Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Aaron Anderson, Jesse Michael Han, Floris van Doorn. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson, Jesse Michael Han, Floris van Doorn | |
-/ | |
import data.finset.basic | |
import model_theory.syntax | |
/-! | |
# Basics on First-Order Semantics | |
This file defines the interpretations of first-order terms, formulas, sentences, and theories | |
in a style inspired by the [Flypitch project](https://flypitch.github.io/). | |
## Main Definitions | |
* `first_order.language.term.realize` is defined so that `t.realize v` is the term `t` evaluated at | |
variables `v`. | |
* `first_order.language.bounded_formula.realize` is defined so that `φ.realize v xs` is the bounded | |
formula `φ` evaluated at tuples of variables `v` and `xs`. | |
* `first_order.language.formula.realize` is defined so that `φ.realize v` is the formula `φ` | |
evaluated at variables `v`. | |
* `first_order.language.sentence.realize` is defined so that `φ.realize M` is the sentence `φ` | |
evaluated in the structure `M`. Also denoted `M ⊨ φ`. | |
* `first_order.language.Theory.model` is defined so that `T.model M` is true if and only if every | |
sentence of `T` is realized in `M`. Also denoted `T ⊨ φ`. | |
## Main Results | |
* `first_order.language.bounded_formula.realize_to_prenex` shows that the prenex normal form of a | |
formula has the same realization as the original formula. | |
* Several results in this file show that syntactic constructions such as `relabel`, `cast_le`, | |
`lift_at`, `subst`, and the actions of language maps commute with realization of terms, formulas, | |
sentences, and theories. | |
## Implementation Notes | |
* Formulas use a modified version of de Bruijn variables. Specifically, a `L.bounded_formula α n` | |
is a formula with some variables indexed by a type `α`, which cannot be quantified over, and some | |
indexed by `fin n`, which can. For any `φ : L.bounded_formula α (n + 1)`, we define the formula | |
`∀' φ : L.bounded_formula α n` by universally quantifying over the variable indexed by | |
`n : fin (n + 1)`. | |
## References | |
For the Flypitch project: | |
- [J. Han, F. van Doorn, *A formal proof of the independence of the continuum hypothesis*] | |
[flypitch_cpp] | |
- [J. Han, F. van Doorn, *A formalization of forcing and the unprovability of | |
the continuum hypothesis*][flypitch_itp] | |
-/ | |
universes u v w u' v' | |
namespace first_order | |
namespace language | |
variables {L : language.{u v}} {L' : language} | |
variables {M : Type w} {N P : Type*} [L.Structure M] [L.Structure N] [L.Structure P] | |
variables {α : Type u'} {β : Type v'} | |
open_locale first_order cardinal | |
open Structure cardinal fin | |
namespace term | |
/-- A term `t` with variables indexed by `α` can be evaluated by giving a value to each variable. -/ | |
@[simp] def realize (v : α → M) : | |
∀ (t : L.term α), M | |
| (var k) := v k | |
| (func f ts) := fun_map f (λ i, (ts i).realize) | |
@[simp] lemma realize_relabel {t : L.term α} {g : α → β} {v : β → M} : | |
(t.relabel g).realize v = t.realize (v ∘ g) := | |
begin | |
induction t with _ n f ts ih, | |
{ refl, }, | |
{ simp [ih] } | |
end | |
@[simp] lemma realize_lift_at {n n' m : ℕ} {t : L.term (α ⊕ fin n)} | |
{v : α ⊕ fin (n + n') → M} : | |
(t.lift_at n' m).realize v = t.realize (v ∘ | |
(sum.map id (λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i))) := | |
realize_relabel | |
@[simp] lemma realize_constants {c : L.constants} {v : α → M} : | |
c.term.realize v = c := | |
fun_map_eq_coe_constants | |
@[simp] lemma realize_functions_apply₁ {f : L.functions 1} {t : L.term α} {v : α → M} : | |
(f.apply₁ t).realize v = fun_map f ![t.realize v] := | |
begin | |
rw [functions.apply₁, term.realize], | |
refine congr rfl (funext (λ i, _)), | |
simp only [matrix.cons_val_fin_one], | |
end | |
@[simp] lemma realize_functions_apply₂ {f : L.functions 2} {t₁ t₂ : L.term α} {v : α → M} : | |
(f.apply₂ t₁ t₂).realize v = fun_map f ![t₁.realize v, t₂.realize v] := | |
begin | |
rw [functions.apply₂, term.realize], | |
refine congr rfl (funext (fin.cases _ _)), | |
{ simp only [matrix.cons_val_zero], }, | |
{ simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] } | |
end | |
lemma realize_con {A : set M} {a : A} {v : α → M} : | |
(L.con a).term.realize v = a := rfl | |
@[simp] lemma realize_subst {t : L.term α} {tf : α → L.term β} {v : β → M} : | |
(t.subst tf).realize v = t.realize (λ a, (tf a).realize v) := | |
begin | |
induction t with _ _ _ _ ih, | |
{ refl }, | |
{ simp [ih] } | |
end | |
@[simp] lemma realize_restrict_var [decidable_eq α] {t : L.term α} {s : set α} | |
(h : ↑t.var_finset ⊆ s) {v : α → M} : | |
(t.restrict_var (set.inclusion h)).realize (v ∘ coe) = t.realize v := | |
begin | |
induction t with _ _ _ _ ih, | |
{ refl }, | |
{ simp_rw [var_finset, finset.coe_bUnion, set.Union_subset_iff] at h, | |
exact congr rfl (funext (λ i, ih i (h i (finset.mem_univ i)))) }, | |
end | |
@[simp] lemma realize_restrict_var_left [decidable_eq α] {γ : Type*} | |
{t : L.term (α ⊕ γ)} {s : set α} | |
(h : ↑t.var_finset_left ⊆ s) {v : α → M} {xs : γ → M} : | |
(t.restrict_var_left (set.inclusion h)).realize (sum.elim (v ∘ coe) xs) = | |
t.realize (sum.elim v xs) := | |
begin | |
induction t with a _ _ _ ih, | |
{ cases a; | |
refl }, | |
{ simp_rw [var_finset_left, finset.coe_bUnion, set.Union_subset_iff] at h, | |
exact congr rfl (funext (λ i, ih i (h i (finset.mem_univ i)))) }, | |
end | |
@[simp] lemma realize_constants_to_vars [L[[α]].Structure M] | |
[(Lhom_with_constants L α).is_expansion_on M] | |
{t : L[[α]].term β} {v : β → M} : | |
t.constants_to_vars.realize (sum.elim (λ a, ↑(L.con a)) v) = t.realize v := | |
begin | |
induction t with _ n f _ ih, | |
{ simp }, | |
{ cases n, | |
{ cases f, | |
{ simp [ih], }, | |
{ simp only [realize, constants_to_vars, sum.elim_inl, fun_map_eq_coe_constants], | |
refl } }, | |
{ cases f, | |
{ simp [ih] }, | |
{ exact is_empty_elim f } } } | |
end | |
@[simp] lemma realize_vars_to_constants [L[[α]].Structure M] | |
[(Lhom_with_constants L α).is_expansion_on M] | |
{t : L.term (α ⊕ β)} {v : β → M} : | |
t.vars_to_constants.realize v = t.realize (sum.elim (λ a, ↑(L.con a)) v) := | |
begin | |
induction t with ab n f ts ih, | |
{ cases ab; | |
simp [language.con], }, | |
{ simp [ih], } | |
end | |
lemma realize_constants_vars_equiv_left [L[[α]].Structure M] | |
[(Lhom_with_constants L α).is_expansion_on M] | |
{n} {t : L[[α]].term (β ⊕ fin n)} {v : β → M} {xs : fin n → M} : | |
(constants_vars_equiv_left t).realize (sum.elim (sum.elim (λ a, ↑(L.con a)) v) xs) = | |
t.realize (sum.elim v xs) := | |
begin | |
simp only [constants_vars_equiv_left, realize_relabel, equiv.coe_trans, function.comp_app, | |
constants_vars_equiv_apply, relabel_equiv_symm_apply], | |
refine trans _ (realize_constants_to_vars), | |
rcongr, | |
rcases x with (a | (b | i)); | |
simp, | |
end | |
end term | |
namespace Lhom | |
@[simp] lemma realize_on_term [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] | |
(t : L.term α) (v : α → M) : | |
(φ.on_term t).realize v = t.realize v := | |
begin | |
induction t with _ n f ts ih, | |
{ refl }, | |
{ simp only [term.realize, Lhom.on_term, Lhom.map_on_function, ih] } | |
end | |
end Lhom | |
@[simp] lemma hom.realize_term (g : M →[L] N) {t : L.term α} {v : α → M} : | |
t.realize (g ∘ v) = g (t.realize v) := | |
begin | |
induction t, | |
{ refl }, | |
{ rw [term.realize, term.realize, g.map_fun], | |
refine congr rfl _, | |
ext x, | |
simp [t_ih x], }, | |
end | |
@[simp] lemma embedding.realize_term {v : α → M} | |
(t : L.term α) (g : M ↪[L] N) : | |
t.realize (g ∘ v) = g (t.realize v) := | |
g.to_hom.realize_term | |
@[simp] lemma equiv.realize_term {v : α → M} | |
(t : L.term α) (g : M ≃[L] N) : | |
t.realize (g ∘ v) = g (t.realize v) := | |
g.to_hom.realize_term | |
variables {L} {α} {n : ℕ} | |
namespace bounded_formula | |
open term | |
/-- A bounded formula can be evaluated as true or false by giving values to each free variable. -/ | |
def realize : | |
∀ {l} (f : L.bounded_formula α l) (v : α → M) (xs : fin l → M), Prop | |
| _ falsum v xs := false | |
| _ (bounded_formula.equal t₁ t₂) v xs := t₁.realize (sum.elim v xs) = t₂.realize (sum.elim v xs) | |
| _ (bounded_formula.rel R ts) v xs := rel_map R (λ i, (ts i).realize (sum.elim v xs)) | |
| _ (bounded_formula.imp f₁ f₂) v xs := realize f₁ v xs → realize f₂ v xs | |
| _ (bounded_formula.all f) v xs := ∀(x : M), realize f v (snoc xs x) | |
variables {l : ℕ} {φ ψ : L.bounded_formula α l} {θ : L.bounded_formula α l.succ} | |
variables {v : α → M} {xs : fin l → M} | |
@[simp] lemma realize_bot : | |
(⊥ : L.bounded_formula α l).realize v xs ↔ false := | |
iff.rfl | |
@[simp] lemma realize_not : | |
φ.not.realize v xs ↔ ¬ φ.realize v xs := | |
iff.rfl | |
@[simp] lemma realize_bd_equal (t₁ t₂ : L.term (α ⊕ fin l)) : | |
(t₁.bd_equal t₂).realize v xs ↔ | |
(t₁.realize (sum.elim v xs) = t₂.realize (sum.elim v xs)) := | |
iff.rfl | |
@[simp] lemma realize_top : | |
(⊤ : L.bounded_formula α l).realize v xs ↔ true := | |
by simp [has_top.top] | |
@[simp] lemma realize_inf : (φ ⊓ ψ).realize v xs ↔ (φ.realize v xs ∧ ψ.realize v xs) := | |
by simp [has_inf.inf, realize] | |
@[simp] lemma realize_foldr_inf (l : list (L.bounded_formula α n)) | |
(v : α → M) (xs : fin n → M) : | |
(l.foldr (⊓) ⊤).realize v xs ↔ ∀ φ ∈ l, bounded_formula.realize φ v xs := | |
begin | |
induction l with φ l ih, | |
{ simp }, | |
{ simp [ih] } | |
end | |
@[simp] lemma realize_imp : (φ.imp ψ).realize v xs ↔ (φ.realize v xs → ψ.realize v xs) := | |
by simp only [realize] | |
@[simp] lemma realize_rel {k : ℕ} {R : L.relations k} {ts : fin k → L.term _} : | |
(R.bounded_formula ts).realize v xs ↔ rel_map R (λ i, (ts i).realize (sum.elim v xs)) := | |
iff.rfl | |
@[simp] lemma realize_rel₁ {R : L.relations 1} {t : L.term _} : | |
(R.bounded_formula₁ t).realize v xs ↔ rel_map R ![t.realize (sum.elim v xs)] := | |
begin | |
rw [relations.bounded_formula₁, realize_rel, iff_eq_eq], | |
refine congr rfl (funext (λ _, _)), | |
simp only [matrix.cons_val_fin_one], | |
end | |
@[simp] lemma realize_rel₂ {R : L.relations 2} {t₁ t₂ : L.term _} : | |
(R.bounded_formula₂ t₁ t₂).realize v xs ↔ | |
rel_map R ![t₁.realize (sum.elim v xs), t₂.realize (sum.elim v xs)] := | |
begin | |
rw [relations.bounded_formula₂, realize_rel, iff_eq_eq], | |
refine congr rfl (funext (fin.cases _ _)), | |
{ simp only [matrix.cons_val_zero]}, | |
{ simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] } | |
end | |
@[simp] lemma realize_sup : (φ ⊔ ψ).realize v xs ↔ (φ.realize v xs ∨ ψ.realize v xs) := | |
begin | |
simp only [realize, has_sup.sup, realize_not, eq_iff_iff], | |
tauto, | |
end | |
@[simp] lemma realize_foldr_sup (l : list (L.bounded_formula α n)) | |
(v : α → M) (xs : fin n → M) : | |
(l.foldr (⊔) ⊥).realize v xs ↔ ∃ φ ∈ l, bounded_formula.realize φ v xs := | |
begin | |
induction l with φ l ih, | |
{ simp }, | |
{ simp_rw [list.foldr_cons, realize_sup, ih, exists_prop, list.mem_cons_iff, | |
or_and_distrib_right, exists_or_distrib, exists_eq_left] } | |
end | |
@[simp] lemma realize_all : (all θ).realize v xs ↔ ∀ (a : M), (θ.realize v (fin.snoc xs a)) := | |
iff.rfl | |
@[simp] lemma realize_ex : θ.ex.realize v xs ↔ ∃ (a : M), (θ.realize v (fin.snoc xs a)) := | |
begin | |
rw [bounded_formula.ex, realize_not, realize_all, not_forall], | |
simp_rw [realize_not, not_not], | |
end | |
@[simp] lemma realize_iff : (φ.iff ψ).realize v xs ↔ (φ.realize v xs ↔ ψ.realize v xs) := | |
by simp only [bounded_formula.iff, realize_inf, realize_imp, and_imp, ← iff_def] | |
lemma realize_cast_le_of_eq {m n : ℕ} (h : m = n) {h' : m ≤ n} {φ : L.bounded_formula α m} | |
{v : α → M} {xs : fin n → M} : | |
(φ.cast_le h').realize v xs ↔ φ.realize v (xs ∘ fin.cast h) := | |
begin | |
subst h, | |
simp only [cast_le_rfl, cast_refl, order_iso.coe_refl, function.comp.right_id], | |
end | |
lemma realize_map_term_rel_id [L'.Structure M] | |
{ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin n)} | |
{fr : ∀ n, L.relations n → L'.relations n} | |
{n} {φ : L.bounded_formula α n} {v : α → M} {v' : β → M} {xs : fin n → M} | |
(h1 : ∀ n (t : L.term (α ⊕ fin n)) (xs : fin n → M), | |
(ft n t).realize (sum.elim v' xs) = t.realize (sum.elim v xs)) | |
(h2 : ∀ n (R : L.relations n) (x : fin n → M), rel_map (fr n R) x = rel_map R x) : | |
(φ.map_term_rel ft fr (λ _, id)).realize v' xs ↔ φ.realize v xs := | |
begin | |
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih, | |
{ refl }, | |
{ simp [map_term_rel, realize, h1] }, | |
{ simp [map_term_rel, realize, h1, h2] }, | |
{ simp [map_term_rel, realize, ih1, ih2], }, | |
{ simp only [map_term_rel, realize, ih, id.def] }, | |
end | |
lemma realize_map_term_rel_add_cast_le [L'.Structure M] | |
{k : ℕ} | |
{ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin (k + n))} | |
{fr : ∀ n, L.relations n → L'.relations n} | |
{n} {φ : L.bounded_formula α n} (v : ∀ {n}, (fin (k + n) → M) → α → M) {v' : β → M} | |
(xs : fin (k + n) → M) | |
(h1 : ∀ n (t : L.term (α ⊕ fin n)) (xs' : fin (k + n) → M), | |
(ft n t).realize (sum.elim v' xs') = | |
t.realize (sum.elim (v xs') (xs' ∘ fin.nat_add _))) | |
(h2 : ∀ n (R : L.relations n) (x : fin n → M), rel_map (fr n R) x = rel_map R x) | |
(hv : ∀ n (xs : fin (k + n) → M) (x : M), @v (n+1) (snoc xs x : fin _ → M) = v xs): | |
(φ.map_term_rel ft fr (λ n, cast_le (add_assoc _ _ _).symm.le)).realize v' xs ↔ | |
φ.realize (v xs) (xs ∘ fin.nat_add _) := | |
begin | |
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih, | |
{ refl }, | |
{ simp [map_term_rel, realize, h1] }, | |
{ simp [map_term_rel, realize, h1, h2] }, | |
{ simp [map_term_rel, realize, ih1, ih2], }, | |
{ simp [map_term_rel, realize, ih, hv] }, | |
end | |
lemma realize_relabel {m n : ℕ} | |
{φ : L.bounded_formula α n} {g : α → β ⊕ fin m} {v : β → M} {xs : fin (m + n) → M} : | |
(φ.relabel g).realize v xs ↔ | |
φ.realize (sum.elim v (xs ∘ fin.cast_add n) ∘ g) (xs ∘ fin.nat_add m) := | |
by rw [relabel, realize_map_term_rel_add_cast_le]; intros; simp | |
lemma realize_lift_at {n n' m : ℕ} {φ : L.bounded_formula α n} | |
{v : α → M} {xs : fin (n + n') → M} (hmn : m + n' ≤ n + 1) : | |
(φ.lift_at n' m).realize v xs ↔ φ.realize v (xs ∘ | |
(λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i)) := | |
begin | |
rw lift_at, | |
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 k _ ih3, | |
{ simp [realize, map_term_rel], }, | |
{ simp [realize, map_term_rel, realize_rel, realize_lift_at, sum.elim_comp_map], }, | |
{ simp [realize, map_term_rel, realize_rel, realize_lift_at, sum.elim_comp_map], }, | |
{ simp only [map_term_rel, realize, ih1 hmn, ih2 hmn] }, | |
{ have h : k + 1 + n' = k + n'+ 1, | |
{ rw [add_assoc, add_comm 1 n', ← add_assoc], }, | |
simp only [map_term_rel, realize, realize_cast_le_of_eq h, ih3 (hmn.trans k.succ.le_succ)], | |
refine forall_congr (λ x, iff_eq_eq.mpr (congr rfl (funext (fin.last_cases _ (λ i, _))))), | |
{ simp only [function.comp_app, coe_last, snoc_last], | |
by_cases (k < m), | |
{ rw if_pos h, | |
refine (congr rfl (ext _)).trans (snoc_last _ _), | |
simp only [coe_cast, coe_cast_add, coe_last, self_eq_add_right], | |
refine le_antisymm (le_of_add_le_add_left ((hmn.trans (nat.succ_le_of_lt h)).trans _)) | |
n'.zero_le, | |
rw add_zero }, | |
{ rw if_neg h, | |
refine (congr rfl (ext _)).trans (snoc_last _ _), | |
simp } }, | |
{ simp only [function.comp_app, fin.snoc_cast_succ], | |
refine (congr rfl (ext _)).trans (snoc_cast_succ _ _ _), | |
simp only [cast_refl, coe_cast_succ, order_iso.coe_refl, id.def], | |
split_ifs; | |
simp } } | |
end | |
lemma realize_lift_at_one {n m : ℕ} {φ : L.bounded_formula α n} | |
{v : α → M} {xs : fin (n + 1) → M} (hmn : m ≤ n) : | |
(φ.lift_at 1 m).realize v xs ↔ φ.realize v (xs ∘ | |
(λ i, if ↑i < m then cast_succ i else i.succ)) := | |
by simp_rw [realize_lift_at (add_le_add_right hmn 1), cast_succ, add_nat_one] | |
@[simp] lemma realize_lift_at_one_self {n : ℕ} {φ : L.bounded_formula α n} | |
{v : α → M} {xs : fin (n + 1) → M} : | |
(φ.lift_at 1 n).realize v xs ↔ φ.realize v (xs ∘ cast_succ) := | |
begin | |
rw [realize_lift_at_one (refl n), iff_eq_eq], | |
refine congr rfl (congr rfl (funext (λ i, _))), | |
rw [if_pos i.is_lt], | |
end | |
lemma realize_subst {φ : L.bounded_formula α n} {tf : α → L.term β} {v : β → M} {xs : fin n → M} : | |
(φ.subst tf).realize v xs ↔ φ.realize (λ a, (tf a).realize v) xs := | |
realize_map_term_rel_id (λ n t x, begin | |
rw term.realize_subst, | |
rcongr a, | |
{ cases a, | |
{ simp only [sum.elim_inl, term.realize_relabel, sum.elim_comp_inl] }, | |
{ refl } } | |
end) (by simp) | |
@[simp] lemma realize_restrict_free_var [decidable_eq α] {n : ℕ} {φ : L.bounded_formula α n} | |
{s : set α} (h : ↑φ.free_var_finset ⊆ s) {v : α → M} {xs : fin n → M} : | |
(φ.restrict_free_var (set.inclusion h)).realize (v ∘ coe) xs ↔ | |
φ.realize v xs := | |
begin | |
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, | |
{ refl }, | |
{ simp [restrict_free_var, realize] }, | |
{ simp [restrict_free_var, realize] }, | |
{ simp [restrict_free_var, realize, ih1, ih2] }, | |
{ simp [restrict_free_var, realize, ih3] }, | |
end | |
lemma realize_constants_vars_equiv [L[[α]].Structure M] | |
[(Lhom_with_constants L α).is_expansion_on M] | |
{n} {φ : L[[α]].bounded_formula β n} {v : β → M} {xs : fin n → M} : | |
(constants_vars_equiv φ).realize (sum.elim (λ a, ↑(L.con a)) v) xs ↔ φ.realize v xs := | |
begin | |
refine realize_map_term_rel_id (λ n t xs, realize_constants_vars_equiv_left) (λ n R xs, _), | |
rw ← (Lhom_with_constants L α).map_on_relation (equiv.sum_empty (L.relations n) | |
((constants_on α).relations n) R) xs, | |
rcongr, | |
cases R, | |
{ simp, }, | |
{ exact is_empty_elim R } | |
end | |
variables [nonempty M] | |
lemma realize_all_lift_at_one_self {n : ℕ} {φ : L.bounded_formula α n} | |
{v : α → M} {xs : fin n → M} : | |
(φ.lift_at 1 n).all.realize v xs ↔ φ.realize v xs := | |
begin | |
inhabit M, | |
simp only [realize_all, realize_lift_at_one_self], | |
refine ⟨λ h, _, λ h a, _⟩, | |
{ refine (congr rfl (funext (λ i, _))).mp (h default), | |
simp, }, | |
{ refine (congr rfl (funext (λ i, _))).mp h, | |
simp } | |
end | |
lemma realize_to_prenex_imp_right {φ ψ : L.bounded_formula α n} | |
(hφ : is_qf φ) (hψ : is_prenex ψ) {v : α → M} {xs : fin n → M} : | |
(φ.to_prenex_imp_right ψ).realize v xs ↔ (φ.imp ψ).realize v xs := | |
begin | |
revert φ, | |
induction hψ with _ _ hψ _ _ hψ ih _ _ hψ ih; intros φ hφ, | |
{ rw hψ.to_prenex_imp_right }, | |
{ refine trans (forall_congr (λ _, ih hφ.lift_at)) _, | |
simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_all], | |
exact ⟨λ h1 a h2, h1 h2 a, λ h1 h2 a, h1 a h2⟩, }, | |
{ rw [to_prenex_imp_right, realize_ex], | |
refine trans (exists_congr (λ _, ih hφ.lift_at)) _, | |
simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_ex], | |
refine ⟨_, λ h', _⟩, | |
{ rintro ⟨a, ha⟩ h, | |
exact ⟨a, ha h⟩ }, | |
{ by_cases φ.realize v xs, | |
{ obtain ⟨a, ha⟩ := h' h, | |
exact ⟨a, λ _, ha⟩ }, | |
{ inhabit M, | |
exact ⟨default, λ h'', (h h'').elim⟩ } } } | |
end | |
lemma realize_to_prenex_imp {φ ψ : L.bounded_formula α n} | |
(hφ : is_prenex φ) (hψ : is_prenex ψ) {v : α → M} {xs : fin n → M} : | |
(φ.to_prenex_imp ψ).realize v xs ↔ (φ.imp ψ).realize v xs := | |
begin | |
revert ψ, | |
induction hφ with _ _ hφ _ _ hφ ih _ _ hφ ih; intros ψ hψ, | |
{ rw [hφ.to_prenex_imp], | |
exact realize_to_prenex_imp_right hφ hψ, }, | |
{ rw [to_prenex_imp, realize_ex], | |
refine trans (exists_congr (λ _, ih hψ.lift_at)) _, | |
simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_all], | |
refine ⟨_, λ h', _⟩, | |
{ rintro ⟨a, ha⟩ h, | |
exact ha (h a) }, | |
{ by_cases ψ.realize v xs, | |
{ inhabit M, | |
exact ⟨default, λ h'', h⟩ }, | |
{ obtain ⟨a, ha⟩ := not_forall.1 (h ∘ h'), | |
exact ⟨a, λ h, (ha h).elim⟩ } } }, | |
{ refine trans (forall_congr (λ _, ih hψ.lift_at)) _, | |
simp, }, | |
end | |
@[simp] lemma realize_to_prenex (φ : L.bounded_formula α n) {v : α → M} : | |
∀ {xs : fin n → M}, φ.to_prenex.realize v xs ↔ φ.realize v xs := | |
begin | |
refine bounded_formula.rec_on φ | |
(λ _ _, iff.rfl) | |
(λ _ _ _ _, iff.rfl) | |
(λ _ _ _ _ _, iff.rfl) | |
(λ _ f1 f2 h1 h2 _, _) | |
(λ _ f h xs, _), | |
{ rw [to_prenex, realize_to_prenex_imp f1.to_prenex_is_prenex f2.to_prenex_is_prenex, | |
realize_imp, realize_imp, h1, h2], | |
apply_instance }, | |
{ rw [realize_all, to_prenex, realize_all], | |
exact forall_congr (λ a, h) }, | |
end | |
end bounded_formula | |
attribute [protected] bounded_formula.falsum bounded_formula.equal bounded_formula.rel | |
attribute [protected] bounded_formula.imp bounded_formula.all | |
namespace Lhom | |
open bounded_formula | |
@[simp] lemma realize_on_bounded_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] | |
{n : ℕ} (ψ : L.bounded_formula α n) {v : α → M} {xs : fin n → M} : | |
(φ.on_bounded_formula ψ).realize v xs ↔ ψ.realize v xs := | |
begin | |
induction ψ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, | |
{ refl }, | |
{ simp only [on_bounded_formula, realize_bd_equal, realize_on_term], | |
refl, }, | |
{ simp only [on_bounded_formula, realize_rel, realize_on_term, Lhom.map_on_relation], | |
refl, }, | |
{ simp only [on_bounded_formula, ih1, ih2, realize_imp], }, | |
{ simp only [on_bounded_formula, ih3, realize_all], }, | |
end | |
end Lhom | |
attribute [protected] bounded_formula.falsum bounded_formula.equal bounded_formula.rel | |
attribute [protected] bounded_formula.imp bounded_formula.all | |
namespace formula | |
/-- A formula can be evaluated as true or false by giving values to each free variable. -/ | |
def realize (φ : L.formula α) (v : α → M) : Prop := | |
φ.realize v default | |
variables {M} {φ ψ : L.formula α} {v : α → M} | |
@[simp] lemma realize_not : | |
(φ.not).realize v ↔ ¬ φ.realize v := | |
iff.rfl | |
@[simp] lemma realize_bot : | |
(⊥ : L.formula α).realize v ↔ false := | |
iff.rfl | |
@[simp] lemma realize_top : | |
(⊤ : L.formula α).realize v ↔ true := | |
bounded_formula.realize_top | |
@[simp] lemma realize_inf : (φ ⊓ ψ).realize v ↔ (φ.realize v ∧ ψ.realize v) := | |
bounded_formula.realize_inf | |
@[simp] lemma realize_imp : (φ.imp ψ).realize v ↔ (φ.realize v → ψ.realize v) := | |
bounded_formula.realize_imp | |
@[simp] lemma realize_rel {k : ℕ} {R : L.relations k} {ts : fin k → L.term α} : | |
(R.formula ts).realize v ↔ rel_map R (λ i, (ts i).realize v) := | |
bounded_formula.realize_rel.trans (by simp) | |
@[simp] lemma realize_rel₁ {R : L.relations 1} {t : L.term _} : | |
(R.formula₁ t).realize v ↔ rel_map R ![t.realize v] := | |
begin | |
rw [relations.formula₁, realize_rel, iff_eq_eq], | |
refine congr rfl (funext (λ _, _)), | |
simp only [matrix.cons_val_fin_one], | |
end | |
@[simp] lemma realize_rel₂ {R : L.relations 2} {t₁ t₂ : L.term _} : | |
(R.formula₂ t₁ t₂).realize v ↔ | |
rel_map R ![t₁.realize v, t₂.realize v] := | |
begin | |
rw [relations.formula₂, realize_rel, iff_eq_eq], | |
refine congr rfl (funext (fin.cases _ _)), | |
{ simp only [matrix.cons_val_zero]}, | |
{ simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] } | |
end | |
@[simp] lemma realize_sup : (φ ⊔ ψ).realize v ↔ (φ.realize v ∨ ψ.realize v) := | |
bounded_formula.realize_sup | |
@[simp] lemma realize_iff : (φ.iff ψ).realize v ↔ (φ.realize v ↔ ψ.realize v) := | |
bounded_formula.realize_iff | |
@[simp] lemma realize_relabel {φ : L.formula α} {g : α → β} {v : β → M} : | |
(φ.relabel g).realize v ↔ φ.realize (v ∘ g) := | |
begin | |
rw [realize, realize, relabel, bounded_formula.realize_relabel, | |
iff_eq_eq, fin.cast_add_zero], | |
exact congr rfl (funext fin_zero_elim), | |
end | |
lemma realize_relabel_sum_inr (φ : L.formula (fin n)) {v : empty → M} {x : fin n → M} : | |
(bounded_formula.relabel sum.inr φ).realize v x ↔ φ.realize x := | |
by rw [bounded_formula.realize_relabel, formula.realize, sum.elim_comp_inr, fin.cast_add_zero, | |
cast_refl, order_iso.coe_refl, function.comp.right_id, | |
subsingleton.elim (x ∘ (nat_add n : fin 0 → fin n)) default] | |
@[simp] | |
lemma realize_equal {t₁ t₂ : L.term α} {x : α → M} : | |
(t₁.equal t₂).realize x ↔ t₁.realize x = t₂.realize x := | |
by simp [term.equal, realize] | |
@[simp] | |
lemma realize_graph {f : L.functions n} {x : fin n → M} {y : M} : | |
(formula.graph f).realize (fin.cons y x : _ → M) ↔ fun_map f x = y := | |
begin | |
simp only [formula.graph, term.realize, realize_equal, fin.cons_zero, fin.cons_succ], | |
rw eq_comm, | |
end | |
end formula | |
@[simp] lemma Lhom.realize_on_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] | |
(ψ : L.formula α) {v : α → M} : | |
(φ.on_formula ψ).realize v ↔ ψ.realize v := | |
φ.realize_on_bounded_formula ψ | |
@[simp] lemma Lhom.set_of_realize_on_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] | |
(ψ : L.formula α) : | |
(set_of (φ.on_formula ψ).realize : set (α → M)) = set_of ψ.realize := | |
by { ext, simp } | |
variable (M) | |
/-- A sentence can be evaluated as true or false in a structure. -/ | |
def sentence.realize (φ : L.sentence) : Prop := | |
φ.realize (default : _ → M) | |
infix ` ⊨ `:51 := sentence.realize -- input using \|= or \vDash, but not using \models | |
@[simp] lemma sentence.realize_not {φ : L.sentence} : | |
M ⊨ φ.not ↔ ¬ M ⊨ φ := | |
iff.rfl | |
@[simp] lemma Lhom.realize_on_sentence [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] | |
(ψ : L.sentence) : | |
M ⊨ φ.on_sentence ψ ↔ M ⊨ ψ := | |
φ.realize_on_formula ψ | |
variables (L) | |
/-- The complete theory of a structure `M` is the set of all sentences `M` satisfies. -/ | |
def complete_theory : L.Theory := { φ | M ⊨ φ } | |
variable (N) | |
/-- Two structures are elementarily equivalent when they satisfy the same sentences. -/ | |
def elementarily_equivalent : Prop := L.complete_theory M = L.complete_theory N | |
localized "notation A ` ≅[`:25 L `] ` B:50 := first_order.language.elementarily_equivalent L A B" | |
in first_order | |
variables {L} {M} {N} | |
@[simp] lemma mem_complete_theory {φ : sentence L} : φ ∈ L.complete_theory M ↔ M ⊨ φ := iff.rfl | |
lemma elementarily_equivalent_iff : M ≅[L] N ↔ ∀ φ : L.sentence, M ⊨ φ ↔ N ⊨ φ := | |
by simp only [elementarily_equivalent, set.ext_iff, complete_theory, set.mem_set_of_eq] | |
variables (M) | |
/-- A model of a theory is a structure in which every sentence is realized as true. -/ | |
class Theory.model (T : L.Theory) : Prop := | |
(realize_of_mem : ∀ φ ∈ T, M ⊨ φ) | |
infix ` ⊨ `:51 := Theory.model -- input using \|= or \vDash, but not using \models | |
variables {M} (T : L.Theory) | |
@[simp] lemma Theory.model_iff : M ⊨ T ↔ ∀ φ ∈ T, M ⊨ φ := ⟨λ h, h.realize_of_mem, λ h, ⟨h⟩⟩ | |
lemma Theory.realize_sentence_of_mem [M ⊨ T] {φ : L.sentence} (h : φ ∈ T) : | |
M ⊨ φ := | |
Theory.model.realize_of_mem φ h | |
@[simp] lemma Lhom.on_Theory_model [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] | |
(T : L.Theory) : | |
M ⊨ φ.on_Theory T ↔ M ⊨ T := | |
by simp [Theory.model_iff, Lhom.on_Theory] | |
variables {M} {T} | |
instance model_empty : M ⊨ (∅ : L.Theory) := ⟨λ φ hφ, (set.not_mem_empty φ hφ).elim⟩ | |
namespace Theory | |
lemma model.mono {T' : L.Theory} (h : M ⊨ T') (hs : T ⊆ T') : | |
M ⊨ T := | |
⟨λ φ hφ, T'.realize_sentence_of_mem (hs hφ)⟩ | |
lemma model.union {T' : L.Theory} (h : M ⊨ T) (h' : M ⊨ T') : | |
M ⊨ T ∪ T' := | |
begin | |
simp only [model_iff, set.mem_union_eq] at *, | |
exact λ φ hφ, hφ.elim (h _) (h' _), | |
end | |
@[simp] lemma model_union_iff {T' : L.Theory} : | |
M ⊨ T ∪ T' ↔ M ⊨ T ∧ M ⊨ T' := | |
⟨λ h, ⟨h.mono (T.subset_union_left T'), h.mono (T.subset_union_right T')⟩, λ h, h.1.union h.2⟩ | |
lemma model_singleton_iff {φ : L.sentence} : | |
M ⊨ ({φ} : L.Theory) ↔ M ⊨ φ := | |
by simp | |
theorem model_iff_subset_complete_theory : | |
M ⊨ T ↔ T ⊆ L.complete_theory M := | |
T.model_iff | |
end Theory | |
instance model_complete_theory : M ⊨ L.complete_theory M := | |
Theory.model_iff_subset_complete_theory.2 (subset_refl _) | |
variables (M N) | |
theorem realize_iff_of_model_complete_theory [N ⊨ L.complete_theory M] (φ : L.sentence) : | |
N ⊨ φ ↔ M ⊨ φ := | |
begin | |
refine ⟨λ h, _, (L.complete_theory M).realize_sentence_of_mem⟩, | |
contrapose! h, | |
rw [← sentence.realize_not] at *, | |
exact (L.complete_theory M).realize_sentence_of_mem (mem_complete_theory.2 h) | |
end | |
variables {M N} | |
namespace bounded_formula | |
@[simp] lemma realize_alls {φ : L.bounded_formula α n} {v : α → M} : | |
φ.alls.realize v ↔ | |
∀ (xs : fin n → M), (φ.realize v xs) := | |
begin | |
induction n with n ih, | |
{ exact unique.forall_iff.symm }, | |
{ simp only [alls, ih, realize], | |
exact ⟨λ h xs, (fin.snoc_init_self xs) ▸ h _ _, λ h xs x, h (fin.snoc xs x)⟩ } | |
end | |
@[simp] lemma realize_exs {φ : L.bounded_formula α n} {v : α → M} : | |
φ.exs.realize v ↔ ∃ (xs : fin n → M), (φ.realize v xs) := | |
begin | |
induction n with n ih, | |
{ exact unique.exists_iff.symm }, | |
{ simp only [bounded_formula.exs, ih, realize_ex], | |
split, | |
{ rintros ⟨xs, x, h⟩, | |
exact ⟨_, h⟩ }, | |
{ rintros ⟨xs, h⟩, | |
rw ← fin.snoc_init_self xs at h, | |
exact ⟨_, _, h⟩ } } | |
end | |
@[simp] lemma realize_to_formula (φ : L.bounded_formula α n) (v : α ⊕ fin n → M) : | |
φ.to_formula.realize v ↔ φ.realize (v ∘ sum.inl) (v ∘ sum.inr) := | |
begin | |
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 a8 a9 a0, | |
{ refl }, | |
{ simp [bounded_formula.realize] }, | |
{ simp [bounded_formula.realize] }, | |
{ rw [to_formula, formula.realize, realize_imp, ← formula.realize, ih1, ← formula.realize, ih2, | |
realize_imp], }, | |
{ rw [to_formula, formula.realize, realize_all, realize_all], | |
refine forall_congr (λ a, _), | |
have h := ih3 (sum.elim (v ∘ sum.inl) (snoc (v ∘ sum.inr) a)), | |
simp only [sum.elim_comp_inl, sum.elim_comp_inr] at h, | |
rw [← h, realize_relabel, formula.realize], | |
rcongr, | |
{ cases x, | |
{ simp }, | |
{ refine fin.last_cases _ (λ i, _) x, | |
{ rw [sum.elim_inr, snoc_last, function.comp_app, sum.elim_inr, function.comp_app, | |
fin_sum_fin_equiv_symm_last, sum.map_inr, sum.elim_inr, function.comp_app], | |
exact (congr rfl (subsingleton.elim _ _)).trans (snoc_last _ _) }, | |
{ simp only [cast_succ, function.comp_app, sum.elim_inr, | |
fin_sum_fin_equiv_symm_apply_cast_add, sum.map_inl, sum.elim_inl], | |
rw [← cast_succ, snoc_cast_succ] } } }, | |
{ exact subsingleton.elim _ _ } } | |
end | |
end bounded_formula | |
namespace equiv | |
@[simp] lemma realize_bounded_formula (g : M ≃[L] N) (φ : L.bounded_formula α n) | |
{v : α → M} {xs : fin n → M} : | |
φ.realize (g ∘ v) (g ∘ xs) ↔ φ.realize v xs := | |
begin | |
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, | |
{ refl }, | |
{ simp only [bounded_formula.realize, ← sum.comp_elim, equiv.realize_term, g.injective.eq_iff] }, | |
{ simp only [bounded_formula.realize, ← sum.comp_elim, equiv.realize_term, g.map_rel], }, | |
{ rw [bounded_formula.realize, ih1, ih2, bounded_formula.realize] }, | |
{ rw [bounded_formula.realize, bounded_formula.realize], | |
split, | |
{ intros h a, | |
have h' := h (g a), | |
rw [← fin.comp_snoc, ih3] at h', | |
exact h' }, | |
{ intros h a, | |
have h' := h (g.symm a), | |
rw [← ih3, fin.comp_snoc, g.apply_symm_apply] at h', | |
exact h' }} | |
end | |
@[simp] lemma realize_formula (g : M ≃[L] N) (φ : L.formula α) {v : α → M} : | |
φ.realize (g ∘ v) ↔ φ.realize v := | |
by rw [formula.realize, formula.realize, ← g.realize_bounded_formula φ, | |
iff_eq_eq, unique.eq_default (g ∘ default)] | |
lemma realize_sentence (g : M ≃[L] N) (φ : L.sentence) : | |
M ⊨ φ ↔ N ⊨ φ := | |
by rw [sentence.realize, sentence.realize, ← g.realize_formula, unique.eq_default (g ∘ default)] | |
lemma Theory_model (g : M ≃[L] N) [M ⊨ T] : N ⊨ T := | |
⟨λ φ hφ, (g.realize_sentence φ).1 (Theory.realize_sentence_of_mem T hφ)⟩ | |
lemma elementarily_equivalent (g : M ≃[L] N) : M ≅[L] N := | |
elementarily_equivalent_iff.2 g.realize_sentence | |
end equiv | |
namespace relations | |
open bounded_formula | |
variable {r : L.relations 2} | |
@[simp] | |
lemma realize_reflexive : | |
M ⊨ r.reflexive ↔ reflexive (λ (x y : M), rel_map r ![x,y]) := | |
forall_congr (λ _, realize_rel₂) | |
@[simp] | |
lemma realize_irreflexive : | |
M ⊨ r.irreflexive ↔ irreflexive (λ (x y : M), rel_map r ![x,y]) := | |
forall_congr (λ _, not_congr realize_rel₂) | |
@[simp] | |
lemma realize_symmetric : | |
M ⊨ r.symmetric ↔ symmetric (λ (x y : M), rel_map r ![x,y]) := | |
forall_congr (λ _, forall_congr (λ _, imp_congr realize_rel₂ realize_rel₂)) | |
@[simp] | |
lemma realize_antisymmetric : | |
M ⊨ r.antisymmetric ↔ anti_symmetric (λ (x y : M), rel_map r ![x,y]) := | |
forall_congr (λ _, forall_congr (λ _, imp_congr realize_rel₂ (imp_congr realize_rel₂ iff.rfl))) | |
@[simp] | |
lemma realize_transitive : | |
M ⊨ r.transitive ↔ transitive (λ (x y : M), rel_map r ![x,y]) := | |
forall_congr (λ _, forall_congr (λ _, forall_congr | |
(λ _, imp_congr realize_rel₂ (imp_congr realize_rel₂ realize_rel₂)))) | |
@[simp] | |
lemma realize_total : | |
M ⊨ r.total ↔ total (λ (x y : M), rel_map r ![x,y]) := | |
forall_congr (λ _, forall_congr (λ _, realize_sup.trans (or_congr realize_rel₂ realize_rel₂))) | |
end relations | |
section cardinality | |
variable (L) | |
@[simp] lemma sentence.realize_card_ge (n) : M ⊨ (sentence.card_ge L n) ↔ ↑n ≤ (# M) := | |
begin | |
rw [← lift_mk_fin, ← lift_le, lift_lift, lift_mk_le, sentence.card_ge, sentence.realize, | |
bounded_formula.realize_exs], | |
simp_rw [bounded_formula.realize_foldr_inf], | |
simp only [function.comp_app, list.mem_map, prod.exists, ne.def, list.mem_product, | |
list.mem_fin_range, forall_exists_index, and_imp, list.mem_filter, true_and], | |
refine ⟨_, λ xs, ⟨xs.some, _⟩⟩, | |
{ rintro ⟨xs, h⟩, | |
refine ⟨⟨xs, λ i j ij, _⟩⟩, | |
contrapose! ij, | |
have hij := h _ i j ij rfl, | |
simp only [bounded_formula.realize_not, term.realize, bounded_formula.realize_bd_equal, | |
sum.elim_inr] at hij, | |
exact hij }, | |
{ rintro _ i j ij rfl, | |
simp [ij] } | |
end | |
@[simp] lemma model_infinite_theory_iff : M ⊨ L.infinite_theory ↔ infinite M := | |
by simp [infinite_theory, infinite_iff, aleph_0_le] | |
instance model_infinite_theory [h : infinite M] : | |
M ⊨ L.infinite_theory := | |
L.model_infinite_theory_iff.2 h | |
@[simp] lemma model_nonempty_theory_iff : | |
M ⊨ L.nonempty_theory ↔ nonempty M := | |
by simp only [nonempty_theory, Theory.model_iff, set.mem_singleton_iff, forall_eq, | |
sentence.realize_card_ge, nat.cast_one, one_le_iff_ne_zero, mk_ne_zero_iff] | |
instance model_nonempty [h : nonempty M] : | |
M ⊨ L.nonempty_theory := | |
L.model_nonempty_theory_iff.2 h | |
lemma model_distinct_constants_theory {M : Type w} [L[[α]].Structure M] (s : set α) : | |
M ⊨ L.distinct_constants_theory s ↔ set.inj_on (λ (i : α), (L.con i : M)) s := | |
begin | |
simp only [distinct_constants_theory, Theory.model_iff, set.mem_image, | |
set.mem_inter_eq, set.mem_prod, set.mem_compl_eq, prod.exists, forall_exists_index, and_imp], | |
refine ⟨λ h a as b bs ab, _, _⟩, | |
{ contrapose! ab, | |
have h' := h _ a b as bs ab rfl, | |
simp only [sentence.realize, formula.realize_not, formula.realize_equal, | |
term.realize_constants] at h', | |
exact h', }, | |
{ rintros h φ a b as bs ab rfl, | |
simp only [sentence.realize, formula.realize_not, formula.realize_equal, | |
term.realize_constants], | |
exact λ contra, ab (h as bs contra) } | |
end | |
lemma card_le_of_model_distinct_constants_theory (s : set α) (M : Type w) [L[[α]].Structure M] | |
[h : M ⊨ L.distinct_constants_theory s] : | |
cardinal.lift.{w} (# s) ≤ cardinal.lift.{u'} (# M) := | |
lift_mk_le'.2 ⟨⟨_, set.inj_on_iff_injective.1 ((L.model_distinct_constants_theory s).1 h)⟩⟩ | |
end cardinality | |
namespace elementarily_equivalent | |
@[symm] lemma symm (h : M ≅[L] N) : N ≅[L] M := h.symm | |
@[trans] lemma trans (MN : M ≅[L] N) (NP : N ≅[L] P) : M ≅[L] P := MN.trans NP | |
lemma complete_theory_eq (h : M ≅[L] N) : L.complete_theory M = L.complete_theory N := h | |
lemma realize_sentence (h : M ≅[L] N) (φ : L.sentence) : M ⊨ φ ↔ N ⊨ φ := | |
(elementarily_equivalent_iff.1 h) φ | |
lemma Theory_model_iff (h : M ≅[L] N) : M ⊨ T ↔ N ⊨ T := | |
by rw [Theory.model_iff_subset_complete_theory, Theory.model_iff_subset_complete_theory, | |
h.complete_theory_eq] | |
lemma Theory_model [MT : M ⊨ T] (h : M ≅[L] N) : N ⊨ T := | |
h.Theory_model_iff.1 MT | |
lemma nonempty_iff (h : M ≅[L] N) : nonempty M ↔ nonempty N := | |
(model_nonempty_theory_iff L).symm.trans (h.Theory_model_iff.trans (model_nonempty_theory_iff L)) | |
lemma nonempty [Mn : nonempty M] (h : M ≅[L] N) : nonempty N := h.nonempty_iff.1 Mn | |
lemma infinite_iff (h : M ≅[L] N) : infinite M ↔ infinite N := | |
(model_infinite_theory_iff L).symm.trans (h.Theory_model_iff.trans (model_infinite_theory_iff L)) | |
lemma infinite [Mi : infinite M] (h : M ≅[L] N) : infinite N := h.infinite_iff.1 Mi | |
end elementarily_equivalent | |
end language | |
end first_order | |