/- Copyright (c) 2022 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import algebra.monoid_algebra.basic /-! # Lemmas about the `sup` and `inf` of the support of `add_monoid_algebra` ## TODO The current plan is to state and prove lemmas about `finset.sup (finsupp.support f) D` with a "generic" degree/weight function `D` from the grading Type `A` to a somewhat ordered Type `B`. Next, the general lemmas get specialized for some yet-to-be-defined `degree`s. -/ variables {R A T B ι : Type*} namespace add_monoid_algebra open_locale classical big_operators /-! ### Results about the `finset.sup` and `finset.inf` of `finsupp.support` -/ section general_results_assuming_semilattice_sup variables [semilattice_sup B] [order_bot B] [semilattice_inf T] [order_top T] section semiring variables [semiring R] section explicit_degrees /-! In this section, we use `degb` and `degt` to denote "degree functions" on `A` with values in a type with *b*ot or *t*op respectively. -/ variables (degb : A → B) (degt : A → T) (f g : add_monoid_algebra R A) lemma sup_support_add_le : (f + g).support.sup degb ≤ (f.support.sup degb) ⊔ (g.support.sup degb) := (finset.sup_mono finsupp.support_add).trans_eq finset.sup_union lemma le_inf_support_add : f.support.inf degt ⊓ g.support.inf degt ≤ (f + g).support.inf degt := sup_support_add_le (λ a : A, order_dual.to_dual (degt a)) f g end explicit_degrees section add_only variables [has_add A] [has_add B] [has_add T] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)] lemma sup_support_mul_le {degb : A → B} (degbm : ∀ {a b}, degb (a + b) ≤ degb a + degb b) (f g : add_monoid_algebra R A) : (f * g).support.sup degb ≤ f.support.sup degb + g.support.sup degb := begin refine (finset.sup_mono $ support_mul _ _).trans _, simp_rw [finset.sup_bUnion, finset.sup_singleton], refine (finset.sup_le $ λ fd fds, finset.sup_le $ λ gd gds, degbm.trans $ add_le_add _ _); exact finset.le_sup ‹_›, end lemma le_inf_support_mul {degt : A → T} (degtm : ∀ {a b}, degt a + degt b ≤ degt (a + b)) (f g : add_monoid_algebra R A) : f.support.inf degt + g.support.inf degt ≤ (f * g).support.inf degt := order_dual.of_dual_le_of_dual.mpr $ sup_support_mul_le (λ a b, order_dual.of_dual_le_of_dual.mp degtm) f g end add_only section add_monoids variables [add_monoid A] [add_monoid B] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)] [add_monoid T] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)] {degb : A → B} {degt : A → T} lemma sup_support_list_prod_le (degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) : ∀ l : list (add_monoid_algebra R A), l.prod.support.sup degb ≤ (l.map (λ f : add_monoid_algebra R A, f.support.sup degb)).sum | [] := begin rw [list.map_nil, finset.sup_le_iff, list.prod_nil, list.sum_nil], exact λ a ha, by rwa [finset.mem_singleton.mp (finsupp.support_single_subset ha)] end | (f::fs) := begin rw [list.prod_cons, list.map_cons, list.sum_cons], exact (sup_support_mul_le degbm _ _).trans (add_le_add_left (sup_support_list_prod_le _) _) end lemma le_inf_support_list_prod (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b)) (l : list (add_monoid_algebra R A)) : (l.map (λ f : add_monoid_algebra R A, f.support.inf degt)).sum ≤ l.prod.support.inf degt := order_dual.of_dual_le_of_dual.mpr $ sup_support_list_prod_le (order_dual.of_dual_le_of_dual.mp degt0) (λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) l lemma sup_support_pow_le (degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) (n : ℕ) (f : add_monoid_algebra R A) : (f ^ n).support.sup degb ≤ n • (f.support.sup degb) := begin rw [← list.prod_repeat, ←list.sum_repeat], refine (sup_support_list_prod_le degb0 degbm _).trans_eq _, rw list.map_repeat, end lemma le_inf_support_pow (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b)) (n : ℕ) (f : add_monoid_algebra R A) : n • (f.support.inf degt) ≤ (f ^ n).support.inf degt := order_dual.of_dual_le_of_dual.mpr $ sup_support_pow_le (order_dual.of_dual_le_of_dual.mp degt0) (λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) n f end add_monoids end semiring section commutative_lemmas variables [comm_semiring R] [add_comm_monoid A] [add_comm_monoid B] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)] [add_comm_monoid T] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)] {degb : A → B} {degt : A → T} lemma sup_support_multiset_prod_le (degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) (m : multiset (add_monoid_algebra R A)) : m.prod.support.sup degb ≤ (m.map (λ f : add_monoid_algebra R A, f.support.sup degb)).sum := begin induction m using quot.induction_on, rw [multiset.quot_mk_to_coe'', multiset.coe_map, multiset.coe_sum, multiset.coe_prod], exact sup_support_list_prod_le degb0 degbm m, end lemma le_inf_support_multiset_prod (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b)) (m : multiset (add_monoid_algebra R A)) : (m.map (λ f : add_monoid_algebra R A, f.support.inf degt)).sum ≤ m.prod.support.inf degt := order_dual.of_dual_le_of_dual.mpr $ sup_support_multiset_prod_le (order_dual.of_dual_le_of_dual.mp degt0) (λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) m lemma sup_support_finset_prod_le (degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) (s : finset ι) (f : ι → add_monoid_algebra R A) : (∏ i in s, f i).support.sup degb ≤ ∑ i in s, (f i).support.sup degb := (sup_support_multiset_prod_le degb0 degbm _).trans_eq $ congr_arg _ $ multiset.map_map _ _ _ lemma le_inf_support_finset_prod (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b)) (s : finset ι) (f : ι → add_monoid_algebra R A) : ∑ i in s, (f i).support.inf degt ≤ (∏ i in s, f i).support.inf degt := le_of_eq_of_le (by rw [multiset.map_map]; refl) (le_inf_support_multiset_prod degt0 degtm _) end commutative_lemmas end general_results_assuming_semilattice_sup end add_monoid_algebra