Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 12,195 Bytes
4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Reid Barton
-/
import topology.separation
/-!
# The shrinking lemma
In this file we prove a few versions of the shrinking lemma. The lemma says that in a normal
topological space a point finite open covering can be “shrunk”: for a point finite open covering
`u : ι → set X` there exists a refinement `v : ι → set X` such that `closure (v i) ⊆ u i`.
For finite or countable coverings this lemma can be proved without the axiom of choice, see
[ncatlab](https://ncatlab.org/nlab/show/shrinking+lemma) for details. We only formalize the most
general result that works for any covering but needs the axiom of choice.
We prove two versions of the lemma:
* `exists_subset_Union_closure_subset` deals with a covering of a closed set in a normal space;
* `exists_Union_eq_closure_subset` deals with a covering of the whole space.
## Tags
normal space, shrinking lemma
-/
open set function
open_locale classical
noncomputable theory
variables {ι X : Type*} [topological_space X] [normal_space X]
namespace shrinking_lemma
/-- Auxiliary definition for the proof of `shrinking_lemma`. A partial refinement of a covering
`⋃ i, u i` of a set `s` is a map `v : ι → set X` and a set `carrier : set ι` such that
* `s ⊆ ⋃ i, v i`;
* all `v i` are open;
* if `i ∈ carrier v`, then `closure (v i) ⊆ u i`;
* if `i ∉ carrier`, then `v i = u i`.
This type is equipped with the folowing partial order: `v ≤ v'` if `v.carrier ⊆ v'.carrier`
and `v i = v' i` for `i ∈ v.carrier`. We will use Zorn's lemma to prove that this type has
a maximal element, then show that the maximal element must have `carrier = univ`. -/
@[nolint has_nonempty_instance] -- the trivial refinement needs `u` to be a covering
structure partial_refinement (u : ι → set X) (s : set X) :=
(to_fun : ι → set X)
(carrier : set ι)
(is_open' : ∀ i, is_open (to_fun i))
(subset_Union' : s ⊆ ⋃ i, to_fun i)
(closure_subset' : ∀ i ∈ carrier, closure (to_fun i) ⊆ (u i))
(apply_eq' : ∀ i ∉ carrier, to_fun i = u i)
namespace partial_refinement
variables {u : ι → set X} {s : set X}
instance : has_coe_to_fun (partial_refinement u s) (λ _, ι → set X) := ⟨to_fun⟩
lemma subset_Union (v : partial_refinement u s) : s ⊆ ⋃ i, v i := v.subset_Union'
lemma closure_subset (v : partial_refinement u s) {i : ι} (hi : i ∈ v.carrier) :
closure (v i) ⊆ (u i) :=
v.closure_subset' i hi
lemma apply_eq (v : partial_refinement u s) {i : ι} (hi : i ∉ v.carrier) : v i = u i :=
v.apply_eq' i hi
protected lemma is_open (v : partial_refinement u s) (i : ι) : is_open (v i) := v.is_open' i
protected lemma subset (v : partial_refinement u s) (i : ι) : v i ⊆ u i :=
if h : i ∈ v.carrier then subset.trans subset_closure (v.closure_subset h)
else (v.apply_eq h).le
attribute [ext] partial_refinement
instance : partial_order (partial_refinement u s) :=
{ le := λ v₁ v₂, v₁.carrier ⊆ v₂.carrier ∧ ∀ i ∈ v₁.carrier, v₁ i = v₂ i,
le_refl := λ v, ⟨subset.refl _, λ _ _, rfl⟩,
le_trans := λ v₁ v₂ v₃ h₁₂ h₂₃,
⟨subset.trans h₁₂.1 h₂₃.1, λ i hi, (h₁₂.2 i hi).trans (h₂₃.2 i $ h₁₂.1 hi)⟩,
le_antisymm := λ v₁ v₂ h₁₂ h₂₁,
have hc : v₁.carrier = v₂.carrier, from subset.antisymm h₁₂.1 h₂₁.1,
ext _ _ (funext $ λ x,
if hx : x ∈ v₁.carrier then h₁₂.2 _ hx
else (v₁.apply_eq hx).trans (eq.symm $ v₂.apply_eq $ hc ▸ hx)) hc }
/-- If two partial refinements `v₁`, `v₂` belong to a chain (hence, they are comparable)
and `i` belongs to the carriers of both partial refinements, then `v₁ i = v₂ i`. -/
lemma apply_eq_of_chain {c : set (partial_refinement u s)} (hc : is_chain (≤) c) {v₁ v₂}
(h₁ : v₁ ∈ c) (h₂ : v₂ ∈ c) {i} (hi₁ : i ∈ v₁.carrier) (hi₂ : i ∈ v₂.carrier) :
v₁ i = v₂ i :=
begin
wlog hle : v₁ ≤ v₂ := hc.total h₁ h₂ using [v₁ v₂, v₂ v₁],
exact hle.2 _ hi₁,
end
/-- The carrier of the least upper bound of a non-empty chain of partial refinements
is the union of their carriers. -/
def chain_Sup_carrier (c : set (partial_refinement u s)) : set ι :=
⋃ v ∈ c, carrier v
/-- Choice of an element of a nonempty chain of partial refinements. If `i` belongs to one of
`carrier v`, `v ∈ c`, then `find c ne i` is one of these partial refinements. -/
def find (c : set (partial_refinement u s)) (ne : c.nonempty) (i : ι) :
partial_refinement u s :=
if hi : ∃ v ∈ c, i ∈ carrier v then hi.some else ne.some
lemma find_mem {c : set (partial_refinement u s)} (i : ι) (ne : c.nonempty) :
find c ne i ∈ c :=
by { rw find, split_ifs, exacts [h.some_spec.fst, ne.some_spec] }
lemma mem_find_carrier_iff {c : set (partial_refinement u s)} {i : ι} (ne : c.nonempty) :
i ∈ (find c ne i).carrier ↔ i ∈ chain_Sup_carrier c :=
begin
rw find,
split_ifs,
{ have : i ∈ h.some.carrier ∧ i ∈ chain_Sup_carrier c,
from ⟨h.some_spec.snd, mem_Union₂.2 h⟩,
simp only [this] },
{ have : i ∉ ne.some.carrier ∧ i ∉ chain_Sup_carrier c,
from ⟨λ hi, h ⟨_, ne.some_spec, hi⟩, mt mem_Union₂.1 h⟩,
simp only [this] }
end
lemma find_apply_of_mem {c : set (partial_refinement u s)} (hc : is_chain (≤) c) (ne : c.nonempty)
{i v} (hv : v ∈ c) (hi : i ∈ carrier v) :
find c ne i i = v i :=
apply_eq_of_chain hc (find_mem _ _) hv
((mem_find_carrier_iff _).2 $ mem_Union₂.2 ⟨v, hv, hi⟩) hi
/-- Least upper bound of a nonempty chain of partial refinements. -/
def chain_Sup (c : set (partial_refinement u s)) (hc : is_chain (≤) c)
(ne : c.nonempty) (hfin : ∀ x ∈ s, {i | x ∈ u i}.finite) (hU : s ⊆ ⋃ i, u i) :
partial_refinement u s :=
begin
refine ⟨λ i, find c ne i i, chain_Sup_carrier c,
λ i, (find _ _ _).is_open i,
λ x hxs, mem_Union.2 _,
λ i hi, (find c ne i).closure_subset ((mem_find_carrier_iff _).2 hi),
λ i hi, (find c ne i).apply_eq (mt (mem_find_carrier_iff _).1 hi)⟩,
rcases em (∃ i ∉ chain_Sup_carrier c, x ∈ u i) with ⟨i, hi, hxi⟩|hx,
{ use i,
rwa (find c ne i).apply_eq (mt (mem_find_carrier_iff _).1 hi) },
{ simp_rw [not_exists, not_imp_not, chain_Sup_carrier, mem_Union₂] at hx,
haveI : nonempty (partial_refinement u s) := ⟨ne.some⟩,
choose! v hvc hiv using hx,
rcases (hfin x hxs).exists_maximal_wrt v _ (mem_Union.1 (hU hxs))
with ⟨i, hxi : x ∈ u i, hmax : ∀ j, x ∈ u j → v i ≤ v j → v i = v j⟩,
rcases mem_Union.1 ((v i).subset_Union hxs) with ⟨j, hj⟩,
use j,
have hj' : x ∈ u j := (v i).subset _ hj,
have : v j ≤ v i,
from (hc.total (hvc _ hxi) (hvc _ hj')).elim (λ h, (hmax j hj' h).ge) id,
rwa find_apply_of_mem hc ne (hvc _ hxi) (this.1 $ hiv _ hj') }
end
/-- `chain_Sup hu c hc ne hfin hU` is an upper bound of the chain `c`. -/
lemma le_chain_Sup {c : set (partial_refinement u s)} (hc : is_chain (≤) c)
(ne : c.nonempty) (hfin : ∀ x ∈ s, {i | x ∈ u i}.finite) (hU : s ⊆ ⋃ i, u i)
{v} (hv : v ∈ c) :
v ≤ chain_Sup c hc ne hfin hU :=
⟨λ i hi, mem_bUnion hv hi, λ i hi, (find_apply_of_mem hc _ hv hi).symm⟩
/-- If `s` is a closed set, `v` is a partial refinement, and `i` is an index such that
`i ∉ v.carrier`, then there exists a partial refinement that is strictly greater than `v`. -/
lemma exists_gt (v : partial_refinement u s) (hs : is_closed s) (i : ι) (hi : i ∉ v.carrier) :
∃ v' : partial_refinement u s, v < v' :=
begin
have I : s ∩ (⋂ j ≠ i, (v j)ᶜ) ⊆ v i,
{ simp only [subset_def, mem_inter_eq, mem_Inter, and_imp],
intros x hxs H,
rcases mem_Union.1 (v.subset_Union hxs) with ⟨j, hj⟩,
exact (em (j = i)).elim (λ h, h ▸ hj) (λ h, (H j h hj).elim) },
have C : is_closed (s ∩ (⋂ j ≠ i, (v j)ᶜ)),
from is_closed.inter hs (is_closed_bInter $ λ _ _, is_closed_compl_iff.2 $ v.is_open _),
rcases normal_exists_closure_subset C (v.is_open i) I with ⟨vi, ovi, hvi, cvi⟩,
refine ⟨⟨update v i vi, insert i v.carrier, _, _, _, _⟩, _, _⟩,
{ intro j, by_cases h : j = i; simp [h, ovi, v.is_open] },
{ refine λ x hx, mem_Union.2 _,
rcases em (∃ j ≠ i, x ∈ v j) with ⟨j, hji, hj⟩|h,
{ use j, rwa update_noteq hji },
{ push_neg at h, use i, rw update_same, exact hvi ⟨hx, mem_bInter h⟩ } },
{ rintro j (rfl|hj),
{ rwa [update_same, ← v.apply_eq hi] },
{ rw update_noteq (ne_of_mem_of_not_mem hj hi), exact v.closure_subset hj } },
{ intros j hj,
rw [mem_insert_iff, not_or_distrib] at hj,
rw [update_noteq hj.1, v.apply_eq hj.2] },
{ refine ⟨subset_insert _ _, λ j hj, _⟩,
exact (update_noteq (ne_of_mem_of_not_mem hj hi) _ _).symm },
{ exact λ hle, hi (hle.1 $ mem_insert _ _) }
end
end partial_refinement
end shrinking_lemma
open shrinking_lemma
variables {u : ι → set X} {s : set X}
/-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk"
to a new open cover so that the closure of each new open set is contained in the corresponding
original open set. -/
lemma exists_subset_Union_closure_subset (hs : is_closed s) (uo : ∀ i, is_open (u i))
(uf : ∀ x ∈ s, {i | x ∈ u i}.finite) (us : s ⊆ ⋃ i, u i) :
∃ v : ι → set X, s ⊆ Union v ∧ (∀ i, is_open (v i)) ∧ ∀ i, closure (v i) ⊆ u i :=
begin
classical,
haveI : nonempty (partial_refinement u s) := ⟨⟨u, ∅, uo, us, λ _, false.elim, λ _ _, rfl⟩⟩,
have : ∀ c : set (partial_refinement u s), is_chain (≤) c → c.nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub,
from λ c hc ne, ⟨partial_refinement.chain_Sup c hc ne uf us,
λ v hv, partial_refinement.le_chain_Sup _ _ _ _ hv⟩,
rcases zorn_nonempty_partial_order this with ⟨v, hv⟩,
suffices : ∀ i, i ∈ v.carrier,
from ⟨v, v.subset_Union, λ i, v.is_open _, λ i, v.closure_subset (this i)⟩,
contrapose! hv,
rcases hv with ⟨i, hi⟩,
rcases v.exists_gt hs i hi with ⟨v', hlt⟩,
exact ⟨v', hlt.le, hlt.ne'⟩
end
/-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk"
to a new closed cover so that each new closed set is contained in the corresponding original open
set. See also `exists_subset_Union_closure_subset` for a stronger statement. -/
lemma exists_subset_Union_closed_subset (hs : is_closed s) (uo : ∀ i, is_open (u i))
(uf : ∀ x ∈ s, {i | x ∈ u i}.finite) (us : s ⊆ ⋃ i, u i) :
∃ v : ι → set X, s ⊆ Union v ∧ (∀ i, is_closed (v i)) ∧ ∀ i, v i ⊆ u i :=
let ⟨v, hsv, hvo, hv⟩ := exists_subset_Union_closure_subset hs uo uf us
in ⟨λ i, closure (v i), subset.trans hsv (Union_mono $ λ i, subset_closure),
λ i, is_closed_closure, hv⟩
/-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk"
to a new open cover so that the closure of each new open set is contained in the corresponding
original open set. -/
lemma exists_Union_eq_closure_subset (uo : ∀ i, is_open (u i)) (uf : ∀ x, {i | x ∈ u i}.finite)
(uU : (⋃ i, u i) = univ) :
∃ v : ι → set X, Union v = univ ∧ (∀ i, is_open (v i)) ∧ ∀ i, closure (v i) ⊆ u i :=
let ⟨v, vU, hv⟩ := exists_subset_Union_closure_subset is_closed_univ uo (λ x _, uf x) uU.ge
in ⟨v, univ_subset_iff.1 vU, hv⟩
/-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk"
to a new closed cover so that each of the new closed sets is contained in the corresponding
original open set. See also `exists_Union_eq_closure_subset` for a stronger statement. -/
lemma exists_Union_eq_closed_subset (uo : ∀ i, is_open (u i)) (uf : ∀ x, {i | x ∈ u i}.finite)
(uU : (⋃ i, u i) = univ) :
∃ v : ι → set X, Union v = univ ∧ (∀ i, is_closed (v i)) ∧ ∀ i, v i ⊆ u i :=
let ⟨v, vU, hv⟩ := exists_subset_Union_closed_subset is_closed_univ uo (λ x _, uf x) uU.ge
in ⟨v, univ_subset_iff.1 vU, hv⟩
|