Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 15,284 Bytes
4365a98
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
fc5e983
4365a98
fc5e983
 
4365a98
 
 
 
 
fc5e983
4365a98
 
fc5e983
4365a98
 
fc5e983
4365a98
 
fc5e983
4365a98
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
fc5e983
 
 
4365a98
 
 
 
 
 
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
fc5e983
4365a98
 
fc5e983
4365a98
 
 
fc5e983
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
fc5e983
4365a98
 
 
fc5e983
4365a98
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
4365a98
 
fc5e983
 
 
4365a98
fc5e983
 
 
 
 
 
4365a98
 
 
 
 
fc5e983
 
 
4365a98
fc5e983
 
4365a98
 
 
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
 
 
fc5e983
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import local.relation
import global.one_jet_sec
import global.smooth_embedding
import to_mathlib.topology.algebra.module

/-!
# First order partial differential relations for maps between manifolds

This file contains fundamental definitions about first order partial differential relations
for maps between manifolds and relating them to the local story of first order partial differential
relations for maps between vector spaces.

Given manifolds `M` and `M'` modelled on `I` and `I'`, a first order partial differential relation
for maps from `M` to `M'` is a set in the 1-jet bundle Jยน(M, M'), also known as
`one_jet_bundle I M I' M'`.
-/

noncomputable theory

open set function filter charted_space smooth_manifold_with_corners
open_locale topological_space manifold

section defs
/-! ## Fundamental definitions -/

variables
{E : Type*} [normed_add_comm_group E] [normed_space โ„ E]
{H : Type*} [topological_space H] (I : model_with_corners โ„ E H)
(M : Type*) [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M]
{E' : Type*} [normed_add_comm_group E'] [normed_space โ„ E']
{H' : Type*} [topological_space H'] (I' : model_with_corners โ„ E' H')
(M' : Type*) [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M']
{F : Type*} [normed_add_comm_group F] [normed_space โ„ F]
{G : Type*} [topological_space G] (J : model_with_corners โ„ F G)
(N : Type*) [topological_space N] [charted_space G N] [smooth_manifold_with_corners J N]
{F' : Type*} [normed_add_comm_group F'] [normed_space โ„ F']
{G' : Type*} [topological_space G'] (J' : model_with_corners โ„ F' G')
(N' : Type*) [topological_space N'] [charted_space G' N'] [smooth_manifold_with_corners J' N']

local notation `TM` := tangent_space I
local notation `TM'` := tangent_space I'

/-- A first-order differential relation for maps from `M` to `N` is a subset of the 1-jet bundle. -/
@[reducible] def rel_mfld := set (one_jet_bundle I M I' M')

variables {I M I' M'} {R : rel_mfld I M I' M'}

/-- A solution to a relation `R`. -/
@[ext] structure sol (R : rel_mfld I M I' M') :=
(f : M โ†’ M')
(f_diff : cont_mdiff I I' โŠค f)
(is_sol : โˆ€ x, one_jet_ext I I' f x โˆˆ R)

/-- A formal solution to a local relation `R` over a set `U`. -/
@[ext] structure formal_sol (R : rel_mfld I M I' M') extends
  to_one_jet_sec : one_jet_sec I M I' M' :=
(is_sol' : โˆ€ x : M, to_one_jet_sec x โˆˆ R)

instance (R : rel_mfld I M I' M') :
  has_coe_to_fun (formal_sol R) (ฮป S, M โ†’ one_jet_bundle I M I' M') :=
โŸจฮป F, F.to_one_jet_secโŸฉ

lemma formal_sol.is_sol (F : formal_sol R) : โˆ€ x, F x โˆˆ R :=
F.is_sol'

/-- part of the construction of the slice `R(ฯƒ,p)`. -/
def rel_mfld.preslice (R : rel_mfld I M I' M') (ฯƒ : one_jet_bundle I M I' M')
  (p : dual_pair' $ TM ฯƒ.1.1) : set (TM' ฯƒ.1.2) :=
{w : TM' ฯƒ.1.2 | one_jet_bundle.mk ฯƒ.1.1 ฯƒ.1.2 (p.update ฯƒ.2 w) โˆˆ R}

/-- For some reason `rw [mem_set_of_eq]` fails after unfolding `preslice`,
but rewriting with this lemma works. -/
lemma mem_preslice {R : rel_mfld I M I' M'} {ฯƒ : one_jet_bundle I M I' M'}
  {p : dual_pair' $ TM ฯƒ.1.1} {w : TM' ฯƒ.1.2} :
  w โˆˆ R.preslice ฯƒ p โ†” one_jet_bundle.mk ฯƒ.1.1 ฯƒ.1.2 (p.update ฯƒ.2 w) โˆˆ R :=
iff.rfl

/-- the slice `R(ฯƒ,p)`. -/
def rel_mfld.slice (R : rel_mfld I M I' M') (ฯƒ : one_jet_bundle I M I' M')
  (p : dual_pair' $ TM ฯƒ.1.1) : set (TM' ฯƒ.1.2) :=
connected_component_in (R.preslice ฯƒ p) (ฯƒ.2 p.v)

def rel_mfld.ample (R : rel_mfld I M I' M') : Prop :=
โˆ€ โฆƒฯƒ : one_jet_bundle I M I' M'โฆ„ (p : dual_pair' $ TM ฯƒ.1.1), ฯƒ โˆˆ R โ†’ ample_set (R.slice ฯƒ p)

/-- A family of formal solutions indexed by manifold `N` is a function from `N` into formal
  solutions in such a way that the function is smooth as a function of all arguments. -/
structure family_formal_sol (R : rel_mfld I M I' M') extends
  to_family_one_jet_sec : family_one_jet_sec I M I' M' J N :=
(is_sol' : โˆ€ (t : N) (x : M), to_family_one_jet_sec t x โˆˆ R)

instance : has_coe_to_fun (family_formal_sol J N R) (ฮป S, N โ†’ formal_sol R) :=
โŸจฮป S t, โŸจS.to_family_one_jet_sec t, S.is_sol' tโŸฉโŸฉ

namespace family_formal_sol

variables {J N J' N'}

/-- Reindex a family along a smooth function `f`. -/
def reindex (S : family_formal_sol J' N' R) (f : C^โˆžโŸฎJ, N; J', N'โŸฏ) :
  family_formal_sol J N R :=
โŸจS.to_family_one_jet_sec.reindex f, ฮป t, S.is_sol' (f t)โŸฉ

end family_formal_sol

/-- A homotopy of formal solutions is a family indexed by `โ„` -/
@[reducible] def htpy_formal_sol (R : rel_mfld I M I' M') := family_formal_sol ๐“˜(โ„, โ„) โ„ R

/-- A relation `R` satisfies the (non-parametric) h-principle if all its formal solutions are
homotopic to a holonomic one. -/
def rel_mfld.satisfies_h_principle (R : rel_mfld I M I' M') : Prop :=
โˆ€ ๐“•โ‚€ : formal_sol R, โˆƒ ๐“• : htpy_formal_sol R, ๐“• 0 = ๐“•โ‚€ โˆง (๐“• 1).to_one_jet_sec.is_holonomic

/-- A relation `R` satisfies the parametric h-principle w.r.t. manifold `N` if for every family of
formal solutions indexed by a manifold with boundary `N` that is holonomic near the boundary `N` is
homotopic to a holonomic one, in such a way that the homotopy is constant near the boundary of `N`.
-/
def rel_mfld.satisfies_h_principle_with (R : rel_mfld I M I' M') : Prop :=
โˆ€ ๐“•โ‚€ : family_formal_sol J N R, (โˆ€แถ  x in ๐“หข (boundary J N), (๐“•โ‚€ x).to_one_jet_sec.is_holonomic) โ†’
โˆƒ ๐“• : family_formal_sol (๐“˜(โ„, โ„).prod J) (โ„ ร— N) R,
  ๐“•.reindex ((cont_mdiff_map.const 0).prod_mk cont_mdiff_map.id) = ๐“•โ‚€ โˆง
  (โˆ€แถ  x in ๐“หข (boundary J N), โˆ€ t : โ„, ๐“• (t, x) = ๐“•โ‚€ x) โˆง
  โˆ€ x, (๐“• (1, x)).to_one_jet_sec.is_holonomic


end defs

section smooth_open_embedding
/-! ## Localisation of one jet sections

In order to use the local story of convex integration, we need a way to turn a
one jet section into local ones, then apply the local story to build a homotopy of one jets section
and transfer back to the original manifolds. There is a dissymetry here. First we use
maps from whole vector spaces to open sets in manifold. And also one jet sections are carried
from manifold to vector spaces one at a time, but then the return journey is about a homotopy
of one jet sections.

The global manifolds are called `M` and `N'`. We don't assume the local ones are vector spaces,
there are manifolds `X` and `Y` that will be vector spaces in the next section.

Note: Patrick doesn't know whether we really need to allow different `E`, `H` and `I` for
manifolds `X` and `M` (and for `Y` and `N`). We use maximal generality just in case.
-/
variables
  {EX : Type*} [normed_add_comm_group EX] [normed_space โ„ EX]
  {HX : Type*} [topological_space HX] {IX : model_with_corners โ„ EX HX}
  {X : Type*} [topological_space X] [charted_space HX X] [smooth_manifold_with_corners IX X]

  {EM : Type*} [normed_add_comm_group EM] [normed_space โ„ EM]
  {HM : Type*} [topological_space HM] {IM : model_with_corners โ„ EM HM}
  {M : Type*} [topological_space M] [charted_space HM M] [smooth_manifold_with_corners IM M]

  {EY : Type*} [normed_add_comm_group EY] [normed_space โ„ EY]
  {HY : Type*} [topological_space HY] {IY : model_with_corners โ„ EY HY}
  {Y : Type*} [topological_space Y] [charted_space HY Y] [smooth_manifold_with_corners IY Y]

  {EN : Type*} [normed_add_comm_group EN] [normed_space โ„ EN]
  {HN : Type*} [topological_space HN] {IN : model_with_corners โ„ EN HN}
  {N : Type*} [topological_space N] [charted_space HN N] [smooth_manifold_with_corners IN N]

  (F : one_jet_sec IM M IN N)
  (g : open_smooth_embedding IY Y IN N) (h : open_smooth_embedding IX X IM M)
  {R : rel_mfld IM M IN N}

local notation `TM` := tangent_space IM
local notation `TN` := tangent_space IN
local notation `TX` := tangent_space IX
local notation `TY` := tangent_space IY

/-- Transfer map between one jet bundles induced by open smooth embedding into the source and
targets. -/
@[simps fst_fst fst_snd]
def one_jet_bundle.transfer : one_jet_bundle IX X IY Y โ†’ one_jet_bundle IM M IN N :=
ฮป ฯƒ, โŸจโŸจh ฯƒ.1.1, g ฯƒ.1.2โŸฉ,
      ((g.fderiv ฯƒ.1.2 : TY ฯƒ.1.2 โ†’L[โ„] TN (g ฯƒ.1.2)).comp ฯƒ.2).comp
        ((h.fderiv ฯƒ.1.1).symm : TM (h ฯƒ.1.1) โ†’L[โ„] TX ฯƒ.1.1)โŸฉ

lemma one_jet_bundle.continuous_transfer : continuous (one_jet_bundle.transfer g h) :=
sorry

-- do we need this?
lemma one_jet_bundle.smooth_transfer : smooth ((IX.prod IY).prod ๐“˜(โ„, EX โ†’L[โ„] EY))
  ((IM.prod IN).prod ๐“˜(โ„, EM โ†’L[โ„] EN)) (one_jet_bundle.transfer g h) :=
sorry

/-- localize a relation -/
def rel_mfld.localize (R : rel_mfld IM M IN N) : rel_mfld IX X IY Y :=
one_jet_bundle.transfer g h โปยน' R

open basic_smooth_vector_bundle_core

/-- Localize a one-jet section in two open embeddings.
  It maps `x` to `(x, y, (D_y(g))โปยน โˆ˜ F_ฯ†(h x) โˆ˜ D_x(h))` where `y : M := gโปยน(F_{bs}(h x))`. -/
@[simps] def one_jet_sec.localize (hF : range (F.bs โˆ˜ h) โŠ† range g) :
  one_jet_sec IX X IY Y :=
{ bs := ฮป x, g.inv_fun (F.bs $ h x),
  ฯ• := ฮป x, let y := g.inv_fun (F.bs $ h x) in
  (โ†‘(g.fderiv y).symm : TN (g y) โ†’L[โ„] TY y) โˆ˜L ((F $ h x).2 โˆ˜L (h.fderiv x : TX x โ†’L[โ„] TM (h x))),
  smooth' := begin
    simp_rw [h.fderiv_coe, g.fderiv_symm_coe,
      mfderiv_congr_point (g.right_inv (hF $ mem_range_self _))],
    refine smooth.one_jet_comp IN (ฮป x', F.bs (h x')) _ _,
    { exact ฮป x, (g.smooth_at_inv $ hF $ mem_range_self x).one_jet_ext.comp _
        (F.smooth_bs.comp h.smooth_to).cont_mdiff_at },
    apply smooth.one_jet_comp IM h (F.smooth_eta.comp h.smooth_to) h.smooth_to.one_jet_ext
  end }

lemma transfer_localize (hF : range (F.bs โˆ˜ h) โŠ† range g) (x : X) :
  (F.localize g h hF x).transfer g h = F (h x) :=
begin
  rw [one_jet_sec.coe_apply, one_jet_sec.localize_bs, one_jet_sec.localize_ฯ•,
    one_jet_bundle.transfer],
  dsimp only,
  ext,
  { refl },
  { simp_rw [g.right_inv (hF $ mem_range_self x), function.comp_apply, F.bs_eq] },
  { apply heq_of_eq, dsimp only, ext v,
    simp_rw [continuous_linear_map.comp_apply, continuous_linear_equiv.coe_coe,
      continuous_linear_equiv.apply_symm_apply] },
end

lemma one_jet_sec.localize_bs_fun (hF : range (F.bs โˆ˜ h) โŠ† range g) :
  (F.localize g h hF).bs = g.inv_fun โˆ˜ F.bs โˆ˜ h :=
rfl

lemma one_jet_sec.localize_mem_iff (hF : range (F.bs โˆ˜ h) โŠ† range g) {x : X} :
  F.localize g h hF x โˆˆ R.localize g h โ†” F (h x) โˆˆ R :=
by rw [rel_mfld.localize, mem_preimage, transfer_localize F g h hF]

lemma rel_mfld.ample.localize (hR : R.ample) : (R.localize g h).ample :=
begin
  intros x p hx,
  have : (rel_mfld.localize g h R).slice x p =
    (g.fderiv x.1.2).symm '' R.slice (x.transfer g h) (p.map (h.fderiv x.1.1)),
  { simp_rw [rel_mfld.slice, rel_mfld.localize],
    symmetry,
    refine ((g.fderiv x.1.2).symm.to_homeomorph.image_connected_component_in _).trans _,
    { rw [mem_preslice, dual_pair'.update_self], exact hx },
    simp_rw [continuous_linear_equiv.coe_to_homeomorph,
      continuous_linear_equiv.image_symm_eq_preimage],
    congr' 1,
    { ext v, simp_rw [mem_preimage, mem_preslice, mem_preimage],
      dsimp only [one_jet_bundle.transfer, one_jet_bundle_mk_fst, one_jet_bundle_mk_snd],
      simp_rw [p.map_update_comp_right, โ† p.update_comp_left, continuous_linear_equiv.coe_coe,
        one_jet_bundle.mk] },
    { dsimp only [one_jet_bundle.transfer],
      simp_rw [continuous_linear_map.comp_apply, continuous_linear_equiv.coe_coe, p.map_v,
        continuous_linear_equiv.symm_apply_apply] } },
  rw [this],
  exact (hR _ hx).image (g.fderiv x.1.2).symm
end

lemma is_holonomic_at_localize_iff (hF : range (F.bs โˆ˜ h) โŠ† range g) (x : X) :
  (F.localize g h hF).is_holonomic_at x โ†” F.is_holonomic_at (h x)  :=
begin
  have : mfderiv IX IY (g.inv_fun โˆ˜ F.bs โˆ˜ h) x =
    (g.fderiv (g.inv_fun (F.bs (h x)))).symm.to_continuous_linear_map.comp
    ((mfderiv IM IN F.bs (h x)).comp (h.fderiv x).to_continuous_linear_map),
  { have h1 : mdifferentiable_at IN IY g.inv_fun (F.bs (h x)) :=
      (g.smooth_at_inv $ hF $ mem_range_self _).mdifferentiable_at le_top,
    have h2 : mdifferentiable_at IM IN F.bs (h x) :=
      F.smooth_bs.smooth_at.mdifferentiable_at le_top,
    have h3 : mdifferentiable_at IX IM h x :=
      h.smooth_to.smooth_at.mdifferentiable_at le_top,
    rw [mfderiv_comp x h1 (h2.comp x h3), mfderiv_comp x h2 h3,
      โ† g.fderiv_symm_coe' (hF $ mem_range_self _)],
    refl, },
  simp_rw [one_jet_sec.is_holonomic_at],
  rw [mfderiv_congr (F.localize_bs_fun g h hF), one_jet_sec.snd_eq, F.localize_ฯ•, this],
  simp_rw [โ† continuous_linear_equiv.coe_def_rev,
    continuous_linear_equiv.cancel_left, continuous_linear_equiv.cancel_right]
end

/-- Un-localize a homotopy of one-jet sections from two open embeddings. -/
-- Note(F): this is only well-defined on `univ ร— range h`, right?
def htpy_one_jet_sec.unlocalize (F : htpy_one_jet_sec IX X IY Y) : htpy_one_jet_sec IM M IN N :=
{ bs := ฮป t m , g $ (F t).bs (h.inv_fun m),
  ฯ• := ฮป t m, (g.fderiv $ (F t).bs (h.inv_fun m)).to_continuous_linear_map โˆ˜L
      ((F t $ h.inv_fun m).2 โˆ˜L (h.fderiv $ h.inv_fun m).symm.to_continuous_linear_map),
  smooth' := sorry }

lemma one_jet_sec.unlocalize_localize (G : htpy_one_jet_sec IX X IY Y)
  (hF : range (F.bs โˆ˜ h) โŠ† range g)
  (hFG : G 0 = F.localize g h hF) : G.unlocalize g h 0 = F :=
sorry

/-- Localize a formal solution. -/
def transfer (hF : range (F.bs โˆ˜ h) โŠ† range g) (h2F : โˆ€ x, F (h x) โˆˆ R) :
  formal_sol (R.localize g h) :=
โŸจF.localize g h hF, ฮป x, (F.localize_mem_iff g h hF).mpr $ h2F xโŸฉ

end smooth_open_embedding

section loc
/-! ## Link with the local story

Now we really bridge the gap all the way to vector spaces.
-/

variables {E : Type*} [normed_add_comm_group E] [normed_space โ„ E]
variables {E' : Type*} [normed_add_comm_group E'] [normed_space โ„ E']

/-- For maps between vector spaces, `one_jet_ext` is the obvious thing. -/
@[simp] theorem one_jet_ext_eq_fderiv {f : E โ†’ E'} {x : E} :
  one_jet_ext ๐“˜(โ„, E) ๐“˜(โ„, E') f x = โŸจ(x, f x), fderiv โ„ f xโŸฉ :=
by { rw โ† mfderiv_eq_fderiv, refl }

/-- Convert a 1-jet section between vector spaces seen as manifold to a 1-jet section
between those vector spaces. -/
def one_jet_sec.loc (F : one_jet_sec ๐“˜(โ„, E) E ๐“˜(โ„, E') E') : rel_loc.jet_sec E E' :=
{ f := F.bs,
  f_diff := sorry,
  ฯ† := ฮป x, (F x).2,
  ฯ†_diff := sorry }

lemma one_jet_sec.loc_hol_at_iff (F : one_jet_sec ๐“˜(โ„, E) E ๐“˜(โ„, E') E') (x : E) :
F.loc.is_holonomic_at x โ†” F.is_holonomic_at x :=
begin
  dsimp only [one_jet_sec.is_holonomic_at],
  rw mfderiv_eq_fderiv,
  exact iff.rfl
end

/-- Turns a relation between `E` and `E'` seen as manifolds into a relation between them
seen as vector spaces. One annoying bit is `equiv.prod_assoc E E' $ E โ†’L[โ„] E'` that is needed
to reassociate a product of types. -/
def rel_mfld.rel_loc (R : rel_mfld ๐“˜(โ„, E) E ๐“˜(โ„, E') E') : rel_loc E E' :=
(equiv.prod_assoc _ _ _) '' ((one_jet_bundle_model_space_homeomorph E ๐“˜(โ„, E) E' ๐“˜(โ„, E')) '' R)

lemma ample_of_ample (R : rel_mfld ๐“˜(โ„, E) E ๐“˜(โ„, E') E') (hR : R.ample) :
  R.rel_loc.is_ample :=
sorry

lemma is_open_of_is_open (R : rel_mfld ๐“˜(โ„, E) E ๐“˜(โ„, E') E') (hR : is_open R) :
  is_open R.rel_loc :=
sorry

end loc