Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,088 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
4365a98
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import analysis.convex.hull
import data.real.basic
import topology.connected
import topology.path_connected
import topology.algebra.affine
import linear_algebra.dimension
import linear_algebra.affine_space.midpoint
import data.matrix.notation
import analysis.convex.topology

import to_mathlib.topology.misc

/-!
# Ample subsets of real vector spaces

## Implementation notes

The definition of ample subset asks for a vector space structure and a topology on the ambiant type
without any link between those structures, but we will only be using these for finite dimensional
vector spaces with their natural topology.
-/

open set affine_map

open_locale convex matrix

variables {E F : Type*} [add_comm_group F] [module ℝ F] [topological_space F]
variables [add_comm_group E] [module ℝ E] [topological_space E]

/-- A subset of a topological real vector space is ample if the convex hull of each of its
connected components is the full space. -/
def ample_set (s : set F) : Prop :=
βˆ€ x ∈ s, convex_hull ℝ (connected_component_in s x) = univ

/-- images of ample sets under continuous linear equivalences are ample. -/
lemma ample_set.image {s : set E} (h : ample_set s) (L : E ≃L[ℝ] F) : ample_set (L '' s) :=
begin
  intros x hx,
  rw [L.image_eq_preimage] at hx,
  have : L '' connected_component_in s (L.symm x) = connected_component_in (L '' s) x,
  { conv_rhs { rw [← L.apply_symm_apply x] },
    exact L.to_homeomorph.image_connected_component_in hx },
  rw [← this],
  refine (L.to_linear_equiv.to_linear_map.convex_hull_image _).trans _,
  rw [h (L.symm x) hx, image_univ],
  exact L.to_linear_equiv.to_equiv.range_eq_univ,
end

/-- preimages of ample sets under continuous linear equivalences are ample. -/
lemma ample_set.preimage {s : set F} (h : ample_set s) (L : E ≃L[ℝ] F) : ample_set (L ⁻¹' s) :=
by { rw [← L.image_symm_eq_preimage], exact h.image L.symm }

section lemma_2_13

local notation `Ο€` := submodule.linear_proj_of_is_compl _ _
local attribute [instance, priority 100] topological_add_group.path_connected

lemma is_path_connected_compl_of_is_path_connected_compl_zero [topological_add_group F]
  [has_continuous_smul ℝ F] {p q : submodule ℝ F} (hpq : is_compl p q)
  (hpc : is_path_connected ({0}ᢜ : set p)) : is_path_connected (qᢜ : set F) :=
begin
  rw is_path_connected_iff at ⊒ hpc,
  split,
  { rcases hpc.1 with ⟨a, ha⟩,
    exact ⟨a, mt (submodule.eq_zero_of_coe_mem_of_disjoint hpq.disjoint) ha⟩ },
  { intros x hx y hy,
    have : Ο€ hpq x β‰  0 ∧ Ο€ hpq y β‰  0,
    { split;
      intro h;
      rw submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq at h;
      [exact hx h, exact hy h] },
    rcases hpc.2 (Ο€ hpq x) this.1 (Ο€ hpq y) this.2 with βŸ¨Ξ³β‚, hΞ³β‚βŸ©,
    let Ξ³β‚‚ := path_connected_space.some_path (Ο€ hpq.symm x) (Ο€ hpq.symm y),
    let γ₁' : path (_ : F) _ := γ₁.map continuous_subtype_coe,
    let Ξ³β‚‚' : path (_ : F) _ := Ξ³β‚‚.map continuous_subtype_coe,
    refine ⟨(γ₁'.add Ξ³β‚‚').cast
      (submodule.linear_proj_add_linear_proj_of_is_compl_eq_self hpq x).symm
      (submodule.linear_proj_add_linear_proj_of_is_compl_eq_self hpq y).symm, _⟩,
    intros t,
    rw [path.cast_coe, path.add_apply],
    change (γ₁ t : F) + (Ξ³β‚‚ t : F) βˆ‰ q,
    rw [← submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq, linear_map.map_add,
        submodule.linear_proj_of_is_compl_apply_right hpq, add_zero,
        submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq],
    exact mt (submodule.eq_zero_of_coe_mem_of_disjoint hpq.disjoint) (hγ₁ t) }
end

lemma mem_span_of_zero_mem_segment {x y : F} (hx : x β‰  0) (h : (0 : F) ∈ [x -[ℝ] y]) :
  y ∈ submodule.span ℝ ({x} : set F) :=
begin
  rw segment_eq_image at h,
  rcases h with ⟨t, ht, htxy⟩,
  rw submodule.mem_span_singleton,
  dsimp only at htxy,
  use (t-1)/t,
  have : t β‰  0,
  { intro h,
    rw h at htxy,
    refine hx _,
    simpa using htxy },
  rw [← smul_eq_zero_iff_eq' (neg_ne_zero.mpr $ inv_ne_zero this),
      smul_add, smul_smul, smul_smul, ← neg_one_mul, mul_assoc, mul_assoc,
      inv_mul_cancel this, mul_one, neg_one_smul, add_neg_eq_zero] at htxy,
  convert htxy,
  ring
end

lemma joined_in_compl_zero_of_not_mem_span [topological_add_group F] [has_continuous_smul ℝ F]
  {x y : F} (hx : x β‰  0) (hy : y βˆ‰ submodule.span ℝ ({x} : set F)) :
  joined_in ({0}ᢜ : set F) x y :=
begin
  refine joined_in.of_line line_map_continuous.continuous_on
    (line_map_apply_zero _ _) (line_map_apply_one _ _) _,
  rw ← segment_eq_image_line_map,
  exact Ξ» t ht (h' : t = 0), (mt (mem_span_of_zero_mem_segment hx) hy) (h' β–Έ ht)
end

lemma is_path_connected_compl_zero_of_two_le_dim [topological_add_group F] [has_continuous_smul ℝ F]
  (hdim : 2 ≀ module.rank ℝ F) : is_path_connected ({0}ᢜ : set F) :=
begin
  rw is_path_connected_iff,
  split,
  { suffices : 0 < module.rank ℝ F,
      by rwa dim_pos_iff_exists_ne_zero at this,
    exact lt_of_lt_of_le (by norm_num) hdim },
  { intros x hx y hy,
    by_cases h : y ∈ submodule.span ℝ ({x} : set F),
    { suffices : βˆƒ z, z βˆ‰ submodule.span ℝ ({x} : set F),
      { rcases this with ⟨z, hzx⟩,
        have hzy : z βˆ‰ submodule.span ℝ ({y} : set F),
          from Ξ» h', hzx (submodule.mem_span_singleton_trans h' h),
        exact (joined_in_compl_zero_of_not_mem_span hx hzx).trans
          (joined_in_compl_zero_of_not_mem_span hy hzy).symm },
      by_contra h',
      push_neg at h',
      rw ← submodule.eq_top_iff' at h',
      rw [← dim_top ℝ, ← h'] at hdim,
      suffices : (2 : cardinal) ≀ 1,
        from not_le_of_lt (by norm_num) this,
      have := hdim.trans (dim_span_le _),
      rwa cardinal.mk_singleton at this },
    { exact joined_in_compl_zero_of_not_mem_span hx h } }
end

lemma is_path_connected_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F]
  {E : submodule ℝ F} (hcodim : 2 ≀ module.rank ℝ (Fβ§ΈE)) :
  is_path_connected (Eᢜ : set F) :=
begin
  rcases E.exists_is_compl with ⟨E', hE'⟩,
  refine is_path_connected_compl_of_is_path_connected_compl_zero hE'.symm _,
  refine is_path_connected_compl_zero_of_two_le_dim _,
  rwa ← (E.quotient_equiv_of_is_compl E' hE').dim_eq
end

lemma is_connected_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F]
  {E : submodule ℝ F} (hcodim : 2 ≀ module.rank ℝ (Fβ§ΈE)) :
  is_connected (Eᢜ : set F) :=
(is_path_connected_compl_of_two_le_codim hcodim).is_connected

lemma connected_space_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F]
  {E : submodule ℝ F} (hcodim : 2 ≀ module.rank ℝ (Fβ§ΈE)) :
  connected_space (Eᢜ : set F) :=
is_connected_iff_connected_space.mp (is_connected_compl_of_two_le_codim hcodim)

lemma ample_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F]
  {E : submodule ℝ F} (hcodim : 2 ≀ module.rank ℝ (Fβ§ΈE)) :
  ample_set (Eᢜ : set F) :=
begin
  haveI : connected_space (Eᢜ : set F) := connected_space_compl_of_two_le_codim hcodim,
  intros x hx,
  have : connected_component_in (↑E)ᢜ x = (↑E)ᢜ,
    from is_preconnected.connected_component_in (is_connected_compl_of_two_le_codim hcodim).2 hx,
  rw [this, eq_univ_iff_forall],
  intro y,
  by_cases h : y ∈ E,
  { rcases E.exists_is_compl with ⟨E', hE'⟩,
    rw (E.quotient_equiv_of_is_compl E' hE').dim_eq at hcodim,
    have hcodim' : 0 < module.rank ℝ E' := lt_of_lt_of_le (by norm_num) hcodim,
    rw dim_pos_iff_exists_ne_zero at hcodim',
    rcases hcodim' with ⟨z, hz⟩,
    have : y ∈ [y+(-z) -[ℝ] y+z],
    { rw ← sub_eq_add_neg,
      exact mem_segment_sub_add y z },
    refine (convex_convex_hull ℝ (Eᢜ : set F)).segment_subset _ _ this ;
    refine subset_convex_hull ℝ (Eᢜ : set F) _;
    change _ βˆ‰ E;
    rw submodule.add_mem_iff_right _ h;
    try {rw submodule.neg_mem_iff};
    exact mt (submodule.eq_zero_of_coe_mem_of_disjoint hE'.symm.disjoint) hz },
  { exact subset_convex_hull ℝ (Eᢜ : set F) h }
end

end lemma_2_13