Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 58,851 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot
-/
import topology.maps
import topology.locally_finite
import order.filter.pi
import data.fin.tuple
/-!
# Constructions of new topological spaces from old ones
This file constructs products, sums, subtypes and quotients of topological spaces
and sets up their basic theory, such as criteria for maps into or out of these
constructions to be continuous; descriptions of the open sets, neighborhood filters,
and generators of these constructions; and their behavior with respect to embeddings
and other specific classes of maps.
## Implementation note
The constructed topologies are defined using induced and coinduced topologies
along with the complete lattice structure on topologies. Their universal properties
(for example, a map `X → Y × Z` is continuous if and only if both projections
`X → Y`, `X → Z` are) follow easily using order-theoretic descriptions of
continuity. With more work we can also extract descriptions of the open sets,
neighborhood filters and so on.
## Tags
product, sum, disjoint union, subspace, quotient space
-/
noncomputable theory
open topological_space set filter
open_locale classical topological_space filter
universes u v
variables {α : Type u} {β : Type v} {γ δ ε ζ : Type*}
section constructions
instance {p : α → Prop} [t : topological_space α] : topological_space (subtype p) :=
induced coe t
instance {r : α → α → Prop} [t : topological_space α] : topological_space (quot r) :=
coinduced (quot.mk r) t
instance {s : setoid α} [t : topological_space α] : topological_space (quotient s) :=
coinduced quotient.mk t
instance [t₁ : topological_space α] [t₂ : topological_space β] : topological_space (α × β) :=
induced prod.fst t₁ ⊓ induced prod.snd t₂
instance [t₁ : topological_space α] [t₂ : topological_space β] : topological_space (α ⊕ β) :=
coinduced sum.inl t₁ ⊔ coinduced sum.inr t₂
instance {β : α → Type v} [t₂ : Πa, topological_space (β a)] : topological_space (sigma β) :=
⨆a, coinduced (sigma.mk a) (t₂ a)
instance Pi.topological_space {β : α → Type v} [t₂ : Πa, topological_space (β a)] :
topological_space (Πa, β a) :=
⨅a, induced (λf, f a) (t₂ a)
instance ulift.topological_space [t : topological_space α] : topological_space (ulift.{v u} α) :=
t.induced ulift.down
/-!
### `additive`, `multiplicative`
The topology on those type synonyms is inherited without change.
-/
section
variables [topological_space α]
open additive multiplicative
instance : topological_space (additive α) := ‹topological_space α›
instance : topological_space (multiplicative α) := ‹topological_space α›
instance [discrete_topology α] : discrete_topology (additive α) := ‹discrete_topology α›
instance [discrete_topology α] : discrete_topology (multiplicative α) := ‹discrete_topology α›
lemma continuous_of_mul : continuous (of_mul : α → additive α) := continuous_id
lemma continuous_to_mul : continuous (to_mul : additive α → α) := continuous_id
lemma continuous_of_add : continuous (of_add : α → multiplicative α) := continuous_id
lemma continuous_to_add : continuous (to_add : multiplicative α → α) := continuous_id
lemma is_open_map_of_mul : is_open_map (of_mul : α → additive α) := is_open_map.id
lemma is_open_map_to_mul : is_open_map (to_mul : additive α → α) := is_open_map.id
lemma is_open_map_of_add : is_open_map (of_add : α → multiplicative α) := is_open_map.id
lemma is_open_map_to_add : is_open_map (to_add : multiplicative α → α) := is_open_map.id
lemma is_closed_map_of_mul : is_closed_map (of_mul : α → additive α) := is_closed_map.id
lemma is_closed_map_to_mul : is_closed_map (to_mul : additive α → α) := is_closed_map.id
lemma is_closed_map_of_add : is_closed_map (of_add : α → multiplicative α) := is_closed_map.id
lemma is_closed_map_to_add : is_closed_map (to_add : multiplicative α → α) := is_closed_map.id
local attribute [semireducible] nhds
lemma nhds_of_mul (a : α) : 𝓝 (of_mul a) = map of_mul (𝓝 a) := rfl
lemma nhds_of_add (a : α) : 𝓝 (of_add a) = map of_add (𝓝 a) := rfl
lemma nhds_to_mul (a : additive α) : 𝓝 (to_mul a) = map to_mul (𝓝 a) := rfl
lemma nhds_to_add (a : multiplicative α) : 𝓝 (to_add a) = map to_add (𝓝 a) := rfl
end
/-!
### Order dual
The topology on this type synonym is inherited without change.
-/
section
variables [topological_space α]
open order_dual
instance : topological_space αᵒᵈ := ‹topological_space α›
instance [discrete_topology α] : discrete_topology (αᵒᵈ) := ‹discrete_topology α›
lemma continuous_to_dual : continuous (to_dual : α → αᵒᵈ) := continuous_id
lemma continuous_of_dual : continuous (of_dual : αᵒᵈ → α) := continuous_id
lemma is_open_map_to_dual : is_open_map (to_dual : α → αᵒᵈ) := is_open_map.id
lemma is_open_map_of_dual : is_open_map (of_dual : αᵒᵈ → α) := is_open_map.id
lemma is_closed_map_to_dual : is_closed_map (to_dual : α → αᵒᵈ) := is_closed_map.id
lemma is_closed_map_of_dual : is_closed_map (of_dual : αᵒᵈ → α) := is_closed_map.id
local attribute [semireducible] nhds
lemma nhds_to_dual (a : α) : 𝓝 (to_dual a) = map to_dual (𝓝 a) := rfl
lemma nhds_of_dual (a : α) : 𝓝 (of_dual a) = map of_dual (𝓝 a) := rfl
end
lemma quotient.preimage_mem_nhds [topological_space α] [s : setoid α]
{V : set $ quotient s} {a : α} (hs : V ∈ 𝓝 (quotient.mk a)) : quotient.mk ⁻¹' V ∈ 𝓝 a :=
preimage_nhds_coinduced hs
/-- The image of a dense set under `quotient.mk` is a dense set. -/
lemma dense.quotient [setoid α] [topological_space α] {s : set α} (H : dense s) :
dense (quotient.mk '' s) :=
(surjective_quotient_mk α).dense_range.dense_image continuous_coinduced_rng H
/-- The composition of `quotient.mk` and a function with dense range has dense range. -/
lemma dense_range.quotient [setoid α] [topological_space α] {f : β → α} (hf : dense_range f) :
dense_range (quotient.mk ∘ f) :=
(surjective_quotient_mk α).dense_range.comp hf continuous_coinduced_rng
instance {p : α → Prop} [topological_space α] [discrete_topology α] :
discrete_topology (subtype p) :=
⟨bot_unique $ assume s hs,
⟨coe '' s, is_open_discrete _, (set.preimage_image_eq _ subtype.coe_injective)⟩⟩
instance sum.discrete_topology [topological_space α] [topological_space β]
[hα : discrete_topology α] [hβ : discrete_topology β] : discrete_topology (α ⊕ β) :=
⟨by unfold sum.topological_space; simp [hα.eq_bot, hβ.eq_bot]⟩
instance sigma.discrete_topology {β : α → Type v} [Πa, topological_space (β a)]
[h : Πa, discrete_topology (β a)] : discrete_topology (sigma β) :=
⟨by { unfold sigma.topological_space, simp [λ a, (h a).eq_bot] }⟩
section topα
variable [topological_space α]
/-
The 𝓝 filter and the subspace topology.
-/
theorem mem_nhds_subtype (s : set α) (a : {x // x ∈ s}) (t : set {x // x ∈ s}) :
t ∈ 𝓝 a ↔ ∃ u ∈ 𝓝 (a : α), coe ⁻¹' u ⊆ t :=
mem_nhds_induced coe a t
theorem nhds_subtype (s : set α) (a : {x // x ∈ s}) :
𝓝 a = comap coe (𝓝 (a : α)) :=
nhds_induced coe a
end topα
/-- A type synonym equiped with the topology whose open sets are the empty set and the sets with
finite complements. -/
def cofinite_topology (α : Type*) := α
namespace cofinite_topology
/-- The identity equivalence between `α` and `cofinite_topology α`. -/
def of : α ≃ cofinite_topology α := equiv.refl α
instance [inhabited α] : inhabited (cofinite_topology α) :=
{ default := of default }
instance : topological_space (cofinite_topology α) :=
{ is_open := λ s, s.nonempty → set.finite sᶜ,
is_open_univ := by simp,
is_open_inter := λ s t, begin
rintros hs ht ⟨x, hxs, hxt⟩,
rw compl_inter,
exact (hs ⟨x, hxs⟩).union (ht ⟨x, hxt⟩),
end,
is_open_sUnion := begin
rintros s h ⟨x, t, hts, hzt⟩,
rw set.compl_sUnion,
exact set.finite.sInter (mem_image_of_mem _ hts) (h t hts ⟨x, hzt⟩),
end }
lemma is_open_iff {s : set (cofinite_topology α)} :
is_open s ↔ (s.nonempty → (sᶜ).finite) := iff.rfl
lemma is_open_iff' {s : set (cofinite_topology α)} :
is_open s ↔ (s = ∅ ∨ (sᶜ).finite) :=
by simp only [is_open_iff, ← ne_empty_iff_nonempty, or_iff_not_imp_left]
lemma is_closed_iff {s : set (cofinite_topology α)} :
is_closed s ↔ s = univ ∨ s.finite :=
by simp [← is_open_compl_iff, is_open_iff']
lemma nhds_eq (a : cofinite_topology α) : 𝓝 a = pure a ⊔ cofinite :=
begin
ext U,
rw mem_nhds_iff,
split,
{ rintro ⟨V, hVU, V_op, haV⟩,
exact mem_sup.mpr ⟨hVU haV, mem_of_superset (V_op ⟨_, haV⟩) hVU⟩ },
{ rintros ⟨hU : a ∈ U, hU' : (Uᶜ).finite⟩,
exact ⟨U, subset.rfl, λ h, hU', hU⟩ }
end
lemma mem_nhds_iff {a : cofinite_topology α} {s : set (cofinite_topology α)} :
s ∈ 𝓝 a ↔ a ∈ s ∧ sᶜ.finite :=
by simp [nhds_eq]
end cofinite_topology
end constructions
section prod
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
[topological_space ε] [topological_space ζ]
@[continuity] lemma continuous_fst : continuous (@prod.fst α β) :=
continuous_inf_dom_left continuous_induced_dom
/-- Postcomposing `f` with `prod.fst` is continuous -/
lemma continuous.fst {f : α → β × γ} (hf : continuous f) : continuous (λ a : α, (f a).1) :=
continuous_fst.comp hf
/-- Precomposing `f` with `prod.fst` is continuous -/
lemma continuous.fst' {f : α → γ} (hf : continuous f) : continuous (λ x : α × β, f x.fst) :=
hf.comp continuous_fst
lemma continuous_at_fst {p : α × β} : continuous_at prod.fst p :=
continuous_fst.continuous_at
/-- Postcomposing `f` with `prod.fst` is continuous at `x` -/
lemma continuous_at.fst {f : α → β × γ} {x : α} (hf : continuous_at f x) :
continuous_at (λ a : α, (f a).1) x :=
continuous_at_fst.comp hf
/-- Precomposing `f` with `prod.fst` is continuous at `(x, y)` -/
lemma continuous_at.fst' {f : α → γ} {x : α} {y : β} (hf : continuous_at f x) :
continuous_at (λ x : α × β, f x.fst) (x, y) :=
continuous_at.comp hf continuous_at_fst
/-- Precomposing `f` with `prod.fst` is continuous at `x : α × β` -/
lemma continuous_at.fst'' {f : α → γ} {x : α × β} (hf : continuous_at f x.fst) :
continuous_at (λ x : α × β, f x.fst) x :=
hf.comp continuous_at_fst
@[continuity] lemma continuous_snd : continuous (@prod.snd α β) :=
continuous_inf_dom_right continuous_induced_dom
/-- Postcomposing `f` with `prod.snd` is continuous -/
lemma continuous.snd {f : α → β × γ} (hf : continuous f) : continuous (λ a : α, (f a).2) :=
continuous_snd.comp hf
/-- Precomposing `f` with `prod.snd` is continuous -/
lemma continuous.snd' {f : β → γ} (hf : continuous f) : continuous (λ x : α × β, f x.snd) :=
hf.comp continuous_snd
lemma continuous_at_snd {p : α × β} : continuous_at prod.snd p :=
continuous_snd.continuous_at
/-- Postcomposing `f` with `prod.snd` is continuous at `x` -/
lemma continuous_at.snd {f : α → β × γ} {x : α} (hf : continuous_at f x) :
continuous_at (λ a : α, (f a).2) x :=
continuous_at_snd.comp hf
/-- Precomposing `f` with `prod.snd` is continuous at `(x, y)` -/
lemma continuous_at.snd' {f : β → γ} {x : α} {y : β} (hf : continuous_at f y) :
continuous_at (λ x : α × β, f x.snd) (x, y) :=
continuous_at.comp hf continuous_at_snd
/-- Precomposing `f` with `prod.snd` is continuous at `x : α × β` -/
lemma continuous_at.snd'' {f : β → γ} {x : α × β} (hf : continuous_at f x.snd) :
continuous_at (λ x : α × β, f x.snd) x :=
hf.comp continuous_at_snd
@[continuity] lemma continuous.prod_mk {f : γ → α} {g : γ → β}
(hf : continuous f) (hg : continuous g) : continuous (λx, (f x, g x)) :=
continuous_inf_rng.2 ⟨continuous_induced_rng.2 hf, continuous_induced_rng.2 hg⟩
@[simp] lemma continuous_prod_mk {f : α → β} {g : α → γ} :
continuous (λ x, (f x, g x)) ↔ continuous f ∧ continuous g :=
⟨λ h, ⟨h.fst, h.snd⟩, λ h, h.1.prod_mk h.2⟩
@[continuity] lemma continuous.prod.mk (a : α) : continuous (λ b : β, (a, b)) :=
continuous_const.prod_mk continuous_id'
@[continuity] lemma continuous.prod.mk_left (b : β) : continuous (λ a : α, (a, b)) :=
continuous_id'.prod_mk continuous_const
lemma continuous.comp₂ {g : α × β → γ} (hg : continuous g) {e : δ → α} (he : continuous e)
{f : δ → β} (hf : continuous f) : continuous (λ x, g (e x, f x)) :=
hg.comp $ he.prod_mk hf
lemma continuous.comp₃ {g : α × β × γ → ε} (hg : continuous g)
{e : δ → α} (he : continuous e) {f : δ → β} (hf : continuous f)
{k : δ → γ} (hk : continuous k) : continuous (λ x, g (e x, f x, k x)) :=
hg.comp₂ he $ hf.prod_mk hk
lemma continuous.comp₄ {g : α × β × γ × ζ → ε} (hg : continuous g)
{e : δ → α} (he : continuous e) {f : δ → β} (hf : continuous f)
{k : δ → γ} (hk : continuous k) {l : δ → ζ} (hl : continuous l) :
continuous (λ x, g (e x, f x, k x, l x)) :=
hg.comp₃ he hf $ hk.prod_mk hl
lemma continuous.prod_map {f : γ → α} {g : δ → β} (hf : continuous f) (hg : continuous g) :
continuous (λ x : γ × δ, (f x.1, g x.2)) :=
hf.fst'.prod_mk hg.snd'
/-- A version of `continuous_inf_dom_left` for binary functions -/
lemma continuous_inf_dom_left₂ {α β γ} {f : α → β → γ}
{ta1 ta2 : topological_space α} {tb1 tb2 : topological_space β} {tc1 : topological_space γ}
(h : by haveI := ta1; haveI := tb1; exact continuous (λ p : α × β, f p.1 p.2)) :
by haveI := ta1 ⊓ ta2; haveI := tb1 ⊓ tb2; exact continuous (λ p : α × β, f p.1 p.2) :=
begin
have ha := @continuous_inf_dom_left _ _ id ta1 ta2 ta1 (@continuous_id _ (id _)),
have hb := @continuous_inf_dom_left _ _ id tb1 tb2 tb1 (@continuous_id _ (id _)),
have h_continuous_id := @continuous.prod_map _ _ _ _ ta1 tb1 (ta1 ⊓ ta2) (tb1 ⊓ tb2) _ _ ha hb,
exact @continuous.comp _ _ _ (id _) (id _) _ _ _ h h_continuous_id,
end
/-- A version of `continuous_inf_dom_right` for binary functions -/
lemma continuous_inf_dom_right₂ {α β γ} {f : α → β → γ}
{ta1 ta2 : topological_space α} {tb1 tb2 : topological_space β} {tc1 : topological_space γ}
(h : by haveI := ta2; haveI := tb2; exact continuous (λ p : α × β, f p.1 p.2)) :
by haveI := ta1 ⊓ ta2; haveI := tb1 ⊓ tb2; exact continuous (λ p : α × β, f p.1 p.2) :=
begin
have ha := @continuous_inf_dom_right _ _ id ta1 ta2 ta2 (@continuous_id _ (id _)),
have hb := @continuous_inf_dom_right _ _ id tb1 tb2 tb2 (@continuous_id _ (id _)),
have h_continuous_id := @continuous.prod_map _ _ _ _ ta2 tb2 (ta1 ⊓ ta2) (tb1 ⊓ tb2) _ _ ha hb,
exact @continuous.comp _ _ _ (id _) (id _) _ _ _ h h_continuous_id,
end
/-- A version of `continuous_Inf_dom` for binary functions -/
lemma continuous_Inf_dom₂ {α β γ} {f : α → β → γ}
{tas : set (topological_space α)} {tbs : set (topological_space β)}
{ta : topological_space α} {tb : topological_space β} {tc : topological_space γ}
(ha : ta ∈ tas) (hb : tb ∈ tbs)
(hf : continuous (λ p : α × β, f p.1 p.2)):
by haveI := Inf tas; haveI := Inf tbs; exact @continuous _ _ _ tc (λ p : α × β, f p.1 p.2) :=
begin
let t : topological_space (α × β) := prod.topological_space,
have ha := continuous_Inf_dom ha continuous_id,
have hb := continuous_Inf_dom hb continuous_id,
have h_continuous_id := @continuous.prod_map _ _ _ _ ta tb (Inf tas) (Inf tbs) _ _ ha hb,
exact @continuous.comp _ _ _ (id _) (id _) _ _ _ hf h_continuous_id,
end
lemma filter.eventually.prod_inl_nhds {p : α → Prop} {a : α} (h : ∀ᶠ x in 𝓝 a, p x) (b : β) :
∀ᶠ x in 𝓝 (a, b), p (x : α × β).1 :=
continuous_at_fst h
lemma filter.eventually.prod_inr_nhds {p : β → Prop} {b : β} (h : ∀ᶠ x in 𝓝 b, p x) (a : α) :
∀ᶠ x in 𝓝 (a, b), p (x : α × β).2 :=
continuous_at_snd h
lemma filter.eventually.prod_mk_nhds {pa : α → Prop} {a} (ha : ∀ᶠ x in 𝓝 a, pa x)
{pb : β → Prop} {b} (hb : ∀ᶠ y in 𝓝 b, pb y) :
∀ᶠ p in 𝓝 (a, b), pa (p : α × β).1 ∧ pb p.2 :=
(ha.prod_inl_nhds b).and (hb.prod_inr_nhds a)
lemma continuous_swap : continuous (prod.swap : α × β → β × α) :=
continuous_snd.prod_mk continuous_fst
lemma continuous_uncurry_left {f : α → β → γ} (a : α)
(h : continuous (function.uncurry f)) : continuous (f a) :=
show continuous (function.uncurry f ∘ (λ b, (a, b))), from h.comp (by continuity)
lemma continuous_uncurry_right {f : α → β → γ} (b : β)
(h : continuous (function.uncurry f)) : continuous (λ a, f a b) :=
show continuous (function.uncurry f ∘ (λ a, (a, b))), from h.comp (by continuity)
lemma continuous_curry {g : α × β → γ} (a : α)
(h : continuous g) : continuous (function.curry g a) :=
show continuous (g ∘ (λ b, (a, b))), from h.comp (by continuity)
lemma is_open.prod {s : set α} {t : set β} (hs : is_open s) (ht : is_open t) :
is_open (s ×ˢ t) :=
(hs.preimage continuous_fst).inter (ht.preimage continuous_snd)
lemma nhds_prod_eq {a : α} {b : β} : 𝓝 (a, b) = 𝓝 a ×ᶠ 𝓝 b :=
by rw [filter.prod, prod.topological_space, nhds_inf, nhds_induced, nhds_induced]
/-- If a function `f x y` is such that `y ↦ f x y` is continuous for all `x`, and `x` lives in a
discrete space, then `f` is continuous. -/
lemma continuous_uncurry_of_discrete_topology [discrete_topology α]
{f : α → β → γ} (hf : ∀ a, continuous (f a)) : continuous (function.uncurry f) :=
begin
apply continuous_iff_continuous_at.2,
rintros ⟨a, x⟩,
change map _ _ ≤ _,
rw [nhds_prod_eq, nhds_discrete, filter.map_pure_prod],
exact (hf a).continuous_at
end
lemma mem_nhds_prod_iff {a : α} {b : β} {s : set (α × β)} :
s ∈ 𝓝 (a, b) ↔ ∃ (u ∈ 𝓝 a) (v ∈ 𝓝 b), u ×ˢ v ⊆ s :=
by rw [nhds_prod_eq, mem_prod_iff]
lemma mem_nhds_prod_iff' {a : α} {b : β} {s : set (α × β)} :
s ∈ 𝓝 (a, b) ↔ ∃ (u : set α) (v : set β), is_open u ∧ a ∈ u ∧ is_open v ∧ b ∈ v ∧ u ×ˢ v ⊆ s :=
begin
rw mem_nhds_prod_iff,
split,
{ rintros ⟨u, Hu, v, Hv, h⟩,
rcases mem_nhds_iff.1 Hu with ⟨u', u'u, u'_open, Hu'⟩,
rcases mem_nhds_iff.1 Hv with ⟨v', v'v, v'_open, Hv'⟩,
exact ⟨u', v', u'_open, Hu', v'_open, Hv', (set.prod_mono u'u v'v).trans h⟩ },
{ rintros ⟨u, v, u_open, au, v_open, bv, huv⟩,
exact ⟨u, u_open.mem_nhds au, v, v_open.mem_nhds bv, huv⟩ }
end
lemma _root_.prod.tendsto_iff {α} (seq : α → β × γ) {f : filter α} (x : β × γ) :
tendsto seq f (𝓝 x)
↔ tendsto (λ n, (seq n).fst) f (𝓝 x.fst) ∧ tendsto (λ n, (seq n).snd) f (𝓝 x.snd) :=
by { cases x, rw [nhds_prod_eq, filter.tendsto_prod_iff'], }
lemma filter.has_basis.prod_nhds {ιa ιb : Type*} {pa : ιa → Prop} {pb : ιb → Prop}
{sa : ιa → set α} {sb : ιb → set β} {a : α} {b : β} (ha : (𝓝 a).has_basis pa sa)
(hb : (𝓝 b).has_basis pb sb) :
(𝓝 (a, b)).has_basis (λ i : ιa × ιb, pa i.1 ∧ pb i.2) (λ i, sa i.1 ×ˢ sb i.2) :=
by { rw nhds_prod_eq, exact ha.prod hb }
lemma filter.has_basis.prod_nhds' {ιa ιb : Type*} {pa : ιa → Prop} {pb : ιb → Prop}
{sa : ιa → set α} {sb : ιb → set β} {ab : α × β} (ha : (𝓝 ab.1).has_basis pa sa)
(hb : (𝓝 ab.2).has_basis pb sb) :
(𝓝 ab).has_basis (λ i : ιa × ιb, pa i.1 ∧ pb i.2) (λ i, sa i.1 ×ˢ sb i.2) :=
by { cases ab, exact ha.prod_nhds hb }
instance [discrete_topology α] [discrete_topology β] : discrete_topology (α × β) :=
⟨eq_of_nhds_eq_nhds $ assume ⟨a, b⟩,
by rw [nhds_prod_eq, nhds_discrete α, nhds_discrete β, nhds_bot, filter.prod_pure_pure]⟩
lemma prod_mem_nhds_iff {s : set α} {t : set β} {a : α} {b : β} :
s ×ˢ t ∈ 𝓝 (a, b) ↔ s ∈ 𝓝 a ∧ t ∈ 𝓝 b :=
by rw [nhds_prod_eq, prod_mem_prod_iff]
lemma prod_mem_nhds {s : set α} {t : set β} {a : α} {b : β}
(ha : s ∈ 𝓝 a) (hb : t ∈ 𝓝 b) : s ×ˢ t ∈ 𝓝 (a, b) :=
prod_mem_nhds_iff.2 ⟨ha, hb⟩
lemma filter.eventually.prod_nhds {p : α → Prop} {q : β → Prop} {a : α} {b : β}
(ha : ∀ᶠ x in 𝓝 a, p x) (hb : ∀ᶠ y in 𝓝 b, q y) :
∀ᶠ z : α × β in 𝓝 (a, b), p z.1 ∧ q z.2 :=
prod_mem_nhds ha hb
lemma nhds_swap (a : α) (b : β) : 𝓝 (a, b) = (𝓝 (b, a)).map prod.swap :=
by rw [nhds_prod_eq, filter.prod_comm, nhds_prod_eq]; refl
lemma filter.tendsto.prod_mk_nhds {γ} {a : α} {b : β} {f : filter γ} {ma : γ → α} {mb : γ → β}
(ha : tendsto ma f (𝓝 a)) (hb : tendsto mb f (𝓝 b)) :
tendsto (λc, (ma c, mb c)) f (𝓝 (a, b)) :=
by rw [nhds_prod_eq]; exact filter.tendsto.prod_mk ha hb
lemma filter.eventually.curry_nhds {p : α × β → Prop} {x : α} {y : β} (h : ∀ᶠ x in 𝓝 (x, y), p x) :
∀ᶠ x' in 𝓝 x, ∀ᶠ y' in 𝓝 y, p (x', y') :=
by { rw [nhds_prod_eq] at h, exact h.curry }
lemma continuous_at.prod {f : α → β} {g : α → γ} {x : α}
(hf : continuous_at f x) (hg : continuous_at g x) : continuous_at (λx, (f x, g x)) x :=
hf.prod_mk_nhds hg
lemma continuous_at.prod_map {f : α → γ} {g : β → δ} {p : α × β}
(hf : continuous_at f p.fst) (hg : continuous_at g p.snd) :
continuous_at (λ p : α × β, (f p.1, g p.2)) p :=
hf.fst''.prod hg.snd''
lemma continuous_at.prod_map' {f : α → γ} {g : β → δ} {x : α} {y : β}
(hf : continuous_at f x) (hg : continuous_at g y) :
continuous_at (λ p : α × β, (f p.1, g p.2)) (x, y) :=
hf.fst'.prod hg.snd'
lemma prod_generate_from_generate_from_eq {α β : Type*} {s : set (set α)} {t : set (set β)}
(hs : ⋃₀ s = univ) (ht : ⋃₀ t = univ) :
@prod.topological_space α β (generate_from s) (generate_from t) =
generate_from {g | ∃ u ∈ s, ∃ v ∈ t, g = u ×ˢ v} :=
let G := generate_from {g | ∃ u ∈ s, ∃ v ∈ t, g = u ×ˢ v} in
le_antisymm
(le_generate_from $ λ g ⟨u, hu, v, hv, g_eq⟩, g_eq.symm ▸
@is_open.prod _ _ (generate_from s) (generate_from t) _ _
(generate_open.basic _ hu) (generate_open.basic _ hv))
(le_inf
(coinduced_le_iff_le_induced.mp $ le_generate_from $ λ u hu,
have (⋃ v ∈ t, u ×ˢ v) = prod.fst ⁻¹' u,
by simp_rw [← prod_Union, ← sUnion_eq_bUnion, ht, prod_univ],
show G.is_open (prod.fst ⁻¹' u),
by { rw [← this], exactI is_open_Union (λ v, is_open_Union $ λ hv,
generate_open.basic _ ⟨_, hu, _, hv, rfl⟩) })
(coinduced_le_iff_le_induced.mp $ le_generate_from $ λ v hv,
have (⋃ u ∈ s, u ×ˢ v) = prod.snd ⁻¹' v,
by simp_rw [← Union_prod_const, ← sUnion_eq_bUnion, hs, univ_prod],
show G.is_open (prod.snd ⁻¹' v),
by { rw [← this], exactI is_open_Union (λ u, is_open_Union $ λ hu,
generate_open.basic _ ⟨_, hu, _, hv, rfl⟩) }))
lemma prod_eq_generate_from :
prod.topological_space =
generate_from {g | ∃(s:set α) (t:set β), is_open s ∧ is_open t ∧ g = s ×ˢ t} :=
le_antisymm
(le_generate_from $ λ g ⟨s, t, hs, ht, g_eq⟩, g_eq.symm ▸ hs.prod ht)
(le_inf
(ball_image_of_ball $ λt ht, generate_open.basic _ ⟨t, univ, by simpa [set.prod_eq] using ht⟩)
(ball_image_of_ball $ λt ht, generate_open.basic _ ⟨univ, t, by simpa [set.prod_eq] using ht⟩))
lemma is_open_prod_iff {s : set (α × β)} : is_open s ↔
(∀a b, (a, b) ∈ s →
∃ (u : set α) (v : set β), is_open u ∧ is_open v ∧ a ∈ u ∧ b ∈ v ∧ u ×ˢ v ⊆ s) :=
begin
rw [is_open_iff_nhds],
simp_rw [le_principal_iff, prod.forall,
((nhds_basis_opens _).prod_nhds (nhds_basis_opens _)).mem_iff, prod.exists, exists_prop],
simp only [and_assoc, and.left_comm]
end
/-- A product of induced topologies is induced by the product map -/
lemma prod_induced_induced {α γ : Type*} (f : α → β) (g : γ → δ) :
@prod.topological_space α γ (induced f ‹_›) (induced g ‹_›) =
induced (λ p, (f p.1, g p.2)) prod.topological_space :=
by simp_rw [prod.topological_space, induced_inf, induced_compose]
lemma continuous_uncurry_of_discrete_topology_left [discrete_topology α]
{f : α → β → γ} (h : ∀ a, continuous (f a)) : continuous (function.uncurry f) :=
continuous_iff_continuous_at.2 $ λ ⟨a, b⟩,
by simp only [continuous_at, nhds_prod_eq, nhds_discrete α, pure_prod, tendsto_map'_iff, (∘),
function.uncurry, (h a).tendsto]
/-- Given a neighborhood `s` of `(x, x)`, then `(x, x)` has a square open neighborhood
that is a subset of `s`. -/
lemma exists_nhds_square {s : set (α × α)} {x : α} (hx : s ∈ 𝓝 (x, x)) :
∃ U : set α, is_open U ∧ x ∈ U ∧ U ×ˢ U ⊆ s :=
by simpa [nhds_prod_eq, (nhds_basis_opens x).prod_self.mem_iff, and.assoc, and.left_comm] using hx
/-- `prod.fst` maps neighborhood of `x : α × β` within the section `prod.snd ⁻¹' {x.2}`
to `𝓝 x.1`. -/
lemma map_fst_nhds_within (x : α × β) : map prod.fst (𝓝[prod.snd ⁻¹' {x.2}] x) = 𝓝 x.1 :=
begin
refine le_antisymm (continuous_at_fst.mono_left inf_le_left) (λ s hs, _),
rcases x with ⟨x, y⟩,
rw [mem_map, nhds_within, mem_inf_principal, mem_nhds_prod_iff] at hs,
rcases hs with ⟨u, hu, v, hv, H⟩,
simp only [prod_subset_iff, mem_singleton_iff, mem_set_of_eq, mem_preimage] at H,
exact mem_of_superset hu (λ z hz, H _ hz _ (mem_of_mem_nhds hv) rfl)
end
@[simp] lemma map_fst_nhds (x : α × β) : map prod.fst (𝓝 x) = 𝓝 x.1 :=
le_antisymm continuous_at_fst $ (map_fst_nhds_within x).symm.trans_le (map_mono inf_le_left)
/-- The first projection in a product of topological spaces sends open sets to open sets. -/
lemma is_open_map_fst : is_open_map (@prod.fst α β) :=
is_open_map_iff_nhds_le.2 $ λ x, (map_fst_nhds x).ge
/-- `prod.snd` maps neighborhood of `x : α × β` within the section `prod.fst ⁻¹' {x.1}`
to `𝓝 x.2`. -/
lemma map_snd_nhds_within (x : α × β) : map prod.snd (𝓝[prod.fst ⁻¹' {x.1}] x) = 𝓝 x.2 :=
begin
refine le_antisymm (continuous_at_snd.mono_left inf_le_left) (λ s hs, _),
rcases x with ⟨x, y⟩,
rw [mem_map, nhds_within, mem_inf_principal, mem_nhds_prod_iff] at hs,
rcases hs with ⟨u, hu, v, hv, H⟩,
simp only [prod_subset_iff, mem_singleton_iff, mem_set_of_eq, mem_preimage] at H,
exact mem_of_superset hv (λ z hz, H _ (mem_of_mem_nhds hu) _ hz rfl)
end
@[simp] lemma map_snd_nhds (x : α × β) : map prod.snd (𝓝 x) = 𝓝 x.2 :=
le_antisymm continuous_at_snd $ (map_snd_nhds_within x).symm.trans_le (map_mono inf_le_left)
/-- The second projection in a product of topological spaces sends open sets to open sets. -/
lemma is_open_map_snd : is_open_map (@prod.snd α β) :=
is_open_map_iff_nhds_le.2 $ λ x, (map_snd_nhds x).ge
/-- A product set is open in a product space if and only if each factor is open, or one of them is
empty -/
lemma is_open_prod_iff' {s : set α} {t : set β} :
is_open (s ×ˢ t) ↔ (is_open s ∧ is_open t) ∨ (s = ∅) ∨ (t = ∅) :=
begin
cases (s ×ˢ t).eq_empty_or_nonempty with h h,
{ simp [h, prod_eq_empty_iff.1 h] },
{ have st : s.nonempty ∧ t.nonempty, from prod_nonempty_iff.1 h,
split,
{ assume H : is_open (s ×ˢ t),
refine or.inl ⟨_, _⟩,
show is_open s,
{ rw ← fst_image_prod s st.2,
exact is_open_map_fst _ H },
show is_open t,
{ rw ← snd_image_prod st.1 t,
exact is_open_map_snd _ H } },
{ assume H,
simp only [st.1.ne_empty, st.2.ne_empty, not_false_iff, or_false] at H,
exact H.1.prod H.2 } }
end
lemma closure_prod_eq {s : set α} {t : set β} :
closure (s ×ˢ t) = closure s ×ˢ closure t :=
set.ext $ assume ⟨a, b⟩,
have (𝓝 a ×ᶠ 𝓝 b) ⊓ 𝓟 (s ×ˢ t) = (𝓝 a ⊓ 𝓟 s) ×ᶠ (𝓝 b ⊓ 𝓟 t),
by rw [←prod_inf_prod, prod_principal_principal],
by simp [closure_eq_cluster_pts, cluster_pt, nhds_prod_eq, this]; exact prod_ne_bot
lemma interior_prod_eq (s : set α) (t : set β) :
interior (s ×ˢ t) = interior s ×ˢ interior t :=
set.ext $ λ ⟨a, b⟩, by simp only [mem_interior_iff_mem_nhds, mem_prod, prod_mem_nhds_iff]
lemma frontier_prod_eq (s : set α) (t : set β) :
frontier (s ×ˢ t) = closure s ×ˢ frontier t ∪ frontier s ×ˢ closure t :=
by simp only [frontier, closure_prod_eq, interior_prod_eq, prod_diff_prod]
@[simp] lemma frontier_prod_univ_eq (s : set α) :
frontier (s ×ˢ (univ : set β)) = frontier s ×ˢ univ :=
by simp [frontier_prod_eq]
@[simp] lemma frontier_univ_prod_eq (s : set β) :
frontier ((univ : set α) ×ˢ s) = univ ×ˢ frontier s :=
by simp [frontier_prod_eq]
lemma map_mem_closure2 {s : set α} {t : set β} {u : set γ} {f : α → β → γ} {a : α} {b : β}
(hf : continuous (λp:α×β, f p.1 p.2)) (ha : a ∈ closure s) (hb : b ∈ closure t)
(hu : ∀a b, a ∈ s → b ∈ t → f a b ∈ u) :
f a b ∈ closure u :=
have (a, b) ∈ closure (s ×ˢ t), by rw [closure_prod_eq]; from ⟨ha, hb⟩,
show (λp:α×β, f p.1 p.2) (a, b) ∈ closure u, from
map_mem_closure hf this $ assume ⟨a, b⟩ ⟨ha, hb⟩, hu a b ha hb
lemma is_closed.prod {s₁ : set α} {s₂ : set β} (h₁ : is_closed s₁) (h₂ : is_closed s₂) :
is_closed (s₁ ×ˢ s₂) :=
closure_eq_iff_is_closed.mp $ by simp only [h₁.closure_eq, h₂.closure_eq, closure_prod_eq]
/-- The product of two dense sets is a dense set. -/
lemma dense.prod {s : set α} {t : set β} (hs : dense s) (ht : dense t) :
dense (s ×ˢ t) :=
λ x, by { rw closure_prod_eq, exact ⟨hs x.1, ht x.2⟩ }
/-- If `f` and `g` are maps with dense range, then `prod.map f g` has dense range. -/
lemma dense_range.prod_map {ι : Type*} {κ : Type*} {f : ι → β} {g : κ → γ}
(hf : dense_range f) (hg : dense_range g) : dense_range (prod.map f g) :=
by simpa only [dense_range, prod_range_range_eq] using hf.prod hg
lemma inducing.prod_mk {f : α → β} {g : γ → δ} (hf : inducing f) (hg : inducing g) :
inducing (λx:α×γ, (f x.1, g x.2)) :=
⟨by rw [prod.topological_space, prod.topological_space, hf.induced, hg.induced,
induced_compose, induced_compose, induced_inf, induced_compose, induced_compose]⟩
lemma embedding.prod_mk {f : α → β} {g : γ → δ} (hf : embedding f) (hg : embedding g) :
embedding (λx:α×γ, (f x.1, g x.2)) :=
{ inj := assume ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, by simp; exact assume h₁ h₂, ⟨hf.inj h₁, hg.inj h₂⟩,
..hf.to_inducing.prod_mk hg.to_inducing }
protected lemma is_open_map.prod {f : α → β} {g : γ → δ} (hf : is_open_map f) (hg : is_open_map g) :
is_open_map (λ p : α × γ, (f p.1, g p.2)) :=
begin
rw [is_open_map_iff_nhds_le],
rintros ⟨a, b⟩,
rw [nhds_prod_eq, nhds_prod_eq, ← filter.prod_map_map_eq],
exact filter.prod_mono (is_open_map_iff_nhds_le.1 hf a) (is_open_map_iff_nhds_le.1 hg b)
end
protected lemma open_embedding.prod {f : α → β} {g : γ → δ}
(hf : open_embedding f) (hg : open_embedding g) : open_embedding (λ x : α × γ, (f x.1, g x.2)) :=
open_embedding_of_embedding_open (hf.1.prod_mk hg.1)
(hf.is_open_map.prod hg.is_open_map)
lemma embedding_graph {f : α → β} (hf : continuous f) : embedding (λ x, (x, f x)) :=
embedding_of_embedding_compose (continuous_id.prod_mk hf) continuous_fst embedding_id
end prod
section sum
open sum
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
@[continuity] lemma continuous_inl : continuous (@inl α β) :=
continuous_sup_rng_left continuous_coinduced_rng
@[continuity] lemma continuous_inr : continuous (@inr α β) :=
continuous_sup_rng_right continuous_coinduced_rng
@[continuity] lemma continuous.sum_elim {f : α → γ} {g : β → γ}
(hf : continuous f) (hg : continuous g) : continuous (sum.elim f g) :=
by simp only [continuous_sup_dom, continuous_coinduced_dom, sum.elim_comp_inl, sum.elim_comp_inr,
true_and, *]
@[continuity] lemma continuous.sum_map {f : α → β} {g : γ → δ}
(hf : continuous f) (hg : continuous g) : continuous (sum.map f g) :=
(continuous_inl.comp hf).sum_elim (continuous_inr.comp hg)
lemma is_open_sum_iff {s : set (α ⊕ β)} :
is_open s ↔ is_open (inl ⁻¹' s) ∧ is_open (inr ⁻¹' s) :=
iff.rfl
lemma is_open_map_sum {f : α ⊕ β → γ}
(h₁ : is_open_map (λ a, f (inl a))) (h₂ : is_open_map (λ b, f (inr b))) :
is_open_map f :=
begin
intros u hu,
rw is_open_sum_iff at hu,
cases hu with hu₁ hu₂,
have : u = inl '' (inl ⁻¹' u) ∪ inr '' (inr ⁻¹' u),
{ ext (_|_); simp },
rw [this, set.image_union, set.image_image, set.image_image],
exact is_open.union (h₁ _ hu₁) (h₂ _ hu₂)
end
lemma embedding_inl : embedding (@inl α β) :=
{ induced := begin
unfold sum.topological_space,
apply le_antisymm,
{ rw ← coinduced_le_iff_le_induced, exact le_sup_left },
{ intros u hu, existsi (inl '' u),
change
(is_open (inl ⁻¹' (@inl α β '' u)) ∧
is_open (inr ⁻¹' (@inl α β '' u))) ∧
inl ⁻¹' (inl '' u) = u,
rw [preimage_image_eq u sum.inl_injective, preimage_inr_image_inl],
exact ⟨⟨hu, is_open_empty⟩, rfl⟩ }
end,
inj := λ _ _, inl.inj_iff.mp }
lemma embedding_inr : embedding (@inr α β) :=
{ induced := begin
unfold sum.topological_space,
apply le_antisymm,
{ rw ← coinduced_le_iff_le_induced, exact le_sup_right },
{ intros u hu, existsi (inr '' u),
change
(is_open (inl ⁻¹' (@inr α β '' u)) ∧
is_open (inr ⁻¹' (@inr α β '' u))) ∧
inr ⁻¹' (inr '' u) = u,
rw [preimage_inl_image_inr, preimage_image_eq u sum.inr_injective],
exact ⟨⟨is_open_empty, hu⟩, rfl⟩ }
end,
inj := λ _ _, inr.inj_iff.mp }
lemma is_open_range_inl : is_open (range (inl : α → α ⊕ β)) :=
is_open_sum_iff.2 $ by simp
lemma is_open_range_inr : is_open (range (inr : β → α ⊕ β)) :=
is_open_sum_iff.2 $ by simp
lemma is_closed_range_inl : is_closed (range (inl : α → α ⊕ β)) :=
by { rw [← is_open_compl_iff, compl_range_inl], exact is_open_range_inr }
lemma is_closed_range_inr : is_closed (range (inr : β → α ⊕ β)) :=
by { rw [← is_open_compl_iff, compl_range_inr], exact is_open_range_inl }
lemma open_embedding_inl : open_embedding (inl : α → α ⊕ β) :=
{ open_range := is_open_range_inl,
.. embedding_inl }
lemma open_embedding_inr : open_embedding (inr : β → α ⊕ β) :=
{ open_range := is_open_range_inr,
.. embedding_inr }
lemma closed_embedding_inl : closed_embedding (inl : α → α ⊕ β) :=
{ closed_range := is_closed_range_inl,
.. embedding_inl }
lemma closed_embedding_inr : closed_embedding (inr : β → α ⊕ β) :=
{ closed_range := is_closed_range_inr,
.. embedding_inr }
end sum
section subtype
variables [topological_space α] [topological_space β] [topological_space γ] {p : α → Prop}
lemma inducing_coe {b : set β} : inducing (coe : b → β) := ⟨rfl⟩
lemma inducing.of_cod_restrict {f : α → β} {b : set β} (hb : ∀ a, f a ∈ b)
(h : inducing (b.cod_restrict f hb)) : inducing f := inducing_coe.comp h
lemma embedding_subtype_coe : embedding (coe : subtype p → α) :=
⟨⟨rfl⟩, subtype.coe_injective⟩
lemma closed_embedding_subtype_coe (h : is_closed {a | p a}) :
closed_embedding (coe : subtype p → α) :=
⟨embedding_subtype_coe, by rwa [subtype.range_coe_subtype]⟩
@[continuity] lemma continuous_subtype_val : continuous (@subtype.val α p) :=
continuous_induced_dom
lemma continuous_subtype_coe : continuous (coe : subtype p → α) :=
continuous_subtype_val
lemma continuous.subtype_coe {f : β → subtype p} (hf : continuous f) :
continuous (λ x, (f x : α)) :=
continuous_subtype_coe.comp hf
lemma is_open.open_embedding_subtype_coe {s : set α} (hs : is_open s) :
open_embedding (coe : s → α) :=
{ induced := rfl,
inj := subtype.coe_injective,
open_range := (subtype.range_coe : range coe = s).symm ▸ hs }
lemma is_open.is_open_map_subtype_coe {s : set α} (hs : is_open s) :
is_open_map (coe : s → α) :=
hs.open_embedding_subtype_coe.is_open_map
lemma is_open_map.restrict {f : α → β} (hf : is_open_map f) {s : set α} (hs : is_open s) :
is_open_map (s.restrict f) :=
hf.comp hs.is_open_map_subtype_coe
lemma is_closed.closed_embedding_subtype_coe {s : set α} (hs : is_closed s) :
closed_embedding (coe : {x // x ∈ s} → α) :=
{ induced := rfl,
inj := subtype.coe_injective,
closed_range := (subtype.range_coe : range coe = s).symm ▸ hs }
@[continuity] lemma continuous_subtype_mk {f : β → α}
(hp : ∀x, p (f x)) (h : continuous f) : continuous (λx, (⟨f x, hp x⟩ : subtype p)) :=
continuous_induced_rng.2 h
lemma continuous_inclusion {s t : set α} (h : s ⊆ t) : continuous (inclusion h) :=
continuous_subtype_mk _ continuous_subtype_coe
lemma continuous_at_subtype_coe {p : α → Prop} {a : subtype p} :
continuous_at (coe : subtype p → α) a :=
continuous_iff_continuous_at.mp continuous_subtype_coe _
lemma subtype.dense_iff {s : set α} {t : set s} : dense t ↔ s ⊆ closure (coe '' t) :=
by { rw [inducing_coe.dense_iff, set_coe.forall], refl }
lemma map_nhds_subtype_coe_eq {a : α} (ha : p a) (h : {a | p a} ∈ 𝓝 a) :
map (coe : subtype p → α) (𝓝 ⟨a, ha⟩) = 𝓝 a :=
map_nhds_induced_of_mem $ by simpa only [subtype.coe_mk, subtype.range_coe] using h
lemma nhds_subtype_eq_comap {a : α} {h : p a} :
𝓝 (⟨a, h⟩ : subtype p) = comap coe (𝓝 a) :=
nhds_induced _ _
lemma tendsto_subtype_rng {β : Type*} {p : α → Prop} {b : filter β} {f : β → subtype p} :
∀{a:subtype p}, tendsto f b (𝓝 a) ↔ tendsto (λx, (f x : α)) b (𝓝 (a : α))
| ⟨a, ha⟩ := by rw [nhds_subtype_eq_comap, tendsto_comap_iff, subtype.coe_mk]
lemma continuous_subtype_nhds_cover {ι : Sort*} {f : α → β} {c : ι → α → Prop}
(c_cover : ∀x:α, ∃i, {x | c i x} ∈ 𝓝 x)
(f_cont : ∀i, continuous (λ(x : subtype (c i)), f x)) :
continuous f :=
continuous_iff_continuous_at.mpr $ assume x,
let ⟨i, (c_sets : {x | c i x} ∈ 𝓝 x)⟩ := c_cover x in
let x' : subtype (c i) := ⟨x, mem_of_mem_nhds c_sets⟩ in
calc map f (𝓝 x) = map f (map coe (𝓝 x')) :
congr_arg (map f) (map_nhds_subtype_coe_eq _ $ c_sets).symm
... = map (λx:subtype (c i), f x) (𝓝 x') : rfl
... ≤ 𝓝 (f x) : continuous_iff_continuous_at.mp (f_cont i) x'
lemma continuous_subtype_is_closed_cover {ι : Sort*} {f : α → β} (c : ι → α → Prop)
(h_lf : locally_finite (λi, {x | c i x}))
(h_is_closed : ∀i, is_closed {x | c i x})
(h_cover : ∀x, ∃i, c i x)
(f_cont : ∀i, continuous (λ(x : subtype (c i)), f x)) :
continuous f :=
continuous_iff_is_closed.mpr $
assume s hs,
have ∀i, is_closed ((coe : {x | c i x} → α) '' (f ∘ coe ⁻¹' s)),
from assume i,
(closed_embedding_subtype_coe (h_is_closed _)).is_closed_map _ (hs.preimage (f_cont i)),
have is_closed (⋃i, (coe : {x | c i x} → α) '' (f ∘ coe ⁻¹' s)),
from locally_finite.is_closed_Union
(h_lf.subset $ assume i x ⟨⟨x', hx'⟩, _, heq⟩, heq ▸ hx')
this,
have f ⁻¹' s = (⋃i, (coe : {x | c i x} → α) '' (f ∘ coe ⁻¹' s)),
begin
apply set.ext,
have : ∀ (x : α), f x ∈ s ↔ ∃ (i : ι), c i x ∧ f x ∈ s :=
λ x, ⟨λ hx, let ⟨i, hi⟩ := h_cover x in ⟨i, hi, hx⟩,
λ ⟨i, hi, hx⟩, hx⟩,
simpa [and.comm, @and.left_comm (c _ _), ← exists_and_distrib_right],
end,
by rwa [this]
lemma closure_subtype {x : {a // p a}} {s : set {a // p a}}:
x ∈ closure s ↔ (x : α) ∈ closure ((coe : _ → α) '' s) :=
closure_induced
lemma continuous_at_cod_restrict_iff {f : α → β} {t : set β} (h1 : ∀ x, f x ∈ t) {x : α} :
continuous_at (cod_restrict f t h1) x ↔ continuous_at f x :=
by simp_rw [inducing_coe.continuous_at_iff, function.comp, coe_cod_restrict_apply]
alias continuous_at_cod_restrict_iff ↔ _ continuous_at.cod_restrict
lemma continuous_at.restrict {f : α → β} {s : set α} {t : set β} (h1 : maps_to f s t) {x : s}
(h2 : continuous_at f x) : continuous_at (h1.restrict f s t) x :=
(h2.comp continuous_at_subtype_coe).cod_restrict _
lemma continuous_at.restrict_preimage {f : α → β} {s : set β} {x : f ⁻¹' s}
(h : continuous_at f x) : continuous_at (s.restrict_preimage f) x :=
h.restrict _
@[continuity] lemma continuous.cod_restrict {f : α → β} {s : set β} (hf : continuous f)
(hs : ∀ a, f a ∈ s) : continuous (s.cod_restrict f hs) := continuous_subtype_mk hs hf
lemma inducing.cod_restrict {e : α → β} (he : inducing e) {s : set β} (hs : ∀ x, e x ∈ s) :
inducing (cod_restrict e s hs) :=
inducing_of_inducing_compose (he.continuous.cod_restrict hs) continuous_subtype_coe he
lemma embedding.cod_restrict {e : α → β} (he : embedding e) (s : set β) (hs : ∀ x, e x ∈ s) :
embedding (cod_restrict e s hs) :=
embedding_of_embedding_compose (he.continuous.cod_restrict hs) continuous_subtype_coe he
end subtype
section quotient
variables [topological_space α] [topological_space β] [topological_space γ]
variables {r : α → α → Prop} {s : setoid α}
lemma quotient_map_quot_mk : quotient_map (@quot.mk α r) :=
⟨quot.exists_rep, rfl⟩
@[continuity] lemma continuous_quot_mk : continuous (@quot.mk α r) :=
continuous_coinduced_rng
@[continuity] lemma continuous_quot_lift {f : α → β} (hr : ∀ a b, r a b → f a = f b)
(h : continuous f) : continuous (quot.lift f hr : quot r → β) :=
continuous_coinduced_dom.2 h
lemma quotient_map_quotient_mk : quotient_map (@quotient.mk α s) :=
quotient_map_quot_mk
lemma continuous_quotient_mk : continuous (@quotient.mk α s) :=
continuous_coinduced_rng
lemma continuous.quotient_lift {f : α → β} (h : continuous f) (hs : ∀ a b, a ≈ b → f a = f b) :
continuous (quotient.lift f hs : quotient s → β) :=
continuous_coinduced_dom.2 h
lemma continuous.quotient_lift_on' {f : α → β} (h : continuous f)
(hs : ∀ a b, @setoid.r _ s a b → f a = f b) :
continuous (λ x, quotient.lift_on' x f hs : quotient s → β) :=
h.quotient_lift hs
lemma continuous.quotient_map' {t : setoid β} {f : α → β} (hf : continuous f)
(H : (s.r ⇒ t.r) f f) : continuous (quotient.map' f H) :=
(continuous_quotient_mk.comp hf).quotient_lift _
end quotient
section pi
variables {ι : Type*} {π : ι → Type*}
@[continuity]
lemma continuous_pi [topological_space α] [∀i, topological_space (π i)] {f : α → Πi:ι, π i}
(h : ∀i, continuous (λa, f a i)) : continuous f :=
continuous_infi_rng.2 $ assume i, continuous_induced_rng.2 $ h i
@[continuity]
lemma continuous_apply [∀i, topological_space (π i)] (i : ι) :
continuous (λp:Πi, π i, p i) :=
continuous_infi_dom continuous_induced_dom
@[continuity]
lemma continuous_apply_apply {κ : Type*} {ρ : κ → ι → Type*}
[∀ j i, topological_space (ρ j i)] (j : κ) (i : ι) :
continuous (λ p : (Π j, Π i, ρ j i), p j i) :=
(continuous_apply i).comp (continuous_apply j)
lemma continuous_at_apply [∀i, topological_space (π i)] (i : ι) (x : Π i, π i) :
continuous_at (λ p : Π i, π i, p i) x :=
(continuous_apply i).continuous_at
lemma filter.tendsto.apply [∀i, topological_space (π i)] {l : filter α} {f : α → Π i, π i}
{x : Π i, π i} (h : tendsto f l (𝓝 x)) (i : ι) :
tendsto (λ a, f a i) l (𝓝 $ x i) :=
(continuous_at_apply i _).tendsto.comp h
lemma continuous_pi_iff [topological_space α] [∀ i, topological_space (π i)] {f : α → Π i, π i} :
continuous f ↔ ∀ i, continuous (λ y, f y i) :=
iff.intro (λ h i, (continuous_apply i).comp h) continuous_pi
lemma nhds_pi [t : ∀i, topological_space (π i)] {a : Πi, π i} :
𝓝 a = pi (λ i, 𝓝 (a i)) :=
calc 𝓝 a = (⨅i, @nhds _ (@topological_space.induced _ _ (λx:Πi, π i, x i) (t i)) a) : nhds_infi
... = (⨅i, comap (λx, x i) (𝓝 (a i))) : by simp [nhds_induced]
lemma tendsto_pi_nhds [t : ∀i, topological_space (π i)] {f : α → Πi, π i} {g : Πi, π i}
{u : filter α} :
tendsto f u (𝓝 g) ↔ ∀ x, tendsto (λ i, f i x) u (𝓝 (g x)) :=
by rw [nhds_pi, filter.tendsto_pi]
lemma continuous_at_pi [∀ i, topological_space (π i)] [topological_space α] {f : α → Π i, π i}
{x : α} :
continuous_at f x ↔ ∀ i, continuous_at (λ y, f y i) x :=
tendsto_pi_nhds
lemma filter.tendsto.update [∀i, topological_space (π i)] [decidable_eq ι]
{l : filter α} {f : α → Π i, π i} {x : Π i, π i} (hf : tendsto f l (𝓝 x)) (i : ι)
{g : α → π i} {xi : π i} (hg : tendsto g l (𝓝 xi)) :
tendsto (λ a, function.update (f a) i (g a)) l (𝓝 $ function.update x i xi) :=
tendsto_pi_nhds.2 $ λ j, by { rcases em (j = i) with rfl|hj; simp [*, hf.apply] }
lemma continuous_at.update [∀i, topological_space (π i)] [topological_space α] [decidable_eq ι]
{f : α → Π i, π i} {a : α} (hf : continuous_at f a) (i : ι) {g : α → π i}
(hg : continuous_at g a) :
continuous_at (λ a, function.update (f a) i (g a)) a :=
hf.update i hg
lemma continuous.update [∀i, topological_space (π i)] [topological_space α] [decidable_eq ι]
{f : α → Π i, π i} (hf : continuous f) (i : ι) {g : α → π i} (hg : continuous g) :
continuous (λ a, function.update (f a) i (g a)) :=
continuous_iff_continuous_at.2 $ λ x, hf.continuous_at.update i hg.continuous_at
/-- `function.update f i x` is continuous in `(f, x)`. -/
@[continuity] lemma continuous_update [∀i, topological_space (π i)] [decidable_eq ι] (i : ι) :
continuous (λ f : (Π j, π j) × π i, function.update f.1 i f.2) :=
continuous_fst.update i continuous_snd
lemma filter.tendsto.fin_insert_nth {n} {π : fin (n + 1) → Type*} [Π i, topological_space (π i)]
(i : fin (n + 1)) {f : α → π i} {l : filter α} {x : π i} (hf : tendsto f l (𝓝 x))
{g : α → Π j : fin n, π (i.succ_above j)} {y : Π j, π (i.succ_above j)} (hg : tendsto g l (𝓝 y)) :
tendsto (λ a, i.insert_nth (f a) (g a)) l (𝓝 $ i.insert_nth x y) :=
tendsto_pi_nhds.2 (λ j, fin.succ_above_cases i (by simpa) (by simpa using tendsto_pi_nhds.1 hg) j)
lemma continuous_at.fin_insert_nth {n} {π : fin (n + 1) → Type*} [Π i, topological_space (π i)]
[topological_space α] (i : fin (n + 1)) {f : α → π i} {a : α} (hf : continuous_at f a)
{g : α → Π j : fin n, π (i.succ_above j)} (hg : continuous_at g a) :
continuous_at (λ a, i.insert_nth (f a) (g a)) a :=
hf.fin_insert_nth i hg
lemma continuous.fin_insert_nth {n} {π : fin (n + 1) → Type*} [Π i, topological_space (π i)]
[topological_space α] (i : fin (n + 1)) {f : α → π i} (hf : continuous f)
{g : α → Π j : fin n, π (i.succ_above j)} (hg : continuous g) :
continuous (λ a, i.insert_nth (f a) (g a)) :=
continuous_iff_continuous_at.2 $ λ a, hf.continuous_at.fin_insert_nth i hg.continuous_at
lemma is_open_set_pi [∀a, topological_space (π a)] {i : set ι} {s : Πa, set (π a)}
(hi : i.finite) (hs : ∀a∈i, is_open (s a)) : is_open (pi i s) :=
by rw [pi_def]; exact (is_open_bInter hi $ assume a ha, (hs _ ha).preimage (continuous_apply _))
lemma is_closed_set_pi [∀a, topological_space (π a)] {i : set ι} {s : Πa, set (π a)}
(hs : ∀a∈i, is_closed (s a)) : is_closed (pi i s) :=
by rw [pi_def];
exact (is_closed_Inter $ λ a, is_closed_Inter $ λ ha, (hs _ ha).preimage (continuous_apply _))
lemma mem_nhds_of_pi_mem_nhds {ι : Type*} {α : ι → Type*} [Π (i : ι), topological_space (α i)]
{I : set ι} {s : Π i, set (α i)} (a : Π i, α i) (hs : I.pi s ∈ 𝓝 a) {i : ι} (hi : i ∈ I) :
s i ∈ 𝓝 (a i) :=
by { rw nhds_pi at hs, exact mem_of_pi_mem_pi hs hi }
lemma set_pi_mem_nhds [Π a, topological_space (π a)] {i : set ι} {s : Π a, set (π a)}
{x : Π a, π a} (hi : i.finite) (hs : ∀ a ∈ i, s a ∈ 𝓝 (x a)) :
pi i s ∈ 𝓝 x :=
by { rw [pi_def, bInter_mem hi], exact λ a ha, (continuous_apply a).continuous_at (hs a ha) }
lemma set_pi_mem_nhds_iff {α : ι → Type*} [Π (i : ι), topological_space (α i)]
{I : set ι} (hI : I.finite) {s : Π i, set (α i)} (a : Π i, α i) :
I.pi s ∈ 𝓝 a ↔ ∀ (i : ι), i ∈ I → s i ∈ 𝓝 (a i) :=
by { rw [nhds_pi, pi_mem_pi_iff hI], apply_instance }
lemma interior_pi_set {α : ι → Type*} [Π i, topological_space (α i)]
{I : set ι} (hI : I.finite) {s : Π i, set (α i)} :
interior (pi I s) = I.pi (λ i, interior (s i)) :=
by { ext a, simp only [set.mem_pi, mem_interior_iff_mem_nhds, set_pi_mem_nhds_iff hI] }
lemma exists_finset_piecewise_mem_of_mem_nhds [decidable_eq ι] [Π i, topological_space (π i)]
{s : set (Π a, π a)} {x : Π a, π a} (hs : s ∈ 𝓝 x) (y : Π a, π a) :
∃ I : finset ι, I.piecewise x y ∈ s :=
begin
simp only [nhds_pi, filter.mem_pi'] at hs,
rcases hs with ⟨I, t, htx, hts⟩,
refine ⟨I, hts $ λ i hi, _⟩,
simpa [finset.mem_coe.1 hi] using mem_of_mem_nhds (htx i)
end
lemma pi_eq_generate_from [∀a, topological_space (π a)] :
Pi.topological_space =
generate_from {g | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, is_open (s a)) ∧ g = pi ↑i s} :=
le_antisymm
(le_generate_from $ assume g ⟨s, i, hi, eq⟩, eq.symm ▸ is_open_set_pi (finset.finite_to_set _) hi)
(le_infi $ assume a s ⟨t, ht, s_eq⟩, generate_open.basic _ $
⟨function.update (λa, univ) a t, {a}, by simpa using ht, s_eq ▸ by ext f; simp [set.pi]⟩)
lemma pi_generate_from_eq {g : Πa, set (set (π a))} :
@Pi.topological_space ι π (λa, generate_from (g a)) =
generate_from {t | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, s a ∈ g a) ∧ t = pi ↑i s} :=
let G := {t | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, s a ∈ g a) ∧ t = pi ↑i s} in
begin
rw [pi_eq_generate_from],
refine le_antisymm (generate_from_mono _) (le_generate_from _),
exact assume s ⟨t, i, ht, eq⟩, ⟨t, i, assume a ha, generate_open.basic _ (ht a ha), eq⟩,
{ rintros s ⟨t, i, hi, rfl⟩,
rw [pi_def],
apply is_open_bInter (finset.finite_to_set _),
assume a ha, show ((generate_from G).coinduced (λf:Πa, π a, f a)).is_open (t a),
refine le_generate_from _ _ (hi a ha),
exact assume s hs, generate_open.basic _ ⟨function.update (λa, univ) a s, {a}, by simp [hs]⟩ }
end
lemma pi_generate_from_eq_fintype {g : Πa, set (set (π a))} [fintype ι] (hg : ∀a, ⋃₀ g a = univ) :
@Pi.topological_space ι π (λa, generate_from (g a)) =
generate_from {t | ∃(s:Πa, set (π a)), (∀a, s a ∈ g a) ∧ t = pi univ s} :=
begin
rw [pi_generate_from_eq],
refine le_antisymm (generate_from_mono _) (le_generate_from _),
exact assume s ⟨t, ht, eq⟩, ⟨t, finset.univ, by simp [ht, eq]⟩,
{ rintros s ⟨t, i, ht, rfl⟩,
apply is_open_iff_forall_mem_open.2 _,
assume f hf,
choose c hc using show ∀a, ∃s, s ∈ g a ∧ f a ∈ s,
{ assume a, have : f a ∈ ⋃₀ g a, { rw [hg], apply mem_univ }, simpa },
refine ⟨pi univ (λa, if a ∈ i then t a else (c : Πa, set (π a)) a), _, _, _⟩,
{ simp [pi_if] },
{ refine generate_open.basic _ ⟨_, assume a, _, rfl⟩,
by_cases a ∈ i; simp [*, set.pi] at * },
{ have : f ∈ pi {a | a ∉ i} c, { simp [*, set.pi] at * },
simpa [pi_if, hf] } }
end
/-- Suppose `π i` is a family of topological spaces indexed by `i : ι`, and `X` is a type
endowed with a family of maps `f i : X → π i` for every `i : ι`, hence inducing a
map `g : X → Π i, π i`. This lemma shows that infimum of the topologies on `X` induced by
the `f i` as `i : ι` varies is simply the topology on `X` induced by `g : X → Π i, π i`
where `Π i, π i` is endowed with the usual product topology. -/
lemma inducing_infi_to_pi {X : Type*} [∀ i, topological_space (π i)] (f : Π i, X → π i) :
@inducing X (Π i, π i) (⨅ i, induced (f i) infer_instance) _ (λ x i, f i x) :=
begin
constructor,
erw induced_infi,
congr' 1,
funext,
erw induced_compose,
end
variables [finite ι] [∀ i, topological_space (π i)] [∀ i, discrete_topology (π i)]
/-- A finite product of discrete spaces is discrete. -/
instance Pi.discrete_topology : discrete_topology (Π i, π i) :=
singletons_open_iff_discrete.mp (λ x,
begin
rw show {x} = ⋂ i, {y : Π i, π i | y i = x i},
{ ext, simp only [function.funext_iff, set.mem_singleton_iff, set.mem_Inter, set.mem_set_of_eq] },
exact is_open_Inter (λ i, (continuous_apply i).is_open_preimage {x i} (is_open_discrete {x i}))
end)
end pi
section sigma
variables {ι : Type*} {σ : ι → Type*} [Π i, topological_space (σ i)]
@[continuity]
lemma continuous_sigma_mk {i : ι} : continuous (@sigma.mk ι σ i) :=
continuous_supr_rng continuous_coinduced_rng
lemma is_open_sigma_iff {s : set (sigma σ)} : is_open s ↔ ∀ i, is_open (sigma.mk i ⁻¹' s) :=
by simp only [is_open_supr_iff, is_open_coinduced]
lemma is_closed_sigma_iff {s : set (sigma σ)} : is_closed s ↔ ∀ i, is_closed (sigma.mk i ⁻¹' s) :=
by simp only [← is_open_compl_iff, is_open_sigma_iff, preimage_compl]
lemma is_open_map_sigma_mk {i : ι} : is_open_map (@sigma.mk ι σ i) :=
begin
intros s hs,
rw is_open_sigma_iff,
intro j,
rcases eq_or_ne i j with (rfl|hne),
{ rwa set.preimage_image_eq _ sigma_mk_injective },
{ convert is_open_empty,
apply set.eq_empty_of_subset_empty,
rintro x ⟨y, _, hy⟩,
have : i = j, by cc,
contradiction }
end
lemma is_open_range_sigma_mk {i : ι} : is_open (set.range (@sigma.mk ι σ i)) :=
is_open_map_sigma_mk.is_open_range
lemma is_closed_map_sigma_mk {i : ι} : is_closed_map (@sigma.mk ι σ i) :=
begin
intros s hs,
rw is_closed_sigma_iff,
intro j,
rcases eq_or_ne i j with (rfl|hne),
{ rwa set.preimage_image_eq _ sigma_mk_injective },
{ convert is_closed_empty,
apply set.eq_empty_of_subset_empty,
rintro x ⟨y, _, hy⟩,
have : i = j, by cc,
contradiction }
end
lemma is_closed_sigma_mk {i : ι} : is_closed (set.range (@sigma.mk ι σ i)) :=
by { rw ←set.image_univ, exact is_closed_map_sigma_mk _ is_closed_univ }
lemma open_embedding_sigma_mk {i : ι} : open_embedding (@sigma.mk ι σ i) :=
open_embedding_of_continuous_injective_open
continuous_sigma_mk sigma_mk_injective is_open_map_sigma_mk
lemma closed_embedding_sigma_mk {i : ι} : closed_embedding (@sigma.mk ι σ i) :=
closed_embedding_of_continuous_injective_closed
continuous_sigma_mk sigma_mk_injective is_closed_map_sigma_mk
lemma embedding_sigma_mk {i : ι} : embedding (@sigma.mk ι σ i) :=
closed_embedding_sigma_mk.1
lemma is_open_sigma_fst_preimage (s : set ι) : is_open (sigma.fst ⁻¹' s : set (Σ a, σ a)) :=
begin
rw [← bUnion_of_singleton s, preimage_Union₂],
simp only [← range_sigma_mk],
exact is_open_bUnion (λ _ _, is_open_range_sigma_mk)
end
/-- A map out of a sum type is continuous if its restriction to each summand is. -/
@[continuity]
lemma continuous_sigma [topological_space β] {f : sigma σ → β}
(h : ∀ i, continuous (λ a, f ⟨i, a⟩)) : continuous f :=
continuous_supr_dom.2 (λ i, continuous_coinduced_dom.2 (h i))
@[continuity]
lemma continuous_sigma_map {κ : Type*} {τ : κ → Type*} [Π k, topological_space (τ k)]
{f₁ : ι → κ} {f₂ : Π i, σ i → τ (f₁ i)} (hf : ∀ i, continuous (f₂ i)) :
continuous (sigma.map f₁ f₂) :=
continuous_sigma $ λ i,
show continuous (λ a, sigma.mk (f₁ i) (f₂ i a)),
from continuous_sigma_mk.comp (hf i)
lemma is_open_map_sigma [topological_space β] {f : sigma σ → β}
(h : ∀ i, is_open_map (λ a, f ⟨i, a⟩)) : is_open_map f :=
begin
intros s hs,
rw is_open_sigma_iff at hs,
rw [← Union_image_preimage_sigma_mk_eq_self s, image_Union],
apply is_open_Union,
intro i,
rw [image_image],
exact h i _ (hs i)
end
/-- The sum of embeddings is an embedding. -/
lemma embedding_sigma_map {τ : ι → Type*} [Π i, topological_space (τ i)]
{f : Π i, σ i → τ i} (hf : ∀ i, embedding (f i)) : embedding (sigma.map id f) :=
begin
refine ⟨⟨_⟩, function.injective_id.sigma_map (λ i, (hf i).inj)⟩,
refine le_antisymm
(continuous_iff_le_induced.mp (continuous_sigma_map (λ i, (hf i).continuous))) _,
intros s hs,
replace hs := is_open_sigma_iff.mp hs,
have : ∀ i, ∃ t, is_open t ∧ f i ⁻¹' t = sigma.mk i ⁻¹' s,
{ intro i,
apply is_open_induced_iff.mp,
convert hs i,
exact (hf i).induced.symm },
choose t ht using this,
apply is_open_induced_iff.mpr,
refine ⟨⋃ i, sigma.mk i '' t i, is_open_Union (λ i, is_open_map_sigma_mk _ (ht i).1), _⟩,
ext ⟨i, x⟩,
change (sigma.mk i (f i x) ∈ ⋃ (i : ι), sigma.mk i '' t i) ↔ x ∈ sigma.mk i ⁻¹' s,
rw [←(ht i).2, mem_Union],
split,
{ rintro ⟨j, hj⟩,
rw mem_image at hj,
rcases hj with ⟨y, hy₁, hy₂⟩,
rcases sigma.mk.inj_iff.mp hy₂ with ⟨rfl, hy⟩,
replace hy := eq_of_heq hy,
subst y,
exact hy₁ },
{ intro hx,
use i,
rw mem_image,
exact ⟨f i x, hx, rfl⟩ }
end
end sigma
section ulift
@[continuity] lemma continuous_ulift_down [topological_space α] :
continuous (ulift.down : ulift.{v u} α → α) :=
continuous_induced_dom
@[continuity] lemma continuous_ulift_up [topological_space α] :
continuous (ulift.up : α → ulift.{v u} α) :=
continuous_induced_rng.2 continuous_id
end ulift
lemma mem_closure_of_continuous [topological_space α] [topological_space β]
{f : α → β} {a : α} {s : set α} {t : set β}
(hf : continuous f) (ha : a ∈ closure s) (h : maps_to f s (closure t)) :
f a ∈ closure t :=
calc f a ∈ f '' closure s : mem_image_of_mem _ ha
... ⊆ closure (f '' s) : image_closure_subset_closure_image hf
... ⊆ closure t : closure_minimal h.image_subset is_closed_closure
lemma mem_closure_of_continuous2 [topological_space α] [topological_space β] [topological_space γ]
{f : α → β → γ} {a : α} {b : β} {s : set α} {t : set β} {u : set γ}
(hf : continuous (λp:α×β, f p.1 p.2)) (ha : a ∈ closure s) (hb : b ∈ closure t)
(h : ∀a∈s, ∀b∈t, f a b ∈ closure u) :
f a b ∈ closure u :=
have (a,b) ∈ closure (s ×ˢ t),
by simp [closure_prod_eq, ha, hb],
show f (a, b).1 (a, b).2 ∈ closure u,
from @mem_closure_of_continuous (α×β) _ _ _ (λp:α×β, f p.1 p.2) (a,b) _ u hf this $
assume ⟨p₁, p₂⟩ ⟨h₁, h₂⟩, h p₁ h₁ p₂ h₂
|