Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 15,284 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import local.relation
import global.one_jet_sec
import global.smooth_embedding
import to_mathlib.topology.algebra.module
/-!
# First order partial differential relations for maps between manifolds
This file contains fundamental definitions about first order partial differential relations
for maps between manifolds and relating them to the local story of first order partial differential
relations for maps between vector spaces.
Given manifolds `M` and `M'` modelled on `I` and `I'`, a first order partial differential relation
for maps from `M` to `M'` is a set in the 1-jet bundle Jยน(M, M'), also known as
`one_jet_bundle I M I' M'`.
-/
noncomputable theory
open set function filter charted_space smooth_manifold_with_corners
open_locale topological_space manifold
section defs
/-! ## Fundamental definitions -/
variables
{E : Type*} [normed_add_comm_group E] [normed_space โ E]
{H : Type*} [topological_space H] (I : model_with_corners โ E H)
(M : Type*) [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M]
{E' : Type*} [normed_add_comm_group E'] [normed_space โ E']
{H' : Type*} [topological_space H'] (I' : model_with_corners โ E' H')
(M' : Type*) [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M']
{F : Type*} [normed_add_comm_group F] [normed_space โ F]
{G : Type*} [topological_space G] (J : model_with_corners โ F G)
(N : Type*) [topological_space N] [charted_space G N] [smooth_manifold_with_corners J N]
{F' : Type*} [normed_add_comm_group F'] [normed_space โ F']
{G' : Type*} [topological_space G'] (J' : model_with_corners โ F' G')
(N' : Type*) [topological_space N'] [charted_space G' N'] [smooth_manifold_with_corners J' N']
local notation `TM` := tangent_space I
local notation `TM'` := tangent_space I'
/-- A first-order differential relation for maps from `M` to `N` is a subset of the 1-jet bundle. -/
@[reducible] def rel_mfld := set (one_jet_bundle I M I' M')
variables {I M I' M'} {R : rel_mfld I M I' M'}
/-- A solution to a relation `R`. -/
@[ext] structure sol (R : rel_mfld I M I' M') :=
(f : M โ M')
(f_diff : cont_mdiff I I' โค f)
(is_sol : โ x, one_jet_ext I I' f x โ R)
/-- A formal solution to a local relation `R` over a set `U`. -/
@[ext] structure formal_sol (R : rel_mfld I M I' M') extends
to_one_jet_sec : one_jet_sec I M I' M' :=
(is_sol' : โ x : M, to_one_jet_sec x โ R)
instance (R : rel_mfld I M I' M') :
has_coe_to_fun (formal_sol R) (ฮป S, M โ one_jet_bundle I M I' M') :=
โจฮป F, F.to_one_jet_secโฉ
lemma formal_sol.is_sol (F : formal_sol R) : โ x, F x โ R :=
F.is_sol'
/-- part of the construction of the slice `R(ฯ,p)`. -/
def rel_mfld.preslice (R : rel_mfld I M I' M') (ฯ : one_jet_bundle I M I' M')
(p : dual_pair' $ TM ฯ.1.1) : set (TM' ฯ.1.2) :=
{w : TM' ฯ.1.2 | one_jet_bundle.mk ฯ.1.1 ฯ.1.2 (p.update ฯ.2 w) โ R}
/-- For some reason `rw [mem_set_of_eq]` fails after unfolding `preslice`,
but rewriting with this lemma works. -/
lemma mem_preslice {R : rel_mfld I M I' M'} {ฯ : one_jet_bundle I M I' M'}
{p : dual_pair' $ TM ฯ.1.1} {w : TM' ฯ.1.2} :
w โ R.preslice ฯ p โ one_jet_bundle.mk ฯ.1.1 ฯ.1.2 (p.update ฯ.2 w) โ R :=
iff.rfl
/-- the slice `R(ฯ,p)`. -/
def rel_mfld.slice (R : rel_mfld I M I' M') (ฯ : one_jet_bundle I M I' M')
(p : dual_pair' $ TM ฯ.1.1) : set (TM' ฯ.1.2) :=
connected_component_in (R.preslice ฯ p) (ฯ.2 p.v)
def rel_mfld.ample (R : rel_mfld I M I' M') : Prop :=
โ โฆฯ : one_jet_bundle I M I' M'โฆ (p : dual_pair' $ TM ฯ.1.1), ฯ โ R โ ample_set (R.slice ฯ p)
/-- A family of formal solutions indexed by manifold `N` is a function from `N` into formal
solutions in such a way that the function is smooth as a function of all arguments. -/
structure family_formal_sol (R : rel_mfld I M I' M') extends
to_family_one_jet_sec : family_one_jet_sec I M I' M' J N :=
(is_sol' : โ (t : N) (x : M), to_family_one_jet_sec t x โ R)
instance : has_coe_to_fun (family_formal_sol J N R) (ฮป S, N โ formal_sol R) :=
โจฮป S t, โจS.to_family_one_jet_sec t, S.is_sol' tโฉโฉ
namespace family_formal_sol
variables {J N J' N'}
/-- Reindex a family along a smooth function `f`. -/
def reindex (S : family_formal_sol J' N' R) (f : C^โโฎJ, N; J', N'โฏ) :
family_formal_sol J N R :=
โจS.to_family_one_jet_sec.reindex f, ฮป t, S.is_sol' (f t)โฉ
end family_formal_sol
/-- A homotopy of formal solutions is a family indexed by `โ` -/
@[reducible] def htpy_formal_sol (R : rel_mfld I M I' M') := family_formal_sol ๐(โ, โ) โ R
/-- A relation `R` satisfies the (non-parametric) h-principle if all its formal solutions are
homotopic to a holonomic one. -/
def rel_mfld.satisfies_h_principle (R : rel_mfld I M I' M') : Prop :=
โ ๐โ : formal_sol R, โ ๐ : htpy_formal_sol R, ๐ 0 = ๐โ โง (๐ 1).to_one_jet_sec.is_holonomic
/-- A relation `R` satisfies the parametric h-principle w.r.t. manifold `N` if for every family of
formal solutions indexed by a manifold with boundary `N` that is holonomic near the boundary `N` is
homotopic to a holonomic one, in such a way that the homotopy is constant near the boundary of `N`.
-/
def rel_mfld.satisfies_h_principle_with (R : rel_mfld I M I' M') : Prop :=
โ ๐โ : family_formal_sol J N R, (โแถ x in ๐หข (boundary J N), (๐โ x).to_one_jet_sec.is_holonomic) โ
โ ๐ : family_formal_sol (๐(โ, โ).prod J) (โ ร N) R,
๐.reindex ((cont_mdiff_map.const 0).prod_mk cont_mdiff_map.id) = ๐โ โง
(โแถ x in ๐หข (boundary J N), โ t : โ, ๐ (t, x) = ๐โ x) โง
โ x, (๐ (1, x)).to_one_jet_sec.is_holonomic
end defs
section smooth_open_embedding
/-! ## Localisation of one jet sections
In order to use the local story of convex integration, we need a way to turn a
one jet section into local ones, then apply the local story to build a homotopy of one jets section
and transfer back to the original manifolds. There is a dissymetry here. First we use
maps from whole vector spaces to open sets in manifold. And also one jet sections are carried
from manifold to vector spaces one at a time, but then the return journey is about a homotopy
of one jet sections.
The global manifolds are called `M` and `N'`. We don't assume the local ones are vector spaces,
there are manifolds `X` and `Y` that will be vector spaces in the next section.
Note: Patrick doesn't know whether we really need to allow different `E`, `H` and `I` for
manifolds `X` and `M` (and for `Y` and `N`). We use maximal generality just in case.
-/
variables
{EX : Type*} [normed_add_comm_group EX] [normed_space โ EX]
{HX : Type*} [topological_space HX] {IX : model_with_corners โ EX HX}
{X : Type*} [topological_space X] [charted_space HX X] [smooth_manifold_with_corners IX X]
{EM : Type*} [normed_add_comm_group EM] [normed_space โ EM]
{HM : Type*} [topological_space HM] {IM : model_with_corners โ EM HM}
{M : Type*} [topological_space M] [charted_space HM M] [smooth_manifold_with_corners IM M]
{EY : Type*} [normed_add_comm_group EY] [normed_space โ EY]
{HY : Type*} [topological_space HY] {IY : model_with_corners โ EY HY}
{Y : Type*} [topological_space Y] [charted_space HY Y] [smooth_manifold_with_corners IY Y]
{EN : Type*} [normed_add_comm_group EN] [normed_space โ EN]
{HN : Type*} [topological_space HN] {IN : model_with_corners โ EN HN}
{N : Type*} [topological_space N] [charted_space HN N] [smooth_manifold_with_corners IN N]
(F : one_jet_sec IM M IN N)
(g : open_smooth_embedding IY Y IN N) (h : open_smooth_embedding IX X IM M)
{R : rel_mfld IM M IN N}
local notation `TM` := tangent_space IM
local notation `TN` := tangent_space IN
local notation `TX` := tangent_space IX
local notation `TY` := tangent_space IY
/-- Transfer map between one jet bundles induced by open smooth embedding into the source and
targets. -/
@[simps fst_fst fst_snd]
def one_jet_bundle.transfer : one_jet_bundle IX X IY Y โ one_jet_bundle IM M IN N :=
ฮป ฯ, โจโจh ฯ.1.1, g ฯ.1.2โฉ,
((g.fderiv ฯ.1.2 : TY ฯ.1.2 โL[โ] TN (g ฯ.1.2)).comp ฯ.2).comp
((h.fderiv ฯ.1.1).symm : TM (h ฯ.1.1) โL[โ] TX ฯ.1.1)โฉ
lemma one_jet_bundle.continuous_transfer : continuous (one_jet_bundle.transfer g h) :=
sorry
-- do we need this?
lemma one_jet_bundle.smooth_transfer : smooth ((IX.prod IY).prod ๐(โ, EX โL[โ] EY))
((IM.prod IN).prod ๐(โ, EM โL[โ] EN)) (one_jet_bundle.transfer g h) :=
sorry
/-- localize a relation -/
def rel_mfld.localize (R : rel_mfld IM M IN N) : rel_mfld IX X IY Y :=
one_jet_bundle.transfer g h โปยน' R
open basic_smooth_vector_bundle_core
/-- Localize a one-jet section in two open embeddings.
It maps `x` to `(x, y, (D_y(g))โปยน โ F_ฯ(h x) โ D_x(h))` where `y : M := gโปยน(F_{bs}(h x))`. -/
@[simps] def one_jet_sec.localize (hF : range (F.bs โ h) โ range g) :
one_jet_sec IX X IY Y :=
{ bs := ฮป x, g.inv_fun (F.bs $ h x),
ฯ := ฮป x, let y := g.inv_fun (F.bs $ h x) in
(โ(g.fderiv y).symm : TN (g y) โL[โ] TY y) โL ((F $ h x).2 โL (h.fderiv x : TX x โL[โ] TM (h x))),
smooth' := begin
simp_rw [h.fderiv_coe, g.fderiv_symm_coe,
mfderiv_congr_point (g.right_inv (hF $ mem_range_self _))],
refine smooth.one_jet_comp IN (ฮป x', F.bs (h x')) _ _,
{ exact ฮป x, (g.smooth_at_inv $ hF $ mem_range_self x).one_jet_ext.comp _
(F.smooth_bs.comp h.smooth_to).cont_mdiff_at },
apply smooth.one_jet_comp IM h (F.smooth_eta.comp h.smooth_to) h.smooth_to.one_jet_ext
end }
lemma transfer_localize (hF : range (F.bs โ h) โ range g) (x : X) :
(F.localize g h hF x).transfer g h = F (h x) :=
begin
rw [one_jet_sec.coe_apply, one_jet_sec.localize_bs, one_jet_sec.localize_ฯ,
one_jet_bundle.transfer],
dsimp only,
ext,
{ refl },
{ simp_rw [g.right_inv (hF $ mem_range_self x), function.comp_apply, F.bs_eq] },
{ apply heq_of_eq, dsimp only, ext v,
simp_rw [continuous_linear_map.comp_apply, continuous_linear_equiv.coe_coe,
continuous_linear_equiv.apply_symm_apply] },
end
lemma one_jet_sec.localize_bs_fun (hF : range (F.bs โ h) โ range g) :
(F.localize g h hF).bs = g.inv_fun โ F.bs โ h :=
rfl
lemma one_jet_sec.localize_mem_iff (hF : range (F.bs โ h) โ range g) {x : X} :
F.localize g h hF x โ R.localize g h โ F (h x) โ R :=
by rw [rel_mfld.localize, mem_preimage, transfer_localize F g h hF]
lemma rel_mfld.ample.localize (hR : R.ample) : (R.localize g h).ample :=
begin
intros x p hx,
have : (rel_mfld.localize g h R).slice x p =
(g.fderiv x.1.2).symm '' R.slice (x.transfer g h) (p.map (h.fderiv x.1.1)),
{ simp_rw [rel_mfld.slice, rel_mfld.localize],
symmetry,
refine ((g.fderiv x.1.2).symm.to_homeomorph.image_connected_component_in _).trans _,
{ rw [mem_preslice, dual_pair'.update_self], exact hx },
simp_rw [continuous_linear_equiv.coe_to_homeomorph,
continuous_linear_equiv.image_symm_eq_preimage],
congr' 1,
{ ext v, simp_rw [mem_preimage, mem_preslice, mem_preimage],
dsimp only [one_jet_bundle.transfer, one_jet_bundle_mk_fst, one_jet_bundle_mk_snd],
simp_rw [p.map_update_comp_right, โ p.update_comp_left, continuous_linear_equiv.coe_coe,
one_jet_bundle.mk] },
{ dsimp only [one_jet_bundle.transfer],
simp_rw [continuous_linear_map.comp_apply, continuous_linear_equiv.coe_coe, p.map_v,
continuous_linear_equiv.symm_apply_apply] } },
rw [this],
exact (hR _ hx).image (g.fderiv x.1.2).symm
end
lemma is_holonomic_at_localize_iff (hF : range (F.bs โ h) โ range g) (x : X) :
(F.localize g h hF).is_holonomic_at x โ F.is_holonomic_at (h x) :=
begin
have : mfderiv IX IY (g.inv_fun โ F.bs โ h) x =
(g.fderiv (g.inv_fun (F.bs (h x)))).symm.to_continuous_linear_map.comp
((mfderiv IM IN F.bs (h x)).comp (h.fderiv x).to_continuous_linear_map),
{ have h1 : mdifferentiable_at IN IY g.inv_fun (F.bs (h x)) :=
(g.smooth_at_inv $ hF $ mem_range_self _).mdifferentiable_at le_top,
have h2 : mdifferentiable_at IM IN F.bs (h x) :=
F.smooth_bs.smooth_at.mdifferentiable_at le_top,
have h3 : mdifferentiable_at IX IM h x :=
h.smooth_to.smooth_at.mdifferentiable_at le_top,
rw [mfderiv_comp x h1 (h2.comp x h3), mfderiv_comp x h2 h3,
โ g.fderiv_symm_coe' (hF $ mem_range_self _)],
refl, },
simp_rw [one_jet_sec.is_holonomic_at],
rw [mfderiv_congr (F.localize_bs_fun g h hF), one_jet_sec.snd_eq, F.localize_ฯ, this],
simp_rw [โ continuous_linear_equiv.coe_def_rev,
continuous_linear_equiv.cancel_left, continuous_linear_equiv.cancel_right]
end
/-- Un-localize a homotopy of one-jet sections from two open embeddings. -/
-- Note(F): this is only well-defined on `univ ร range h`, right?
def htpy_one_jet_sec.unlocalize (F : htpy_one_jet_sec IX X IY Y) : htpy_one_jet_sec IM M IN N :=
{ bs := ฮป t m , g $ (F t).bs (h.inv_fun m),
ฯ := ฮป t m, (g.fderiv $ (F t).bs (h.inv_fun m)).to_continuous_linear_map โL
((F t $ h.inv_fun m).2 โL (h.fderiv $ h.inv_fun m).symm.to_continuous_linear_map),
smooth' := sorry }
lemma one_jet_sec.unlocalize_localize (G : htpy_one_jet_sec IX X IY Y)
(hF : range (F.bs โ h) โ range g)
(hFG : G 0 = F.localize g h hF) : G.unlocalize g h 0 = F :=
sorry
/-- Localize a formal solution. -/
def transfer (hF : range (F.bs โ h) โ range g) (h2F : โ x, F (h x) โ R) :
formal_sol (R.localize g h) :=
โจF.localize g h hF, ฮป x, (F.localize_mem_iff g h hF).mpr $ h2F xโฉ
end smooth_open_embedding
section loc
/-! ## Link with the local story
Now we really bridge the gap all the way to vector spaces.
-/
variables {E : Type*} [normed_add_comm_group E] [normed_space โ E]
variables {E' : Type*} [normed_add_comm_group E'] [normed_space โ E']
/-- For maps between vector spaces, `one_jet_ext` is the obvious thing. -/
@[simp] theorem one_jet_ext_eq_fderiv {f : E โ E'} {x : E} :
one_jet_ext ๐(โ, E) ๐(โ, E') f x = โจ(x, f x), fderiv โ f xโฉ :=
by { rw โ mfderiv_eq_fderiv, refl }
/-- Convert a 1-jet section between vector spaces seen as manifold to a 1-jet section
between those vector spaces. -/
def one_jet_sec.loc (F : one_jet_sec ๐(โ, E) E ๐(โ, E') E') : rel_loc.jet_sec E E' :=
{ f := F.bs,
f_diff := sorry,
ฯ := ฮป x, (F x).2,
ฯ_diff := sorry }
lemma one_jet_sec.loc_hol_at_iff (F : one_jet_sec ๐(โ, E) E ๐(โ, E') E') (x : E) :
F.loc.is_holonomic_at x โ F.is_holonomic_at x :=
begin
dsimp only [one_jet_sec.is_holonomic_at],
rw mfderiv_eq_fderiv,
exact iff.rfl
end
/-- Turns a relation between `E` and `E'` seen as manifolds into a relation between them
seen as vector spaces. One annoying bit is `equiv.prod_assoc E E' $ E โL[โ] E'` that is needed
to reassociate a product of types. -/
def rel_mfld.rel_loc (R : rel_mfld ๐(โ, E) E ๐(โ, E') E') : rel_loc E E' :=
(equiv.prod_assoc _ _ _) '' ((one_jet_bundle_model_space_homeomorph E ๐(โ, E) E' ๐(โ, E')) '' R)
lemma ample_of_ample (R : rel_mfld ๐(โ, E) E ๐(โ, E') E') (hR : R.ample) :
R.rel_loc.is_ample :=
sorry
lemma is_open_of_is_open (R : rel_mfld ๐(โ, E) E ๐(โ, E') E') (hR : is_open R) :
is_open R.rel_loc :=
sorry
end loc
|