Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Damiano Testa. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Damiano Testa | |
-/ | |
import algebra.monoid_algebra.basic | |
/-! | |
# Lemmas about the `sup` and `inf` of the support of `add_monoid_algebra` | |
## TODO | |
The current plan is to state and prove lemmas about `finset.sup (finsupp.support f) D` with a | |
"generic" degree/weight function `D` from the grading Type `A` to a somewhat ordered Type `B`. | |
Next, the general lemmas get specialized for some yet-to-be-defined `degree`s. | |
-/ | |
variables {R A T B ι : Type*} | |
namespace add_monoid_algebra | |
open_locale classical big_operators | |
/-! ### Results about the `finset.sup` and `finset.inf` of `finsupp.support` -/ | |
section general_results_assuming_semilattice_sup | |
variables [semilattice_sup B] [order_bot B] [semilattice_inf T] [order_top T] | |
section semiring | |
variables [semiring R] | |
section explicit_degrees | |
/-! | |
In this section, we use `degb` and `degt` to denote "degree functions" on `A` with values in | |
a type with *b*ot or *t*op respectively. | |
-/ | |
variables (degb : A → B) (degt : A → T) (f g : add_monoid_algebra R A) | |
lemma sup_support_add_le : (f + g).support.sup degb ≤ (f.support.sup degb) ⊔ (g.support.sup degb) := | |
(finset.sup_mono finsupp.support_add).trans_eq finset.sup_union | |
lemma le_inf_support_add : f.support.inf degt ⊓ g.support.inf degt ≤ (f + g).support.inf degt := | |
sup_support_add_le (λ a : A, order_dual.to_dual (degt a)) f g | |
end explicit_degrees | |
section add_only | |
variables [has_add A] [has_add B] [has_add T] | |
[covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)] | |
[covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)] | |
lemma sup_support_mul_le {degb : A → B} (degbm : ∀ {a b}, degb (a + b) ≤ degb a + degb b) | |
(f g : add_monoid_algebra R A) : | |
(f * g).support.sup degb ≤ f.support.sup degb + g.support.sup degb := | |
begin | |
refine (finset.sup_mono $ support_mul _ _).trans _, | |
simp_rw [finset.sup_bUnion, finset.sup_singleton], | |
refine (finset.sup_le $ λ fd fds, finset.sup_le $ λ gd gds, degbm.trans $ add_le_add _ _); | |
exact finset.le_sup ‹_›, | |
end | |
lemma le_inf_support_mul {degt : A → T} (degtm : ∀ {a b}, degt a + degt b ≤ degt (a + b)) | |
(f g : add_monoid_algebra R A) : | |
f.support.inf degt + g.support.inf degt ≤ (f * g).support.inf degt := | |
order_dual.of_dual_le_of_dual.mpr $ | |
sup_support_mul_le (λ a b, order_dual.of_dual_le_of_dual.mp degtm) f g | |
end add_only | |
section add_monoids | |
variables [add_monoid A] | |
[add_monoid B] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)] | |
[add_monoid T] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)] | |
{degb : A → B} {degt : A → T} | |
lemma sup_support_list_prod_le (degb0 : degb 0 ≤ 0) | |
(degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) : | |
∀ l : list (add_monoid_algebra R A), | |
l.prod.support.sup degb ≤ (l.map (λ f : add_monoid_algebra R A, f.support.sup degb)).sum | |
| [] := begin | |
rw [list.map_nil, finset.sup_le_iff, list.prod_nil, list.sum_nil], | |
exact λ a ha, by rwa [finset.mem_singleton.mp (finsupp.support_single_subset ha)] | |
end | |
| (f::fs) := begin | |
rw [list.prod_cons, list.map_cons, list.sum_cons], | |
exact (sup_support_mul_le degbm _ _).trans (add_le_add_left (sup_support_list_prod_le _) _) | |
end | |
lemma le_inf_support_list_prod (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b)) | |
(l : list (add_monoid_algebra R A)) : | |
(l.map (λ f : add_monoid_algebra R A, f.support.inf degt)).sum ≤ l.prod.support.inf degt := | |
order_dual.of_dual_le_of_dual.mpr $ sup_support_list_prod_le | |
(order_dual.of_dual_le_of_dual.mp degt0) (λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) l | |
lemma sup_support_pow_le (degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) | |
(n : ℕ) (f : add_monoid_algebra R A) : | |
(f ^ n).support.sup degb ≤ n • (f.support.sup degb) := | |
begin | |
rw [← list.prod_repeat, ←list.sum_repeat], | |
refine (sup_support_list_prod_le degb0 degbm _).trans_eq _, | |
rw list.map_repeat, | |
end | |
lemma le_inf_support_pow (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b)) | |
(n : ℕ) (f : add_monoid_algebra R A) : | |
n • (f.support.inf degt) ≤ (f ^ n).support.inf degt := | |
order_dual.of_dual_le_of_dual.mpr $ sup_support_pow_le (order_dual.of_dual_le_of_dual.mp degt0) | |
(λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) n f | |
end add_monoids | |
end semiring | |
section commutative_lemmas | |
variables [comm_semiring R] [add_comm_monoid A] | |
[add_comm_monoid B] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)] | |
[add_comm_monoid T] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)] | |
{degb : A → B} {degt : A → T} | |
lemma sup_support_multiset_prod_le | |
(degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) | |
(m : multiset (add_monoid_algebra R A)) : | |
m.prod.support.sup degb ≤ (m.map (λ f : add_monoid_algebra R A, f.support.sup degb)).sum := | |
begin | |
induction m using quot.induction_on, | |
rw [multiset.quot_mk_to_coe'', multiset.coe_map, multiset.coe_sum, multiset.coe_prod], | |
exact sup_support_list_prod_le degb0 degbm m, | |
end | |
lemma le_inf_support_multiset_prod | |
(degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b)) | |
(m : multiset (add_monoid_algebra R A)) : | |
(m.map (λ f : add_monoid_algebra R A, f.support.inf degt)).sum ≤ m.prod.support.inf degt := | |
order_dual.of_dual_le_of_dual.mpr $ | |
sup_support_multiset_prod_le (order_dual.of_dual_le_of_dual.mp degt0) | |
(λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) m | |
lemma sup_support_finset_prod_le | |
(degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) | |
(s : finset ι) (f : ι → add_monoid_algebra R A) : | |
(∏ i in s, f i).support.sup degb ≤ ∑ i in s, (f i).support.sup degb := | |
(sup_support_multiset_prod_le degb0 degbm _).trans_eq $ congr_arg _ $ multiset.map_map _ _ _ | |
lemma le_inf_support_finset_prod | |
(degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b)) | |
(s : finset ι) (f : ι → add_monoid_algebra R A) : | |
∑ i in s, (f i).support.inf degt ≤ (∏ i in s, f i).support.inf degt := | |
le_of_eq_of_le (by rw [multiset.map_map]; refl) (le_inf_support_multiset_prod degt0 degtm _) | |
end commutative_lemmas | |
end general_results_assuming_semilattice_sup | |
end add_monoid_algebra | |