relations n → L'.relations n}
{n} {φ : L.bounded_formula α n} (v : ∀ {n}, (fin (k + n) → M) → α → M) {v' : β → M}
(xs : fin (k + n) → M)
(h1 : ∀ n (t : L.term (α ⊕ fin n)) (xs' : fin (k + n) → M),
(ft n t).realize (sum.elim v' xs') =
t.realize (sum.elim (v xs') (xs' ∘ fin.nat_add _)))
(h2 : ∀ n (R : L.relations n) (x : fin n → M), rel_map (fr n R) x = rel_map R x)
(hv : ∀ n (xs : fin (k + n) → M) (x : M), @v (n+1) (snoc xs x : fin _ → M) = v xs):
(φ.map_term_rel ft fr (λ n, cast_le (add_assoc _ _ _).symm.le)).realize v' xs ↔
φ.realize (v xs) (xs ∘ fin.nat_add _) :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih,
{ refl },
{ simp [map_term_rel, realize, h1] },
{ simp [map_term_rel, realize, h1, h2] },
{ simp [map_term_rel, realize, ih1, ih2], },
{ simp [map_term_rel, realize, ih, hv] },
end
lemma realize_relabel {m n : ℕ}
{φ : L.bounded_formula α n} {g : α → β ⊕ fin m} {v : β → M} {xs : fin (m + n) → M} :
(φ.relabel g).realize v xs ↔
φ.realize (sum.elim v (xs ∘ fin.cast_add n) ∘ g) (xs ∘ fin.nat_add m) :=
by rw [relabel, realize_map_term_rel_add_cast_le]; intros; simp
lemma realize_lift_at {n n' m : ℕ} {φ : L.bounded_formula α n}
{v : α → M} {xs : fin (n + n') → M} (hmn : m + n' ≤ n + 1) :
(φ.lift_at n' m).realize v xs ↔ φ.realize v (xs ∘
(λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i)) :=
begin
rw lift_at,
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 k _ ih3,
{ simp [realize, map_term_rel], },
{ simp [realize, map_term_rel, realize_rel, realize_lift_at, sum.elim_comp_map], },
{ simp [realize, map_term_rel, realize_rel, realize_lift_at, sum.elim_comp_map], },
{ simp only [map_term_rel, realize, ih1 hmn, ih2 hmn] },
{ have h : k + 1 + n' = k + n'+ 1,
{ rw [add_assoc, add_comm 1 n', ← add_assoc], },
simp only [map_term_rel, realize, realize_cast_le_of_eq h, ih3 (hmn.trans k.succ.le_succ)],
refine forall_congr (λ x, iff_eq_eq.mpr (congr rfl (funext (fin.last_cases _ (λ i, _))))),
{ simp only [function.comp_app, coe_last, snoc_last],
by_cases (k < m),
{ rw if_pos h,
refine (congr rfl (ext _)).trans (snoc_last _ _),
simp only [coe_cast, coe_cast_add, coe_last, self_eq_add_right],
refine le_antisymm (le_of_add_le_add_left ((hmn.trans (nat.succ_le_of_lt h)).trans _))
n'.zero_le,
rw add_zero },
{ rw if_neg h,
refine (congr rfl (ext _)).trans (snoc_last _ _),
simp } },
{ simp only [function.comp_app, fin.snoc_cast_succ],
refine (congr rfl (ext _)).trans (snoc_cast_succ _ _ _),
simp only [cast_refl, coe_cast_succ, order_iso.coe_refl, id.def],
split_ifs;
simp } }
end
lemma realize_lift_at_one {n m : ℕ} {φ : L.bounded_formula α n}
{v : α → M} {xs : fin (n + 1) → M} (hmn : m ≤ n) :
(φ.lift_at 1 m).realize v xs ↔ φ.realize v (xs ∘
(λ i, if ↑i < m then cast_succ i else i.succ)) :=
by simp_rw [realize_lift_at (add_le_add_right hmn 1), cast_succ, add_nat_one]
@[simp] lemma realize_lift_at_one_self {n : ℕ} {φ : L.bounded_formula α n}
{v : α → M} {xs : fin (n + 1) → M} :
(φ.lift_at 1 n).realize v xs ↔ φ.realize v (xs ∘ cast_succ) :=
begin
rw [realize_lift_at_one (refl n), iff_eq_eq],
refine congr rfl (congr rfl (funext (λ i, _))),
rw [if_pos i.is_lt],
end
lemma realize_subst {φ : L.bounded_formula α n} {tf : α → L.term β} {v : β → M} {xs : fin n → M} :
(φ.subst tf).realize v xs ↔ φ.realize (λ a, (tf a).realize v) xs :=
realize_map_term_rel_id (λ n t x, begin
rw term.realize_subst,
rcongr a,
{ cases a,
{ simp only [sum.elim_inl, term.realize_relabel, sum.elim_comp_inl] },
{ refl } }
end) (by simp)
@[simp] lemma realize_restrict_free_var [decidable_eq α] {n : ℕ} {φ : L.bounded_formula α n}
{s : set α} (h : ↑φ.free_var_finset ⊆ s) {v : α → M} {xs : fin n → M} :
(φ.restrict_free_var (set.inclusion h)).realize (v ∘ coe) xs ↔
φ.realize v xs :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp [restrict_free_var, realize] },
{ simp [restrict_free_var, realize] },
{ simp [restrict_free_var, realize, ih1, ih2] },
{ simp [restrict_free_var, realize, ih3] },
end
lemma realize_constants_vars_equiv [L[[α]].Structure M]
[(Lhom_with_constants L α).is_expansion_on M]
{n} {φ : L[[α]].bounded_formula β n} {v : β → M} {xs : fin n → M} :
(constants_vars_equiv φ).realize (sum.elim (λ a, ↑(L.con a)) v) xs ↔ φ.realize v xs :=
begin
refine realize_map_term_rel_id (λ n t xs, realize_constants_vars_equiv_left) (λ n R xs, _),
rw ← (Lhom_with_constants L α).map_on_relation (equiv.sum_empty (L.relations n)
((constants_on α).relations n) R) xs,
rcongr,
cases R,
{ simp, },
{ exact is_empty_elim R }
end
variables [nonempty M]
lemma realize_all_lift_at_one_self {n : ℕ} {φ : L.bounded_formula α n}
{v : α → M} {xs : fin n → M} :
(φ.lift_at 1 n).all.realize v xs ↔ φ.realize v xs :=
begin
inhabit M,
simp only [realize_all, realize_lift_at_one_self],
refine ⟨λ h, _, λ h a, _⟩,
{ refine (congr rfl (funext (λ i, _))).mp (h default),
simp, },
{ refine (congr rfl (funext (λ i, _))).mp h,
simp }
end
lemma realize_to_prenex_imp_right {φ ψ : L.bounded_formula α n}
(hφ : is_qf φ) (hψ : is_prenex ψ) {v : α → M} {xs : fin n → M} :
(φ.to_prenex_imp_right ψ).realize v xs ↔ (φ.imp ψ).realize v xs :=
begin
revert φ,
induction hψ with _ _ hψ _ _ hψ ih _ _ hψ ih; intros φ hφ,
{ rw hψ.to_prenex_imp_right },
{ refine trans (forall_congr (λ _, ih hφ.lift_at)) _,
simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_all],
exact ⟨λ h1 a h2, h1 h2 a, λ h1 h2 a, h1 a h2⟩, },
{ rw [to_prenex_imp_right, realize_ex],
refine trans (exists_congr (λ _, ih hφ.lift_at)) _,
simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_ex],
refine ⟨_, λ h', _⟩,
{ rintro ⟨a, ha⟩ h,
exact ⟨a, ha h⟩ },
{ by_cases φ.realize v xs,
{ obtain ⟨a, ha⟩ := h' h,
exact ⟨a, λ _, ha⟩ },
{ inhabit M,
exact ⟨default, λ h'', (h h'').elim⟩ } } }
end
lemma realize_to_prenex_imp {φ ψ : L.bounded_formula α n}
(hφ : is_prenex φ) (hψ : is_prenex ψ) {v : α → M} {xs : fin n → M} :
(φ.to_prenex_imp ψ).realize v xs ↔ (φ.imp ψ).realize v xs :=
begin
revert ψ,
induction hφ with _ _ hφ _ _ hφ ih _ _ hφ ih; intros ψ hψ,
{ rw [hφ.to_prenex_imp],
exact realize_to_prenex_imp_right hφ hψ, },
{ rw [to_prenex_imp, realize_ex],
refine trans (exists_congr (λ _, ih hψ.lift_at)) _,
simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_all],
refine ⟨_, λ h', _⟩,
{ rintro ⟨a, ha⟩ h,
exact ha (h a) },
{ by_cases ψ.realize v xs,
{ inhabit M,
exact ⟨default, λ h'', h⟩ },
{ obtain ⟨a, ha⟩ := not_forall.1 (h ∘ h'),
exact ⟨a, λ h, (ha h).elim⟩ } } },
{ refine trans (forall_congr (λ _, ih hψ.lift_at)) _,
simp, },
end
@[simp] lemma realize_to_prenex (φ : L.bounded_formula α n) {v : α → M} :
∀ {xs : fin n → M}, φ.to_prenex.realize v xs ↔ φ.realize v xs :=
begin
refine bounded_formula.rec_on φ
(λ _ _, iff.rfl)
(λ _ _ _ _, iff.rfl)
(λ _ _ _ _ _, iff.rfl)
(λ _ f1 f2 h1 h2 _, _)
(λ _ f h xs, _),
{ rw [to_prenex, realize_to_prenex_imp f1.to_prenex_is_prenex f2.to_prenex_is_prenex,
realize_imp, realize_imp, h1, h2],
apply_instance },
{ rw [realize_all, to_prenex, realize_all],
exact forall_congr (λ a, h) },
end
end bounded_formula
attribute [protected] bounded_formula.falsum bounded_formula.equal bounded_formula.rel
attribute [protected] bounded_formula.imp bounded_formula.all
namespace Lhom
open bounded_formula
@[simp] lemma realize_on_bounded_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
{n : ℕ} (ψ : L.bounded_formula α n) {v : α → M} {xs : fin n → M} :
(φ.on_bounded_formula ψ).realize v xs ↔ ψ.realize v xs :=
begin
induction ψ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp only [on_bounded_formula, realize_bd_equal, realize_on_term],
refl, },
{ simp only [on_bounded_formula, realize_rel, realize_on_term, Lhom.map_on_relation],
refl, },
{ simp only [on_bounded_formula, ih1, ih2, realize_imp], },
{ simp only [on_bounded_formula, ih3, realize_all], },
end
end Lhom
attribute [protected] bounded_formula.falsum bounded_formula.equal bounded_formula.rel
attribute [protected] bounded_formula.imp bounded_formula.all
namespace formula
/-- A formula can be evaluated as true or false by giving values to each free variable. -/
def realize (φ : L.formula α) (v : α → M) : Prop :=
φ.realize v default
variables {M} {φ ψ : L.formula α} {v : α → M}
@[simp] lemma realize_not :
(φ.not).realize v ↔ ¬ φ.realize v :=
iff.rfl
@[simp] lemma realize_bot :
(⊥ : L.formula α).realize v ↔ false :=
iff.rfl
@[simp] lemma realize_top :
(⊤ : L.formula α).realize v ↔ true :=
bounded_formula.realize_top
@[simp] lemma realize_inf : (φ ⊓ ψ).realize v ↔ (φ.realize v ∧ ψ.realize v) :=
bounded_formula.realize_inf
@[simp] lemma realize_imp : (φ.imp ψ).realize v ↔ (φ.realize v → ψ.realize v) :=
bounded_formula.realize_imp
@[simp] lemma realize_rel {k : ℕ} {R : L.relations k} {ts : fin k → L.term α} :
(R.formula ts).realize v ↔ rel_map R (λ i, (ts i).realize v) :=
bounded_formula.realize_rel.trans (by simp)
@[simp] lemma realize_rel₁ {R : L.relations 1} {t : L.term _} :
(R.formula₁ t).realize v ↔ rel_map R ![t.realize v] :=
begin
rw [relations.formula₁, realize_rel, iff_eq_eq],
refine congr rfl (funext (λ _, _)),
simp only [matrix.cons_val_fin_one],
end
@[simp] lemma realize_rel₂ {R : L.relations 2} {t₁ t₂ : L.term _} :
(R.formula₂ t₁ t₂).realize v ↔
rel_map R ![t₁.realize v, t₂.realize v] :=
begin
rw [relations.formula₂, realize_rel, iff_eq_eq],
refine congr rfl (funext (fin.cases _ _)),
{ simp only [matrix.cons_val_zero]},
{ simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] }
end
@[simp] lemma realize_sup : (φ ⊔ ψ).realize v ↔ (φ.realize v ∨ ψ.realize v) :=
bounded_formula.realize_sup
@[simp] lemma realize_iff : (φ.iff ψ).realize v ↔ (φ.realize v ↔ ψ.realize v) :=
bounded_formula.realize_iff
@[simp] lemma realize_relabel {φ : L.formula α} {g : α → β} {v : β → M} :
(φ.relabel g).realize v ↔ φ.realize (v ∘ g) :=
begin
rw [realize, realize, relabel, bounded_formula.realize_relabel,
iff_eq_eq, fin.cast_add_zero],
exact congr rfl (funext fin_zero_elim),
end
lemma realize_relabel_sum_inr (φ : L.formula (fin n)) {v : empty → M} {x : fin n → M} :
(bounded_formula.relabel sum.inr φ).realize v x ↔ φ.realize x :=
by rw [bounded_formula.realize_relabel, formula.realize, sum.elim_comp_inr, fin.cast_add_zero,
cast_refl, order_iso.coe_refl, function.comp.right_id,
subsingleton.elim (x ∘ (nat_add n : fin 0 → fin n)) default]
@[simp]
lemma realize_equal {t₁ t₂ : L.term α} {x : α → M} :
(t₁.equal t₂).realize x ↔ t₁.realize x = t₂.realize x :=
by simp [term.equal, realize]
@[simp]
lemma realize_graph {f : L.functions n} {x : fin n → M} {y : M} :
(formula.graph f).realize (fin.cons y x : _ → M) ↔ fun_map f x = y :=
begin
simp only [formula.graph, term.realize, realize_equal, fin.cons_zero, fin.cons_succ],
rw eq_comm,
end
end formula
@[simp] lemma Lhom.realize_on_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
(ψ : L.formula α) {v : α → M} :
(φ.on_formula ψ).realize v ↔ ψ.realize v :=
φ.realize_on_bounded_formula ψ
@[simp] lemma Lhom.set_of_realize_on_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
(ψ : L.formula α) :
(set_of (φ.on_formula ψ).realize : set (α → M)) = set_of ψ.realize :=
by { ext, simp }
variable (M)
/-- A sentence can be evaluated as true or false in a structure. -/
def sentence.realize (φ : L.sentence) : Prop :=
φ.realize (default : _ → M)
infix ` ⊨ `:51 := sentence.realize -- input using \|= or \vDash, but not using \models
@[simp] lemma sentence.realize_not {φ : L.sentence} :
M ⊨ φ.not ↔ ¬ M ⊨ φ :=
iff.rfl
@[simp] lemma Lhom.realize_on_sentence [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
(ψ : L.sentence) :
M ⊨ φ.on_sentence ψ ↔ M ⊨ ψ :=
φ.realize_on_formula ψ
variables (L)
/-- The complete theory of a structure `M` is the set of all sentences `M` satisfies. -/
def complete_theory : L.Theory := { φ | M ⊨ φ }
variable (N)
/-- Two structures are elementarily equivalent when they satisfy the same sentences. -/
def elementarily_equivalent : Prop := L.complete_theory M = L.complete_theory N
localized "notation A ` ≅[`:25 L `] ` B:50 := first_order.language.elementarily_equivalent L A B"
in first_order
variables {L} {M} {N}
@[simp] lemma mem_complete_theory {φ : sentence L} : φ ∈ L.complete_theory M ↔ M ⊨ φ := iff.rfl
lemma elementarily_equivalent_iff : M ≅[L] N ↔ ∀ φ : L.sentence, M ⊨ φ ↔ N ⊨ φ :=
by simp only [elementarily_equivalent, set.ext_iff, complete_theory, set.mem_set_of_eq]
variables (M)
/-- A model of a theory is a structure in which every sentence is realized as true. -/
class Theory.model (T : L.Theory) : Prop :=
(realize_of_mem : ∀ φ ∈ T, M ⊨ φ)
infix ` ⊨ `:51 := Theory.model -- input using \|= or \vDash, but not using \models
variables {M} (T : L.Theory)
@[simp] lemma Theory.model_iff : M ⊨ T ↔ ∀ φ ∈ T, M ⊨ φ := ⟨λ h, h.realize_of_mem, λ h, ⟨h⟩⟩
lemma Theory.realize_sentence_of_mem [M ⊨ T] {φ : L.sentence} (h : φ ∈ T) :
M ⊨ φ :=
Theory.model.realize_of_mem φ h
@[simp] lemma Lhom.on_Theory_model [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
(T : L.Theory) :
M ⊨ φ.on_Theory T ↔ M ⊨ T :=
by simp [Theory.model_iff, Lhom.on_Theory]
variables {M} {T}
instance model_empty : M ⊨ (∅ : L.Theory) := ⟨λ φ hφ, (set.not_mem_empty φ hφ).elim⟩
namespace Theory
lemma model.mono {T' : L.Theory} (h : M ⊨ T') (hs : T ⊆ T') :
M ⊨ T :=
⟨λ φ hφ, T'.realize_sentence_of_mem (hs hφ)⟩
lemma model.union {T' : L.Theory} (h : M ⊨ T) (h' : M ⊨ T') :
M ⊨ T ∪ T' :=
begin
simp only [model_iff, set.mem_union_eq] at *,
exact λ φ hφ, hφ.elim (h _) (h' _),
end
@[simp] lemma model_union_iff {T' : L.Theory} :
M ⊨ T ∪ T' ↔ M ⊨ T ∧ M ⊨ T' :=
⟨λ h, ⟨h.mono (T.subset_union_left T'), h.mono (T.subset_union_right T')⟩, λ h, h.1.union h.2
lemma model_singleton_iff {φ : L.sentence} :
M ⊨ ({φ} : L.Theory) ↔ M ⊨ φ :=
by simp
theorem model_iff_subset_complete_theory :
M ⊨ T ↔ T ⊆ L.complete_theory M :=
T.model_iff
end Theory
instance model_complete_theory : M ⊨ L.complete_theory M :=
Theory.model_iff_subset_complete_theory.2 (subset_refl _)
variables (M N)
theorem realize_iff_of_model_complete_theory [N ⊨ L.complete_theory M] (φ : L.sentence) :
N ⊨ φ ↔ M ⊨ φ :=
begin
refine ⟨λ h, _, (L.complete_theory M).realize_sentence_of_mem⟩,
contrapose! h,
rw [← sentence.realize_not] at *,
exact (L.complete_theory M).realize_sentence_of_mem (mem_complete_theory.2 h)
end
variables {M N}
namespace bounded_formula
@[simp] lemma realize_alls {φ : L.bounded_formula α n} {v : α → M} :
φ.alls.realize v ↔
∀ (xs : fin n → M), (φ.realize v xs) :=
begin
induction n with n ih,
{ exact unique.forall_iff.symm },
{ simp only [alls, ih, realize],
exact ⟨λ h xs, (fin.snoc_init_self xs) ▸ h _ _, λ h xs x, h (fin.snoc xs x)⟩ }
end
@[simp] lemma realize_exs {φ : L.bounded_formula α n} {v : α → M} :
φ.exs.realize v ↔ ∃ (xs : fin n → M), (φ.realize v xs) :=
begin
induction n with n ih,
{ exact unique.exists_iff.symm },
{ simp only [bounded_formula.exs, ih, realize_ex],
split,
{ rintros ⟨xs, x, h⟩,
exact ⟨_, h⟩ },
{ rintros ⟨xs, h⟩,
rw ← fin.snoc_init_self xs at h,
exact ⟨_, _, h⟩ } }
end
@[simp] lemma realize_to_formula (φ : L.bounded_formula α n) (v : α ⊕ fin n → M) :
φ.to_formula.realize v ↔ φ.realize (v ∘ sum.inl) (v ∘ sum.inr) :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 a8 a9 a0,
{ refl },
{ simp [bounded_formula.realize] },
{ simp [bounded_formula.realize] },
{ rw [to_formula, formula.realize, realize_imp, ← formula.realize, ih1, ← formula.realize, ih2,
realize_imp], },
{ rw [to_formula, formula.realize, realize_all, realize_all],
refine forall_congr (λ a, _),
have h := ih3 (sum.elim (v ∘ sum.inl) (snoc (v ∘ sum.inr) a)),
simp only [sum.elim_comp_inl, sum.elim_comp_inr] at h,
rw [← h, realize_relabel, formula.realize],
rcongr,
{ cases x,
{ simp },
{ refine fin.last_cases _ (λ i, _) x,
{ rw [sum.elim_inr, snoc_last, function.comp_app, sum.elim_inr, function.comp_app,
fin_sum_fin_equiv_symm_last, sum.map_inr, sum.elim_inr, function.comp_app],
exact (congr rfl (subsingleton.elim _ _)).trans (snoc_last _ _) },
{ simp only [cast_succ, function.comp_app, sum.elim_inr,
fin_sum_fin_equiv_symm_apply_cast_add, sum.map_inl, sum.elim_inl],
rw [← cast_succ, snoc_cast_succ] } } },
{ exact subsingleton.elim _ _ } }
end
end bounded_formula
namespace equiv
@[simp] lemma realize_bounded_formula (g : M ≃[L] N) (φ : L.bounded_formula α n)
{v : α → M} {xs : fin n → M} :
φ.realize (g ∘ v) (g ∘ xs) ↔ φ.realize v xs :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp only [bounded_formula.realize, ← sum.comp_elim, equiv.realize_term, g.injective.eq_iff] },
{ simp only [bounded_formula.realize, ← sum.comp_elim, equiv.realize_term, g.map_rel], },
{ rw [bounded_formula.realize, ih1, ih2, bounded_formula.realize] },
{ rw [bounded_formula.realize, bounded_formula.realize],
split,
{ intros h a,
have h' := h (g a),
rw [← fin.comp_snoc, ih3] at h',
exact h' },
{ intros h a,
have h' := h (g.symm a),
rw [← ih3, fin.comp_snoc, g.apply_symm_apply] at h',
exact h' }}
end
@[simp] lemma realize_formula (g : M ≃[L] N) (φ : L.formula α) {v : α → M} :
φ.realize (g ∘ v) ↔ φ.realize v :=
by rw [formula.realize, formula.realize, ← g.realize_bounded_formula φ,
iff_eq_eq, unique.eq_default (g ∘ default)]
lemma realize_sentence (g : M ≃[L] N) (φ : L.sentence) :
M ⊨ φ ↔ N ⊨ φ :=
by rw [sentence.realize, sentence.realize, ← g.realize_formula, unique.eq_default (g ∘ default)]
lemma Theory_model (g : M ≃[L] N) [M ⊨ T] : N ⊨ T :=
⟨λ φ hφ, (g.realize_sentence φ).1 (Theory.realize_sentence_of_mem T hφ)⟩
lemma elementarily_equivalent (g : M ≃[L] N) : M ≅[L] N :=
elementarily_equivalent_iff.2 g.realize_sentence
end equiv
namespace relations
open bounded_formula
variable {r : L.relations 2}
@[simp]
lemma realize_reflexive :
M ⊨ r.reflexive ↔ reflexive (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, realize_rel₂)
@[simp]
lemma realize_irreflexive :
M ⊨ r.irreflexive ↔ irreflexive (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, not_congr realize_rel₂)
@[simp]
lemma realize_symmetric :
M ⊨ r.symmetric ↔ symmetric (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, forall_congr (λ _, imp_congr realize_rel₂ realize_rel₂))
@[simp]
lemma realize_antisymmetric :
M ⊨ r.antisymmetric ↔ anti_symmetric (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, forall_congr (λ _, imp_congr realize_rel₂ (imp_congr realize_rel₂ iff.rfl)))
@[simp]
lemma realize_transitive :
M ⊨ r.transitive ↔ transitive (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, forall_congr (λ _, forall_congr
(λ _, imp_congr realize_rel₂ (imp_congr realize_rel₂ realize_rel₂))))
@[simp]
lemma realize_total :
M ⊨ r.total ↔ total (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, forall_congr (λ _, realize_sup.trans (or_congr realize_rel₂ realize_rel₂)))
end relations
section cardinality
variable (L)
@[simp] lemma sentence.realize_card_ge (n) : M ⊨ (sentence.card_ge L n) ↔ ↑n ≤ (# M) :=
begin
rw [← lift_mk_fin, ← lift_le, lift_lift, lift_mk_le, sentence.card_ge, sentence.realize,
bounded_formula.realize_exs],
simp_rw [bounded_formula.realize_foldr_inf],
simp only [function.comp_app, list.mem_map, prod.exists, ne.def, list.mem_product,
list.mem_fin_range, forall_exists_index, and_imp, list.mem_filter, true_and],
refine ⟨_, λ xs, ⟨xs.some, _⟩⟩,
{ rintro ⟨xs, h⟩,
refine ⟨⟨xs, λ i j ij, _⟩⟩,
contrapose! ij,
have hij := h _ i j ij rfl,
simp only [bounded_formula.realize_not, term.realize, bounded_formula.realize_bd_equal,
sum.elim_inr] at hij,
exact hij },
{ rintro _ i j ij rfl,
simp [ij] }
end
@[simp] lemma model_infinite_theory_iff : M ⊨ L.infinite_theory ↔ infinite M :=
by simp [infinite_theory, infinite_iff, aleph_0_le]
instance model_infinite_theory [h : infinite M] :
M ⊨ L.infinite_theory :=
L.model_infinite_theory_iff.2 h
@[simp] lemma model_nonempty_theory_iff :
M ⊨ L.nonempty_theory ↔ nonempty M :=
by simp only [nonempty_theory, Theory.model_iff, set.mem_singleton_iff, forall_eq,
sentence.realize_card_ge, nat.cast_one, one_le_iff_ne_zero, mk_ne_zero_iff]
instance model_nonempty [h : nonempty M] :
M ⊨ L.nonempty_theory :=
L.model_nonempty_theory_iff.2 h
lemma model_distinct_constants_theory {M : Type w} [L[[α]].Structure M] (s : set α) :
M ⊨ L.distinct_constants_theory s ↔ set.inj_on (λ (i : α), (L.con i : M)) s :=
begin
simp only [distinct_constants_theory, Theory.model_iff, set.mem_image,
set.mem_inter_eq, set.mem_prod, set.mem_compl_eq, prod.exists, forall_exists_index, and_imp],
refine ⟨λ h a as b bs ab, _, _⟩,
{ contrapose! ab,
have h' := h _ a b as bs ab rfl,
simp only [sentence.realize, formula.realize_not, formula.realize_equal,
term.realize_constants] at h',
exact h', },
{ rintros h φ a b as bs ab rfl,
simp only [sentence.realize, formula.realize_not, formula.realize_equal,
term.realize_constants],
exact λ contra, ab (h as bs contra) }
end
lemma card_le_of_model_distinct_constants_theory (s : set α) (M : Type w) [L[[α]].Structure M]
[h : M ⊨ L.distinct_constants_theory s] :
cardinal.lift.{w} (# s) ≤ cardinal.lift.{u'} (# M) :=
lift_mk_le'.2 ⟨⟨_, set.inj_on_iff_injective.1 ((L.model_distinct_constants_theory s).1 h)⟩⟩
end cardinality
namespace elementarily_equivalent
@[symm] lemma symm (h : M ≅[L] N) : N ≅[L] M := h.symm
@[trans] lemma trans (MN : M ≅[L] N) (NP : N ≅[L] P) : M ≅[L] P := MN.trans NP
lemma complete_theory_eq (h : M ≅[L] N) : L.complete_theory M = L.complete_theory N := h
lemma realize_sentence (h : M ≅[L] N) (φ : L.sentence) : M ⊨ φ ↔ N ⊨ φ :=
(elementarily_equivalent_iff.1 h) φ
lemma Theory_model_iff (h : M ≅[L] N) : M ⊨ T ↔ N ⊨ T :=
by rw [Theory.model_iff_subset_complete_theory, Theory.model_iff_subset_complete_theory,
h.complete_theory_eq]
lemma Theory_model [MT : M ⊨ T] (h : M ≅[L] N) : N ⊨ T :=
h.Theory_model_iff.1 MT
lemma nonempty_iff (h : M ≅[L] N) : nonempty M ↔ nonempty N :=
(model_nonempty_theory_iff L).symm.trans (h.Theory_model_iff.trans (model_nonempty_theory_iff L))
lemma nonempty [Mn : nonempty M] (h : M ≅[L] N) : nonempty N := h.nonempty_iff.1 Mn
lemma infinite_iff (h : M ≅[L] N) : infinite M ↔ infinite N :=
(model_infinite_theory_iff L).symm.trans (h.Theory_model_iff.trans (model_infinite_theory_iff L))
lemma infinite [Mi : infinite M] (h : M ≅[L] N) : infinite N := h.infinite_iff.1 Mi
end elementarily_equivalent
end language
end first_order