Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 37,098 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 |
/-
Copyright (c) 2021 Aaron Anderson, Jesse Michael Han, Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jesse Michael Han, Floris van Doorn
-/
import data.finset.basic
import model_theory.syntax
/-!
# Basics on First-Order Semantics
This file defines the interpretations of first-order terms, formulas, sentences, and theories
in a style inspired by the [Flypitch project](https://flypitch.github.io/).
## Main Definitions
* `first_order.language.term.realize` is defined so that `t.realize v` is the term `t` evaluated at
variables `v`.
* `first_order.language.bounded_formula.realize` is defined so that `φ.realize v xs` is the bounded
formula `φ` evaluated at tuples of variables `v` and `xs`.
* `first_order.language.formula.realize` is defined so that `φ.realize v` is the formula `φ`
evaluated at variables `v`.
* `first_order.language.sentence.realize` is defined so that `φ.realize M` is the sentence `φ`
evaluated in the structure `M`. Also denoted `M ⊨ φ`.
* `first_order.language.Theory.model` is defined so that `T.model M` is true if and only if every
sentence of `T` is realized in `M`. Also denoted `T ⊨ φ`.
## Main Results
* `first_order.language.bounded_formula.realize_to_prenex` shows that the prenex normal form of a
formula has the same realization as the original formula.
* Several results in this file show that syntactic constructions such as `relabel`, `cast_le`,
`lift_at`, `subst`, and the actions of language maps commute with realization of terms, formulas,
sentences, and theories.
## Implementation Notes
* Formulas use a modified version of de Bruijn variables. Specifically, a `L.bounded_formula α n`
is a formula with some variables indexed by a type `α`, which cannot be quantified over, and some
indexed by `fin n`, which can. For any `φ : L.bounded_formula α (n + 1)`, we define the formula
`∀' φ : L.bounded_formula α n` by universally quantifying over the variable indexed by
`n : fin (n + 1)`.
## References
For the Flypitch project:
- [J. Han, F. van Doorn, *A formal proof of the independence of the continuum hypothesis*]
[flypitch_cpp]
- [J. Han, F. van Doorn, *A formalization of forcing and the unprovability of
the continuum hypothesis*][flypitch_itp]
-/
universes u v w u' v'
namespace first_order
namespace language
variables {L : language.{u v}} {L' : language}
variables {M : Type w} {N P : Type*} [L.Structure M] [L.Structure N] [L.Structure P]
variables {α : Type u'} {β : Type v'}
open_locale first_order cardinal
open Structure cardinal fin
namespace term
/-- A term `t` with variables indexed by `α` can be evaluated by giving a value to each variable. -/
@[simp] def realize (v : α → M) :
∀ (t : L.term α), M
| (var k) := v k
| (func f ts) := fun_map f (λ i, (ts i).realize)
@[simp] lemma realize_relabel {t : L.term α} {g : α → β} {v : β → M} :
(t.relabel g).realize v = t.realize (v ∘ g) :=
begin
induction t with _ n f ts ih,
{ refl, },
{ simp [ih] }
end
@[simp] lemma realize_lift_at {n n' m : ℕ} {t : L.term (α ⊕ fin n)}
{v : α ⊕ fin (n + n') → M} :
(t.lift_at n' m).realize v = t.realize (v ∘
(sum.map id (λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i))) :=
realize_relabel
@[simp] lemma realize_constants {c : L.constants} {v : α → M} :
c.term.realize v = c :=
fun_map_eq_coe_constants
@[simp] lemma realize_functions_apply₁ {f : L.functions 1} {t : L.term α} {v : α → M} :
(f.apply₁ t).realize v = fun_map f ![t.realize v] :=
begin
rw [functions.apply₁, term.realize],
refine congr rfl (funext (λ i, _)),
simp only [matrix.cons_val_fin_one],
end
@[simp] lemma realize_functions_apply₂ {f : L.functions 2} {t₁ t₂ : L.term α} {v : α → M} :
(f.apply₂ t₁ t₂).realize v = fun_map f ![t₁.realize v, t₂.realize v] :=
begin
rw [functions.apply₂, term.realize],
refine congr rfl (funext (fin.cases _ _)),
{ simp only [matrix.cons_val_zero], },
{ simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] }
end
lemma realize_con {A : set M} {a : A} {v : α → M} :
(L.con a).term.realize v = a := rfl
@[simp] lemma realize_subst {t : L.term α} {tf : α → L.term β} {v : β → M} :
(t.subst tf).realize v = t.realize (λ a, (tf a).realize v) :=
begin
induction t with _ _ _ _ ih,
{ refl },
{ simp [ih] }
end
@[simp] lemma realize_restrict_var [decidable_eq α] {t : L.term α} {s : set α}
(h : ↑t.var_finset ⊆ s) {v : α → M} :
(t.restrict_var (set.inclusion h)).realize (v ∘ coe) = t.realize v :=
begin
induction t with _ _ _ _ ih,
{ refl },
{ simp_rw [var_finset, finset.coe_bUnion, set.Union_subset_iff] at h,
exact congr rfl (funext (λ i, ih i (h i (finset.mem_univ i)))) },
end
@[simp] lemma realize_restrict_var_left [decidable_eq α] {γ : Type*}
{t : L.term (α ⊕ γ)} {s : set α}
(h : ↑t.var_finset_left ⊆ s) {v : α → M} {xs : γ → M} :
(t.restrict_var_left (set.inclusion h)).realize (sum.elim (v ∘ coe) xs) =
t.realize (sum.elim v xs) :=
begin
induction t with a _ _ _ ih,
{ cases a;
refl },
{ simp_rw [var_finset_left, finset.coe_bUnion, set.Union_subset_iff] at h,
exact congr rfl (funext (λ i, ih i (h i (finset.mem_univ i)))) },
end
@[simp] lemma realize_constants_to_vars [L[[α]].Structure M]
[(Lhom_with_constants L α).is_expansion_on M]
{t : L[[α]].term β} {v : β → M} :
t.constants_to_vars.realize (sum.elim (λ a, ↑(L.con a)) v) = t.realize v :=
begin
induction t with _ n f _ ih,
{ simp },
{ cases n,
{ cases f,
{ simp [ih], },
{ simp only [realize, constants_to_vars, sum.elim_inl, fun_map_eq_coe_constants],
refl } },
{ cases f,
{ simp [ih] },
{ exact is_empty_elim f } } }
end
@[simp] lemma realize_vars_to_constants [L[[α]].Structure M]
[(Lhom_with_constants L α).is_expansion_on M]
{t : L.term (α ⊕ β)} {v : β → M} :
t.vars_to_constants.realize v = t.realize (sum.elim (λ a, ↑(L.con a)) v) :=
begin
induction t with ab n f ts ih,
{ cases ab;
simp [language.con], },
{ simp [ih], }
end
lemma realize_constants_vars_equiv_left [L[[α]].Structure M]
[(Lhom_with_constants L α).is_expansion_on M]
{n} {t : L[[α]].term (β ⊕ fin n)} {v : β → M} {xs : fin n → M} :
(constants_vars_equiv_left t).realize (sum.elim (sum.elim (λ a, ↑(L.con a)) v) xs) =
t.realize (sum.elim v xs) :=
begin
simp only [constants_vars_equiv_left, realize_relabel, equiv.coe_trans, function.comp_app,
constants_vars_equiv_apply, relabel_equiv_symm_apply],
refine trans _ (realize_constants_to_vars),
rcongr,
rcases x with (a | (b | i));
simp,
end
end term
namespace Lhom
@[simp] lemma realize_on_term [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
(t : L.term α) (v : α → M) :
(φ.on_term t).realize v = t.realize v :=
begin
induction t with _ n f ts ih,
{ refl },
{ simp only [term.realize, Lhom.on_term, Lhom.map_on_function, ih] }
end
end Lhom
@[simp] lemma hom.realize_term (g : M →[L] N) {t : L.term α} {v : α → M} :
t.realize (g ∘ v) = g (t.realize v) :=
begin
induction t,
{ refl },
{ rw [term.realize, term.realize, g.map_fun],
refine congr rfl _,
ext x,
simp [t_ih x], },
end
@[simp] lemma embedding.realize_term {v : α → M}
(t : L.term α) (g : M ↪[L] N) :
t.realize (g ∘ v) = g (t.realize v) :=
g.to_hom.realize_term
@[simp] lemma equiv.realize_term {v : α → M}
(t : L.term α) (g : M ≃[L] N) :
t.realize (g ∘ v) = g (t.realize v) :=
g.to_hom.realize_term
variables {L} {α} {n : ℕ}
namespace bounded_formula
open term
/-- A bounded formula can be evaluated as true or false by giving values to each free variable. -/
def realize :
∀ {l} (f : L.bounded_formula α l) (v : α → M) (xs : fin l → M), Prop
| _ falsum v xs := false
| _ (bounded_formula.equal t₁ t₂) v xs := t₁.realize (sum.elim v xs) = t₂.realize (sum.elim v xs)
| _ (bounded_formula.rel R ts) v xs := rel_map R (λ i, (ts i).realize (sum.elim v xs))
| _ (bounded_formula.imp f₁ f₂) v xs := realize f₁ v xs → realize f₂ v xs
| _ (bounded_formula.all f) v xs := ∀(x : M), realize f v (snoc xs x)
variables {l : ℕ} {φ ψ : L.bounded_formula α l} {θ : L.bounded_formula α l.succ}
variables {v : α → M} {xs : fin l → M}
@[simp] lemma realize_bot :
(⊥ : L.bounded_formula α l).realize v xs ↔ false :=
iff.rfl
@[simp] lemma realize_not :
φ.not.realize v xs ↔ ¬ φ.realize v xs :=
iff.rfl
@[simp] lemma realize_bd_equal (t₁ t₂ : L.term (α ⊕ fin l)) :
(t₁.bd_equal t₂).realize v xs ↔
(t₁.realize (sum.elim v xs) = t₂.realize (sum.elim v xs)) :=
iff.rfl
@[simp] lemma realize_top :
(⊤ : L.bounded_formula α l).realize v xs ↔ true :=
by simp [has_top.top]
@[simp] lemma realize_inf : (φ ⊓ ψ).realize v xs ↔ (φ.realize v xs ∧ ψ.realize v xs) :=
by simp [has_inf.inf, realize]
@[simp] lemma realize_foldr_inf (l : list (L.bounded_formula α n))
(v : α → M) (xs : fin n → M) :
(l.foldr (⊓) ⊤).realize v xs ↔ ∀ φ ∈ l, bounded_formula.realize φ v xs :=
begin
induction l with φ l ih,
{ simp },
{ simp [ih] }
end
@[simp] lemma realize_imp : (φ.imp ψ).realize v xs ↔ (φ.realize v xs → ψ.realize v xs) :=
by simp only [realize]
@[simp] lemma realize_rel {k : ℕ} {R : L.relations k} {ts : fin k → L.term _} :
(R.bounded_formula ts).realize v xs ↔ rel_map R (λ i, (ts i).realize (sum.elim v xs)) :=
iff.rfl
@[simp] lemma realize_rel₁ {R : L.relations 1} {t : L.term _} :
(R.bounded_formula₁ t).realize v xs ↔ rel_map R ![t.realize (sum.elim v xs)] :=
begin
rw [relations.bounded_formula₁, realize_rel, iff_eq_eq],
refine congr rfl (funext (λ _, _)),
simp only [matrix.cons_val_fin_one],
end
@[simp] lemma realize_rel₂ {R : L.relations 2} {t₁ t₂ : L.term _} :
(R.bounded_formula₂ t₁ t₂).realize v xs ↔
rel_map R ![t₁.realize (sum.elim v xs), t₂.realize (sum.elim v xs)] :=
begin
rw [relations.bounded_formula₂, realize_rel, iff_eq_eq],
refine congr rfl (funext (fin.cases _ _)),
{ simp only [matrix.cons_val_zero]},
{ simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] }
end
@[simp] lemma realize_sup : (φ ⊔ ψ).realize v xs ↔ (φ.realize v xs ∨ ψ.realize v xs) :=
begin
simp only [realize, has_sup.sup, realize_not, eq_iff_iff],
tauto,
end
@[simp] lemma realize_foldr_sup (l : list (L.bounded_formula α n))
(v : α → M) (xs : fin n → M) :
(l.foldr (⊔) ⊥).realize v xs ↔ ∃ φ ∈ l, bounded_formula.realize φ v xs :=
begin
induction l with φ l ih,
{ simp },
{ simp_rw [list.foldr_cons, realize_sup, ih, exists_prop, list.mem_cons_iff,
or_and_distrib_right, exists_or_distrib, exists_eq_left] }
end
@[simp] lemma realize_all : (all θ).realize v xs ↔ ∀ (a : M), (θ.realize v (fin.snoc xs a)) :=
iff.rfl
@[simp] lemma realize_ex : θ.ex.realize v xs ↔ ∃ (a : M), (θ.realize v (fin.snoc xs a)) :=
begin
rw [bounded_formula.ex, realize_not, realize_all, not_forall],
simp_rw [realize_not, not_not],
end
@[simp] lemma realize_iff : (φ.iff ψ).realize v xs ↔ (φ.realize v xs ↔ ψ.realize v xs) :=
by simp only [bounded_formula.iff, realize_inf, realize_imp, and_imp, ← iff_def]
lemma realize_cast_le_of_eq {m n : ℕ} (h : m = n) {h' : m ≤ n} {φ : L.bounded_formula α m}
{v : α → M} {xs : fin n → M} :
(φ.cast_le h').realize v xs ↔ φ.realize v (xs ∘ fin.cast h) :=
begin
subst h,
simp only [cast_le_rfl, cast_refl, order_iso.coe_refl, function.comp.right_id],
end
lemma realize_map_term_rel_id [L'.Structure M]
{ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin n)}
{fr : ∀ n, L.relations n → L'.relations n}
{n} {φ : L.bounded_formula α n} {v : α → M} {v' : β → M} {xs : fin n → M}
(h1 : ∀ n (t : L.term (α ⊕ fin n)) (xs : fin n → M),
(ft n t).realize (sum.elim v' xs) = t.realize (sum.elim v xs))
(h2 : ∀ n (R : L.relations n) (x : fin n → M), rel_map (fr n R) x = rel_map R x) :
(φ.map_term_rel ft fr (λ _, id)).realize v' xs ↔ φ.realize v xs :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih,
{ refl },
{ simp [map_term_rel, realize, h1] },
{ simp [map_term_rel, realize, h1, h2] },
{ simp [map_term_rel, realize, ih1, ih2], },
{ simp only [map_term_rel, realize, ih, id.def] },
end
lemma realize_map_term_rel_add_cast_le [L'.Structure M]
{k : ℕ}
{ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin (k + n))}
{fr : ∀ n, L.relations n → L'.relations n}
{n} {φ : L.bounded_formula α n} (v : ∀ {n}, (fin (k + n) → M) → α → M) {v' : β → M}
(xs : fin (k + n) → M)
(h1 : ∀ n (t : L.term (α ⊕ fin n)) (xs' : fin (k + n) → M),
(ft n t).realize (sum.elim v' xs') =
t.realize (sum.elim (v xs') (xs' ∘ fin.nat_add _)))
(h2 : ∀ n (R : L.relations n) (x : fin n → M), rel_map (fr n R) x = rel_map R x)
(hv : ∀ n (xs : fin (k + n) → M) (x : M), @v (n+1) (snoc xs x : fin _ → M) = v xs):
(φ.map_term_rel ft fr (λ n, cast_le (add_assoc _ _ _).symm.le)).realize v' xs ↔
φ.realize (v xs) (xs ∘ fin.nat_add _) :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih,
{ refl },
{ simp [map_term_rel, realize, h1] },
{ simp [map_term_rel, realize, h1, h2] },
{ simp [map_term_rel, realize, ih1, ih2], },
{ simp [map_term_rel, realize, ih, hv] },
end
lemma realize_relabel {m n : ℕ}
{φ : L.bounded_formula α n} {g : α → β ⊕ fin m} {v : β → M} {xs : fin (m + n) → M} :
(φ.relabel g).realize v xs ↔
φ.realize (sum.elim v (xs ∘ fin.cast_add n) ∘ g) (xs ∘ fin.nat_add m) :=
by rw [relabel, realize_map_term_rel_add_cast_le]; intros; simp
lemma realize_lift_at {n n' m : ℕ} {φ : L.bounded_formula α n}
{v : α → M} {xs : fin (n + n') → M} (hmn : m + n' ≤ n + 1) :
(φ.lift_at n' m).realize v xs ↔ φ.realize v (xs ∘
(λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i)) :=
begin
rw lift_at,
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 k _ ih3,
{ simp [realize, map_term_rel], },
{ simp [realize, map_term_rel, realize_rel, realize_lift_at, sum.elim_comp_map], },
{ simp [realize, map_term_rel, realize_rel, realize_lift_at, sum.elim_comp_map], },
{ simp only [map_term_rel, realize, ih1 hmn, ih2 hmn] },
{ have h : k + 1 + n' = k + n'+ 1,
{ rw [add_assoc, add_comm 1 n', ← add_assoc], },
simp only [map_term_rel, realize, realize_cast_le_of_eq h, ih3 (hmn.trans k.succ.le_succ)],
refine forall_congr (λ x, iff_eq_eq.mpr (congr rfl (funext (fin.last_cases _ (λ i, _))))),
{ simp only [function.comp_app, coe_last, snoc_last],
by_cases (k < m),
{ rw if_pos h,
refine (congr rfl (ext _)).trans (snoc_last _ _),
simp only [coe_cast, coe_cast_add, coe_last, self_eq_add_right],
refine le_antisymm (le_of_add_le_add_left ((hmn.trans (nat.succ_le_of_lt h)).trans _))
n'.zero_le,
rw add_zero },
{ rw if_neg h,
refine (congr rfl (ext _)).trans (snoc_last _ _),
simp } },
{ simp only [function.comp_app, fin.snoc_cast_succ],
refine (congr rfl (ext _)).trans (snoc_cast_succ _ _ _),
simp only [cast_refl, coe_cast_succ, order_iso.coe_refl, id.def],
split_ifs;
simp } }
end
lemma realize_lift_at_one {n m : ℕ} {φ : L.bounded_formula α n}
{v : α → M} {xs : fin (n + 1) → M} (hmn : m ≤ n) :
(φ.lift_at 1 m).realize v xs ↔ φ.realize v (xs ∘
(λ i, if ↑i < m then cast_succ i else i.succ)) :=
by simp_rw [realize_lift_at (add_le_add_right hmn 1), cast_succ, add_nat_one]
@[simp] lemma realize_lift_at_one_self {n : ℕ} {φ : L.bounded_formula α n}
{v : α → M} {xs : fin (n + 1) → M} :
(φ.lift_at 1 n).realize v xs ↔ φ.realize v (xs ∘ cast_succ) :=
begin
rw [realize_lift_at_one (refl n), iff_eq_eq],
refine congr rfl (congr rfl (funext (λ i, _))),
rw [if_pos i.is_lt],
end
lemma realize_subst {φ : L.bounded_formula α n} {tf : α → L.term β} {v : β → M} {xs : fin n → M} :
(φ.subst tf).realize v xs ↔ φ.realize (λ a, (tf a).realize v) xs :=
realize_map_term_rel_id (λ n t x, begin
rw term.realize_subst,
rcongr a,
{ cases a,
{ simp only [sum.elim_inl, term.realize_relabel, sum.elim_comp_inl] },
{ refl } }
end) (by simp)
@[simp] lemma realize_restrict_free_var [decidable_eq α] {n : ℕ} {φ : L.bounded_formula α n}
{s : set α} (h : ↑φ.free_var_finset ⊆ s) {v : α → M} {xs : fin n → M} :
(φ.restrict_free_var (set.inclusion h)).realize (v ∘ coe) xs ↔
φ.realize v xs :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp [restrict_free_var, realize] },
{ simp [restrict_free_var, realize] },
{ simp [restrict_free_var, realize, ih1, ih2] },
{ simp [restrict_free_var, realize, ih3] },
end
lemma realize_constants_vars_equiv [L[[α]].Structure M]
[(Lhom_with_constants L α).is_expansion_on M]
{n} {φ : L[[α]].bounded_formula β n} {v : β → M} {xs : fin n → M} :
(constants_vars_equiv φ).realize (sum.elim (λ a, ↑(L.con a)) v) xs ↔ φ.realize v xs :=
begin
refine realize_map_term_rel_id (λ n t xs, realize_constants_vars_equiv_left) (λ n R xs, _),
rw ← (Lhom_with_constants L α).map_on_relation (equiv.sum_empty (L.relations n)
((constants_on α).relations n) R) xs,
rcongr,
cases R,
{ simp, },
{ exact is_empty_elim R }
end
variables [nonempty M]
lemma realize_all_lift_at_one_self {n : ℕ} {φ : L.bounded_formula α n}
{v : α → M} {xs : fin n → M} :
(φ.lift_at 1 n).all.realize v xs ↔ φ.realize v xs :=
begin
inhabit M,
simp only [realize_all, realize_lift_at_one_self],
refine ⟨λ h, _, λ h a, _⟩,
{ refine (congr rfl (funext (λ i, _))).mp (h default),
simp, },
{ refine (congr rfl (funext (λ i, _))).mp h,
simp }
end
lemma realize_to_prenex_imp_right {φ ψ : L.bounded_formula α n}
(hφ : is_qf φ) (hψ : is_prenex ψ) {v : α → M} {xs : fin n → M} :
(φ.to_prenex_imp_right ψ).realize v xs ↔ (φ.imp ψ).realize v xs :=
begin
revert φ,
induction hψ with _ _ hψ _ _ hψ ih _ _ hψ ih; intros φ hφ,
{ rw hψ.to_prenex_imp_right },
{ refine trans (forall_congr (λ _, ih hφ.lift_at)) _,
simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_all],
exact ⟨λ h1 a h2, h1 h2 a, λ h1 h2 a, h1 a h2⟩, },
{ rw [to_prenex_imp_right, realize_ex],
refine trans (exists_congr (λ _, ih hφ.lift_at)) _,
simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_ex],
refine ⟨_, λ h', _⟩,
{ rintro ⟨a, ha⟩ h,
exact ⟨a, ha h⟩ },
{ by_cases φ.realize v xs,
{ obtain ⟨a, ha⟩ := h' h,
exact ⟨a, λ _, ha⟩ },
{ inhabit M,
exact ⟨default, λ h'', (h h'').elim⟩ } } }
end
lemma realize_to_prenex_imp {φ ψ : L.bounded_formula α n}
(hφ : is_prenex φ) (hψ : is_prenex ψ) {v : α → M} {xs : fin n → M} :
(φ.to_prenex_imp ψ).realize v xs ↔ (φ.imp ψ).realize v xs :=
begin
revert ψ,
induction hφ with _ _ hφ _ _ hφ ih _ _ hφ ih; intros ψ hψ,
{ rw [hφ.to_prenex_imp],
exact realize_to_prenex_imp_right hφ hψ, },
{ rw [to_prenex_imp, realize_ex],
refine trans (exists_congr (λ _, ih hψ.lift_at)) _,
simp only [realize_imp, realize_lift_at_one_self, snoc_comp_cast_succ, realize_all],
refine ⟨_, λ h', _⟩,
{ rintro ⟨a, ha⟩ h,
exact ha (h a) },
{ by_cases ψ.realize v xs,
{ inhabit M,
exact ⟨default, λ h'', h⟩ },
{ obtain ⟨a, ha⟩ := not_forall.1 (h ∘ h'),
exact ⟨a, λ h, (ha h).elim⟩ } } },
{ refine trans (forall_congr (λ _, ih hψ.lift_at)) _,
simp, },
end
@[simp] lemma realize_to_prenex (φ : L.bounded_formula α n) {v : α → M} :
∀ {xs : fin n → M}, φ.to_prenex.realize v xs ↔ φ.realize v xs :=
begin
refine bounded_formula.rec_on φ
(λ _ _, iff.rfl)
(λ _ _ _ _, iff.rfl)
(λ _ _ _ _ _, iff.rfl)
(λ _ f1 f2 h1 h2 _, _)
(λ _ f h xs, _),
{ rw [to_prenex, realize_to_prenex_imp f1.to_prenex_is_prenex f2.to_prenex_is_prenex,
realize_imp, realize_imp, h1, h2],
apply_instance },
{ rw [realize_all, to_prenex, realize_all],
exact forall_congr (λ a, h) },
end
end bounded_formula
attribute [protected] bounded_formula.falsum bounded_formula.equal bounded_formula.rel
attribute [protected] bounded_formula.imp bounded_formula.all
namespace Lhom
open bounded_formula
@[simp] lemma realize_on_bounded_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
{n : ℕ} (ψ : L.bounded_formula α n) {v : α → M} {xs : fin n → M} :
(φ.on_bounded_formula ψ).realize v xs ↔ ψ.realize v xs :=
begin
induction ψ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp only [on_bounded_formula, realize_bd_equal, realize_on_term],
refl, },
{ simp only [on_bounded_formula, realize_rel, realize_on_term, Lhom.map_on_relation],
refl, },
{ simp only [on_bounded_formula, ih1, ih2, realize_imp], },
{ simp only [on_bounded_formula, ih3, realize_all], },
end
end Lhom
attribute [protected] bounded_formula.falsum bounded_formula.equal bounded_formula.rel
attribute [protected] bounded_formula.imp bounded_formula.all
namespace formula
/-- A formula can be evaluated as true or false by giving values to each free variable. -/
def realize (φ : L.formula α) (v : α → M) : Prop :=
φ.realize v default
variables {M} {φ ψ : L.formula α} {v : α → M}
@[simp] lemma realize_not :
(φ.not).realize v ↔ ¬ φ.realize v :=
iff.rfl
@[simp] lemma realize_bot :
(⊥ : L.formula α).realize v ↔ false :=
iff.rfl
@[simp] lemma realize_top :
(⊤ : L.formula α).realize v ↔ true :=
bounded_formula.realize_top
@[simp] lemma realize_inf : (φ ⊓ ψ).realize v ↔ (φ.realize v ∧ ψ.realize v) :=
bounded_formula.realize_inf
@[simp] lemma realize_imp : (φ.imp ψ).realize v ↔ (φ.realize v → ψ.realize v) :=
bounded_formula.realize_imp
@[simp] lemma realize_rel {k : ℕ} {R : L.relations k} {ts : fin k → L.term α} :
(R.formula ts).realize v ↔ rel_map R (λ i, (ts i).realize v) :=
bounded_formula.realize_rel.trans (by simp)
@[simp] lemma realize_rel₁ {R : L.relations 1} {t : L.term _} :
(R.formula₁ t).realize v ↔ rel_map R ![t.realize v] :=
begin
rw [relations.formula₁, realize_rel, iff_eq_eq],
refine congr rfl (funext (λ _, _)),
simp only [matrix.cons_val_fin_one],
end
@[simp] lemma realize_rel₂ {R : L.relations 2} {t₁ t₂ : L.term _} :
(R.formula₂ t₁ t₂).realize v ↔
rel_map R ![t₁.realize v, t₂.realize v] :=
begin
rw [relations.formula₂, realize_rel, iff_eq_eq],
refine congr rfl (funext (fin.cases _ _)),
{ simp only [matrix.cons_val_zero]},
{ simp only [matrix.cons_val_succ, matrix.cons_val_fin_one, forall_const] }
end
@[simp] lemma realize_sup : (φ ⊔ ψ).realize v ↔ (φ.realize v ∨ ψ.realize v) :=
bounded_formula.realize_sup
@[simp] lemma realize_iff : (φ.iff ψ).realize v ↔ (φ.realize v ↔ ψ.realize v) :=
bounded_formula.realize_iff
@[simp] lemma realize_relabel {φ : L.formula α} {g : α → β} {v : β → M} :
(φ.relabel g).realize v ↔ φ.realize (v ∘ g) :=
begin
rw [realize, realize, relabel, bounded_formula.realize_relabel,
iff_eq_eq, fin.cast_add_zero],
exact congr rfl (funext fin_zero_elim),
end
lemma realize_relabel_sum_inr (φ : L.formula (fin n)) {v : empty → M} {x : fin n → M} :
(bounded_formula.relabel sum.inr φ).realize v x ↔ φ.realize x :=
by rw [bounded_formula.realize_relabel, formula.realize, sum.elim_comp_inr, fin.cast_add_zero,
cast_refl, order_iso.coe_refl, function.comp.right_id,
subsingleton.elim (x ∘ (nat_add n : fin 0 → fin n)) default]
@[simp]
lemma realize_equal {t₁ t₂ : L.term α} {x : α → M} :
(t₁.equal t₂).realize x ↔ t₁.realize x = t₂.realize x :=
by simp [term.equal, realize]
@[simp]
lemma realize_graph {f : L.functions n} {x : fin n → M} {y : M} :
(formula.graph f).realize (fin.cons y x : _ → M) ↔ fun_map f x = y :=
begin
simp only [formula.graph, term.realize, realize_equal, fin.cons_zero, fin.cons_succ],
rw eq_comm,
end
end formula
@[simp] lemma Lhom.realize_on_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
(ψ : L.formula α) {v : α → M} :
(φ.on_formula ψ).realize v ↔ ψ.realize v :=
φ.realize_on_bounded_formula ψ
@[simp] lemma Lhom.set_of_realize_on_formula [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
(ψ : L.formula α) :
(set_of (φ.on_formula ψ).realize : set (α → M)) = set_of ψ.realize :=
by { ext, simp }
variable (M)
/-- A sentence can be evaluated as true or false in a structure. -/
def sentence.realize (φ : L.sentence) : Prop :=
φ.realize (default : _ → M)
infix ` ⊨ `:51 := sentence.realize -- input using \|= or \vDash, but not using \models
@[simp] lemma sentence.realize_not {φ : L.sentence} :
M ⊨ φ.not ↔ ¬ M ⊨ φ :=
iff.rfl
@[simp] lemma Lhom.realize_on_sentence [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
(ψ : L.sentence) :
M ⊨ φ.on_sentence ψ ↔ M ⊨ ψ :=
φ.realize_on_formula ψ
variables (L)
/-- The complete theory of a structure `M` is the set of all sentences `M` satisfies. -/
def complete_theory : L.Theory := { φ | M ⊨ φ }
variable (N)
/-- Two structures are elementarily equivalent when they satisfy the same sentences. -/
def elementarily_equivalent : Prop := L.complete_theory M = L.complete_theory N
localized "notation A ` ≅[`:25 L `] ` B:50 := first_order.language.elementarily_equivalent L A B"
in first_order
variables {L} {M} {N}
@[simp] lemma mem_complete_theory {φ : sentence L} : φ ∈ L.complete_theory M ↔ M ⊨ φ := iff.rfl
lemma elementarily_equivalent_iff : M ≅[L] N ↔ ∀ φ : L.sentence, M ⊨ φ ↔ N ⊨ φ :=
by simp only [elementarily_equivalent, set.ext_iff, complete_theory, set.mem_set_of_eq]
variables (M)
/-- A model of a theory is a structure in which every sentence is realized as true. -/
class Theory.model (T : L.Theory) : Prop :=
(realize_of_mem : ∀ φ ∈ T, M ⊨ φ)
infix ` ⊨ `:51 := Theory.model -- input using \|= or \vDash, but not using \models
variables {M} (T : L.Theory)
@[simp] lemma Theory.model_iff : M ⊨ T ↔ ∀ φ ∈ T, M ⊨ φ := ⟨λ h, h.realize_of_mem, λ h, ⟨h⟩⟩
lemma Theory.realize_sentence_of_mem [M ⊨ T] {φ : L.sentence} (h : φ ∈ T) :
M ⊨ φ :=
Theory.model.realize_of_mem φ h
@[simp] lemma Lhom.on_Theory_model [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M]
(T : L.Theory) :
M ⊨ φ.on_Theory T ↔ M ⊨ T :=
by simp [Theory.model_iff, Lhom.on_Theory]
variables {M} {T}
instance model_empty : M ⊨ (∅ : L.Theory) := ⟨λ φ hφ, (set.not_mem_empty φ hφ).elim⟩
namespace Theory
lemma model.mono {T' : L.Theory} (h : M ⊨ T') (hs : T ⊆ T') :
M ⊨ T :=
⟨λ φ hφ, T'.realize_sentence_of_mem (hs hφ)⟩
lemma model.union {T' : L.Theory} (h : M ⊨ T) (h' : M ⊨ T') :
M ⊨ T ∪ T' :=
begin
simp only [model_iff, set.mem_union_eq] at *,
exact λ φ hφ, hφ.elim (h _) (h' _),
end
@[simp] lemma model_union_iff {T' : L.Theory} :
M ⊨ T ∪ T' ↔ M ⊨ T ∧ M ⊨ T' :=
⟨λ h, ⟨h.mono (T.subset_union_left T'), h.mono (T.subset_union_right T')⟩, λ h, h.1.union h.2⟩
lemma model_singleton_iff {φ : L.sentence} :
M ⊨ ({φ} : L.Theory) ↔ M ⊨ φ :=
by simp
theorem model_iff_subset_complete_theory :
M ⊨ T ↔ T ⊆ L.complete_theory M :=
T.model_iff
end Theory
instance model_complete_theory : M ⊨ L.complete_theory M :=
Theory.model_iff_subset_complete_theory.2 (subset_refl _)
variables (M N)
theorem realize_iff_of_model_complete_theory [N ⊨ L.complete_theory M] (φ : L.sentence) :
N ⊨ φ ↔ M ⊨ φ :=
begin
refine ⟨λ h, _, (L.complete_theory M).realize_sentence_of_mem⟩,
contrapose! h,
rw [← sentence.realize_not] at *,
exact (L.complete_theory M).realize_sentence_of_mem (mem_complete_theory.2 h)
end
variables {M N}
namespace bounded_formula
@[simp] lemma realize_alls {φ : L.bounded_formula α n} {v : α → M} :
φ.alls.realize v ↔
∀ (xs : fin n → M), (φ.realize v xs) :=
begin
induction n with n ih,
{ exact unique.forall_iff.symm },
{ simp only [alls, ih, realize],
exact ⟨λ h xs, (fin.snoc_init_self xs) ▸ h _ _, λ h xs x, h (fin.snoc xs x)⟩ }
end
@[simp] lemma realize_exs {φ : L.bounded_formula α n} {v : α → M} :
φ.exs.realize v ↔ ∃ (xs : fin n → M), (φ.realize v xs) :=
begin
induction n with n ih,
{ exact unique.exists_iff.symm },
{ simp only [bounded_formula.exs, ih, realize_ex],
split,
{ rintros ⟨xs, x, h⟩,
exact ⟨_, h⟩ },
{ rintros ⟨xs, h⟩,
rw ← fin.snoc_init_self xs at h,
exact ⟨_, _, h⟩ } }
end
@[simp] lemma realize_to_formula (φ : L.bounded_formula α n) (v : α ⊕ fin n → M) :
φ.to_formula.realize v ↔ φ.realize (v ∘ sum.inl) (v ∘ sum.inr) :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 a8 a9 a0,
{ refl },
{ simp [bounded_formula.realize] },
{ simp [bounded_formula.realize] },
{ rw [to_formula, formula.realize, realize_imp, ← formula.realize, ih1, ← formula.realize, ih2,
realize_imp], },
{ rw [to_formula, formula.realize, realize_all, realize_all],
refine forall_congr (λ a, _),
have h := ih3 (sum.elim (v ∘ sum.inl) (snoc (v ∘ sum.inr) a)),
simp only [sum.elim_comp_inl, sum.elim_comp_inr] at h,
rw [← h, realize_relabel, formula.realize],
rcongr,
{ cases x,
{ simp },
{ refine fin.last_cases _ (λ i, _) x,
{ rw [sum.elim_inr, snoc_last, function.comp_app, sum.elim_inr, function.comp_app,
fin_sum_fin_equiv_symm_last, sum.map_inr, sum.elim_inr, function.comp_app],
exact (congr rfl (subsingleton.elim _ _)).trans (snoc_last _ _) },
{ simp only [cast_succ, function.comp_app, sum.elim_inr,
fin_sum_fin_equiv_symm_apply_cast_add, sum.map_inl, sum.elim_inl],
rw [← cast_succ, snoc_cast_succ] } } },
{ exact subsingleton.elim _ _ } }
end
end bounded_formula
namespace equiv
@[simp] lemma realize_bounded_formula (g : M ≃[L] N) (φ : L.bounded_formula α n)
{v : α → M} {xs : fin n → M} :
φ.realize (g ∘ v) (g ∘ xs) ↔ φ.realize v xs :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp only [bounded_formula.realize, ← sum.comp_elim, equiv.realize_term, g.injective.eq_iff] },
{ simp only [bounded_formula.realize, ← sum.comp_elim, equiv.realize_term, g.map_rel], },
{ rw [bounded_formula.realize, ih1, ih2, bounded_formula.realize] },
{ rw [bounded_formula.realize, bounded_formula.realize],
split,
{ intros h a,
have h' := h (g a),
rw [← fin.comp_snoc, ih3] at h',
exact h' },
{ intros h a,
have h' := h (g.symm a),
rw [← ih3, fin.comp_snoc, g.apply_symm_apply] at h',
exact h' }}
end
@[simp] lemma realize_formula (g : M ≃[L] N) (φ : L.formula α) {v : α → M} :
φ.realize (g ∘ v) ↔ φ.realize v :=
by rw [formula.realize, formula.realize, ← g.realize_bounded_formula φ,
iff_eq_eq, unique.eq_default (g ∘ default)]
lemma realize_sentence (g : M ≃[L] N) (φ : L.sentence) :
M ⊨ φ ↔ N ⊨ φ :=
by rw [sentence.realize, sentence.realize, ← g.realize_formula, unique.eq_default (g ∘ default)]
lemma Theory_model (g : M ≃[L] N) [M ⊨ T] : N ⊨ T :=
⟨λ φ hφ, (g.realize_sentence φ).1 (Theory.realize_sentence_of_mem T hφ)⟩
lemma elementarily_equivalent (g : M ≃[L] N) : M ≅[L] N :=
elementarily_equivalent_iff.2 g.realize_sentence
end equiv
namespace relations
open bounded_formula
variable {r : L.relations 2}
@[simp]
lemma realize_reflexive :
M ⊨ r.reflexive ↔ reflexive (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, realize_rel₂)
@[simp]
lemma realize_irreflexive :
M ⊨ r.irreflexive ↔ irreflexive (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, not_congr realize_rel₂)
@[simp]
lemma realize_symmetric :
M ⊨ r.symmetric ↔ symmetric (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, forall_congr (λ _, imp_congr realize_rel₂ realize_rel₂))
@[simp]
lemma realize_antisymmetric :
M ⊨ r.antisymmetric ↔ anti_symmetric (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, forall_congr (λ _, imp_congr realize_rel₂ (imp_congr realize_rel₂ iff.rfl)))
@[simp]
lemma realize_transitive :
M ⊨ r.transitive ↔ transitive (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, forall_congr (λ _, forall_congr
(λ _, imp_congr realize_rel₂ (imp_congr realize_rel₂ realize_rel₂))))
@[simp]
lemma realize_total :
M ⊨ r.total ↔ total (λ (x y : M), rel_map r ![x,y]) :=
forall_congr (λ _, forall_congr (λ _, realize_sup.trans (or_congr realize_rel₂ realize_rel₂)))
end relations
section cardinality
variable (L)
@[simp] lemma sentence.realize_card_ge (n) : M ⊨ (sentence.card_ge L n) ↔ ↑n ≤ (# M) :=
begin
rw [← lift_mk_fin, ← lift_le, lift_lift, lift_mk_le, sentence.card_ge, sentence.realize,
bounded_formula.realize_exs],
simp_rw [bounded_formula.realize_foldr_inf],
simp only [function.comp_app, list.mem_map, prod.exists, ne.def, list.mem_product,
list.mem_fin_range, forall_exists_index, and_imp, list.mem_filter, true_and],
refine ⟨_, λ xs, ⟨xs.some, _⟩⟩,
{ rintro ⟨xs, h⟩,
refine ⟨⟨xs, λ i j ij, _⟩⟩,
contrapose! ij,
have hij := h _ i j ij rfl,
simp only [bounded_formula.realize_not, term.realize, bounded_formula.realize_bd_equal,
sum.elim_inr] at hij,
exact hij },
{ rintro _ i j ij rfl,
simp [ij] }
end
@[simp] lemma model_infinite_theory_iff : M ⊨ L.infinite_theory ↔ infinite M :=
by simp [infinite_theory, infinite_iff, aleph_0_le]
instance model_infinite_theory [h : infinite M] :
M ⊨ L.infinite_theory :=
L.model_infinite_theory_iff.2 h
@[simp] lemma model_nonempty_theory_iff :
M ⊨ L.nonempty_theory ↔ nonempty M :=
by simp only [nonempty_theory, Theory.model_iff, set.mem_singleton_iff, forall_eq,
sentence.realize_card_ge, nat.cast_one, one_le_iff_ne_zero, mk_ne_zero_iff]
instance model_nonempty [h : nonempty M] :
M ⊨ L.nonempty_theory :=
L.model_nonempty_theory_iff.2 h
lemma model_distinct_constants_theory {M : Type w} [L[[α]].Structure M] (s : set α) :
M ⊨ L.distinct_constants_theory s ↔ set.inj_on (λ (i : α), (L.con i : M)) s :=
begin
simp only [distinct_constants_theory, Theory.model_iff, set.mem_image,
set.mem_inter_eq, set.mem_prod, set.mem_compl_eq, prod.exists, forall_exists_index, and_imp],
refine ⟨λ h a as b bs ab, _, _⟩,
{ contrapose! ab,
have h' := h _ a b as bs ab rfl,
simp only [sentence.realize, formula.realize_not, formula.realize_equal,
term.realize_constants] at h',
exact h', },
{ rintros h φ a b as bs ab rfl,
simp only [sentence.realize, formula.realize_not, formula.realize_equal,
term.realize_constants],
exact λ contra, ab (h as bs contra) }
end
lemma card_le_of_model_distinct_constants_theory (s : set α) (M : Type w) [L[[α]].Structure M]
[h : M ⊨ L.distinct_constants_theory s] :
cardinal.lift.{w} (# s) ≤ cardinal.lift.{u'} (# M) :=
lift_mk_le'.2 ⟨⟨_, set.inj_on_iff_injective.1 ((L.model_distinct_constants_theory s).1 h)⟩⟩
end cardinality
namespace elementarily_equivalent
@[symm] lemma symm (h : M ≅[L] N) : N ≅[L] M := h.symm
@[trans] lemma trans (MN : M ≅[L] N) (NP : N ≅[L] P) : M ≅[L] P := MN.trans NP
lemma complete_theory_eq (h : M ≅[L] N) : L.complete_theory M = L.complete_theory N := h
lemma realize_sentence (h : M ≅[L] N) (φ : L.sentence) : M ⊨ φ ↔ N ⊨ φ :=
(elementarily_equivalent_iff.1 h) φ
lemma Theory_model_iff (h : M ≅[L] N) : M ⊨ T ↔ N ⊨ T :=
by rw [Theory.model_iff_subset_complete_theory, Theory.model_iff_subset_complete_theory,
h.complete_theory_eq]
lemma Theory_model [MT : M ⊨ T] (h : M ≅[L] N) : N ⊨ T :=
h.Theory_model_iff.1 MT
lemma nonempty_iff (h : M ≅[L] N) : nonempty M ↔ nonempty N :=
(model_nonempty_theory_iff L).symm.trans (h.Theory_model_iff.trans (model_nonempty_theory_iff L))
lemma nonempty [Mn : nonempty M] (h : M ≅[L] N) : nonempty N := h.nonempty_iff.1 Mn
lemma infinite_iff (h : M ≅[L] N) : infinite M ↔ infinite N :=
(model_infinite_theory_iff L).symm.trans (h.Theory_model_iff.trans (model_infinite_theory_iff L))
lemma infinite [Mi : infinite M] (h : M ≅[L] N) : infinite N := h.infinite_iff.1 Mi
end elementarily_equivalent
end language
end first_order
|