Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 24,832 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot
-/
import topology.order

/-!
# Specific classes of maps between topological spaces

This file introduces the following properties of a map `f : X → Y` between topological spaces:

* `is_open_map f` means the image of an open set under `f` is open.
* `is_closed_map f` means the image of a closed set under `f` is closed.

(Open and closed maps need not be continuous.)

* `inducing f` means the topology on `X` is the one induced via `f` from the topology on `Y`.
  These behave like embeddings except they need not be injective. Instead, points of `X` which
  are identified by `f` are also inseparable in the topology on `X`.
* `embedding f` means `f` is inducing and also injective. Equivalently, `f` identifies `X` with
  a subspace of `Y`.
* `open_embedding f` means `f` is an embedding with open image, so it identifies `X` with an
  open subspace of `Y`. Equivalently, `f` is an embedding and an open map.
* `closed_embedding f` similarly means `f` is an embedding with closed image, so it identifies
  `X` with a closed subspace of `Y`. Equivalently, `f` is an embedding and a closed map.

* `quotient_map f` is the dual condition to `embedding f`: `f` is surjective and the topology
  on `Y` is the one coinduced via `f` from the topology on `X`. Equivalently, `f` identifies
  `Y` with a quotient of `X`. Quotient maps are also sometimes known as identification maps.

## References

* <https://en.wikipedia.org/wiki/Open_and_closed_maps>
* <https://en.wikipedia.org/wiki/Embedding#General_topology>
* <https://en.wikipedia.org/wiki/Quotient_space_(topology)#Quotient_map>

## Tags

open map, closed map, embedding, quotient map, identification map

-/

open set filter function
open_locale topological_space filter

variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}

section inducing

/-- A function `f : α → β` between topological spaces is inducing if the topology on `α` is induced
by the topology on `β` through `f`, meaning that a set `s : set α` is open iff it is the preimage
under `f` of some open set `t : set β`. -/
@[mk_iff]
structure inducing [tα : topological_space α] [tβ : topological_space β] (f : α → β) : Prop :=
(induced : tα = tβ.induced f)

variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]

lemma inducing_id : inducing (@id α) :=
⟨induced_id.symm⟩

protected lemma inducing.comp {g : β → γ} {f : α → β} (hg : inducing g) (hf : inducing f) :
  inducing (g ∘ f) :=
⟨by rw [hf.induced, hg.induced, induced_compose]⟩

lemma inducing_of_inducing_compose {f : α → β} {g : β → γ} (hf : continuous f) (hg : continuous g)
  (hgf : inducing (g ∘ f)) : inducing f :=
⟨le_antisymm
    (by rwa ← continuous_iff_le_induced)
    (by { rw [hgf.induced, ← continuous_iff_le_induced], apply hg.comp continuous_induced_dom })⟩

lemma inducing_iff_nhds {f : α → β} : inducing f ↔ ∀ a, 𝓝 a = comap f (𝓝 (f a)) :=
(inducing_iff _).trans (induced_iff_nhds_eq f)

lemma inducing.nhds_eq_comap {f : α → β} (hf : inducing f) :
  ∀ (a : α), 𝓝 a = comap f (𝓝 $ f a) :=
inducing_iff_nhds.1 hf

lemma inducing.map_nhds_eq {f : α → β} (hf : inducing f) (a : α) :
  (𝓝 a).map f = 𝓝[range f] (f a) :=
hf.induced.symm ▸ map_nhds_induced_eq a

lemma inducing.map_nhds_of_mem {f : α → β} (hf : inducing f) (a : α) (h : range f ∈ 𝓝 (f a)) :
  (𝓝 a).map f = 𝓝 (f a) :=
hf.induced.symm ▸ map_nhds_induced_of_mem h

lemma inducing.image_mem_nhds_within {f : α → β} (hf : inducing f) {a : α} {s : set α}
  (hs : s ∈ 𝓝 a) : f '' s ∈ 𝓝[range f] (f a) :=
hf.map_nhds_eq a ▸ image_mem_map hs

lemma inducing.tendsto_nhds_iff {ι : Type*}
  {f : ι → β} {g : β → γ} {a : filter ι} {b : β} (hg : inducing g) :
  tendsto f a (𝓝 b) ↔ tendsto (g ∘ f) a (𝓝 (g b)) :=
by rw [hg.nhds_eq_comap, tendsto_comap_iff]

lemma inducing.continuous_at_iff {f : α → β} {g : β → γ} (hg : inducing g) {x : α} :
  continuous_at f x ↔ continuous_at (g ∘ f) x :=
by simp_rw [continuous_at, inducing.tendsto_nhds_iff hg]

lemma inducing.continuous_iff {f : α → β} {g : β → γ} (hg : inducing g) :
  continuous f ↔ continuous (g ∘ f) :=
by simp_rw [continuous_iff_continuous_at, hg.continuous_at_iff]

lemma inducing.continuous_at_iff' {f : α → β} {g : β → γ} (hf : inducing f) {x : α}
  (h : range f ∈ 𝓝 (f x)) : continuous_at (g ∘ f) x ↔ continuous_at g (f x) :=
by { simp_rw [continuous_at, filter.tendsto, ← hf.map_nhds_of_mem _ h, filter.map_map] }

protected lemma inducing.continuous {f : α → β} (hf : inducing f) : continuous f :=
hf.continuous_iff.mp continuous_id

protected lemma inducing.inducing_iff {f : α → β} {g : β → γ} (hg : inducing g) :
  inducing f ↔ inducing (g ∘ f) :=
begin
  refine ⟨λ h, hg.comp h, λ hgf, inducing_of_inducing_compose _ hg.continuous hgf⟩,
  rw hg.continuous_iff,
  exact hgf.continuous
end

lemma inducing.closure_eq_preimage_closure_image {f : α → β} (hf : inducing f) (s : set α) :
  closure s = f ⁻¹' closure (f '' s) :=
by { ext x, rw [set.mem_preimage, ← closure_induced, hf.induced] }

lemma inducing.is_closed_iff {f : α → β} (hf : inducing f) {s : set α} :
  is_closed s ↔ ∃ t, is_closed t ∧ f ⁻¹' t = s :=
by rw [hf.induced, is_closed_induced_iff]

lemma inducing.is_closed_iff' {f : α → β} (hf : inducing f) {s : set α} :
  is_closed s ↔ ∀ x, f x ∈ closure (f '' s) → x ∈ s :=
by rw [hf.induced, is_closed_induced_iff']

lemma inducing.is_closed_preimage {f : α → β} (h : inducing f) (s : set β) (hs : is_closed s) :
  is_closed (f ⁻¹' s) :=
(inducing.is_closed_iff h).mpr ⟨s, hs, rfl⟩

lemma inducing.is_open_iff {f : α → β} (hf : inducing f) {s : set α} :
  is_open s ↔ ∃ t, is_open t ∧ f ⁻¹' t = s :=
by rw [hf.induced, is_open_induced_iff]

lemma inducing.dense_iff {f : α → β} (hf : inducing f) {s : set α} :
  dense s ↔ ∀ x, f x ∈ closure (f '' s) :=
by simp only [dense, hf.closure_eq_preimage_closure_image, mem_preimage]

end inducing

section embedding

/-- A function between topological spaces is an embedding if it is injective,
  and for all `s : set α`, `s` is open iff it is the preimage of an open set. -/
@[mk_iff] structure embedding [tα : topological_space α] [tβ : topological_space β] (f : α → β)
  extends inducing f : Prop :=
(inj : injective f)

lemma function.injective.embedding_induced [t : topological_space β]
  {f : α → β} (hf : injective f) :
  @_root_.embedding α β (t.induced f) t f :=
{ induced := rfl,
  inj := hf }

variables [topological_space α] [topological_space β] [topological_space γ]

lemma embedding.mk' (f : α → β) (inj : injective f)
  (induced : ∀ a, comap f (𝓝 (f a)) = 𝓝 a) : embedding f :=
⟨inducing_iff_nhds.2 (λ a, (induced a).symm), inj⟩

lemma embedding_id : embedding (@id α) :=
⟨inducing_id, assume a₁ a₂ h, h⟩

lemma embedding.comp {g : β → γ} {f : α → β} (hg : embedding g) (hf : embedding f) :
  embedding (g ∘ f) :=
{ inj:= assume a₁ a₂ h, hf.inj $ hg.inj h,
  ..hg.to_inducing.comp hf.to_inducing }

lemma embedding_of_embedding_compose {f : α → β} {g : β → γ} (hf : continuous f) (hg : continuous g)
  (hgf : embedding (g ∘ f)) : embedding f :=
{ induced := (inducing_of_inducing_compose hf hg hgf.to_inducing).induced,
  inj := assume a₁ a₂ h, hgf.inj $ by simp [h, (∘)] }

protected lemma function.left_inverse.embedding {f : α → β} {g : β → α}
  (h : left_inverse f g) (hf : continuous f) (hg : continuous g) :
  embedding g :=
embedding_of_embedding_compose hg hf $ h.comp_eq_id.symm ▸ embedding_id

lemma embedding.map_nhds_eq {f : α → β} (hf : embedding f) (a : α) :
  (𝓝 a).map f = 𝓝[range f] (f a) :=
hf.1.map_nhds_eq a

lemma embedding.map_nhds_of_mem {f : α → β}
  (hf : embedding f) (a : α) (h : range f ∈ 𝓝 (f a)) : (𝓝 a).map f = 𝓝 (f a) :=
hf.1.map_nhds_of_mem a h

lemma embedding.tendsto_nhds_iff {ι : Type*}
  {f : ι → β} {g : β → γ} {a : filter ι} {b : β} (hg : embedding g) :
  tendsto f a (𝓝 b) ↔ tendsto (g ∘ f) a (𝓝 (g b)) :=
hg.to_inducing.tendsto_nhds_iff

lemma embedding.continuous_iff {f : α → β} {g : β → γ} (hg : embedding g) :
  continuous f ↔ continuous (g ∘ f) :=
inducing.continuous_iff hg.1

lemma embedding.continuous {f : α → β} (hf : embedding f) : continuous f :=
inducing.continuous hf.1

lemma embedding.closure_eq_preimage_closure_image {e : α → β} (he : embedding e) (s : set α) :
  closure s = e ⁻¹' closure (e '' s) :=
he.1.closure_eq_preimage_closure_image s

end embedding

/-- A function between topological spaces is a quotient map if it is surjective,
  and for all `s : set β`, `s` is open iff its preimage is an open set. -/
def quotient_map {α : Type*} {β : Type*} [tα : topological_space α] [tβ : topological_space β]
  (f : α → β) : Prop :=
surjective f ∧ tβ = tα.coinduced f

lemma quotient_map_iff {α β : Type*} [topological_space α] [topological_space β] {f : α → β} :
  quotient_map f ↔ surjective f ∧ ∀ s : set β, is_open s ↔ is_open (f ⁻¹' s) :=
and_congr iff.rfl topological_space_eq_iff

namespace quotient_map

variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
  {g : β → γ} {f : α → β}

protected lemma id : quotient_map (@id α) :=
⟨assume a, ⟨a, rfl⟩, coinduced_id.symm⟩

protected lemma comp (hg : quotient_map g) (hf : quotient_map f) :
  quotient_map (g ∘ f) :=
⟨hg.left.comp hf.left, by rw [hg.right, hf.right, coinduced_compose]⟩

protected lemma of_quotient_map_compose (hf : continuous f) (hg : continuous g)
  (hgf : quotient_map (g ∘ f)) : quotient_map g :=
⟨hgf.1.of_comp,
  le_antisymm
    (by { rw [hgf.right, ← continuous_iff_coinduced_le], apply continuous_coinduced_rng.comp hf })
    (by rwa ← continuous_iff_coinduced_le)⟩

lemma of_inverse {g : β → α} (hf : continuous f) (hg : continuous g) (h : left_inverse g f) :
  quotient_map g :=
quotient_map.of_quotient_map_compose hf hg $ h.comp_eq_id.symm ▸ quotient_map.id

protected lemma continuous_iff (hf : quotient_map f) :
  continuous g ↔ continuous (g ∘ f) :=
by rw [continuous_iff_coinduced_le, continuous_iff_coinduced_le, hf.right, coinduced_compose]

protected lemma continuous (hf : quotient_map f) : continuous f :=
hf.continuous_iff.mp continuous_id

protected lemma surjective (hf : quotient_map f) : surjective f := hf.1

protected lemma is_open_preimage (hf : quotient_map f) {s : set β} :
  is_open (f ⁻¹' s) ↔ is_open s :=
((quotient_map_iff.1 hf).2 s).symm

protected lemma is_closed_preimage (hf : quotient_map f) {s : set β} :
  is_closed (f ⁻¹' s) ↔ is_closed s :=
by simp only [← is_open_compl_iff, ← preimage_compl, hf.is_open_preimage]

end quotient_map

/-- A map `f : α → β` is said to be an *open map*, if the image of any open `U : set α`
is open in `β`. -/
def is_open_map [topological_space α] [topological_space β] (f : α → β) :=
∀ U : set α, is_open U → is_open (f '' U)

namespace is_open_map
variables [topological_space α] [topological_space β] [topological_space γ] {f : α → β}

protected lemma id : is_open_map (@id α) := assume s hs, by rwa [image_id]

protected lemma comp
  {g : β → γ} {f : α → β} (hg : is_open_map g) (hf : is_open_map f) : is_open_map (g ∘ f) :=
by intros s hs; rw [image_comp]; exact hg _ (hf _ hs)

lemma is_open_range (hf : is_open_map f) : is_open (range f) :=
by { rw ← image_univ, exact hf _ is_open_univ }

lemma image_mem_nhds (hf : is_open_map f) {x : α} {s : set α} (hx : s ∈ 𝓝 x) :
  f '' s ∈ 𝓝 (f x) :=
let ⟨t, hts, ht, hxt⟩ := mem_nhds_iff.1 hx in
mem_of_superset (is_open.mem_nhds (hf t ht) (mem_image_of_mem _ hxt)) (image_subset _ hts)

lemma range_mem_nhds (hf : is_open_map f) (x : α) : range f ∈ 𝓝 (f x) :=
hf.is_open_range.mem_nhds $ mem_range_self _

lemma maps_to_interior (hf : is_open_map f) {s : set α} {t : set β} (h : maps_to f s t) :
  maps_to f (interior s) (interior t) :=
maps_to'.2 $ interior_maximal (h.mono interior_subset subset.rfl).image_subset
  (hf _ is_open_interior)

lemma image_interior_subset (hf : is_open_map f) (s : set α) :
  f '' interior s ⊆ interior (f '' s) :=
(hf.maps_to_interior (maps_to_image f s)).image_subset

lemma nhds_le (hf : is_open_map f) (a : α) : 𝓝 (f a) ≤ (𝓝 a).map f :=
le_map $ λ s, hf.image_mem_nhds

lemma of_nhds_le (hf : ∀ a, 𝓝 (f a) ≤ map f (𝓝 a)) : is_open_map f :=
λ s hs, is_open_iff_mem_nhds.2 $ λ b ⟨a, has, hab⟩,
  hab ▸ hf _ (image_mem_map $ is_open.mem_nhds hs has)

lemma of_sections {f : α → β}
  (h : ∀ x, ∃ g : β → α, continuous_at g (f x) ∧ g (f x) = x ∧ right_inverse g f) :
  is_open_map f :=
of_nhds_le $ λ x, let ⟨g, hgc, hgx, hgf⟩ := h x in
calc 𝓝 (f x) = map f (map g (𝓝 (f x))) : by rw [map_map, hgf.comp_eq_id, map_id]
... ≤ map f (𝓝 (g (f x))) : map_mono hgc
... = map f (𝓝 x) : by rw hgx

lemma of_inverse {f : α → β} {f' : β → α}
  (h : continuous f') (l_inv : left_inverse f f') (r_inv : right_inverse f f') :
  is_open_map f :=
of_sections $ λ x, ⟨f', h.continuous_at, r_inv _, l_inv⟩

/-- A continuous surjective open map is a quotient map. -/
lemma to_quotient_map {f : α → β}
  (open_map : is_open_map f) (cont : continuous f) (surj : surjective f) :
  quotient_map f :=
quotient_map_iff.2 ⟨surj, λ s, ⟨λ h, h.preimage cont, λ h, surj.image_preimage s ▸ open_map _ h⟩⟩

lemma interior_preimage_subset_preimage_interior (hf : is_open_map f) {s : set β} :
  interior (f⁻¹' s) ⊆ f⁻¹' (interior s) :=
hf.maps_to_interior (maps_to_preimage _ _)

lemma preimage_interior_eq_interior_preimage (hf₁ : is_open_map f) (hf₂ : continuous f)
  (s : set β) :
  f⁻¹' (interior s) = interior (f⁻¹' s) :=
subset.antisymm
  (preimage_interior_subset_interior_preimage hf₂)
  (interior_preimage_subset_preimage_interior hf₁)

lemma preimage_closure_subset_closure_preimage (hf : is_open_map f) {s : set β} :
  f ⁻¹' (closure s) ⊆ closure (f ⁻¹' s) :=
begin
  rw ← compl_subset_compl,
  simp only [← interior_compl, ← preimage_compl, hf.interior_preimage_subset_preimage_interior]
end

lemma preimage_closure_eq_closure_preimage (hf : is_open_map f) (hfc : continuous f) (s : set β) :
  f ⁻¹' (closure s) = closure (f ⁻¹' s) :=
hf.preimage_closure_subset_closure_preimage.antisymm (hfc.closure_preimage_subset s)

lemma preimage_frontier_subset_frontier_preimage (hf : is_open_map f) {s : set β} :
  f ⁻¹' (frontier s) ⊆ frontier (f ⁻¹' s) :=
by simpa only [frontier_eq_closure_inter_closure, preimage_inter]
  using inter_subset_inter hf.preimage_closure_subset_closure_preimage
    hf.preimage_closure_subset_closure_preimage

lemma preimage_frontier_eq_frontier_preimage (hf : is_open_map f) (hfc : continuous f) (s : set β) :
  f ⁻¹' (frontier s) = frontier (f ⁻¹' s) :=
by simp only [frontier_eq_closure_inter_closure, preimage_inter, preimage_compl,
  hf.preimage_closure_eq_closure_preimage hfc]

end is_open_map

lemma is_open_map_iff_nhds_le [topological_space α] [topological_space β] {f : α → β} :
  is_open_map f ↔ ∀(a:α), 𝓝 (f a) ≤ (𝓝 a).map f :=
⟨λ hf, hf.nhds_le, is_open_map.of_nhds_le⟩

lemma is_open_map_iff_interior [topological_space α] [topological_space β] {f : α → β} :
  is_open_map f ↔ ∀ s, f '' (interior s) ⊆ interior (f '' s) :=
⟨is_open_map.image_interior_subset, λ hs u hu, subset_interior_iff_open.mp $
  calc f '' u = f '' (interior u) : by rw hu.interior_eq
          ... ⊆ interior (f '' u) : hs u⟩

/-- An inducing map with an open range is an open map. -/
protected lemma inducing.is_open_map [topological_space α] [topological_space β] {f : α → β}
  (hi : inducing f) (ho : is_open (range f)) :
  is_open_map f :=
is_open_map.of_nhds_le $ λ x, (hi.map_nhds_of_mem _ $ is_open.mem_nhds ho $ mem_range_self _).ge

section is_closed_map
variables [topological_space α] [topological_space β]

/-- A map `f : α → β` is said to be a *closed map*, if the image of any closed `U : set α`
is closed in `β`. -/
def is_closed_map (f : α → β) := ∀ U : set α, is_closed U → is_closed (f '' U)

end is_closed_map

namespace is_closed_map

variables [topological_space α] [topological_space β] [topological_space γ]
open function

protected lemma id : is_closed_map (@id α) := assume s hs, by rwa image_id

protected lemma comp {g : β → γ} {f : α → β} (hg : is_closed_map g) (hf : is_closed_map f) :
  is_closed_map (g ∘ f) :=
by { intros s hs, rw image_comp, exact hg _ (hf _ hs) }

lemma closure_image_subset {f : α → β} (hf : is_closed_map f) (s : set α) :
  closure (f '' s) ⊆ f '' closure s :=
closure_minimal (image_subset _ subset_closure) (hf _ is_closed_closure)

lemma of_inverse {f : α → β} {f' : β → α}
  (h : continuous f') (l_inv : left_inverse f f') (r_inv : right_inverse f f') :
  is_closed_map f :=
assume s hs,
have f' ⁻¹' s = f '' s, by ext x; simp [mem_image_iff_of_inverse r_inv l_inv],
this ▸ hs.preimage h

lemma of_nonempty {f : α → β} (h : ∀ s, is_closed s → s.nonempty → is_closed (f '' s)) :
  is_closed_map f :=
begin
  intros s hs, cases eq_empty_or_nonempty s with h2s h2s,
  { simp_rw [h2s, image_empty, is_closed_empty] },
  { exact h s hs h2s }
end

lemma closed_range {f : α → β} (hf : is_closed_map f) : is_closed (range f) :=
@image_univ _ _ f ▸ hf _ is_closed_univ

end is_closed_map

lemma inducing.is_closed_map [topological_space α] [topological_space β]
  {f : α → β} (hf : inducing f) (h : is_closed (range f)) : is_closed_map f :=
begin
  intros s hs,
  rcases hf.is_closed_iff.1 hs with ⟨t, ht, rfl⟩,
  rw image_preimage_eq_inter_range,
  exact ht.inter h
end

lemma is_closed_map_iff_closure_image [topological_space α] [topological_space β] {f : α → β} :
  is_closed_map f ↔ ∀ s, closure (f '' s) ⊆ f '' closure s :=
⟨is_closed_map.closure_image_subset, λ hs c hc, is_closed_of_closure_subset $
  calc closure (f '' c) ⊆ f '' (closure c) : hs c
                    ... = f '' c : by rw hc.closure_eq⟩

section open_embedding
variables [topological_space α] [topological_space β] [topological_space γ]

/-- An open embedding is an embedding with open image. -/
@[mk_iff]
structure open_embedding (f : α → β) extends _root_.embedding f : Prop :=
(open_range : is_open $ range f)

lemma open_embedding.is_open_map {f : α → β} (hf : open_embedding f) : is_open_map f :=
hf.to_embedding.to_inducing.is_open_map hf.open_range

lemma open_embedding.map_nhds_eq {f : α → β} (hf : open_embedding f) (a : α) :
  map f (𝓝 a) = 𝓝 (f a) :=
hf.to_embedding.map_nhds_of_mem _ $ hf.open_range.mem_nhds $ mem_range_self _

lemma open_embedding.open_iff_image_open {f : α → β} (hf : open_embedding f)
  {s : set α} : is_open s ↔ is_open (f '' s) :=
⟨hf.is_open_map s,
 λ h, begin
   convert ← h.preimage hf.to_embedding.continuous,
   apply preimage_image_eq _ hf.inj
 end⟩

lemma open_embedding.tendsto_nhds_iff {ι : Type*}
  {f : ι → β} {g : β → γ} {a : filter ι} {b : β} (hg : open_embedding g) :
  tendsto f a (𝓝 b) ↔ tendsto (g ∘ f) a (𝓝 (g b)) :=
hg.to_embedding.tendsto_nhds_iff

lemma open_embedding.continuous {f : α → β} (hf : open_embedding f) : continuous f :=
hf.to_embedding.continuous

lemma open_embedding.open_iff_preimage_open {f : α → β} (hf : open_embedding f)
  {s : set β} (hs : s ⊆ range f) : is_open s ↔ is_open (f ⁻¹' s) :=
begin
  convert ←hf.open_iff_image_open.symm,
  rwa [image_preimage_eq_inter_range, inter_eq_self_of_subset_left]
end

lemma open_embedding_of_embedding_open {f : α → β} (h₁ : embedding f)
  (h₂ : is_open_map f) : open_embedding f :=
⟨h₁, h₂.is_open_range⟩

lemma open_embedding_iff_embedding_open {f : α → β} :
  open_embedding f ↔ embedding f ∧ is_open_map f :=
⟨λ h, ⟨h.1, h.is_open_map⟩, λ h, open_embedding_of_embedding_open h.1 h.2lemma open_embedding_of_continuous_injective_open {f : α → β} (h₁ : continuous f)
  (h₂ : injective f) (h₃ : is_open_map f) : open_embedding f :=
begin
  simp only [open_embedding_iff_embedding_open, embedding_iff, inducing_iff_nhds, *, and_true],
  exact λ a, le_antisymm (h₁.tendsto _).le_comap
    (@comap_map _ _ (𝓝 a) _ h₂ ▸ comap_mono (h₃.nhds_le _))
end

lemma open_embedding_iff_continuous_injective_open {f : α → β} :
  open_embedding f ↔ continuous f ∧ injective f ∧ is_open_map f :=
⟨λ h, ⟨h.continuous, h.inj, h.is_open_map⟩,
  λ h, open_embedding_of_continuous_injective_open h.1 h.2.1 h.2.2lemma open_embedding_id : open_embedding (@id α) :=
⟨embedding_id, is_open_map.id.is_open_range⟩

lemma open_embedding.comp {g : β → γ} {f : α → β}
  (hg : open_embedding g) (hf : open_embedding f) : open_embedding (g ∘ f) :=
⟨hg.1.comp hf.1, (hg.is_open_map.comp hf.is_open_map).is_open_range⟩

lemma open_embedding.is_open_map_iff {g : β → γ} {f : α → β} (hg : open_embedding g) :
  is_open_map f ↔ is_open_map (g ∘ f) :=
by simp only [is_open_map_iff_nhds_le, ← @map_map _ _ _ _ f g, ← hg.map_nhds_eq,
  map_le_map_iff hg.inj]

lemma open_embedding.of_comp_iff (f : α → β) {g : β → γ} (hg : open_embedding g) :
  open_embedding (g ∘ f) ↔ open_embedding f :=
by simp only [open_embedding_iff_continuous_injective_open, ← hg.is_open_map_iff,
  ← hg.1.continuous_iff, hg.inj.of_comp_iff]

lemma open_embedding.of_comp (f : α → β) {g : β → γ} (hg : open_embedding g)
  (h : open_embedding (g ∘ f)) : open_embedding f :=
(open_embedding.of_comp_iff f hg).1 h

end open_embedding

section closed_embedding
variables [topological_space α] [topological_space β] [topological_space γ]

/-- A closed embedding is an embedding with closed image. -/
@[mk_iff]
structure closed_embedding (f : α → β) extends _root_.embedding f : Prop :=
(closed_range : is_closed $ range f)

variables {f : α → β}

lemma closed_embedding.tendsto_nhds_iff {ι : Type*}
  {g : ι → α} {a : filter ι} {b : α} (hf : closed_embedding f) :
  tendsto g a (𝓝 b) ↔ tendsto (f ∘ g) a (𝓝 (f b)) :=
hf.to_embedding.tendsto_nhds_iff

lemma closed_embedding.continuous (hf : closed_embedding f) : continuous f :=
hf.to_embedding.continuous

lemma closed_embedding.is_closed_map (hf : closed_embedding f) : is_closed_map f :=
hf.to_embedding.to_inducing.is_closed_map hf.closed_range

lemma closed_embedding.closed_iff_image_closed (hf : closed_embedding f)
  {s : set α} : is_closed s ↔ is_closed (f '' s) :=
⟨hf.is_closed_map s,
 λ h, begin
   convert ←continuous_iff_is_closed.mp hf.continuous _ h,
   apply preimage_image_eq _ hf.inj
 end⟩

lemma closed_embedding.closed_iff_preimage_closed (hf : closed_embedding f)
  {s : set β} (hs : s ⊆ range f) : is_closed s ↔ is_closed (f ⁻¹' s) :=
begin
  convert ←hf.closed_iff_image_closed.symm,
  rwa [image_preimage_eq_inter_range, inter_eq_self_of_subset_left]
end

lemma closed_embedding_of_embedding_closed (h₁ : embedding f)
  (h₂ : is_closed_map f) : closed_embedding f :=
⟨h₁, by convert h₂ univ is_closed_univ; simp⟩

lemma closed_embedding_of_continuous_injective_closed (h₁ : continuous f)
  (h₂ : injective f) (h₃ : is_closed_map f) : closed_embedding f :=
begin
  refine closed_embedding_of_embedding_closed ⟨⟨_⟩, h₂⟩ h₃,
  apply le_antisymm (continuous_iff_le_induced.mp h₁) _,
  intro s',
  change is_open _ ≤ is_open _,
  rw [←is_closed_compl_iff, ←is_closed_compl_iff],
  generalize : s'ᶜ = s,
  rw is_closed_induced_iff,
  refine λ hs, ⟨f '' s, h₃ s hs, _⟩,
  rw preimage_image_eq _ h₂
end

lemma closed_embedding_id : closed_embedding (@id α) :=
⟨embedding_id, by convert is_closed_univ; apply range_id⟩

lemma closed_embedding.comp {g : β → γ} {f : α → β}
  (hg : closed_embedding g) (hf : closed_embedding f) : closed_embedding (g ∘ f) :=
⟨hg.to_embedding.comp hf.to_embedding, show is_closed (range (g ∘ f)),
 by rw [range_comp, ←hg.closed_iff_image_closed]; exact hf.closed_range⟩

lemma closed_embedding.closure_image_eq {f : α → β} (hf : closed_embedding f) (s : set α) :
  closure (f '' s) = f '' closure s :=
le_antisymm (is_closed_map_iff_closure_image.mp hf.is_closed_map _)
  (image_closure_subset_closure_image hf.continuous)

end closed_embedding