/- Copyright (c) 2021 Aaron Anderson, Jesse Michael Han, Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson, Jesse Michael Han, Floris van Doorn -/ import data.finset.basic import model_theory.syntax /-! # Basics on First-Order Semantics This file defines the interpretations of first-order terms, formulas, sentences, and theories in a style inspired by the [Flypitch project](https://flypitch.github.io/). ## Main Definitions * `first_order.language.term.realize` is defined so that `t.realize v` is the term `t` evaluated at variables `v`. * `first_order.language.bounded_formula.realize` is defined so that `φ.realize v xs` is the bounded formula `φ` evaluated at tuples of variables `v` and `xs`. * `first_order.language.formula.realize` is defined so that `φ.realize v` is the formula `φ` evaluated at variables `v`. * `first_order.language.sentence.realize` is defined so that `φ.realize M` is the sentence `φ` evaluated in the structure `M`. Also denoted `M ⊨ φ`. * `first_order.language.Theory.model` is defined so that `T.model M` is true if and only if every sentence of `T` is realized in `M`. Also denoted `T ⊨ φ`. ## Main Results * `first_order.language.bounded_formula.realize_to_prenex` shows that the prenex normal form of a formula has the same realization as the original formula. * Several results in this file show that syntactic constructions such as `relabel`, `cast_le`, `lift_at`, `subst`, and the actions of language maps commute with realization of terms, formulas, sentences, and theories. ## Implementation Notes * Formulas use a modified version of de Bruijn variables. Specifically, a `L.bounded_formula α n` is a formula with some variables indexed by a type `α`, which cannot be quantified over, and some indexed by `fin n`, which can. For any `φ : L.bounded_formula α (n + 1)`, we define the formula `∀' φ : L.bounded_formula α n` by universally quantifying over the variable indexed by `n : fin (n + 1)`. ## References For the Flypitch project: - [J. Han, F. van Doorn, *A formal proof of the independence of the continuum hypothesis*] [flypitch_cpp] - [J. Han, F. van Doorn, *A formalization of forcing and the unprovability of the continuum hypothesis*][flypitch_itp] -/ universes u v w u' v' namespace first_order namespace language variables {L : language.{u v}} {L' : language} variables {M : Type w} {N P : Type*} [L.Structure M] [L.Structure N] [L.Structure P] variables {α : Type u'} {β : Type v'} open_locale first_order cardinal open Structure cardinal fin namespace term /-- A term `t` with variables indexed by `α` can be evaluated by giving a value to each variable. -/ @[simp] def realize (v : α → M) : ∀ (t : L.term α), M | (var k) := v k | (func f ts) := fun_map f (λ i, (ts i).realize) @[simp] lemma realize_relabel {t : L.term α} {g : α → β} {v : β → M} : (t.relabel g).realize v = t.realize (v ∘ g) := begin induction t with _ n f ts ih, { refl, }, { simp [ih] } end @[simp] lemma realize_lift_at {n n' m : ℕ} {t : L.term (α ⊕ fin n)} {v : α ⊕ fin (n + n') → M} : (t.lift_at n' m).realize v = t.realize (v ∘ (sum.map id (λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i))) := realize_relabel @[simp] lemma realize_constants {c : L.constants} {v : α → M} : c.term.realize v = c := fun_map_eq_coe_constants @[simp] lemma realize_functions_apply₁ {f : L.functions 1} {t : L.term α} {v : α → M} : (f.apply₁ t).realize v = fun_map f ![t.realize v] := begin rw [functions.apply₁, term.realize], refine congr rfl (funext (λ i, _)), simp only [matrix.cons_val_fin_one], end @[simp] lemma realize_functions_apply₂ {f : L.functions 2} {t₁ t₂ : L.term α} {v : α → M} : (f.apply₂ t₁ t₂).realize v = fun_map f ![t₁.realize v, t₂.realize v] := begin rw [functions.apply₂, term.realize], refine congr rfl (funext (fin.cases _ _)), { simp only [matrix.cons_val_zero], }, { simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] } end lemma realize_con {A : set M} {a : A} {v : α → M} : (L.con a).term.realize v = a := rfl @[simp] lemma realize_subst {t : L.term α} {tf : α → L.term β} {v : β → M} : (t.subst tf).realize v = t.realize (λ a, (tf a).realize v) := begin induction t with _ _ _ _ ih, { refl }, { simp [ih] } end @[simp] lemma realize_restrict_var [decidable_eq α] {t : L.term α} {s : set α} (h : ↑t.var_finset ⊆ s) {v : α → M} : (t.restrict_var (set.inclusion h)).realize (v ∘ coe) = t.realize v := begin induction t with _ _ _ _ ih, { refl }, { simp_rw [var_finset, finset.coe_bUnion, set.Union_subset_iff] at h, exact congr rfl (funext (λ i, ih i (h i (finset.mem_univ i)))) }, end @[simp] lemma realize_restrict_var_left [decidable_eq α] {γ : Type*} {t : L.term (α ⊕ γ)} {s : set α} (h : ↑t.var_finset_left ⊆ s) {v : α → M} {xs : γ → M} : (t.restrict_var_left (set.inclusion h)).realize (sum.elim (v ∘ coe) xs) = t.realize (sum.elim v xs) := begin induction t with a _ _ _ ih, { cases a; refl }, { simp_rw [var_finset_left, finset.coe_bUnion, set.Union_subset_iff] at h, exact congr rfl (funext (λ i, ih i (h i (finset.mem_univ i)))) }, end @[simp] lemma realize_constants_to_vars [L[[α]].Structure M] [(Lhom_with_constants L α).is_expansion_on M] {t : L[[α]].term β} {v : β → M} : t.constants_to_vars.realize (sum.elim (λ a, ↑(L.con a)) v) = t.realize v := begin induction t with _ n f _ ih, { simp }, { cases n, { cases f, { simp [ih], }, { simp only [realize, constants_to_vars, sum.elim_inl, fun_map_eq_coe_constants], refl } }, { cases f, { simp [ih] }, { exact is_empty_elim f } } } end @[simp] lemma realize_vars_to_constants [L[[α]].Structure M] [(Lhom_with_constants L α).is_expansion_on M] {t : L.term (α ⊕ β)} {v : β → M} : t.vars_to_constants.realize v = t.realize (sum.elim (λ a, ↑(L.con a)) v) := begin induction t with ab n f ts ih, { cases ab; simp [language.con], }, { simp [ih], } end lemma realize_constants_vars_equiv_left [L[[α]].Structure M] [(Lhom_with_constants L α).is_expansion_on M] {n} {t : L[[α]].term (β ⊕ fin n)} {v : β → M} {xs : fin n → M} : (constants_vars_equiv_left t).realize (sum.elim (sum.elim (λ a, ↑(L.con a)) v) xs) = t.realize (sum.elim v xs) := begin simp only [constants_vars_equiv_left, realize_relabel, equiv.coe_trans, function.comp_app, constants_vars_equiv_apply, relabel_equiv_symm_apply], refine trans _ (realize_constants_to_vars), rcongr, rcases x with (a | (b | i)); simp, end end term namespace Lhom @[simp] lemma realize_on_term [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] (t : L.term α) (v : α → M) : (φ.on_term t).realize v = t.realize v := begin induction t with _ n f ts ih, { refl }, { simp only [term.realize, Lhom.on_term, Lhom.map_on_function, ih] } end end Lhom @[simp] lemma hom.realize_term (g : M →[L] N) {t : L.term α} {v : α → M} : t.realize (g ∘ v) = g (t.realize v) := begin induction t, { refl }, { rw [term.realize, term.realize, g.map_fun], refine congr rfl _, ext x, simp [t_ih x], }, end @[simp] lemma embedding.realize_term {v : α → M} (t : L.term α) (g : M ↪[L] N) : t.realize (g ∘ v) = g (t.realize v) := g.to_hom.realize_term @[simp] lemma equiv.realize_term {v : α → M} (t : L.term α) (g : M ≃[L] N) : t.realize (g ∘ v) = g (t.realize v) := g.to_hom.realize_term variables {L} {α} {n : ℕ} namespace bounded_formula open term /-- A bounded formula can be evaluated as true or false by giving values to each free variable. -/ def realize : ∀ {l} (f : L.bounded_formula α l) (v : α → M) (xs : fin l → M), Prop | _ falsum v xs := false | _ (bounded_formula.equal t₁ t₂) v xs := t₁.realize (sum.elim v xs) = t₂.realize (sum.elim v xs) | _ (bounded_formula.rel R ts) v xs := rel_map R (λ i, (ts i).realize (sum.elim v xs)) | _ (bounded_formula.imp f₁ f₂) v xs := realize f₁ v xs → realize f₂ v xs | _ (bounded_formula.all f) v xs := ∀(x : M), realize f v (snoc xs x) variables {l : ℕ} {φ ψ : L.bounded_formula α l} {θ : L.bounded_formula α l.succ} variables {v : α → M} {xs : fin l → M} @[simp] lemma realize_bot : (⊥ : L.bounded_formula α l).realize v xs ↔ false := iff.rfl @[simp] lemma realize_not : φ.not.realize v xs ↔ ¬ φ.realize v xs := iff.rfl @[simp] lemma realize_bd_equal (t₁ t₂ : L.term (α ⊕ fin l)) : (t₁.bd_equal t₂).realize v xs ↔ (t₁.realize (sum.elim v xs) = t₂.realize (sum.elim v xs)) := iff.rfl @[simp] lemma realize_top : (⊤ : L.bounded_formula α l).realize v xs ↔ true := by simp [has_top.top] @[simp] lemma realize_inf : (φ ⊓ ψ).realize v xs ↔ (φ.realize v xs ∧ ψ.realize v xs) := by simp [has_inf.inf, realize] @[simp] lemma realize_foldr_inf (l : list (L.bounded_formula α n)) (v : α → M) (xs : fin n → M) : (l.foldr (⊓) ⊤).realize v xs ↔ ∀ φ ∈ l, bounded_formula.realize φ v xs := begin induction l with φ l ih, { simp }, { simp [ih] } end @[simp] lemma realize_imp : (φ.imp ψ).realize v xs ↔ (φ.realize v xs → ψ.realize v xs) := by simp only [realize] @[simp] lemma realize_rel {k : ℕ} {R : L.relations k} {ts : fin k → L.term _} : (R.bounded_formula ts).realize v xs ↔ rel_map R (λ i, (ts i).realize (sum.elim v xs)) := iff.rfl @[simp] lemma realize_rel₁ {R : L.relations 1} {t : L.term _} : (R.bounded_formula₁ t).realize v xs ↔ rel_map R ![t.realize (sum.elim v xs)] := begin rw [relations.bounded_formula₁, realize_rel, iff_eq_eq], refine congr rfl (funext (λ _, _)), simp only [matrix.cons_val_fin_one], end @[simp] lemma realize_rel₂ {R : L.relations 2} {t₁ t₂ : L.term _} : (R.bounded_formula₂ t₁ t₂).realize v xs ↔ rel_map R ![t₁.realize (sum.elim v xs), t₂.realize (sum.elim v xs)] := begin rw [relations.bounded_formula₂, realize_rel, iff_eq_eq], refine congr rfl (funext (fin.cases _ _)), { simp only [matrix.cons_val_zero]}, { simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] } end @[simp] lemma realize_sup : (φ ⊔ ψ).realize v xs ↔ (φ.realize v xs ∨ ψ.realize v xs) := begin simp only [realize, has_sup.sup, realize_not, eq_iff_iff], tauto, end @[simp] lemma realize_foldr_sup (l : list (L.bounded_formula α n)) (v : α → M) (xs : fin n → M) : (l.foldr (⊔) ⊥).realize v xs ↔ ∃ φ ∈ l, bounded_formula.realize φ v xs := begin induction l with φ l ih, { simp }, { simp_rw [list.foldr_cons, realize_sup, ih, exists_prop, list.mem_cons_iff, or_and_distrib_right, exists_or_distrib, exists_eq_left] } end @[simp] lemma realize_all : (all θ).realize v xs ↔ ∀ (a : M), (θ.realize v (fin.snoc xs a)) := iff.rfl @[simp] lemma realize_ex : θ.ex.realize v xs ↔ ∃ (a : M), (θ.realize v (fin.snoc xs a)) := begin rw [bounded_formula.ex, realize_not, realize_all, not_forall], simp_rw [realize_not, not_not], end @[simp] lemma realize_iff : (φ.iff ψ).realize v xs ↔ (φ.realize v xs ↔ ψ.realize v xs) := by simp only [bounded_formula.iff, realize_inf, realize_imp, and_imp, ← iff_def] lemma realize_cast_le_of_eq {m n : ℕ} (h : m = n) {h' : m ≤ n} {φ : L.bounded_formula α m} {v : α → M} {xs : fin n → M} : (φ.cast_le h').realize v xs ↔ φ.realize v (xs ∘ fin.cast h) := begin subst h, simp only [cast_le_rfl, cast_refl, order_iso.coe_refl, function.comp.right_id], end lemma realize_map_term_rel_id [L'.Structure M] {ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin n)} {fr : ∀ n, L.relations n → L'.relations n} {n} {φ : L.bounded_formula α n} {v : α → M} {v' : β → M} {xs : fin n → M} (h1 : ∀ n (t : L.term (α ⊕ fin n)) (xs : fin n → M), (ft n t).realize (sum.elim v' xs) = t.realize (sum.elim v xs)) (h2 : ∀ n (R : L.relations n) (x : fin n → M), rel_map (fr n R) x = rel_map R x) : (φ.map_term_rel ft fr (λ _, id)).realize v' xs ↔ φ.realize v xs := begin induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih, { refl }, { simp [map_term_rel, realize, h1] }, { simp [map_term_rel, realize, h1, h2] }, { simp [map_term_rel, realize, ih1, ih2], }, { simp only [map_term_rel, realize, ih, id.def] }, end lemma realize_map_term_rel_add_cast_le [L'.Structure M] {k : ℕ} {ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin (k + n))} {fr : ∀ n, L.relations n → L'.relations n} {n} {φ : L.bounded_formula α n} (v : ∀ {n}, (fin (k + n) → M) → α → M) {v' : β → M} (xs : fin (k + n) → M) (h1 : ∀ n (t : L.term (α ⊕ fin n)) (xs' : fin (k + n) → M), (ft n t).realize (sum.elim v' xs') = t.realize (sum.elim (v xs') (xs' ∘ fin.nat_add _))) (h2 : ∀ n (R : L.relations n) (x : fin n → M), rel_map (fr n R) x = rel_map R x) (hv : ∀ n (xs : fin (k + n) → M) (x : M), @v (n+1) (snoc xs x : fin _ → M) = v xs): (φ.map_term_rel ft fr (λ n, cast_le (add_assoc _ _ _).symm.le)).realize v' xs ↔ φ.realize (v xs) (xs ∘ fin.nat_add _) := begin induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih, { refl }, { simp [map_term_rel, realize, h1] }, { simp [map_term_rel, realize, h1, h2] }, { simp [map_term_rel, realize, ih1, ih2], }, { simp [map_term_rel, realize, ih, hv] }, end lemma realize_relabel {m n : ℕ} {φ : L.bounded_formula α n} {g : α → β ⊕ fin m} {v : β → M} {xs : fin (m + n) → M} : (φ.relabel g).realize v xs ↔ φ.realize (sum.elim v (xs ∘ fin.cast_add n) ∘ g) (xs ∘ fin.nat_add m) := by rw [relabel, realize_map_term_rel_add_cast_le]; intros; simp lemma realize_lift_at {n n' m : ℕ} {φ : L.bounded_formula α n} {v : α → M} {xs : fin (n + n') → M} (hmn : m + n' ≤ n + 1) : (φ.lift_at n' m).realize v xs ↔ φ.realize v (xs ∘ (λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i)) := begin rw lift_at, induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 k _ ih3, { simp [realize, map_term_rel], }, { simp [realize, map_term_rel, realize_rel, realize_lift_at, sum.elim_comp_map], }, { simp [realize, map_term_rel, realize_rel, realize_lift_at, sum.elim_comp_map], }, { simp only [map_term_rel, realize, ih1 hmn, ih2 hmn] }, { have h : k + 1 + n' = k + n'+ 1, { rw [add_assoc, add_comm 1 n', ← add_assoc], }, simp only [map_term_rel, realize, realize_cast_le_of_eq h, ih3 (hmn.trans k.succ.le_succ)], refine forall_congr (λ x, iff_eq_eq.mpr (congr rfl (funext (fin.last_cases _ (λ i, _))))), { simp only [function.comp_app, coe_last, snoc_last], by_cases (k < m), { rw if_pos h, refine (congr rfl (ext _)).trans (snoc_last _ _), simp only [coe_cast, coe_cast_add, coe_last, self_eq_add_right], refine le_antisymm (le_of_add_le_add_left ((hmn.trans (nat.succ_le_of_lt h)).trans _)) n'.zero_le, rw add_zero }, { rw if_neg h, refine (congr rfl (ext _)).trans (snoc_last _ _), simp } }, { simp only [function.comp_app, fin.snoc_cast_succ], refine (congr rfl (ext _)).trans (snoc_cast_succ _ _ _), simp only [cast_refl, coe_cast_succ, order_iso.coe_refl, id.def], split_ifs; simp } } end lemma realize_lift_at_one {n m : ℕ} {φ : L.bounded_formula α n} {v : α → M} {xs : fin (n + 1) → M} (hmn : m ≤ n) : (φ.lift_at 1 m).realize v xs ↔ φ.realize v (xs ∘ (λ i, if ↑i < m then cast_succ i else i.succ)) := by simp_rw [realize_lift_at (add_le_add_right hmn 1), cast_succ, add_nat_one] @[simp] lemma realize_lift_at_one_self {n : ℕ} {φ : L.bounded_formula α n} {v : α → M} {xs : fin (n + 1) → M} : (φ.lift_at 1 n).realize v xs ↔ φ.realize v (xs ∘ cast_succ) := begin rw [realize_lift_at_one (refl n), iff_eq_eq], refine congr rfl (congr rfl (funext (λ i, _))), rw [if_pos i.is_lt], end lemma realize_subst {φ : L.bounded_formula α n} {tf : α → L.term β} {v : β → M} {xs : fin n → M} : (φ.subst tf).realize v xs ↔ φ.realize (λ a, (tf a).realize v) xs := realize_map_term_rel_id (λ n t x, begin rw term.realize_subst, rcongr a, { cases a, { simp only [sum.elim_inl, term.realize_relabel, sum.elim_comp_inl] }, { refl } } end) (by simp) @[simp] lemma realize_restrict_free_var [decidable_eq α] {n : ℕ} {φ : L.bounded_formula α n} {s : set α} (h : ↑φ.free_var_finset ⊆ s) {v : α → M} {xs : fin n → M} : (φ.restrict_free_var (set.inclusion h)).realize (v ∘ coe) xs ↔ φ.realize v xs := begin induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, { refl }, { simp [restrict_free_var, realize] }, { simp [restrict_free_var, realize] }, { simp [restrict_free_var, realize, ih1, ih2] }, { simp [restrict_free_var, realize, ih3] }, end lemma realize_constants_vars_equiv [L[[α]].Structure M] [(Lhom_with_constants L α).is_expansion_on M] {n} {φ : L[[α]].bounded_formula β n} {v : β → M} {xs : fin n → M} : (constants_vars_equiv φ).realize (sum.elim (λ a, ↑(L.con a)) v) xs ↔ φ.realize v xs := begin refine realize_map_term_rel_id (λ n t xs, realize_constants_vars_equiv_left) (λ n R xs, _), rw ← (Lhom_with_constants L α).map_on_relation (equiv.sum_empty (L.relations n) ((constants_on α).relations n) R) xs, rcongr, cases R, { simp, }, { exact is_empty_elim R } end variables [nonempty M] lemma realize_all_lift_at_one_self {n : ℕ} {φ : L.bounded_formula α n} {v : α → M} {xs : fin n → M} : (φ.lift_at 1 n).all.realize v xs ↔ φ.realize v xs := begin inhabit M, simp only [realize_all, realize_lift_at_one_self], refine ⟨λ h, _, λ h a, _⟩, { refine (congr rfl (funext (λ i, _))).mp (h default), simp, }, { refine (congr rfl (funext (λ i, _))).mp h, simp } end lemma realize_to_prenex_imp_right {φ ψ : L.bounded_formula α n} (hφ : is_qf φ) (hψ : is_prenex ψ) {v : α → M} {xs : fin n → M} : (φ.to_prenex_imp_right ψ).realize v xs ↔ (φ.imp ψ).realize v xs := begin revert φ, induction hψ with _ _ hψ _ _ hψ ih _ _ hψ ih; intros φ hφ, { rw hψ.to_prenex_imp_right }, { refine trans (forall_congr (λ _, ih hφ.lift_at)) _, simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_all], exact ⟨λ h1 a h2, h1 h2 a, λ h1 h2 a, h1 a h2⟩, }, { rw [to_prenex_imp_right, realize_ex], refine trans (exists_congr (λ _, ih hφ.lift_at)) _, simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_ex], refine ⟨_, λ h', _⟩, { rintro ⟨a, ha⟩ h, exact ⟨a, ha h⟩ }, { by_cases φ.realize v xs, { obtain ⟨a, ha⟩ := h' h, exact ⟨a, λ _, ha⟩ }, { inhabit M, exact ⟨default, λ h'', (h h'').elim⟩ } } } end lemma realize_to_prenex_imp {φ ψ : L.bounded_formula α n} (hφ : is_prenex φ) (hψ : is_prenex ψ) {v : α → M} {xs : fin n → M} : (φ.to_prenex_imp ψ).realize v xs ↔ (φ.imp ψ).realize v xs := begin revert ψ, induction hφ with _ _ hφ _ _ hφ ih _ _ hφ ih; intros ψ hψ, { rw [hφ.to_prenex_imp], exact realize_to_prenex_imp_right hφ hψ, }, { rw [to_prenex_imp, realize_ex], refine trans (exists_congr (λ _, ih hψ.lift_at)) _, simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_all], refine ⟨_, λ h', _⟩, { rintro ⟨a, ha⟩ h, exact ha (h a) }, { by_cases ψ.realize v xs, { inhabit M, exact ⟨default, λ h'', h⟩ }, { obtain ⟨a, ha⟩ := not_forall.1 (h ∘ h'), exact ⟨a, λ h, (ha h).elim⟩ } } }, { refine trans (forall_congr (λ _, ih hψ.lift_at)) _, simp, }, end @[simp] lemma realize_to_prenex (φ : L.bounded_formula α n) {v : α → M} : ∀ {xs : fin n → M}, φ.to_prenex.realize v xs ↔ φ.realize v xs := begin refine bounded_formula.rec_on φ (λ _ _, iff.rfl) (λ _ _ _ _, iff.rfl) (λ _ _ _ _ _, iff.rfl) (λ _ f1 f2 h1 h2 _, _) (λ _ f h xs, _), { rw [to_prenex, realize_to_prenex_imp f1.to_prenex_is_prenex f2.to_prenex_is_prenex, realize_imp, realize_imp, h1, h2], apply_instance }, { rw [realize_all, to_prenex, realize_all], exact forall_congr (λ a, h) }, end end bounded_formula attribute [protected] bounded_formula.falsum bounded_formula.equal bounded_formula.rel attribute [protected] bounded_formula.imp bounded_formula.all namespace Lhom open bounded_formula @[simp] lemma realize_on_bounded_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] {n : ℕ} (ψ : L.bounded_formula α n) {v : α → M} {xs : fin n → M} : (φ.on_bounded_formula ψ).realize v xs ↔ ψ.realize v xs := begin induction ψ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, { refl }, { simp only [on_bounded_formula, realize_bd_equal, realize_on_term], refl, }, { simp only [on_bounded_formula, realize_rel, realize_on_term, Lhom.map_on_relation], refl, }, { simp only [on_bounded_formula, ih1, ih2, realize_imp], }, { simp only [on_bounded_formula, ih3, realize_all], }, end end Lhom attribute [protected] bounded_formula.falsum bounded_formula.equal bounded_formula.rel attribute [protected] bounded_formula.imp bounded_formula.all namespace formula /-- A formula can be evaluated as true or false by giving values to each free variable. -/ def realize (φ : L.formula α) (v : α → M) : Prop := φ.realize v default variables {M} {φ ψ : L.formula α} {v : α → M} @[simp] lemma realize_not : (φ.not).realize v ↔ ¬ φ.realize v := iff.rfl @[simp] lemma realize_bot : (⊥ : L.formula α).realize v ↔ false := iff.rfl @[simp] lemma realize_top : (⊤ : L.formula α).realize v ↔ true := bounded_formula.realize_top @[simp] lemma realize_inf : (φ ⊓ ψ).realize v ↔ (φ.realize v ∧ ψ.realize v) := bounded_formula.realize_inf @[simp] lemma realize_imp : (φ.imp ψ).realize v ↔ (φ.realize v → ψ.realize v) := bounded_formula.realize_imp @[simp] lemma realize_rel {k : ℕ} {R : L.relations k} {ts : fin k → L.term α} : (R.formula ts).realize v ↔ rel_map R (λ i, (ts i).realize v) := bounded_formula.realize_rel.trans (by simp) @[simp] lemma realize_rel₁ {R : L.relations 1} {t : L.term _} : (R.formula₁ t).realize v ↔ rel_map R ![t.realize v] := begin rw [relations.formula₁, realize_rel, iff_eq_eq], refine congr rfl (funext (λ _, _)), simp only [matrix.cons_val_fin_one], end @[simp] lemma realize_rel₂ {R : L.relations 2} {t₁ t₂ : L.term _} : (R.formula₂ t₁ t₂).realize v ↔ rel_map R ![t₁.realize v, t₂.realize v] := begin rw [relations.formula₂, realize_rel, iff_eq_eq], refine congr rfl (funext (fin.cases _ _)), { simp only [matrix.cons_val_zero]}, { simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] } end @[simp] lemma realize_sup : (φ ⊔ ψ).realize v ↔ (φ.realize v ∨ ψ.realize v) := bounded_formula.realize_sup @[simp] lemma realize_iff : (φ.iff ψ).realize v ↔ (φ.realize v ↔ ψ.realize v) := bounded_formula.realize_iff @[simp] lemma realize_relabel {φ : L.formula α} {g : α → β} {v : β → M} : (φ.relabel g).realize v ↔ φ.realize (v ∘ g) := begin rw [realize, realize, relabel, bounded_formula.realize_relabel, iff_eq_eq, fin.cast_add_zero], exact congr rfl (funext fin_zero_elim), end lemma realize_relabel_sum_inr (φ : L.formula (fin n)) {v : empty → M} {x : fin n → M} : (bounded_formula.relabel sum.inr φ).realize v x ↔ φ.realize x := by rw [bounded_formula.realize_relabel, formula.realize, sum.elim_comp_inr, fin.cast_add_zero, cast_refl, order_iso.coe_refl, function.comp.right_id, subsingleton.elim (x ∘ (nat_add n : fin 0 → fin n)) default] @[simp] lemma realize_equal {t₁ t₂ : L.term α} {x : α → M} : (t₁.equal t₂).realize x ↔ t₁.realize x = t₂.realize x := by simp [term.equal, realize] @[simp] lemma realize_graph {f : L.functions n} {x : fin n → M} {y : M} : (formula.graph f).realize (fin.cons y x : _ → M) ↔ fun_map f x = y := begin simp only [formula.graph, term.realize, realize_equal, fin.cons_zero, fin.cons_succ], rw eq_comm, end end formula @[simp] lemma Lhom.realize_on_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] (ψ : L.formula α) {v : α → M} : (φ.on_formula ψ).realize v ↔ ψ.realize v := φ.realize_on_bounded_formula ψ @[simp] lemma Lhom.set_of_realize_on_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] (ψ : L.formula α) : (set_of (φ.on_formula ψ).realize : set (α → M)) = set_of ψ.realize := by { ext, simp } variable (M) /-- A sentence can be evaluated as true or false in a structure. -/ def sentence.realize (φ : L.sentence) : Prop := φ.realize (default : _ → M) infix ` ⊨ `:51 := sentence.realize -- input using \|= or \vDash, but not using \models @[simp] lemma sentence.realize_not {φ : L.sentence} : M ⊨ φ.not ↔ ¬ M ⊨ φ := iff.rfl @[simp] lemma Lhom.realize_on_sentence [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] (ψ : L.sentence) : M ⊨ φ.on_sentence ψ ↔ M ⊨ ψ := φ.realize_on_formula ψ variables (L) /-- The complete theory of a structure `M` is the set of all sentences `M` satisfies. -/ def complete_theory : L.Theory := { φ | M ⊨ φ } variable (N) /-- Two structures are elementarily equivalent when they satisfy the same sentences. -/ def elementarily_equivalent : Prop := L.complete_theory M = L.complete_theory N localized "notation A ` ≅[`:25 L `] ` B:50 := first_order.language.elementarily_equivalent L A B" in first_order variables {L} {M} {N} @[simp] lemma mem_complete_theory {φ : sentence L} : φ ∈ L.complete_theory M ↔ M ⊨ φ := iff.rfl lemma elementarily_equivalent_iff : M ≅[L] N ↔ ∀ φ : L.sentence, M ⊨ φ ↔ N ⊨ φ := by simp only [elementarily_equivalent, set.ext_iff, complete_theory, set.mem_set_of_eq] variables (M) /-- A model of a theory is a structure in which every sentence is realized as true. -/ class Theory.model (T : L.Theory) : Prop := (realize_of_mem : ∀ φ ∈ T, M ⊨ φ) infix ` ⊨ `:51 := Theory.model -- input using \|= or \vDash, but not using \models variables {M} (T : L.Theory) @[simp] lemma Theory.model_iff : M ⊨ T ↔ ∀ φ ∈ T, M ⊨ φ := ⟨λ h, h.realize_of_mem, λ h, ⟨h⟩⟩ lemma Theory.realize_sentence_of_mem [M ⊨ T] {φ : L.sentence} (h : φ ∈ T) : M ⊨ φ := Theory.model.realize_of_mem φ h @[simp] lemma Lhom.on_Theory_model [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] (T : L.Theory) : M ⊨ φ.on_Theory T ↔ M ⊨ T := by simp [Theory.model_iff, Lhom.on_Theory] variables {M} {T} instance model_empty : M ⊨ (∅ : L.Theory) := ⟨λ φ hφ, (set.not_mem_empty φ hφ).elim⟩ namespace Theory lemma model.mono {T' : L.Theory} (h : M ⊨ T') (hs : T ⊆ T') : M ⊨ T := ⟨λ φ hφ, T'.realize_sentence_of_mem (hs hφ)⟩ lemma model.union {T' : L.Theory} (h : M ⊨ T) (h' : M ⊨ T') : M ⊨ T ∪ T' := begin simp only [model_iff, set.mem_union_eq] at *, exact λ φ hφ, hφ.elim (h _) (h' _), end @[simp] lemma model_union_iff {T' : L.Theory} : M ⊨ T ∪ T' ↔ M ⊨ T ∧ M ⊨ T' := ⟨λ h, ⟨h.mono (T.subset_union_left T'), h.mono (T.subset_union_right T')⟩, λ h, h.1.union h.2⟩ lemma model_singleton_iff {φ : L.sentence} : M ⊨ ({φ} : L.Theory) ↔ M ⊨ φ := by simp theorem model_iff_subset_complete_theory : M ⊨ T ↔ T ⊆ L.complete_theory M := T.model_iff end Theory instance model_complete_theory : M ⊨ L.complete_theory M := Theory.model_iff_subset_complete_theory.2 (subset_refl _) variables (M N) theorem realize_iff_of_model_complete_theory [N ⊨ L.complete_theory M] (φ : L.sentence) : N ⊨ φ ↔ M ⊨ φ := begin refine ⟨λ h, _, (L.complete_theory M).realize_sentence_of_mem⟩, contrapose! h, rw [← sentence.realize_not] at *, exact (L.complete_theory M).realize_sentence_of_mem (mem_complete_theory.2 h) end variables {M N} namespace bounded_formula @[simp] lemma realize_alls {φ : L.bounded_formula α n} {v : α → M} : φ.alls.realize v ↔ ∀ (xs : fin n → M), (φ.realize v xs) := begin induction n with n ih, { exact unique.forall_iff.symm }, { simp only [alls, ih, realize], exact ⟨λ h xs, (fin.snoc_init_self xs) ▸ h _ _, λ h xs x, h (fin.snoc xs x)⟩ } end @[simp] lemma realize_exs {φ : L.bounded_formula α n} {v : α → M} : φ.exs.realize v ↔ ∃ (xs : fin n → M), (φ.realize v xs) := begin induction n with n ih, { exact unique.exists_iff.symm }, { simp only [bounded_formula.exs, ih, realize_ex], split, { rintros ⟨xs, x, h⟩, exact ⟨_, h⟩ }, { rintros ⟨xs, h⟩, rw ← fin.snoc_init_self xs at h, exact ⟨_, _, h⟩ } } end @[simp] lemma realize_to_formula (φ : L.bounded_formula α n) (v : α ⊕ fin n → M) : φ.to_formula.realize v ↔ φ.realize (v ∘ sum.inl) (v ∘ sum.inr) := begin induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 a8 a9 a0, { refl }, { simp [bounded_formula.realize] }, { simp [bounded_formula.realize] }, { rw [to_formula, formula.realize, realize_imp, ← formula.realize, ih1, ← formula.realize, ih2, realize_imp], }, { rw [to_formula, formula.realize, realize_all, realize_all], refine forall_congr (λ a, _), have h := ih3 (sum.elim (v ∘ sum.inl) (snoc (v ∘ sum.inr) a)), simp only [sum.elim_comp_inl, sum.elim_comp_inr] at h, rw [← h, realize_relabel, formula.realize], rcongr, { cases x, { simp }, { refine fin.last_cases _ (λ i, _) x, { rw [sum.elim_inr, snoc_last, function.comp_app, sum.elim_inr, function.comp_app, fin_sum_fin_equiv_symm_last, sum.map_inr, sum.elim_inr, function.comp_app], exact (congr rfl (subsingleton.elim _ _)).trans (snoc_last _ _) }, { simp only [cast_succ, function.comp_app, sum.elim_inr, fin_sum_fin_equiv_symm_apply_cast_add, sum.map_inl, sum.elim_inl], rw [← cast_succ, snoc_cast_succ] } } }, { exact subsingleton.elim _ _ } } end end bounded_formula namespace equiv @[simp] lemma realize_bounded_formula (g : M ≃[L] N) (φ : L.bounded_formula α n) {v : α → M} {xs : fin n → M} : φ.realize (g ∘ v) (g ∘ xs) ↔ φ.realize v xs := begin induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, { refl }, { simp only [bounded_formula.realize, ← sum.comp_elim, equiv.realize_term, g.injective.eq_iff] }, { simp only [bounded_formula.realize, ← sum.comp_elim, equiv.realize_term, g.map_rel], }, { rw [bounded_formula.realize, ih1, ih2, bounded_formula.realize] }, { rw [bounded_formula.realize, bounded_formula.realize], split, { intros h a, have h' := h (g a), rw [← fin.comp_snoc, ih3] at h', exact h' }, { intros h a, have h' := h (g.symm a), rw [← ih3, fin.comp_snoc, g.apply_symm_apply] at h', exact h' }} end @[simp] lemma realize_formula (g : M ≃[L] N) (φ : L.formula α) {v : α → M} : φ.realize (g ∘ v) ↔ φ.realize v := by rw [formula.realize, formula.realize, ← g.realize_bounded_formula φ, iff_eq_eq, unique.eq_default (g ∘ default)] lemma realize_sentence (g : M ≃[L] N) (φ : L.sentence) : M ⊨ φ ↔ N ⊨ φ := by rw [sentence.realize, sentence.realize, ← g.realize_formula, unique.eq_default (g ∘ default)] lemma Theory_model (g : M ≃[L] N) [M ⊨ T] : N ⊨ T := ⟨λ φ hφ, (g.realize_sentence φ).1 (Theory.realize_sentence_of_mem T hφ)⟩ lemma elementarily_equivalent (g : M ≃[L] N) : M ≅[L] N := elementarily_equivalent_iff.2 g.realize_sentence end equiv namespace relations open bounded_formula variable {r : L.relations 2} @[simp] lemma realize_reflexive : M ⊨ r.reflexive ↔ reflexive (λ (x y : M), rel_map r ![x,y]) := forall_congr (λ _, realize_rel₂) @[simp] lemma realize_irreflexive : M ⊨ r.irreflexive ↔ irreflexive (λ (x y : M), rel_map r ![x,y]) := forall_congr (λ _, not_congr realize_rel₂) @[simp] lemma realize_symmetric : M ⊨ r.symmetric ↔ symmetric (λ (x y : M), rel_map r ![x,y]) := forall_congr (λ _, forall_congr (λ _, imp_congr realize_rel₂ realize_rel₂)) @[simp] lemma realize_antisymmetric : M ⊨ r.antisymmetric ↔ anti_symmetric (λ (x y : M), rel_map r ![x,y]) := forall_congr (λ _, forall_congr (λ _, imp_congr realize_rel₂ (imp_congr realize_rel₂ iff.rfl))) @[simp] lemma realize_transitive : M ⊨ r.transitive ↔ transitive (λ (x y : M), rel_map r ![x,y]) := forall_congr (λ _, forall_congr (λ _, forall_congr (λ _, imp_congr realize_rel₂ (imp_congr realize_rel₂ realize_rel₂)))) @[simp] lemma realize_total : M ⊨ r.total ↔ total (λ (x y : M), rel_map r ![x,y]) := forall_congr (λ _, forall_congr (λ _, realize_sup.trans (or_congr realize_rel₂ realize_rel₂))) end relations section cardinality variable (L) @[simp] lemma sentence.realize_card_ge (n) : M ⊨ (sentence.card_ge L n) ↔ ↑n ≤ (# M) := begin rw [← lift_mk_fin, ← lift_le, lift_lift, lift_mk_le, sentence.card_ge, sentence.realize, bounded_formula.realize_exs], simp_rw [bounded_formula.realize_foldr_inf], simp only [function.comp_app, list.mem_map, prod.exists, ne.def, list.mem_product, list.mem_fin_range, forall_exists_index, and_imp, list.mem_filter, true_and], refine ⟨_, λ xs, ⟨xs.some, _⟩⟩, { rintro ⟨xs, h⟩, refine ⟨⟨xs, λ i j ij, _⟩⟩, contrapose! ij, have hij := h _ i j ij rfl, simp only [bounded_formula.realize_not, term.realize, bounded_formula.realize_bd_equal, sum.elim_inr] at hij, exact hij }, { rintro _ i j ij rfl, simp [ij] } end @[simp] lemma model_infinite_theory_iff : M ⊨ L.infinite_theory ↔ infinite M := by simp [infinite_theory, infinite_iff, aleph_0_le] instance model_infinite_theory [h : infinite M] : M ⊨ L.infinite_theory := L.model_infinite_theory_iff.2 h @[simp] lemma model_nonempty_theory_iff : M ⊨ L.nonempty_theory ↔ nonempty M := by simp only [nonempty_theory, Theory.model_iff, set.mem_singleton_iff, forall_eq, sentence.realize_card_ge, nat.cast_one, one_le_iff_ne_zero, mk_ne_zero_iff] instance model_nonempty [h : nonempty M] : M ⊨ L.nonempty_theory := L.model_nonempty_theory_iff.2 h lemma model_distinct_constants_theory {M : Type w} [L[[α]].Structure M] (s : set α) : M ⊨ L.distinct_constants_theory s ↔ set.inj_on (λ (i : α), (L.con i : M)) s := begin simp only [distinct_constants_theory, Theory.model_iff, set.mem_image, set.mem_inter_eq, set.mem_prod, set.mem_compl_eq, prod.exists, forall_exists_index, and_imp], refine ⟨λ h a as b bs ab, _, _⟩, { contrapose! ab, have h' := h _ a b as bs ab rfl, simp only [sentence.realize, formula.realize_not, formula.realize_equal, term.realize_constants] at h', exact h', }, { rintros h φ a b as bs ab rfl, simp only [sentence.realize, formula.realize_not, formula.realize_equal, term.realize_constants], exact λ contra, ab (h as bs contra) } end lemma card_le_of_model_distinct_constants_theory (s : set α) (M : Type w) [L[[α]].Structure M] [h : M ⊨ L.distinct_constants_theory s] : cardinal.lift.{w} (# s) ≤ cardinal.lift.{u'} (# M) := lift_mk_le'.2 ⟨⟨_, set.inj_on_iff_injective.1 ((L.model_distinct_constants_theory s).1 h)⟩⟩ end cardinality namespace elementarily_equivalent @[symm] lemma symm (h : M ≅[L] N) : N ≅[L] M := h.symm @[trans] lemma trans (MN : M ≅[L] N) (NP : N ≅[L] P) : M ≅[L] P := MN.trans NP lemma complete_theory_eq (h : M ≅[L] N) : L.complete_theory M = L.complete_theory N := h lemma realize_sentence (h : M ≅[L] N) (φ : L.sentence) : M ⊨ φ ↔ N ⊨ φ := (elementarily_equivalent_iff.1 h) φ lemma Theory_model_iff (h : M ≅[L] N) : M ⊨ T ↔ N ⊨ T := by rw [Theory.model_iff_subset_complete_theory, Theory.model_iff_subset_complete_theory, h.complete_theory_eq] lemma Theory_model [MT : M ⊨ T] (h : M ≅[L] N) : N ⊨ T := h.Theory_model_iff.1 MT lemma nonempty_iff (h : M ≅[L] N) : nonempty M ↔ nonempty N := (model_nonempty_theory_iff L).symm.trans (h.Theory_model_iff.trans (model_nonempty_theory_iff L)) lemma nonempty [Mn : nonempty M] (h : M ≅[L] N) : nonempty N := h.nonempty_iff.1 Mn lemma infinite_iff (h : M ≅[L] N) : infinite M ↔ infinite N := (model_infinite_theory_iff L).symm.trans (h.Theory_model_iff.trans (model_infinite_theory_iff L)) lemma infinite [Mi : infinite M] (h : M ≅[L] N) : infinite N := h.infinite_iff.1 Mi end elementarily_equivalent end language end first_order