Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,478 Bytes
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/-
Copyright (c) 2022 Damiano Testa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Damiano Testa
-/
import algebra.monoid_algebra.basic

/-!
# Lemmas about the `sup` and `inf` of the support of `add_monoid_algebra`

## TODO
The current plan is to state and prove lemmas about `finset.sup (finsupp.support f) D` with a
"generic" degree/weight function `D` from the grading Type `A` to a somewhat ordered Type `B`.

Next, the general lemmas get specialized for some yet-to-be-defined `degree`s.
-/

variables {R A T B ι : Type*}

namespace add_monoid_algebra
open_locale classical big_operators

/-! ### Results about the `finset.sup` and `finset.inf` of `finsupp.support` -/

section general_results_assuming_semilattice_sup
variables [semilattice_sup B] [order_bot B] [semilattice_inf T] [order_top T]

section semiring
variables [semiring R]

section explicit_degrees
/-!

In this section, we use `degb` and `degt` to denote "degree functions" on `A` with values in
a type with *b*ot or *t*op respectively.
-/
variables (degb : A → B) (degt : A → T) (f g : add_monoid_algebra R A)

lemma sup_support_add_le : (f + g).support.sup degb ≤ (f.support.sup degb) ⊔ (g.support.sup degb) :=
(finset.sup_mono finsupp.support_add).trans_eq finset.sup_union

lemma le_inf_support_add : f.support.inf degt ⊓ g.support.inf degt ≤ (f + g).support.inf degt :=
sup_support_add_le (λ a : A, order_dual.to_dual (degt a)) f g

end explicit_degrees

section add_only
variables [has_add A] [has_add B] [has_add T]
  [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)]
  [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)]

lemma sup_support_mul_le {degb : A → B} (degbm : ∀ {a b}, degb (a + b) ≤ degb a + degb b)
  (f g : add_monoid_algebra R A) :
  (f * g).support.sup degb ≤ f.support.sup degb + g.support.sup degb :=
begin
  refine (finset.sup_mono $ support_mul _ _).trans _,
  simp_rw [finset.sup_bUnion, finset.sup_singleton],
  refine (finset.sup_le $ λ fd fds, finset.sup_le $ λ gd gds, degbm.trans $ add_le_add _ _);
  exact finset.le_sup ‹_›,
end

lemma le_inf_support_mul {degt : A → T} (degtm : ∀ {a b}, degt a + degt b ≤ degt (a + b))
  (f g : add_monoid_algebra R A) :
  f.support.inf degt + g.support.inf degt ≤ (f * g).support.inf degt :=
order_dual.of_dual_le_of_dual.mpr $
  sup_support_mul_le (λ a b, order_dual.of_dual_le_of_dual.mp degtm) f g

end add_only

section add_monoids
variables [add_monoid A]
  [add_monoid B] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)]
  [add_monoid T] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)]
  {degb : A → B} {degt : A → T}

lemma sup_support_list_prod_le (degb0 : degb 0 ≤ 0)
  (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b) :
  ∀ l : list (add_monoid_algebra R A),
    l.prod.support.sup degb ≤ (l.map (λ f : add_monoid_algebra R A, f.support.sup degb)).sum
| [] := begin
    rw [list.map_nil, finset.sup_le_iff, list.prod_nil, list.sum_nil],
    exact λ a ha, by rwa [finset.mem_singleton.mp (finsupp.support_single_subset ha)]
  end
| (f::fs) := begin
    rw [list.prod_cons, list.map_cons, list.sum_cons],
    exact (sup_support_mul_le degbm _ _).trans (add_le_add_left (sup_support_list_prod_le _) _)
  end

lemma le_inf_support_list_prod (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
  (l : list (add_monoid_algebra R A)) :
  (l.map (λ f : add_monoid_algebra R A, f.support.inf degt)).sum ≤ l.prod.support.inf degt :=
order_dual.of_dual_le_of_dual.mpr $ sup_support_list_prod_le
  (order_dual.of_dual_le_of_dual.mp degt0) (λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) l

lemma sup_support_pow_le (degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b)
  (n : ℕ) (f : add_monoid_algebra R A) :
  (f ^ n).support.sup degb ≤ n • (f.support.sup degb) :=
begin
  rw [← list.prod_repeat, ←list.sum_repeat],
  refine (sup_support_list_prod_le degb0 degbm _).trans_eq _,
  rw list.map_repeat,
end

lemma le_inf_support_pow (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
  (n : ℕ) (f : add_monoid_algebra R A) :
  n • (f.support.inf degt) ≤ (f ^ n).support.inf degt :=
order_dual.of_dual_le_of_dual.mpr $ sup_support_pow_le (order_dual.of_dual_le_of_dual.mp degt0)
  (λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) n f

end add_monoids

end semiring

section commutative_lemmas
variables [comm_semiring R] [add_comm_monoid A]
  [add_comm_monoid B] [covariant_class B B (+) (≤)] [covariant_class B B (function.swap (+)) (≤)]
  [add_comm_monoid T] [covariant_class T T (+) (≤)] [covariant_class T T (function.swap (+)) (≤)]
  {degb : A → B} {degt : A → T}

lemma sup_support_multiset_prod_le
  (degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b)
  (m : multiset (add_monoid_algebra R A)) :
  m.prod.support.sup degb ≤ (m.map (λ f : add_monoid_algebra R A, f.support.sup degb)).sum :=
begin
  induction m using quot.induction_on,
  rw [multiset.quot_mk_to_coe'', multiset.coe_map, multiset.coe_sum, multiset.coe_prod],
  exact sup_support_list_prod_le degb0 degbm m,
end

lemma le_inf_support_multiset_prod
  (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
  (m : multiset (add_monoid_algebra R A)) :
  (m.map (λ f : add_monoid_algebra R A, f.support.inf degt)).sum ≤ m.prod.support.inf degt :=
order_dual.of_dual_le_of_dual.mpr $
  sup_support_multiset_prod_le (order_dual.of_dual_le_of_dual.mp degt0)
    (λ a b, order_dual.of_dual_le_of_dual.mp (degtm _ _)) m

lemma sup_support_finset_prod_le
  (degb0 : degb 0 ≤ 0) (degbm : ∀ a b, degb (a + b) ≤ degb a + degb b)
  (s : finset ι) (f : ι → add_monoid_algebra R A) :
  (∏ i in s, f i).support.sup degb ≤ ∑ i in s, (f i).support.sup degb :=
(sup_support_multiset_prod_le degb0 degbm _).trans_eq $ congr_arg _ $ multiset.map_map _ _ _

lemma le_inf_support_finset_prod
  (degt0 : 0 ≤ degt 0) (degtm : ∀ a b, degt a + degt b ≤ degt (a + b))
  (s : finset ι) (f : ι → add_monoid_algebra R A) :
  ∑ i in s, (f i).support.inf degt ≤ (∏ i in s, f i).support.inf degt :=
le_of_eq_of_le (by rw [multiset.map_map]; refl) (le_inf_support_multiset_prod degt0 degtm _)

end commutative_lemmas

end general_results_assuming_semilattice_sup

end add_monoid_algebra