Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,088 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import analysis.convex.hull
import data.real.basic
import topology.connected
import topology.path_connected
import topology.algebra.affine
import linear_algebra.dimension
import linear_algebra.affine_space.midpoint
import data.matrix.notation
import analysis.convex.topology
import to_mathlib.topology.misc
/-!
# Ample subsets of real vector spaces
## Implementation notes
The definition of ample subset asks for a vector space structure and a topology on the ambiant type
without any link between those structures, but we will only be using these for finite dimensional
vector spaces with their natural topology.
-/
open set affine_map
open_locale convex matrix
variables {E F : Type*} [add_comm_group F] [module β F] [topological_space F]
variables [add_comm_group E] [module β E] [topological_space E]
/-- A subset of a topological real vector space is ample if the convex hull of each of its
connected components is the full space. -/
def ample_set (s : set F) : Prop :=
β x β s, convex_hull β (connected_component_in s x) = univ
/-- images of ample sets under continuous linear equivalences are ample. -/
lemma ample_set.image {s : set E} (h : ample_set s) (L : E βL[β] F) : ample_set (L '' s) :=
begin
intros x hx,
rw [L.image_eq_preimage] at hx,
have : L '' connected_component_in s (L.symm x) = connected_component_in (L '' s) x,
{ conv_rhs { rw [β L.apply_symm_apply x] },
exact L.to_homeomorph.image_connected_component_in hx },
rw [β this],
refine (L.to_linear_equiv.to_linear_map.convex_hull_image _).trans _,
rw [h (L.symm x) hx, image_univ],
exact L.to_linear_equiv.to_equiv.range_eq_univ,
end
/-- preimages of ample sets under continuous linear equivalences are ample. -/
lemma ample_set.preimage {s : set F} (h : ample_set s) (L : E βL[β] F) : ample_set (L β»ΒΉ' s) :=
by { rw [β L.image_symm_eq_preimage], exact h.image L.symm }
section lemma_2_13
local notation `Ο` := submodule.linear_proj_of_is_compl _ _
local attribute [instance, priority 100] topological_add_group.path_connected
lemma is_path_connected_compl_of_is_path_connected_compl_zero [topological_add_group F]
[has_continuous_smul β F] {p q : submodule β F} (hpq : is_compl p q)
(hpc : is_path_connected ({0}αΆ : set p)) : is_path_connected (qαΆ : set F) :=
begin
rw is_path_connected_iff at β’ hpc,
split,
{ rcases hpc.1 with β¨a, haβ©,
exact β¨a, mt (submodule.eq_zero_of_coe_mem_of_disjoint hpq.disjoint) haβ© },
{ intros x hx y hy,
have : Ο hpq x β 0 β§ Ο hpq y β 0,
{ split;
intro h;
rw submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq at h;
[exact hx h, exact hy h] },
rcases hpc.2 (Ο hpq x) this.1 (Ο hpq y) this.2 with β¨Ξ³β, hΞ³ββ©,
let Ξ³β := path_connected_space.some_path (Ο hpq.symm x) (Ο hpq.symm y),
let Ξ³β' : path (_ : F) _ := Ξ³β.map continuous_subtype_coe,
let Ξ³β' : path (_ : F) _ := Ξ³β.map continuous_subtype_coe,
refine β¨(Ξ³β'.add Ξ³β').cast
(submodule.linear_proj_add_linear_proj_of_is_compl_eq_self hpq x).symm
(submodule.linear_proj_add_linear_proj_of_is_compl_eq_self hpq y).symm, _β©,
intros t,
rw [path.cast_coe, path.add_apply],
change (Ξ³β t : F) + (Ξ³β t : F) β q,
rw [β submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq, linear_map.map_add,
submodule.linear_proj_of_is_compl_apply_right hpq, add_zero,
submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq],
exact mt (submodule.eq_zero_of_coe_mem_of_disjoint hpq.disjoint) (hΞ³β t) }
end
lemma mem_span_of_zero_mem_segment {x y : F} (hx : x β 0) (h : (0 : F) β [x -[β] y]) :
y β submodule.span β ({x} : set F) :=
begin
rw segment_eq_image at h,
rcases h with β¨t, ht, htxyβ©,
rw submodule.mem_span_singleton,
dsimp only at htxy,
use (t-1)/t,
have : t β 0,
{ intro h,
rw h at htxy,
refine hx _,
simpa using htxy },
rw [β smul_eq_zero_iff_eq' (neg_ne_zero.mpr $ inv_ne_zero this),
smul_add, smul_smul, smul_smul, β neg_one_mul, mul_assoc, mul_assoc,
inv_mul_cancel this, mul_one, neg_one_smul, add_neg_eq_zero] at htxy,
convert htxy,
ring
end
lemma joined_in_compl_zero_of_not_mem_span [topological_add_group F] [has_continuous_smul β F]
{x y : F} (hx : x β 0) (hy : y β submodule.span β ({x} : set F)) :
joined_in ({0}αΆ : set F) x y :=
begin
refine joined_in.of_line line_map_continuous.continuous_on
(line_map_apply_zero _ _) (line_map_apply_one _ _) _,
rw β segment_eq_image_line_map,
exact Ξ» t ht (h' : t = 0), (mt (mem_span_of_zero_mem_segment hx) hy) (h' βΈ ht)
end
lemma is_path_connected_compl_zero_of_two_le_dim [topological_add_group F] [has_continuous_smul β F]
(hdim : 2 β€ module.rank β F) : is_path_connected ({0}αΆ : set F) :=
begin
rw is_path_connected_iff,
split,
{ suffices : 0 < module.rank β F,
by rwa dim_pos_iff_exists_ne_zero at this,
exact lt_of_lt_of_le (by norm_num) hdim },
{ intros x hx y hy,
by_cases h : y β submodule.span β ({x} : set F),
{ suffices : β z, z β submodule.span β ({x} : set F),
{ rcases this with β¨z, hzxβ©,
have hzy : z β submodule.span β ({y} : set F),
from Ξ» h', hzx (submodule.mem_span_singleton_trans h' h),
exact (joined_in_compl_zero_of_not_mem_span hx hzx).trans
(joined_in_compl_zero_of_not_mem_span hy hzy).symm },
by_contra h',
push_neg at h',
rw β submodule.eq_top_iff' at h',
rw [β dim_top β, β h'] at hdim,
suffices : (2 : cardinal) β€ 1,
from not_le_of_lt (by norm_num) this,
have := hdim.trans (dim_span_le _),
rwa cardinal.mk_singleton at this },
{ exact joined_in_compl_zero_of_not_mem_span hx h } }
end
lemma is_path_connected_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul β F]
{E : submodule β F} (hcodim : 2 β€ module.rank β (Fβ§ΈE)) :
is_path_connected (EαΆ : set F) :=
begin
rcases E.exists_is_compl with β¨E', hE'β©,
refine is_path_connected_compl_of_is_path_connected_compl_zero hE'.symm _,
refine is_path_connected_compl_zero_of_two_le_dim _,
rwa β (E.quotient_equiv_of_is_compl E' hE').dim_eq
end
lemma is_connected_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul β F]
{E : submodule β F} (hcodim : 2 β€ module.rank β (Fβ§ΈE)) :
is_connected (EαΆ : set F) :=
(is_path_connected_compl_of_two_le_codim hcodim).is_connected
lemma connected_space_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul β F]
{E : submodule β F} (hcodim : 2 β€ module.rank β (Fβ§ΈE)) :
connected_space (EαΆ : set F) :=
is_connected_iff_connected_space.mp (is_connected_compl_of_two_le_codim hcodim)
lemma ample_of_two_le_codim [topological_add_group F] [has_continuous_smul β F]
{E : submodule β F} (hcodim : 2 β€ module.rank β (Fβ§ΈE)) :
ample_set (EαΆ : set F) :=
begin
haveI : connected_space (EαΆ : set F) := connected_space_compl_of_two_le_codim hcodim,
intros x hx,
have : connected_component_in (βE)αΆ x = (βE)αΆ,
from is_preconnected.connected_component_in (is_connected_compl_of_two_le_codim hcodim).2 hx,
rw [this, eq_univ_iff_forall],
intro y,
by_cases h : y β E,
{ rcases E.exists_is_compl with β¨E', hE'β©,
rw (E.quotient_equiv_of_is_compl E' hE').dim_eq at hcodim,
have hcodim' : 0 < module.rank β E' := lt_of_lt_of_le (by norm_num) hcodim,
rw dim_pos_iff_exists_ne_zero at hcodim',
rcases hcodim' with β¨z, hzβ©,
have : y β [y+(-z) -[β] y+z],
{ rw β sub_eq_add_neg,
exact mem_segment_sub_add y z },
refine (convex_convex_hull β (EαΆ : set F)).segment_subset _ _ this ;
refine subset_convex_hull β (EαΆ : set F) _;
change _ β E;
rw submodule.add_mem_iff_right _ h;
try {rw submodule.neg_mem_iff};
exact mt (submodule.eq_zero_of_coe_mem_of_disjoint hE'.symm.disjoint) hz },
{ exact subset_convex_hull β (EαΆ : set F) h }
end
end lemma_2_13
|