Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,478 Bytes
fc5e983 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
/-
Copyright (c) 2022 Damiano Testa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Damiano Testa
-/
import algebra.monoid_algebra.basic
/-!
# Lemmas about the `sup` and `inf` of the support of `add_monoid_algebra`
## TODO
The current plan is to state and prove lemmas about `finset.sup (finsupp.support f) D` with a
"generic" degree/weight function `D` from the grading Type `A` to a somewhat ordered Type `B`.
Next, the general lemmas get specialized for some yet-to-be-defined `degree`s.
-/
variables {R A T B ι : Type*}
namespace add_monoid_algebra
open_locale classical big_operators
/-! ### Results about the `finset.sup` and `finset.inf` of `finsupp.support` -/
section general_results_assuming_semilattice_sup
variables [semilattice_sup B] [order_bot B] [semilattice_inf T] [order_top T]
section semiring
variables [semiring R]
section explicit_degrees
/-!
In this section, we use `degb` and `degt` to denote "degree functions" on `A` with values in
a type with *b*ot or *t*op respectively.
-/
variables (degb : A → B) (degt : A → T) (f g : add_monoid_algebra R A)
lemma sup_support_add_le : (f + g).support.sup degb ≤ (f.support.sup degb) ⊔ (g.support.sup degb) :=
(finset.sup_mono finsupp.support_add).trans_eq finset.sup_union
lemma le_inf_support_add : f.support.inf degt ⊓ g.support.inf degt ≤ (f + g).support.inf degt :=
sup_support_add_le (λ a : A, order_dual.to_dual (degt a)) f g
end explicit_degrees
section add_only
variables [has_add A] [has_add B] [has_add T]
[covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)]
[covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)]
lemma sup_support_mul_le {degb : A → B} (degbm : ∀ {a b}, degb (a + b) ≤ degb a + degb b)
(f g : add_monoid_algebra R A) :
(f * g).support.sup degb ≤ f.support.sup degb + g.support.sup degb :=
begin
refine (finset.sup_mono $ support_mul _ _).trans _,
simp_rw [finset.sup_bUnion, finset.sup_singleton],
refine (finset.sup_le $ λ fd fds, finset.sup_le $ λ gd gds, degbm.trans $ add_le_add _ _);
exact finset.le_sup ‹_›,
end
lemma le_inf_support_mul {degt : A → T} (degtm : ∀ {a b}, degt a + degt b ≤ degt (a + b))
(f g : add_monoid_algebra R A) :
f.support.inf degt + g.support.inf degt ≤ (f * g).support.inf degt :=
order_dual.of_dual_le_of_dual.mpr $
sup_support_mul_le (λ a b, order_dual.of_dual_le_of_dual.mp degtm) f g
end add_only
section add_monoids
variables [add_monoid A]
[add_monoid B] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)]
[add_monoid T] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)]
{degb : A → B} {degt : A → T}
lemma sup_support_list_prod_le (degb0 : degb 0 ≤ 0)
(degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) :
∀ l : list (add_monoid_algebra R A),
l.prod.support.sup degb ≤ (l.map (λ f : add_monoid_algebra R A, f.support.sup degb)).sum
| [] := begin
rw [list.map_nil, finset.sup_le_iff, list.prod_nil, list.sum_nil],
exact λ a ha, by rwa [finset.mem_singleton.mp (finsupp.support_single_subset ha)]
end
| (f::fs) := begin
rw [list.prod_cons, list.map_cons, list.sum_cons],
exact (sup_support_mul_le degbm _ _).trans (add_le_add_left (sup_support_list_prod_le _) _)
end
lemma le_inf_support_list_prod (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
(l : list (add_monoid_algebra R A)) :
(l.map (λ f : add_monoid_algebra R A, f.support.inf degt)).sum ≤ l.prod.support.inf degt :=
order_dual.of_dual_le_of_dual.mpr $ sup_support_list_prod_le
(order_dual.of_dual_le_of_dual.mp degt0) (λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) l
lemma sup_support_pow_le (degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b)
(n : ℕ) (f : add_monoid_algebra R A) :
(f ^ n).support.sup degb ≤ n • (f.support.sup degb) :=
begin
rw [← list.prod_repeat, ←list.sum_repeat],
refine (sup_support_list_prod_le degb0 degbm _).trans_eq _,
rw list.map_repeat,
end
lemma le_inf_support_pow (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
(n : ℕ) (f : add_monoid_algebra R A) :
n • (f.support.inf degt) ≤ (f ^ n).support.inf degt :=
order_dual.of_dual_le_of_dual.mpr $ sup_support_pow_le (order_dual.of_dual_le_of_dual.mp degt0)
(λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) n f
end add_monoids
end semiring
section commutative_lemmas
variables [comm_semiring R] [add_comm_monoid A]
[add_comm_monoid B] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)]
[add_comm_monoid T] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)]
{degb : A → B} {degt : A → T}
lemma sup_support_multiset_prod_le
(degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b)
(m : multiset (add_monoid_algebra R A)) :
m.prod.support.sup degb ≤ (m.map (λ f : add_monoid_algebra R A, f.support.sup degb)).sum :=
begin
induction m using quot.induction_on,
rw [multiset.quot_mk_to_coe'', multiset.coe_map, multiset.coe_sum, multiset.coe_prod],
exact sup_support_list_prod_le degb0 degbm m,
end
lemma le_inf_support_multiset_prod
(degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
(m : multiset (add_monoid_algebra R A)) :
(m.map (λ f : add_monoid_algebra R A, f.support.inf degt)).sum ≤ m.prod.support.inf degt :=
order_dual.of_dual_le_of_dual.mpr $
sup_support_multiset_prod_le (order_dual.of_dual_le_of_dual.mp degt0)
(λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) m
lemma sup_support_finset_prod_le
(degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b)
(s : finset ι) (f : ι → add_monoid_algebra R A) :
(∏ i in s, f i).support.sup degb ≤ ∑ i in s, (f i).support.sup degb :=
(sup_support_multiset_prod_le degb0 degbm _).trans_eq $ congr_arg _ $ multiset.map_map _ _ _
lemma le_inf_support_finset_prod
(degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
(s : finset ι) (f : ι → add_monoid_algebra R A) :
∑ i in s, (f i).support.inf degt ≤ (∏ i in s, f i).support.inf degt :=
le_of_eq_of_le (by rw [multiset.map_map]; refl) (le_inf_support_multiset_prod degt0 degtm _)
end commutative_lemmas
end general_results_assuming_semilattice_sup
end add_monoid_algebra
|