Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 12,195 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Reid Barton
-/
import topology.separation

/-!
# The shrinking lemma

In this file we prove a few versions of the shrinking lemma. The lemma says that in a normal
topological space a point finite open covering can be “shrunk”: for a point finite open covering
`u : ι → set X` there exists a refinement `v : ι → set X` such that `closure (v i) ⊆ u i`.

For finite or countable coverings this lemma can be proved without the axiom of choice, see
[ncatlab](https://ncatlab.org/nlab/show/shrinking+lemma) for details. We only formalize the most
general result that works for any covering but needs the axiom of choice.

We prove two versions of the lemma:

* `exists_subset_Union_closure_subset` deals with a covering of a closed set in a normal space;
* `exists_Union_eq_closure_subset` deals with a covering of the whole space.

## Tags

normal space, shrinking lemma
-/

open set function
open_locale classical
noncomputable theory

variables {ι X : Type*} [topological_space X] [normal_space X]

namespace shrinking_lemma

/-- Auxiliary definition for the proof of `shrinking_lemma`. A partial refinement of a covering
`⋃ i, u i` of a set `s` is a map `v : ι → set X` and a set `carrier : set ι` such that

* `s ⊆ ⋃ i, v i`;
* all `v i` are open;
* if `i ∈ carrier v`, then `closure (v i) ⊆ u i`;
* if `i ∉ carrier`, then `v i = u i`.

This type is equipped with the folowing partial order: `v ≤ v'` if `v.carrier ⊆ v'.carrier`
and `v i = v' i` for `i ∈ v.carrier`. We will use Zorn's lemma to prove that this type has
a maximal element, then show that the maximal element must have `carrier = univ`. -/
@[nolint has_nonempty_instance] -- the trivial refinement needs `u` to be a covering
structure partial_refinement (u : ι → set X) (s : set X) :=
(to_fun : ι → set X)
(carrier : set ι)
(is_open' : ∀ i, is_open (to_fun i))
(subset_Union' : s ⊆ ⋃ i, to_fun i)
(closure_subset' : ∀ i ∈ carrier, closure (to_fun i) ⊆ (u i))
(apply_eq' : ∀ i ∉ carrier, to_fun i = u i)

namespace partial_refinement

variables {u : ι → set X} {s : set X}

instance : has_coe_to_fun (partial_refinement u s) (λ _, ι → set X) := ⟨to_fun⟩

lemma subset_Union (v : partial_refinement u s) : s ⊆ ⋃ i, v i := v.subset_Union'

lemma closure_subset (v : partial_refinement u s) {i : ι} (hi : i ∈ v.carrier) :
  closure (v i) ⊆ (u i) :=
v.closure_subset' i hi

lemma apply_eq (v : partial_refinement u s) {i : ι} (hi : i ∉ v.carrier) : v i = u i :=
v.apply_eq' i hi

protected lemma is_open (v : partial_refinement u s) (i : ι) : is_open (v i) := v.is_open' i

protected lemma subset (v : partial_refinement u s) (i : ι) : v i ⊆ u i :=
if h : i ∈ v.carrier then subset.trans subset_closure (v.closure_subset h)
else (v.apply_eq h).le

attribute [ext] partial_refinement

instance : partial_order (partial_refinement u s) :=
{ le := λ v₁ v₂, v₁.carrier ⊆ v₂.carrier ∧ ∀ i ∈ v₁.carrier, v₁ i = v₂ i,
  le_refl := λ v, ⟨subset.refl _, λ _ _, rfl⟩,
  le_trans := λ v₁ v₂ v₃ h₁₂ h₂₃,
    ⟨subset.trans h₁₂.1 h₂₃.1, λ i hi, (h₁₂.2 i hi).trans (h₂₃.2 i $ h₁₂.1 hi)⟩,
  le_antisymm := λ v₁ v₂ h₁₂ h₂₁,
    have hc : v₁.carrier = v₂.carrier, from subset.antisymm h₁₂.1 h₂₁.1,
    ext _ _ (funext $ λ x,
      if hx : x ∈ v₁.carrier then h₁₂.2 _ hx
      else (v₁.apply_eq hx).trans (eq.symm $ v₂.apply_eq $ hc ▸ hx)) hc }

/-- If two partial refinements `v₁`, `v₂` belong to a chain (hence, they are comparable)
and `i` belongs to the carriers of both partial refinements, then `v₁ i = v₂ i`. -/
lemma apply_eq_of_chain {c : set (partial_refinement u s)} (hc : is_chain (≤) c) {v₁ v₂}
  (h₁ : v₁ ∈ c) (h₂ : v₂ ∈ c) {i} (hi₁ : i ∈ v₁.carrier) (hi₂ : i ∈ v₂.carrier) :
  v₁ i = v₂ i :=
begin
  wlog hle : v₁ ≤ v₂ := hc.total h₁ h₂ using [v₁ v₂, v₂ v₁],
  exact hle.2 _ hi₁,
end

/-- The carrier of the least upper bound of a non-empty chain of partial refinements
is the union of their carriers. -/
def chain_Sup_carrier (c : set (partial_refinement u s)) : set ι :=
⋃ v ∈ c, carrier v

/-- Choice of an element of a nonempty chain of partial refinements. If `i` belongs to one of
`carrier v`, `v ∈ c`, then `find c ne i` is one of these partial refinements. -/
def find (c : set (partial_refinement u s)) (ne : c.nonempty) (i : ι) :
  partial_refinement u s :=
if hi : ∃ v ∈ c, i ∈ carrier v then hi.some else ne.some

lemma find_mem {c : set (partial_refinement u s)} (i : ι) (ne : c.nonempty) :
  find c ne i ∈ c :=
by { rw find, split_ifs, exacts [h.some_spec.fst, ne.some_spec] }

lemma mem_find_carrier_iff {c : set (partial_refinement u s)} {i : ι} (ne : c.nonempty) :
  i ∈ (find c ne i).carrier ↔ i ∈ chain_Sup_carrier c :=
begin
  rw find,
  split_ifs,
  { have : i ∈ h.some.carrier ∧ i ∈ chain_Sup_carrier c,
      from ⟨h.some_spec.snd, mem_Union₂.2 h⟩,
    simp only [this] },
  { have : i ∉ ne.some.carrier ∧ i ∉ chain_Sup_carrier c,
      from ⟨λ hi, h ⟨_, ne.some_spec, hi⟩, mt mem_Union₂.1 h⟩,
    simp only [this] }
end

lemma find_apply_of_mem {c : set (partial_refinement u s)} (hc : is_chain (≤) c) (ne : c.nonempty)
  {i v} (hv : v ∈ c) (hi : i ∈ carrier v) :
  find c ne i i = v i :=
apply_eq_of_chain hc (find_mem _ _) hv
  ((mem_find_carrier_iff _).2 $ mem_Union₂.2 ⟨v, hv, hi⟩) hi

/-- Least upper bound of a nonempty chain of partial refinements. -/
def chain_Sup (c : set (partial_refinement u s)) (hc : is_chain (≤) c)
  (ne : c.nonempty) (hfin : ∀ x ∈ s, {i | x ∈ u i}.finite) (hU : s ⊆ ⋃ i, u i) :
  partial_refinement u s :=
begin
  refine ⟨λ i, find c ne i i, chain_Sup_carrier c,
    λ i, (find _ _ _).is_open i,
    λ x hxs, mem_Union.2 _,
    λ i hi, (find c ne i).closure_subset ((mem_find_carrier_iff _).2 hi),
    λ i hi, (find c ne i).apply_eq (mt (mem_find_carrier_iff _).1 hi)⟩,
  rcases em (∃ i ∉ chain_Sup_carrier c, x ∈ u i) with ⟨i, hi, hxi⟩|hx,
  { use i,
    rwa (find c ne i).apply_eq (mt (mem_find_carrier_iff _).1 hi) },
  { simp_rw [not_exists, not_imp_not, chain_Sup_carrier, mem_Union₂] at hx,
    haveI : nonempty (partial_refinement u s) := ⟨ne.some⟩,
    choose! v hvc hiv using hx,
    rcases (hfin x hxs).exists_maximal_wrt v _ (mem_Union.1 (hU hxs))
      with ⟨i, hxi : x ∈ u i, hmax : ∀ j, x ∈ u j → v i ≤ v j → v i = v j⟩,
    rcases mem_Union.1 ((v i).subset_Union hxs) with ⟨j, hj⟩,
    use j,
    have hj' : x ∈ u j := (v i).subset _ hj,
    have : v j ≤ v i,
      from (hc.total (hvc _ hxi) (hvc _ hj')).elim (λ h, (hmax j hj' h).ge) id,
    rwa find_apply_of_mem hc ne (hvc _ hxi) (this.1 $ hiv _ hj') }
end

/-- `chain_Sup hu c hc ne hfin hU` is an upper bound of the chain `c`. -/
lemma le_chain_Sup {c : set (partial_refinement u s)} (hc : is_chain (≤) c)
  (ne : c.nonempty) (hfin : ∀ x ∈ s, {i | x ∈ u i}.finite) (hU : s ⊆ ⋃ i, u i)
  {v} (hv : v ∈ c) :
  v ≤ chain_Sup c hc ne hfin hU :=
⟨λ i hi, mem_bUnion hv hi, λ i hi, (find_apply_of_mem hc _ hv hi).symm⟩

/-- If `s` is a closed set, `v` is a partial refinement, and `i` is an index such that
`i ∉ v.carrier`, then there exists a partial refinement that is strictly greater than `v`. -/
lemma exists_gt (v : partial_refinement u s) (hs : is_closed s) (i : ι) (hi : i ∉ v.carrier) :
  ∃ v' : partial_refinement u s, v < v' :=
begin
  have I : s ∩ (⋂ j ≠ i, (v j)ᶜ) ⊆ v i,
  { simp only [subset_def, mem_inter_eq, mem_Inter, and_imp],
    intros x hxs H,
    rcases mem_Union.1 (v.subset_Union hxs) with ⟨j, hj⟩,
    exact (em (j = i)).elim (λ h, h ▸ hj) (λ h, (H j h hj).elim) },
  have C : is_closed (s ∩ (⋂ j ≠ i, (v j)ᶜ)),
    from is_closed.inter hs (is_closed_bInter $ λ _ _, is_closed_compl_iff.2 $ v.is_open _),
  rcases normal_exists_closure_subset C (v.is_open i) I with ⟨vi, ovi, hvi, cvi⟩,
  refine ⟨⟨update v i vi, insert i v.carrier, _, _, _, _⟩, _, _⟩,
  { intro j, by_cases h : j = i; simp [h, ovi, v.is_open] },
  { refine λ x hx, mem_Union.2 _,
    rcases em (∃ j ≠ i, x ∈ v j) with ⟨j, hji, hj⟩|h,
    { use j, rwa update_noteq hji },
    { push_neg at h, use i, rw update_same, exact hvi ⟨hx, mem_bInter h⟩ } },
  { rintro j (rfl|hj),
    { rwa [update_same, ← v.apply_eq hi] },
    { rw update_noteq (ne_of_mem_of_not_mem hj hi), exact v.closure_subset hj } },
  { intros j hj,
    rw [mem_insert_iff, not_or_distrib] at hj,
    rw [update_noteq hj.1, v.apply_eq hj.2] },
  { refine ⟨subset_insert _ _, λ j hj, _⟩,
    exact (update_noteq (ne_of_mem_of_not_mem hj hi) _ _).symm },
  { exact λ hle, hi (hle.1 $ mem_insert _ _) }
end

end partial_refinement

end shrinking_lemma

open shrinking_lemma

variables {u : ι → set X} {s : set X}

/-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk"
to a new open cover so that the closure of each new open set is contained in the corresponding
original open set. -/
lemma exists_subset_Union_closure_subset (hs : is_closed s) (uo : ∀ i, is_open (u i))
  (uf : ∀ x ∈ s, {i | x ∈ u i}.finite) (us : s ⊆ ⋃ i, u i) :
  ∃ v : ι → set X, s ⊆ Union v ∧ (∀ i, is_open (v i)) ∧ ∀ i, closure (v i) ⊆ u i :=
begin
  classical,
  haveI : nonempty (partial_refinement u s) := ⟨⟨u, ∅, uo, us, λ _, false.elim, λ _ _, rfl⟩⟩,
  have : ∀ c : set (partial_refinement u s), is_chain (≤) c → c.nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub,
    from λ c hc ne, ⟨partial_refinement.chain_Sup c hc ne uf us,
      λ v hv, partial_refinement.le_chain_Sup _ _ _ _ hv⟩,
  rcases zorn_nonempty_partial_order this with ⟨v, hv⟩,
  suffices : ∀ i, i ∈ v.carrier,
    from ⟨v, v.subset_Union, λ i, v.is_open _, λ i, v.closure_subset (this i)⟩,
  contrapose! hv,
  rcases hv with ⟨i, hi⟩,
  rcases v.exists_gt hs i hi with ⟨v', hlt⟩,
  exact ⟨v', hlt.le, hlt.ne'⟩
end

/-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk"
to a new closed cover so that each new closed set is contained in the corresponding original open
set. See also `exists_subset_Union_closure_subset` for a stronger statement. -/
lemma exists_subset_Union_closed_subset (hs : is_closed s) (uo : ∀ i, is_open (u i))
  (uf : ∀ x ∈ s, {i | x ∈ u i}.finite) (us : s ⊆ ⋃ i, u i) :
  ∃ v : ι → set X, s ⊆ Union v ∧ (∀ i, is_closed (v i)) ∧ ∀ i, v i ⊆ u i :=
let ⟨v, hsv, hvo, hv⟩ := exists_subset_Union_closure_subset hs uo uf us
in ⟨λ i, closure (v i), subset.trans hsv (Union_mono $ λ i, subset_closure),
  λ i, is_closed_closure, hv⟩

/-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk"
to a new open cover so that the closure of each new open set is contained in the corresponding
original open set. -/
lemma exists_Union_eq_closure_subset (uo : ∀ i, is_open (u i)) (uf : ∀ x, {i | x ∈ u i}.finite)
  (uU : (⋃ i, u i) = univ) :
  ∃ v : ι → set X, Union v = univ ∧ (∀ i, is_open (v i)) ∧ ∀ i, closure (v i) ⊆ u i :=
let ⟨v, vU, hv⟩ := exists_subset_Union_closure_subset is_closed_univ uo (λ x _, uf x) uU.ge
in ⟨v, univ_subset_iff.1 vU, hv⟩

/-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk"
to a new closed cover so that each of the new closed sets is contained in the corresponding
original open set. See also `exists_Union_eq_closure_subset` for a stronger statement. -/
lemma exists_Union_eq_closed_subset (uo : ∀ i, is_open (u i)) (uf : ∀ x, {i | x ∈ u i}.finite)
  (uU : (⋃ i, u i) = univ) :
  ∃ v : ι → set X, Union v = univ ∧ (∀ i, is_closed (v i)) ∧ ∀ i, v i ⊆ u i :=
let ⟨v, vU, hv⟩ := exists_subset_Union_closed_subset is_closed_univ uo (λ x _, uf x) uU.ge
in ⟨v, univ_subset_iff.1 vU, hv⟩