Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 70,903 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Jeremy Avigad
-/
import order.filter.ultrafilter
import order.filter.partial
import order.filter.small_sets
import algebra.support

/-!
# Basic theory of topological spaces.

The main definition is the type class `topological space α` which endows a type `α` with a topology.
Then `set α` gets predicates `is_open`, `is_closed` and functions `interior`, `closure` and
`frontier`. Each point `x` of `α` gets a neighborhood filter `𝓝 x`. A filter `F` on `α` has
`x` as a cluster point if `cluster_pt x F : 𝓝 x ⊓ F ≠ ⊥`. A map `f : ι → α` clusters at `x`
along `F : filter ι` if `map_cluster_pt x F f : cluster_pt x (map f F)`. In particular
the notion of cluster point of a sequence `u` is `map_cluster_pt x at_top u`.

For topological spaces `α` and `β`, a function `f : α → β` and a point `a : α`,
`continuous_at f a` means `f` is continuous at `a`, and global continuity is
`continuous f`. There is also a version of continuity `pcontinuous` for
partially defined functions.

## Notation

* `𝓝 x`: the filter `nhds x` of neighborhoods of a point `x`;
* `𝓟 s`: the principal filter of a set `s`;
* `𝓝[s] x`: the filter `nhds_within x s` of neighborhoods of a point `x` within a set `s`;
* `𝓝[≤] x`: the filter `nhds_within x (set.Iic x)` of left-neighborhoods of `x`;
* `𝓝[≥] x`: the filter `nhds_within x (set.Ici x)` of right-neighborhoods of `x`;
* `𝓝[<] x`: the filter `nhds_within x (set.Iio x)` of punctured left-neighborhoods of `x`;
* `𝓝[>] x`: the filter `nhds_within x (set.Ioi x)` of punctured right-neighborhoods of `x`;
* `𝓝[≠] x`: the filter `nhds_within x {x}ᶜ` of punctured neighborhoods of `x`.

## Implementation notes

Topology in mathlib heavily uses filters (even more than in Bourbaki). See explanations in
<https://leanprover-community.github.io/theories/topology.html>.

## References

*  [N. Bourbaki, *General Topology*][bourbaki1966]
*  [I. M. James, *Topologies and Uniformities*][james1999]

## Tags

topological space, interior, closure, frontier, neighborhood, continuity, continuous function
-/

noncomputable theory
open set filter classical
open_locale classical filter

universes u v w

/-!
### Topological spaces
-/

/-- A topology on `α`. -/
@[protect_proj] structure topological_space (α : Type u) :=
(is_open        : set α → Prop)
(is_open_univ   : is_open univ)
(is_open_inter  : ∀s t, is_open s → is_open t → is_open (s ∩ t))
(is_open_sUnion : ∀s, (∀t∈s, is_open t) → is_open (⋃₀ s))

attribute [class] topological_space

/-- A constructor for topologies by specifying the closed sets,
and showing that they satisfy the appropriate conditions. -/
def topological_space.of_closed {α : Type u} (T : set (set α))
  (empty_mem : ∅ ∈ T) (sInter_mem : ∀ A ⊆ T, ⋂₀ A ∈ T) (union_mem : ∀ A B ∈ T, A ∪ B ∈ T) :
  topological_space α :=
{ is_open := λ X, Xᶜ ∈ T,
  is_open_univ := by simp [empty_mem],
  is_open_inter := λ s t hs ht, by simpa only [compl_inter] using union_mem sᶜ hs tᶜ ht,
  is_open_sUnion := λ s hs,
    by rw set.compl_sUnion; exact sInter_mem (compl '' s)
    (λ z ⟨y, hy, hz⟩, by simpa [hz.symm] using hs y hy) }

section topological_space

variables {α : Type u} {β : Type v} {ι : Sort w} {a : α} {s s₁ s₂ t : set α} {p p₁ p₂ : α → Prop}

@[ext]
lemma topological_space_eq : ∀ {f g : topological_space α}, f.is_open = g.is_open → f = g
| ⟨a, _, _, _⟩ ⟨b, _, _, _⟩ rfl := rfl

section
variables [topological_space α]

/-- `is_open s` means that `s` is open in the ambient topological space on `α` -/
def is_open (s : set α) : Prop := topological_space.is_open ‹_› s

@[simp]
lemma is_open_univ : is_open (univ : set α) := topological_space.is_open_univ _

lemma is_open.inter (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∩ s₂) :=
topological_space.is_open_inter _ s₁ s₂ h₁ h₂

lemma is_open_sUnion {s : set (set α)} (h : ∀t ∈ s, is_open t) : is_open (⋃₀ s) :=
topological_space.is_open_sUnion _ s h

end

lemma topological_space_eq_iff {t t' : topological_space α} :
  t = t' ↔ ∀ s, @is_open α t s ↔ @is_open α t' s :=
⟨λ h s, h ▸ iff.rfl, λ h, by { ext, exact h _ }⟩

lemma is_open_fold {s : set α} {t : topological_space α} : t.is_open s = @is_open α t s :=
rfl

variables [topological_space α]

lemma is_open_Union {f : ι → set α} (h : ∀i, is_open (f i)) : is_open (⋃i, f i) :=
is_open_sUnion $ by rintro _ ⟨i, rfl⟩; exact h i

lemma is_open_bUnion {s : set β} {f : β → set α} (h : ∀i∈s, is_open (f i)) :
  is_open (⋃i∈s, f i) :=
is_open_Union $ assume i, is_open_Union $ assume hi, h i hi

lemma is_open.union (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∪ s₂) :=
by rw union_eq_Union; exact is_open_Union (bool.forall_bool.2 ⟨h₂, h₁⟩)

@[simp] lemma is_open_empty : is_open (∅ : set α) :=
by rw ← sUnion_empty; exact is_open_sUnion (assume a, false.elim)

lemma is_open_sInter {s : set (set α)} (hs : s.finite) : (∀t ∈ s, is_open t) → is_open (⋂₀ s) :=
finite.induction_on hs (λ _, by rw sInter_empty; exact is_open_univ) $
λ a s has hs ih h, by rw sInter_insert; exact
is_open.inter (h _ $ mem_insert _ _) (ih $ λ t, h t ∘ mem_insert_of_mem _)

lemma is_open_bInter {s : set β} {f : β → set α} (hs : s.finite) :
  (∀i∈s, is_open (f i)) → is_open (⋂i∈s, f i) :=
finite.induction_on hs
  (λ _, by rw bInter_empty; exact is_open_univ)
  (λ a s has hs ih h, by rw bInter_insert; exact
    is_open.inter (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi))))

lemma is_open_Inter [finite β] {s : β → set α} (h : ∀ i, is_open (s i)) : is_open (⋂ i, s i) :=
suffices is_open (⋂ (i : β) (hi : i ∈ @univ β), s i), by simpa,
is_open_bInter finite_univ (λ i _, h i)

lemma is_open_Inter_prop {p : Prop} {s : p → set α}
  (h : ∀ h : p, is_open (s h)) : is_open (Inter s) :=
by by_cases p; simp *

lemma is_open_const {p : Prop} : is_open {a : α | p} :=
by_cases
  (assume : p, begin simp only [this]; exact is_open_univ end)
  (assume : ¬ p, begin simp only [this]; exact is_open_empty end)

lemma is_open.and : is_open {a | p₁ a} → is_open {a | p₂ a} → is_open {a | p₁ a ∧ p₂ a} :=
is_open.inter

/-- A set is closed if its complement is open -/
class is_closed (s : set α) : Prop :=
(is_open_compl : is_open sᶜ)

@[simp] lemma is_open_compl_iff {s : set α} : is_open sᶜ ↔ is_closed s :=
⟨λ h, ⟨h⟩, λ h, h.is_open_compl⟩

@[simp] lemma is_closed_empty : is_closed (∅ : set α) :=
by { rw [← is_open_compl_iff, compl_empty], exact is_open_univ }

@[simp] lemma is_closed_univ : is_closed (univ : set α) :=
by { rw [← is_open_compl_iff, compl_univ], exact is_open_empty }

lemma is_closed.union : is_closed s₁ → is_closed s₂ → is_closed (s₁ ∪ s₂) :=
λ h₁ h₂, by { rw [← is_open_compl_iff] at *, rw compl_union, exact is_open.inter h₁ h₂ }

lemma is_closed_sInter {s : set (set α)} : (∀t ∈ s, is_closed t) → is_closed (⋂₀ s) :=
by simpa only [← is_open_compl_iff, compl_sInter, sUnion_image] using is_open_bUnion

lemma is_closed_Inter {f : ι → set α} (h : ∀i, is_closed (f i)) : is_closed (⋂i, f i ) :=
is_closed_sInter $ assume t ⟨i, (heq : f i = t)⟩, heq ▸ h i

lemma is_closed_bInter {s : set β} {f : β → set α} (h : ∀ i ∈ s, is_closed (f i)) :
  is_closed (⋂ i ∈ s, f i) :=
is_closed_Inter $ λ i, is_closed_Inter $ h i

@[simp] lemma is_closed_compl_iff {s : set α} : is_closed sᶜ ↔ is_open s :=
by rw [←is_open_compl_iff, compl_compl]

lemma is_open.is_closed_compl {s : set α} (hs : is_open s) : is_closed sᶜ :=
is_closed_compl_iff.2 hs

lemma is_open.sdiff {s t : set α} (h₁ : is_open s) (h₂ : is_closed t) : is_open (s \ t) :=
is_open.inter h₁ $ is_open_compl_iff.mpr h₂

lemma is_closed.inter (h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (s₁ ∩ s₂) :=
by { rw [← is_open_compl_iff] at *, rw compl_inter, exact is_open.union h₁ h₂ }

lemma is_closed.sdiff {s t : set α} (h₁ : is_closed s) (h₂ : is_open t) : is_closed (s \ t) :=
is_closed.inter h₁ (is_closed_compl_iff.mpr h₂)

lemma is_closed_bUnion {s : set β} {f : β → set α} (hs : s.finite) :
  (∀i∈s, is_closed (f i)) → is_closed (⋃i∈s, f i) :=
finite.induction_on hs
  (λ _, by rw bUnion_empty; exact is_closed_empty)
  (λ a s has hs ih h, by rw bUnion_insert; exact
    is_closed.union (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi))))

lemma is_closed_Union [finite β] {s : β → set α} (h : ∀ i, is_closed (s i)) :
  is_closed (⋃ i, s i) :=
suffices is_closed (⋃ (i : β) (hi : i ∈ @univ β), s i),
  by convert this; simp [set.ext_iff],
is_closed_bUnion finite_univ (λ i _, h i)

lemma is_closed_Union_prop {p : Prop} {s : p → set α}
  (h : ∀ h : p, is_closed (s h)) : is_closed (Union s) :=
by by_cases p; simp *

lemma is_closed_imp {p q : α → Prop} (hp : is_open {x | p x})
  (hq : is_closed {x | q x}) : is_closed {x | p x → q x} :=
have {x | p x → q x} = {x | p x}ᶜ ∪ {x | q x}, from set.ext $ λ x, imp_iff_not_or,
by rw [this]; exact is_closed.union (is_closed_compl_iff.mpr hp) hq

lemma is_closed.not : is_closed {a | p a} → is_open {a | ¬ p a} :=
is_open_compl_iff.mpr

/-!
### Interior of a set
-/

/-- The interior of a set `s` is the largest open subset of `s`. -/
def interior (s : set α) : set α := ⋃₀ {t | is_open t ∧ t ⊆ s}

lemma mem_interior {s : set α} {x : α} :
  x ∈ interior s ↔ ∃ t ⊆ s, is_open t ∧ x ∈ t :=
by simp only [interior, mem_sUnion, mem_set_of_eq, exists_prop, and_assoc, and.left_comm]

@[simp] lemma is_open_interior {s : set α} : is_open (interior s) :=
is_open_sUnion $ assume t ⟨h₁, h₂⟩, h₁

lemma interior_subset {s : set α} : interior s ⊆ s :=
sUnion_subset $ assume t ⟨h₁, h₂⟩, h₂

lemma interior_maximal {s t : set α} (h₁ : t ⊆ s) (h₂ : is_open t) : t ⊆ interior s :=
subset_sUnion_of_mem ⟨h₂, h₁⟩

lemma is_open.interior_eq {s : set α} (h : is_open s) : interior s = s :=
subset.antisymm interior_subset (interior_maximal (subset.refl s) h)

lemma interior_eq_iff_open {s : set α} : interior s = s ↔ is_open s :=
⟨assume h, h ▸ is_open_interior, is_open.interior_eq⟩

lemma subset_interior_iff_open {s : set α} : s ⊆ interior s ↔ is_open s :=
by simp only [interior_eq_iff_open.symm, subset.antisymm_iff, interior_subset, true_and]

lemma subset_interior_iff_subset_of_open {s t : set α} (h₁ : is_open s) :
  s ⊆ interior t ↔ s ⊆ t :=
⟨assume h, subset.trans h interior_subset, assume h₂, interior_maximal h₂ h₁⟩

lemma subset_interior_iff {s t : set α} : t ⊆ interior s ↔ ∃ U, is_open U ∧ t ⊆ U ∧ U ⊆ s :=
⟨λ h, ⟨interior s, is_open_interior, h, interior_subset⟩,
  λ ⟨U, hU, htU, hUs⟩, htU.trans (interior_maximal hUs hU)⟩

@[mono] lemma interior_mono {s t : set α} (h : s ⊆ t) : interior s ⊆ interior t :=
interior_maximal (subset.trans interior_subset h) is_open_interior

@[simp] lemma interior_empty : interior (∅ : set α) = ∅ :=
is_open_empty.interior_eq

@[simp] lemma interior_univ : interior (univ : set α) = univ :=
is_open_univ.interior_eq

@[simp] lemma interior_eq_univ {s : set α} : interior s = univ ↔ s = univ :=
⟨λ h, univ_subset_iff.mp $ h.symm.trans_le interior_subset, λ h, h.symm ▸ interior_univ⟩

@[simp] lemma interior_interior {s : set α} : interior (interior s) = interior s :=
is_open_interior.interior_eq

@[simp] lemma interior_inter {s t : set α} : interior (s ∩ t) = interior s ∩ interior t :=
subset.antisymm
  (subset_inter (interior_mono $ inter_subset_left s t) (interior_mono $ inter_subset_right s t))
  (interior_maximal (inter_subset_inter interior_subset interior_subset) $
    is_open.inter is_open_interior is_open_interior)

@[simp] lemma finset.interior_Inter {ι : Type*} (s : finset ι) (f : ι → set α) :
  interior (⋂ i ∈ s, f i) = ⋂ i ∈ s, interior (f i) :=
begin
  classical,
  refine s.induction_on (by simp) _,
  intros i s h₁ h₂,
  simp [h₂],
end

@[simp] lemma interior_Inter {ι : Type*} [finite ι] (f : ι → set α) :
  interior (⋂ i, f i) = ⋂ i, interior (f i) :=
by { casesI nonempty_fintype ι, convert finset.univ.interior_Inter f; simp }

lemma interior_union_is_closed_of_interior_empty {s t : set α} (h₁ : is_closed s)
  (h₂ : interior t = ∅) :
  interior (s ∪ t) = interior s :=
have interior (s ∪ t) ⊆ s, from
  assume x ⟨u, ⟨(hu₁ : is_open u), (hu₂ : u ⊆ s ∪ t)⟩, (hx₁ : x ∈ u)⟩,
  classical.by_contradiction $ assume hx₂ : x ∉ s,
    have u \ s ⊆ t,
      from assume x ⟨h₁, h₂⟩, or.resolve_left (hu₂ h₁) h₂,
    have u \ s ⊆ interior t,
      by rwa subset_interior_iff_subset_of_open (is_open.sdiff hu₁ h₁),
    have u \ s ⊆ ∅,
      by rwa h₂ at this,
    this ⟨hx₁, hx₂⟩,
subset.antisymm
  (interior_maximal this is_open_interior)
  (interior_mono $ subset_union_left _ _)

lemma is_open_iff_forall_mem_open : is_open s ↔ ∀ x ∈ s, ∃ t ⊆ s, is_open t ∧ x ∈ t :=
by rw ← subset_interior_iff_open; simp only [subset_def, mem_interior]

lemma interior_Inter_subset (s : ι → set α) : interior (⋂ i, s i) ⊆ ⋂ i, interior (s i) :=
subset_Inter $ λ i, interior_mono $ Inter_subset _ _

lemma interior_Inter₂_subset (p : ι → Sort*) (s : Π i, p i → set α) :
  interior (⋂ i j, s i j) ⊆ ⋂ i j, interior (s i j) :=
(interior_Inter_subset _).trans $ Inter_mono $ λ i, interior_Inter_subset _

lemma interior_sInter_subset (S : set (set α)) : interior (⋂₀ S) ⊆ ⋂ s ∈ S, interior s :=
calc interior (⋂₀ S) = interior (⋂ s ∈ S, s) : by rw sInter_eq_bInter
                 ... ⊆ ⋂ s ∈ S, interior s  : interior_Inter₂_subset _ _

/-!
### Closure of a set
-/

/-- The closure of `s` is the smallest closed set containing `s`. -/
def closure (s : set α) : set α := ⋂₀ {t | is_closed t ∧ s ⊆ t}

@[simp] lemma is_closed_closure {s : set α} : is_closed (closure s) :=
is_closed_sInter $ assume t ⟨h₁, h₂⟩, h₁

lemma subset_closure {s : set α} : s ⊆ closure s :=
subset_sInter $ assume t ⟨h₁, h₂⟩, h₂

lemma not_mem_of_not_mem_closure {s : set α} {P : α} (hP : P ∉ closure s) : P ∉ s :=
λ h, hP (subset_closure h)

lemma closure_minimal {s t : set α} (h₁ : s ⊆ t) (h₂ : is_closed t) : closure s ⊆ t :=
sInter_subset_of_mem ⟨h₂, h₁⟩

lemma disjoint.closure_left {s t : set α} (hd : disjoint s t) (ht : is_open t) :
  disjoint (closure s) t :=
disjoint_compl_left.mono_left $ closure_minimal hd.subset_compl_right ht.is_closed_compl

lemma disjoint.closure_right {s t : set α} (hd : disjoint s t) (hs : is_open s) :
  disjoint s (closure t) :=
(hd.symm.closure_left hs).symm

lemma is_closed.closure_eq {s : set α} (h : is_closed s) : closure s = s :=
subset.antisymm (closure_minimal (subset.refl s) h) subset_closure

lemma is_closed.closure_subset {s : set α} (hs : is_closed s) : closure s ⊆ s :=
closure_minimal (subset.refl _) hs

lemma is_closed.closure_subset_iff {s t : set α} (h₁ : is_closed t) :
  closure s ⊆ t ↔ s ⊆ t :=
⟨subset.trans subset_closure, assume h, closure_minimal h h₁⟩

lemma is_closed.mem_iff_closure_subset {α : Type*} [topological_space α] {U : set α}
  (hU : is_closed U) {x : α} : x ∈ U ↔ closure ({x} : set α) ⊆ U :=
(hU.closure_subset_iff.trans set.singleton_subset_iff).symm

@[mono] lemma closure_mono {s t : set α} (h : s ⊆ t) : closure s ⊆ closure t :=
closure_minimal (subset.trans h subset_closure) is_closed_closure

lemma monotone_closure (α : Type*) [topological_space α] : monotone (@closure α _) :=
λ _ _, closure_mono

lemma diff_subset_closure_iff {s t : set α} :
  s \ t ⊆ closure t ↔ s ⊆ closure t :=
by rw [diff_subset_iff, union_eq_self_of_subset_left subset_closure]

lemma closure_inter_subset_inter_closure (s t : set α) :
  closure (s ∩ t) ⊆ closure s ∩ closure t :=
(monotone_closure α).map_inf_le s t

lemma is_closed_of_closure_subset {s : set α} (h : closure s ⊆ s) : is_closed s :=
by rw subset.antisymm subset_closure h; exact is_closed_closure

lemma closure_eq_iff_is_closed {s : set α} : closure s = s ↔ is_closed s :=
⟨assume h, h ▸ is_closed_closure, is_closed.closure_eq⟩

lemma closure_subset_iff_is_closed {s : set α} : closure s ⊆ s ↔ is_closed s :=
⟨is_closed_of_closure_subset, is_closed.closure_subset⟩

@[simp] lemma closure_empty : closure (∅ : set α) = ∅ :=
is_closed_empty.closure_eq

@[simp] lemma closure_empty_iff (s : set α) : closure s = ∅ ↔ s = ∅ :=
⟨subset_eq_empty subset_closure, λ h, h.symm ▸ closure_empty⟩

@[simp] lemma closure_nonempty_iff {s : set α} : (closure s).nonempty ↔ s.nonempty :=
by simp only [← ne_empty_iff_nonempty, ne.def, closure_empty_iff]

alias closure_nonempty_iff ↔ set.nonempty.of_closure set.nonempty.closure

@[simp] lemma closure_univ : closure (univ : set α) = univ :=
is_closed_univ.closure_eq

@[simp] lemma closure_closure {s : set α} : closure (closure s) = closure s :=
is_closed_closure.closure_eq

@[simp] lemma closure_union {s t : set α} : closure (s ∪ t) = closure s ∪ closure t :=
subset.antisymm
  (closure_minimal (union_subset_union subset_closure subset_closure) $
    is_closed.union is_closed_closure is_closed_closure)
  ((monotone_closure α).le_map_sup s t)

@[simp] lemma finset.closure_bUnion {ι : Type*} (s : finset ι) (f : ι → set α) :
  closure (⋃ i ∈ s, f i) = ⋃ i ∈ s, closure (f i) :=
begin
  classical,
  refine s.induction_on (by simp) _,
  intros i s h₁ h₂,
  simp [h₂],
end

@[simp] lemma closure_Union {ι : Type*} [finite ι] (f : ι → set α) :
  closure (⋃ i, f i) = ⋃ i, closure (f i) :=
by { casesI nonempty_fintype ι, convert finset.univ.closure_bUnion f; simp }

lemma interior_subset_closure {s : set α} : interior s ⊆ closure s :=
subset.trans interior_subset subset_closure

lemma closure_eq_compl_interior_compl {s : set α} : closure s = (interior sᶜ)ᶜ :=
begin
  rw [interior, closure, compl_sUnion, compl_image_set_of],
  simp only [compl_subset_compl, is_open_compl_iff],
end

@[simp] lemma interior_compl {s : set α} : interior sᶜ = (closure s)ᶜ :=
by simp [closure_eq_compl_interior_compl]

@[simp] lemma closure_compl {s : set α} : closure sᶜ = (interior s)ᶜ :=
by simp [closure_eq_compl_interior_compl]

theorem mem_closure_iff {s : set α} {a : α} :
  a ∈ closure s ↔ ∀ o, is_open o → a ∈ o → (o ∩ s).nonempty :=
⟨λ h o oo ao, classical.by_contradiction $ λ os,
  have s ⊆ oᶜ, from λ x xs xo, os ⟨x, xo, xs⟩,
  closure_minimal this (is_closed_compl_iff.2 oo) h ao,
λ H c ⟨h₁, h₂⟩, classical.by_contradiction $ λ nc,
  let ⟨x, hc, hs⟩ := (H _ h₁.is_open_compl nc) in hc (h₂ hs)⟩

lemma filter.le_lift'_closure (l : filter α) : l ≤ l.lift' closure :=
le_infi₂ $ λ s hs, le_principal_iff.2 $ mem_of_superset hs subset_closure

lemma filter.has_basis.lift'_closure {l : filter α} {p : ι → Prop} {s : ι → set α}
  (h : l.has_basis p s) :
  (l.lift' closure).has_basis p (λ i, closure (s i)) :=
h.lift' (monotone_closure α)

lemma filter.has_basis.lift'_closure_eq_self {l : filter α} {p : ι → Prop} {s : ι → set α}
  (h : l.has_basis p s) (hc : ∀ i, p i → is_closed (s i)) :
  l.lift' closure = l :=
le_antisymm (h.ge_iff.2 $ λ i hi, (hc i hi).closure_eq ▸ mem_lift' (h.mem_of_mem hi))
  l.le_lift'_closure

/-- A set is dense in a topological space if every point belongs to its closure. -/
def dense (s : set α) : Prop := ∀ x, x ∈ closure s

lemma dense_iff_closure_eq {s : set α} : dense s ↔ closure s = univ :=
eq_univ_iff_forall.symm

lemma dense.closure_eq {s : set α} (h : dense s) : closure s = univ :=
dense_iff_closure_eq.mp h

lemma interior_eq_empty_iff_dense_compl {s : set α} : interior s = ∅ ↔ dense sᶜ :=
by rw [dense_iff_closure_eq, closure_compl, compl_univ_iff]

lemma dense.interior_compl {s : set α} (h : dense s) : interior sᶜ = ∅ :=
interior_eq_empty_iff_dense_compl.2 $ by rwa compl_compl

/-- The closure of a set `s` is dense if and only if `s` is dense. -/
@[simp] lemma dense_closure {s : set α} : dense (closure s) ↔ dense s :=
by rw [dense, dense, closure_closure]

alias dense_closure ↔ dense.of_closure dense.closure

@[simp] lemma dense_univ : dense (univ : set α) := λ x, subset_closure trivial

/-- A set is dense if and only if it has a nonempty intersection with each nonempty open set. -/
lemma dense_iff_inter_open {s : set α} :
  dense s ↔ ∀ U, is_open U → U.nonempty → (U ∩ s).nonempty :=
begin
  split ; intro h,
  { rintros U U_op ⟨x, x_in⟩,
    exact mem_closure_iff.1 (by simp only [h.closure_eq]) U U_op x_in },
  { intro x,
    rw mem_closure_iff,
    intros U U_op x_in,
    exact h U U_op ⟨_, x_in⟩ },
end

alias dense_iff_inter_open ↔ dense.inter_open_nonempty _

lemma dense.exists_mem_open {s : set α} (hs : dense s) {U : set α} (ho : is_open U)
  (hne : U.nonempty) :
  ∃ x ∈ s, x ∈ U :=
let ⟨x, hx⟩ := hs.inter_open_nonempty U ho hne in ⟨x, hx.2, hx.1lemma dense.nonempty_iff {s : set α} (hs : dense s) :
  s.nonempty ↔ nonempty α :=
⟨λ ⟨x, hx⟩, ⟨x⟩, λ ⟨x⟩,
  let ⟨y, hy⟩ := hs.inter_open_nonempty _ is_open_univ ⟨x, trivial⟩ in ⟨y, hy.2⟩⟩

lemma dense.nonempty [h : nonempty α] {s : set α} (hs : dense s) : s.nonempty :=
hs.nonempty_iff.2 h

@[mono]
lemma dense.mono {s₁ s₂ : set α} (h : s₁ ⊆ s₂) (hd : dense s₁) : dense s₂ :=
λ x, closure_mono h (hd x)

/-- Complement to a singleton is dense if and only if the singleton is not an open set. -/
lemma dense_compl_singleton_iff_not_open {x : α} : dense ({x}ᶜ : set α) ↔ ¬is_open ({x} : set α) :=
begin
  fsplit,
  { intros hd ho,
    exact (hd.inter_open_nonempty _ ho (singleton_nonempty _)).ne_empty (inter_compl_self _) },
  { refine λ ho, dense_iff_inter_open.2 (λ U hU hne, inter_compl_nonempty_iff.2 $ λ hUx, _),
    obtain rfl : U = {x}, from eq_singleton_iff_nonempty_unique_mem.2 ⟨hne, hUx⟩,
    exact ho hU }
end

/-!
### Frontier of a set
-/

/-- The frontier of a set is the set of points between the closure and interior. -/
def frontier (s : set α) : set α := closure s \ interior s

@[simp] lemma closure_diff_interior (s : set α) : closure s \ interior s = frontier s := rfl

@[simp] lemma closure_diff_frontier (s : set α) : closure s \ frontier s = interior s :=
by rw [frontier, diff_diff_right_self, inter_eq_self_of_subset_right interior_subset_closure]

@[simp] lemma self_diff_frontier (s : set α) : s \ frontier s = interior s :=
by rw [frontier, diff_diff_right, diff_eq_empty.2 subset_closure,
  inter_eq_self_of_subset_right interior_subset, empty_union]

lemma frontier_eq_closure_inter_closure {s : set α} :
  frontier s = closure s ∩ closure sᶜ :=
by rw [closure_compl, frontier, diff_eq]

lemma frontier_subset_closure {s : set α} : frontier s ⊆ closure s := diff_subset _ _

lemma is_closed.frontier_subset (hs : is_closed s) : frontier s ⊆ s :=
frontier_subset_closure.trans hs.closure_eq.subset

lemma frontier_closure_subset {s : set α} : frontier (closure s) ⊆ frontier s :=
diff_subset_diff closure_closure.subset $ interior_mono subset_closure

lemma frontier_interior_subset {s : set α} : frontier (interior s) ⊆ frontier s :=
diff_subset_diff (closure_mono interior_subset) interior_interior.symm.subset

/-- The complement of a set has the same frontier as the original set. -/
@[simp] lemma frontier_compl (s : set α) : frontier sᶜ = frontier s :=
by simp only [frontier_eq_closure_inter_closure, compl_compl, inter_comm]

@[simp] lemma frontier_univ : frontier (univ : set α) = ∅ := by simp [frontier]

@[simp] lemma frontier_empty : frontier (∅ : set α) = ∅ := by simp [frontier]

lemma frontier_inter_subset (s t : set α) :
  frontier (s ∩ t) ⊆ (frontier s ∩ closure t) ∪ (closure s ∩ frontier t) :=
begin
  simp only [frontier_eq_closure_inter_closure, compl_inter, closure_union],
  convert inter_subset_inter_left _ (closure_inter_subset_inter_closure s t),
  simp only [inter_distrib_left, inter_distrib_right, inter_assoc],
  congr' 2,
  apply inter_comm
end

lemma frontier_union_subset (s t : set α) :
  frontier (s ∪ t) ⊆ (frontier s ∩ closure tᶜ) ∪ (closure sᶜ ∩ frontier t) :=
by simpa only [frontier_compl, ← compl_union]
  using frontier_inter_subset sᶜ tᶜ

lemma is_closed.frontier_eq {s : set α} (hs : is_closed s) : frontier s = s \ interior s :=
by rw [frontier, hs.closure_eq]

lemma is_open.frontier_eq {s : set α} (hs : is_open s) : frontier s = closure s \ s :=
by rw [frontier, hs.interior_eq]

lemma is_open.inter_frontier_eq {s : set α} (hs : is_open s) : s ∩ frontier s = ∅ :=
by rw [hs.frontier_eq, inter_diff_self]

/-- The frontier of a set is closed. -/
lemma is_closed_frontier {s : set α} : is_closed (frontier s) :=
by rw frontier_eq_closure_inter_closure; exact is_closed.inter is_closed_closure is_closed_closure

/-- The frontier of a closed set has no interior point. -/
lemma interior_frontier {s : set α} (h : is_closed s) : interior (frontier s) = ∅ :=
begin
  have A : frontier s = s \ interior s, from h.frontier_eq,
  have B : interior (frontier s) ⊆ interior s, by rw A; exact interior_mono (diff_subset _ _),
  have C : interior (frontier s) ⊆ frontier s := interior_subset,
  have : interior (frontier s) ⊆ (interior s) ∩ (s \ interior s) :=
    subset_inter B (by simpa [A] using C),
  rwa [inter_diff_self, subset_empty_iff] at this,
end

lemma closure_eq_interior_union_frontier (s : set α) : closure s = interior s ∪ frontier s :=
(union_diff_cancel interior_subset_closure).symm

lemma closure_eq_self_union_frontier (s : set α) : closure s = s ∪ frontier s :=
(union_diff_cancel' interior_subset subset_closure).symm

lemma disjoint.frontier_left (ht : is_open t) (hd : disjoint s t) : disjoint (frontier s) t :=
subset_compl_iff_disjoint_right.1 $ frontier_subset_closure.trans $ closure_minimal
  (disjoint_left.1 hd) $ is_closed_compl_iff.2 ht

lemma disjoint.frontier_right (hs : is_open s) (hd : disjoint s t) : disjoint s (frontier t) :=
(hd.symm.frontier_left hs).symm

lemma frontier_eq_inter_compl_interior {s : set α} :
  frontier s = (interior s)ᶜ ∩ (interior (sᶜ))ᶜ :=
by { rw [←frontier_compl, ←closure_compl], refl }

lemma compl_frontier_eq_union_interior {s : set α} :
  (frontier s)ᶜ = interior s ∪ interior sᶜ :=
begin
  rw frontier_eq_inter_compl_interior,
  simp only [compl_inter, compl_compl],
end

/-!
### Neighborhoods
-/

/-- A set is called a neighborhood of `a` if it contains an open set around `a`. The set of all
neighborhoods of `a` forms a filter, the neighborhood filter at `a`, is here defined as the
infimum over the principal filters of all open sets containing `a`. -/
@[irreducible] def nhds (a : α) : filter α := (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 s)

localized "notation `𝓝` := nhds" in topological_space

/-- The "neighborhood within" filter. Elements of `𝓝[s] a` are sets containing the
intersection of `s` and a neighborhood of `a`. -/
def nhds_within (a : α) (s : set α) : filter α := 𝓝 a ⊓ 𝓟 s

localized "notation `𝓝[` s `] ` x:100 := nhds_within x s" in topological_space
localized "notation `𝓝[≠] ` x:100 := nhds_within x {x}ᶜ" in topological_space
localized "notation `𝓝[≥] ` x:100 := nhds_within x (set.Ici x)" in topological_space
localized "notation `𝓝[≤] ` x:100 := nhds_within x (set.Iic x)" in topological_space
localized "notation `𝓝[>] ` x:100 := nhds_within x (set.Ioi x)" in topological_space
localized "notation `𝓝[<] ` x:100 := nhds_within x (set.Iio x)" in topological_space

lemma nhds_def (a : α) : 𝓝 a = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 s) := by rw nhds

lemma nhds_def' (a : α) : 𝓝 a = ⨅ (s : set α) (hs : is_open s) (ha : a ∈ s), 𝓟 s :=
by simp only [nhds_def, mem_set_of_eq, and_comm (a ∈ _), infi_and]

/-- The open sets containing `a` are a basis for the neighborhood filter. See `nhds_basis_opens'`
for a variant using open neighborhoods instead. -/
lemma nhds_basis_opens (a : α) : (𝓝 a).has_basis (λ s : set α, a ∈ s ∧ is_open s) (λ s, s) :=
begin
  rw nhds_def,
  exact has_basis_binfi_principal
    (λ s ⟨has, hs⟩ t ⟨hat, ht⟩, ⟨s ∩ t, ⟨⟨has, hat⟩, is_open.inter hs ht⟩,
      ⟨inter_subset_left _ _, inter_subset_right _ _⟩⟩)
    ⟨univ, ⟨mem_univ a, is_open_univ⟩⟩
end

lemma nhds_basis_closeds (a : α) : (𝓝 a).has_basis (λ s : set α, a ∉ s ∧ is_closed s) compl :=
⟨λ t, (nhds_basis_opens a).mem_iff.trans $ compl_surjective.exists.trans $
  by simp only [is_open_compl_iff, mem_compl_iff]⟩

/-- A filter lies below the neighborhood filter at `a` iff it contains every open set around `a`. -/
lemma le_nhds_iff {f a} : f ≤ 𝓝 a ↔ ∀ s : set α, a ∈ s → is_open s → s ∈ f :=
by simp [nhds_def]

/-- To show a filter is above the neighborhood filter at `a`, it suffices to show that it is above
the principal filter of some open set `s` containing `a`. -/
lemma nhds_le_of_le {f a} {s : set α} (h : a ∈ s) (o : is_open s) (sf : 𝓟 s ≤ f) : 𝓝 a ≤ f :=
by rw nhds_def; exact infi_le_of_le s (infi_le_of_le ⟨h, o⟩ sf)

lemma mem_nhds_iff {a : α} {s : set α} :
  s ∈ 𝓝 a ↔ ∃ t ⊆ s, is_open t ∧ a ∈ t :=
(nhds_basis_opens a).mem_iff.trans
  ⟨λ ⟨t, ⟨hat, ht⟩, hts⟩, ⟨t, hts, ht, hat⟩, λ ⟨t, hts, ht, hat⟩, ⟨t, ⟨hat, ht⟩, hts⟩⟩

/-- A predicate is true in a neighborhood of `a` iff it is true for all the points in an open set
containing `a`. -/
lemma eventually_nhds_iff {a : α} {p : α → Prop} :
  (∀ᶠ x in 𝓝 a, p x) ↔ ∃ (t : set α), (∀ x ∈ t, p x) ∧ is_open t ∧ a ∈ t :=
mem_nhds_iff.trans $ by simp only [subset_def, exists_prop, mem_set_of_eq]

lemma map_nhds {a : α} {f : α → β} :
  map f (𝓝 a) = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 (image f s)) :=
((nhds_basis_opens a).map f).eq_binfi

lemma mem_of_mem_nhds {a : α} {s : set α} : s ∈ 𝓝 a → a ∈ s :=
λ H, let ⟨t, ht, _, hs⟩ := mem_nhds_iff.1 H in ht hs

/-- If a predicate is true in a neighborhood of `a`, then it is true for `a`. -/
lemma filter.eventually.self_of_nhds {p : α → Prop} {a : α}
  (h : ∀ᶠ y in 𝓝 a, p y) : p a :=
mem_of_mem_nhds h

lemma is_open.mem_nhds {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) :
  s ∈ 𝓝 a :=
mem_nhds_iff.2 ⟨s, subset.refl _, hs, ha⟩

lemma is_open.mem_nhds_iff {a : α} {s : set α} (hs : is_open s) : s ∈ 𝓝 a ↔ a ∈ s :=
⟨mem_of_mem_nhds, λ ha, mem_nhds_iff.2 ⟨s, subset.refl _, hs, ha⟩⟩

lemma is_closed.compl_mem_nhds {a : α} {s : set α} (hs : is_closed s) (ha : a ∉ s) : sᶜ ∈ 𝓝 a :=
hs.is_open_compl.mem_nhds (mem_compl ha)

lemma is_open.eventually_mem {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) :
  ∀ᶠ x in 𝓝 a, x ∈ s :=
is_open.mem_nhds hs ha

/-- The open neighborhoods of `a` are a basis for the neighborhood filter. See `nhds_basis_opens`
for a variant using open sets around `a` instead. -/
lemma nhds_basis_opens' (a : α) : (𝓝 a).has_basis (λ s : set α, s ∈ 𝓝 a ∧ is_open s) (λ x, x) :=
begin
  convert nhds_basis_opens a,
  ext s,
  exact and.congr_left_iff.2 is_open.mem_nhds_iff
end

/-- If `U` is a neighborhood of each point of a set `s` then it is a neighborhood of `s`:
it contains an open set containing `s`. -/
lemma exists_open_set_nhds {s U : set α} (h : ∀ x ∈ s, U ∈ 𝓝 x) :
  ∃ V : set α, s ⊆ V ∧ is_open V ∧ V ⊆ U :=
begin
  have := λ x hx, (nhds_basis_opens x).mem_iff.1 (h x hx),
  choose! Z hZ hZU using this, choose hZmem hZo using hZ,
  exact ⟨⋃ x ∈ s, Z x, λ x hx, mem_bUnion hx (hZmem x hx), is_open_bUnion hZo, Union₂_subset hZU⟩
end

/-- If `U` is a neighborhood of each point of a set `s` then it is a neighborhood of s:
it contains an open set containing `s`. -/
lemma exists_open_set_nhds' {s U : set α} (h : U ∈ ⨆ x ∈ s, 𝓝 x) :
  ∃ V : set α, s ⊆ V ∧ is_open V ∧ V ⊆ U :=
exists_open_set_nhds (by simpa using h)

/-- If a predicate is true in a neighbourhood of `a`, then for `y` sufficiently close
to `a` this predicate is true in a neighbourhood of `y`. -/
lemma filter.eventually.eventually_nhds {p : α → Prop} {a : α} (h : ∀ᶠ y in 𝓝 a, p y) :
  ∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝 y, p x :=
let ⟨t, htp, hto, ha⟩ := eventually_nhds_iff.1 h in
eventually_nhds_iff.2 ⟨t, λ x hx, eventually_nhds_iff.2 ⟨t, htp, hto, hx⟩, hto, ha⟩

@[simp] lemma eventually_eventually_nhds {p : α → Prop} {a : α} :
  (∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝 y, p x) ↔ ∀ᶠ x in 𝓝 a, p x :=
⟨λ h, h.self_of_nhds, λ h, h.eventually_nhds⟩

@[simp] lemma eventually_mem_nhds {s : set α} {a : α} :
  (∀ᶠ x in 𝓝 a, s ∈ 𝓝 x) ↔ s ∈ 𝓝 a :=
eventually_eventually_nhds

@[simp] lemma nhds_bind_nhds : (𝓝 a).bind 𝓝 = 𝓝 a := filter.ext $ λ s, eventually_eventually_nhds

@[simp] lemma eventually_eventually_eq_nhds {f g : α → β} {a : α} :
  (∀ᶠ y in 𝓝 a, f =ᶠ[𝓝 y] g) ↔ f =ᶠ[𝓝 a] g :=
eventually_eventually_nhds

lemma filter.eventually_eq.eq_of_nhds {f g : α → β} {a : α} (h : f =ᶠ[𝓝 a] g) : f a = g a :=
h.self_of_nhds

@[simp] lemma eventually_eventually_le_nhds [has_le β] {f g : α → β} {a : α} :
  (∀ᶠ y in 𝓝 a, f ≤ᶠ[𝓝 y] g) ↔ f ≤ᶠ[𝓝 a] g :=
eventually_eventually_nhds

/-- If two functions are equal in a neighbourhood of `a`, then for `y` sufficiently close
to `a` these functions are equal in a neighbourhood of `y`. -/
lemma filter.eventually_eq.eventually_eq_nhds {f g : α → β} {a : α} (h : f =ᶠ[𝓝 a] g) :
  ∀ᶠ y in 𝓝 a, f =ᶠ[𝓝 y] g :=
h.eventually_nhds

/-- If `f x ≤ g x` in a neighbourhood of `a`, then for `y` sufficiently close to `a` we have
`f x ≤ g x` in a neighbourhood of `y`. -/
lemma filter.eventually_le.eventually_le_nhds [has_le β] {f g : α → β} {a : α} (h : f ≤ᶠ[𝓝 a] g) :
  ∀ᶠ y in 𝓝 a, f ≤ᶠ[𝓝 y] g :=
h.eventually_nhds

theorem all_mem_nhds (x : α) (P : set α → Prop) (hP : ∀ s t, s ⊆ t → P s → P t) :
  (∀ s ∈ 𝓝 x, P s) ↔ (∀ s, is_open s → x ∈ s → P s) :=
((nhds_basis_opens x).forall_iff hP).trans $ by simp only [and_comm (x ∈ _), and_imp]

theorem all_mem_nhds_filter (x : α) (f : set α → set β) (hf : ∀ s t, s ⊆ t → f s ⊆ f t)
    (l : filter β) :
  (∀ s ∈ 𝓝 x, f s ∈ l) ↔ (∀ s, is_open s → x ∈ s → f s ∈ l) :=
all_mem_nhds _ _ (λ s t ssubt h, mem_of_superset h (hf s t ssubt))

theorem rtendsto_nhds {r : rel β α} {l : filter β} {a : α} :
  rtendsto r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.core s ∈ l) :=
all_mem_nhds_filter _ _ (λ s t, id) _

theorem rtendsto'_nhds {r : rel β α} {l : filter β} {a : α} :
  rtendsto' r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.preimage s ∈ l) :=
by { rw [rtendsto'_def], apply all_mem_nhds_filter, apply rel.preimage_mono }

theorem ptendsto_nhds {f : β →. α} {l : filter β} {a : α} :
  ptendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.core s ∈ l) :=
rtendsto_nhds

theorem ptendsto'_nhds {f : β →. α} {l : filter β} {a : α} :
  ptendsto' f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.preimage s ∈ l) :=
rtendsto'_nhds

theorem tendsto_nhds {f : β → α} {l : filter β} {a : α} :
  tendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f ⁻¹' s ∈ l) :=
all_mem_nhds_filter _ _ (λ s t h, preimage_mono h) _

lemma tendsto_at_top_nhds [nonempty β] [semilattice_sup β] {f : β → α} {a : α} :
  (tendsto f at_top (𝓝 a)) ↔ ∀ U : set α, a ∈ U → is_open U → ∃ N, ∀ n, N ≤ n → f n ∈ U :=
(at_top_basis.tendsto_iff (nhds_basis_opens a)).trans $
  by simp only [and_imp, exists_prop, true_and, mem_Ici, ge_iff_le]

lemma tendsto_const_nhds {a : α} {f : filter β} : tendsto (λb:β, a) f (𝓝 a) :=
tendsto_nhds.mpr $ assume s hs ha, univ_mem' $ assume _, ha

lemma tendsto_at_top_of_eventually_const {ι : Type*} [semilattice_sup ι] [nonempty ι]
  {x : α} {u : ι → α} {i₀ : ι} (h : ∀ i ≥ i₀, u i = x) : tendsto u at_top (𝓝 x) :=
tendsto.congr' (eventually_eq.symm (eventually_at_top.mpr ⟨i₀, h⟩)) tendsto_const_nhds

lemma tendsto_at_bot_of_eventually_const {ι : Type*} [semilattice_inf ι] [nonempty ι]
  {x : α} {u : ι → α} {i₀ : ι} (h : ∀ i ≤ i₀, u i = x) : tendsto u at_bot (𝓝 x) :=
tendsto.congr' (eventually_eq.symm (eventually_at_bot.mpr ⟨i₀, h⟩)) tendsto_const_nhds

lemma pure_le_nhds : pure ≤ (𝓝 : α → filter α) :=
assume a s hs, mem_pure.2 $ mem_of_mem_nhds hs

lemma tendsto_pure_nhds {α : Type*} [topological_space β] (f : α → β) (a : α) :
  tendsto f (pure a) (𝓝 (f a)) :=
(tendsto_pure_pure f a).mono_right (pure_le_nhds _)

lemma order_top.tendsto_at_top_nhds {α : Type*} [partial_order α] [order_top α]
  [topological_space β] (f : α → β) : tendsto f at_top (𝓝 $ f ⊤) :=
(tendsto_at_top_pure f).mono_right (pure_le_nhds _)

@[simp] instance nhds_ne_bot {a : α} : ne_bot (𝓝 a) :=
ne_bot_of_le (pure_le_nhds a)

/-!
### Cluster points

In this section we define [cluster points](https://en.wikipedia.org/wiki/Limit_point)
(also known as limit points and accumulation points) of a filter and of a sequence.
-/

/-- A point `x` is a cluster point of a filter `F` if 𝓝 x ⊓ F ≠ ⊥. Also known as
an accumulation point or a limit point. -/
def cluster_pt (x : α) (F : filter α) : Prop := ne_bot (𝓝 x ⊓ F)

lemma cluster_pt.ne_bot {x : α} {F : filter α} (h : cluster_pt x F) : ne_bot (𝓝 x ⊓ F) := h

lemma filter.has_basis.cluster_pt_iff {ιa ιF} {pa : ιa → Prop} {sa : ιa → set α}
  {pF : ιF → Prop} {sF : ιF → set α} {F : filter α}
  (ha : (𝓝 a).has_basis pa sa) (hF : F.has_basis pF sF) :
  cluster_pt a F ↔ ∀ ⦃i⦄ (hi : pa i) ⦃j⦄ (hj : pF j), (sa i ∩ sF j).nonempty :=
ha.inf_basis_ne_bot_iff hF

lemma cluster_pt_iff {x : α} {F : filter α} :
  cluster_pt x F ↔ ∀ ⦃U : set α⦄ (hU : U ∈ 𝓝 x) ⦃V⦄ (hV : V ∈ F), (U ∩ V).nonempty :=
inf_ne_bot_iff

/-- `x` is a cluster point of a set `s` if every neighbourhood of `x` meets `s` on a nonempty
set. -/
lemma cluster_pt_principal_iff {x : α} {s : set α} :
  cluster_pt x (𝓟 s) ↔ ∀ U ∈ 𝓝 x, (U ∩ s).nonempty :=
inf_principal_ne_bot_iff

lemma cluster_pt_principal_iff_frequently {x : α} {s : set α} :
  cluster_pt x (𝓟 s) ↔ ∃ᶠ y in 𝓝 x, y ∈ s :=
by simp only [cluster_pt_principal_iff, frequently_iff, set.nonempty, exists_prop, mem_inter_iff]

lemma cluster_pt.of_le_nhds {x : α} {f : filter α} (H : f ≤ 𝓝 x) [ne_bot f] : cluster_pt x f :=
by rwa [cluster_pt, inf_eq_right.mpr H]

lemma cluster_pt.of_le_nhds' {x : α} {f : filter α} (H : f ≤ 𝓝 x) (hf : ne_bot f) :
  cluster_pt x f :=
cluster_pt.of_le_nhds H

lemma cluster_pt.of_nhds_le {x : α} {f : filter α} (H : 𝓝 x ≤ f) : cluster_pt x f :=
by simp only [cluster_pt, inf_eq_left.mpr H, nhds_ne_bot]

lemma cluster_pt.mono {x : α} {f g : filter α} (H : cluster_pt x f) (h : f ≤ g) :
  cluster_pt x g :=
⟨ne_bot_of_le_ne_bot H.ne $ inf_le_inf_left _ h⟩

lemma cluster_pt.of_inf_left {x : α} {f g : filter α} (H : cluster_pt x $ f ⊓ g) :
  cluster_pt x f :=
H.mono inf_le_left

lemma cluster_pt.of_inf_right {x : α} {f g : filter α} (H : cluster_pt x $ f ⊓ g) :
  cluster_pt x g :=
H.mono inf_le_right

lemma ultrafilter.cluster_pt_iff {x : α} {f : ultrafilter α} : cluster_pt x f ↔ ↑f ≤ 𝓝 x :=
⟨f.le_of_inf_ne_bot', λ h, cluster_pt.of_le_nhds h⟩

/-- A point `x` is a cluster point of a sequence `u` along a filter `F` if it is a cluster point
of `map u F`. -/
def map_cluster_pt {ι :Type*} (x : α) (F : filter ι) (u : ι → α) : Prop := cluster_pt x (map u F)

lemma map_cluster_pt_iff {ι :Type*} (x : α) (F : filter ι) (u : ι → α) :
  map_cluster_pt x F u ↔ ∀ s ∈ 𝓝 x, ∃ᶠ a in F, u a ∈ s :=
by { simp_rw [map_cluster_pt, cluster_pt, inf_ne_bot_iff_frequently_left, frequently_map], refl }

lemma map_cluster_pt_of_comp {ι δ :Type*} {F : filter ι} {φ : δ → ι} {p : filter δ}
  {x : α} {u : ι → α} [ne_bot p] (h : tendsto φ p F) (H : tendsto (u ∘ φ) p (𝓝 x)) :
  map_cluster_pt x F u :=
begin
  have := calc
  map (u ∘ φ) p = map u (map φ p) : map_map
  ... ≤ map u F : map_mono h,
  have : map (u ∘ φ) p ≤ 𝓝 x ⊓ map u F,
    from le_inf H this,
  exact ne_bot_of_le this
end

/-!
### Interior, closure and frontier in terms of neighborhoods
-/

lemma interior_eq_nhds' {s : set α} : interior s = {a | s ∈ 𝓝 a} :=
set.ext $ λ x, by simp only [mem_interior, mem_nhds_iff, mem_set_of_eq]

lemma interior_eq_nhds {s : set α} : interior s = {a | 𝓝 a ≤ 𝓟 s} :=
interior_eq_nhds'.trans $ by simp only [le_principal_iff]

lemma mem_interior_iff_mem_nhds {s : set α} {a : α} :
  a ∈ interior s ↔ s ∈ 𝓝 a :=
by rw [interior_eq_nhds', mem_set_of_eq]

@[simp] lemma interior_mem_nhds {s : set α} {a : α} :
  interior s ∈ 𝓝 a ↔ s ∈ 𝓝 a :=
⟨λ h, mem_of_superset h interior_subset,
  λ h, is_open.mem_nhds is_open_interior (mem_interior_iff_mem_nhds.2 h)⟩

lemma interior_set_of_eq {p : α → Prop} :
  interior {x | p x} = {x | ∀ᶠ y in 𝓝 x, p y} :=
interior_eq_nhds'

lemma is_open_set_of_eventually_nhds {p : α → Prop} :
  is_open {x | ∀ᶠ y in 𝓝 x, p y} :=
by simp only [← interior_set_of_eq, is_open_interior]

lemma subset_interior_iff_nhds {s V : set α} : s ⊆ interior V ↔ ∀ x ∈ s, V ∈ 𝓝 x :=
show (∀ x, x ∈ s →  x ∈ _) ↔ _, by simp_rw mem_interior_iff_mem_nhds

lemma is_open_iff_nhds {s : set α} : is_open s ↔ ∀a∈s, 𝓝 a ≤ 𝓟 s :=
calc is_open s ↔ s ⊆ interior s : subset_interior_iff_open.symm
  ... ↔ (∀a∈s, 𝓝 a ≤ 𝓟 s) : by rw [interior_eq_nhds]; refl

lemma is_open_iff_mem_nhds {s : set α} : is_open s ↔ ∀a∈s, s ∈ 𝓝 a :=
is_open_iff_nhds.trans $ forall_congr $ λ _, imp_congr_right $ λ _, le_principal_iff

theorem is_open_iff_ultrafilter {s : set α} :
  is_open s ↔ (∀ (x ∈ s) (l : ultrafilter α), ↑l ≤ 𝓝 x → s ∈ l) :=
by simp_rw [is_open_iff_mem_nhds, ← mem_iff_ultrafilter]

lemma is_open_singleton_iff_nhds_eq_pure {α : Type*} [topological_space α] (a : α) :
  is_open ({a} : set α) ↔ 𝓝 a = pure a :=
begin
  split,
  { intros h,
    apply le_antisymm _ (pure_le_nhds a),
    rw le_pure_iff,
    exact h.mem_nhds (mem_singleton a) },
  { intros h,
    simp [is_open_iff_nhds, h] }
end

lemma mem_closure_iff_frequently {s : set α} {a : α} : a ∈ closure s ↔ ∃ᶠ x in 𝓝 a, x ∈ s :=
by rw [filter.frequently, filter.eventually, ← mem_interior_iff_mem_nhds,
  closure_eq_compl_interior_compl]; refl

alias mem_closure_iff_frequently ↔ _ filter.frequently.mem_closure

/-- The set of cluster points of a filter is closed. In particular, the set of limit points
of a sequence is closed. -/
lemma is_closed_set_of_cluster_pt {f : filter α} : is_closed {x | cluster_pt x f} :=
begin
  simp only [cluster_pt, inf_ne_bot_iff_frequently_left, set_of_forall, imp_iff_not_or],
  refine is_closed_Inter (λ p, is_closed.union _ _); apply is_closed_compl_iff.2,
  exacts [is_open_set_of_eventually_nhds, is_open_const]
end

theorem mem_closure_iff_cluster_pt {s : set α} {a : α} : a ∈ closure s ↔ cluster_pt a (𝓟 s) :=
mem_closure_iff_frequently.trans cluster_pt_principal_iff_frequently.symm

lemma mem_closure_iff_nhds_ne_bot {s : set α} : a ∈ closure s ↔ 𝓝 a ⊓ 𝓟 s ≠ ⊥ :=
mem_closure_iff_cluster_pt.trans ne_bot_iff

lemma mem_closure_iff_nhds_within_ne_bot {s : set α} {x : α} :
  x ∈ closure s ↔ ne_bot (𝓝[s] x) :=
mem_closure_iff_cluster_pt

/-- If `x` is not an isolated point of a topological space, then `{x}ᶜ` is dense in the whole
space. -/
lemma dense_compl_singleton (x : α) [ne_bot (𝓝[≠] x)] : dense ({x}ᶜ : set α) :=
begin
  intro y,
  unfreezingI { rcases eq_or_ne y x with rfl|hne },
  { rwa mem_closure_iff_nhds_within_ne_bot },
  { exact subset_closure hne }
end

/-- If `x` is not an isolated point of a topological space, then the closure of `{x}ᶜ` is the whole
space. -/
@[simp] lemma closure_compl_singleton (x : α) [ne_bot (𝓝[≠] x)] :
  closure {x}ᶜ = (univ : set α) :=
(dense_compl_singleton x).closure_eq

/-- If `x` is not an isolated point of a topological space, then the interior of `{x}` is empty. -/
@[simp] lemma interior_singleton (x : α) [ne_bot (𝓝[≠] x)] :
  interior {x} = (∅ : set α) :=
interior_eq_empty_iff_dense_compl.2 (dense_compl_singleton x)

lemma closure_eq_cluster_pts {s : set α} : closure s = {a | cluster_pt a (𝓟 s)} :=
set.ext $ λ x, mem_closure_iff_cluster_pt

theorem mem_closure_iff_nhds {s : set α} {a : α} :
  a ∈ closure s ↔ ∀ t ∈ 𝓝 a, (t ∩ s).nonempty :=
mem_closure_iff_cluster_pt.trans cluster_pt_principal_iff

theorem mem_closure_iff_nhds' {s : set α} {a : α} :
  a ∈ closure s ↔ ∀ t ∈ 𝓝 a, ∃ y : s, ↑y ∈ t :=
by simp only [mem_closure_iff_nhds, set.nonempty_inter_iff_exists_right]

theorem mem_closure_iff_comap_ne_bot {A : set α} {x : α} :
  x ∈ closure A ↔ ne_bot (comap (coe : A → α) (𝓝 x)) :=
by simp_rw [mem_closure_iff_nhds, comap_ne_bot_iff, set.nonempty_inter_iff_exists_right]

theorem mem_closure_iff_nhds_basis' {a : α} {p : ι → Prop} {s : ι → set α} (h : (𝓝 a).has_basis p s)
  {t : set α} :
  a ∈ closure t ↔ ∀ i, p i → (s i ∩ t).nonempty :=
mem_closure_iff_cluster_pt.trans $ (h.cluster_pt_iff (has_basis_principal _)).trans $
  by simp only [exists_prop, forall_const]

theorem mem_closure_iff_nhds_basis {a : α} {p : ι → Prop} {s : ι → set α} (h : (𝓝 a).has_basis p s)
  {t : set α} :
  a ∈ closure t ↔ ∀ i, p i → ∃ y ∈ t, y ∈ s i :=
(mem_closure_iff_nhds_basis' h).trans $
  by simp only [set.nonempty, mem_inter_eq, exists_prop, and_comm]

/-- `x` belongs to the closure of `s` if and only if some ultrafilter
  supported on `s` converges to `x`. -/
lemma mem_closure_iff_ultrafilter {s : set α} {x : α} :
  x ∈ closure s ↔ ∃ (u : ultrafilter α), s ∈ u ∧ ↑u ≤ 𝓝 x :=
by simp [closure_eq_cluster_pts, cluster_pt, ← exists_ultrafilter_iff, and.comm]

lemma is_closed_iff_cluster_pt {s : set α} : is_closed s ↔ ∀a, cluster_pt a (𝓟 s) → a ∈ s :=
calc is_closed s ↔ closure s ⊆ s : closure_subset_iff_is_closed.symm
  ... ↔ (∀a, cluster_pt a (𝓟 s) → a ∈ s) : by simp only [subset_def, mem_closure_iff_cluster_pt]

lemma is_closed_iff_nhds {s : set α} : is_closed s ↔ ∀ x, (∀ U ∈ 𝓝 x, (U ∩ s).nonempty) → x ∈ s :=
by simp_rw [is_closed_iff_cluster_pt, cluster_pt, inf_principal_ne_bot_iff]

lemma closure_inter_open {s t : set α} (h : is_open s) : s ∩ closure t ⊆ closure (s ∩ t) :=
begin
  rintro a ⟨hs, ht⟩,
  have : s ∈ 𝓝 a := is_open.mem_nhds h hs,
  rw mem_closure_iff_nhds_ne_bot at ht ⊢,
  rwa [← inf_principal, ← inf_assoc, inf_eq_left.2 (le_principal_iff.2 this)],
end

lemma closure_inter_open' {s t : set α} (h : is_open t) : closure s ∩ t ⊆ closure (s ∩ t) :=
by simpa only [inter_comm] using closure_inter_open h

lemma dense.open_subset_closure_inter {s t : set α} (hs : dense s) (ht : is_open t) :
  t ⊆ closure (t ∩ s) :=
calc t = t ∩ closure s   : by rw [hs.closure_eq, inter_univ]
   ... ⊆ closure (t ∩ s) : closure_inter_open ht

lemma mem_closure_of_mem_closure_union {s₁ s₂ : set α} {x : α} (h : x ∈ closure (s₁ ∪ s₂))
  (h₁ : s₁ᶜ ∈ 𝓝 x) : x ∈ closure s₂ :=
begin
  rw mem_closure_iff_nhds_ne_bot at *,
  rwa ← calc
    𝓝 x ⊓ principal (s₁ ∪ s₂) = 𝓝 x ⊓ (principal s₁ ⊔ principal s₂) : by rw sup_principal
    ... = (𝓝 x ⊓ principal s₁) ⊔ (𝓝 x ⊓ principal s₂) : inf_sup_left
    ... = ⊥ ⊔ 𝓝 x ⊓ principal s₂ : by rw inf_principal_eq_bot.mpr h₁
    ... = 𝓝 x ⊓ principal s₂ : bot_sup_eq
end

/-- The intersection of an open dense set with a dense set is a dense set. -/
lemma dense.inter_of_open_left {s t : set α} (hs : dense s) (ht : dense t) (hso : is_open s) :
  dense (s ∩ t) :=
λ x, (closure_minimal (closure_inter_open hso) is_closed_closure) $
  by simp [hs.closure_eq, ht.closure_eq]

/-- The intersection of a dense set with an open dense set is a dense set. -/
lemma dense.inter_of_open_right {s t : set α} (hs : dense s) (ht : dense t) (hto : is_open t) :
  dense (s ∩ t) :=
inter_comm t s ▸ ht.inter_of_open_left hs hto

lemma dense.inter_nhds_nonempty {s t : set α} (hs : dense s) {x : α} (ht : t ∈ 𝓝 x) :
  (s ∩ t).nonempty :=
let ⟨U, hsub, ho, hx⟩ := mem_nhds_iff.1 ht in
  (hs.inter_open_nonempty U ho ⟨x, hx⟩).mono $ λ y hy, ⟨hy.2, hsub hy.1lemma closure_diff {s t : set α} : closure s \ closure t ⊆ closure (s \ t) :=
calc closure s \ closure t = (closure t)ᶜ ∩ closure s : by simp only [diff_eq, inter_comm]
  ... ⊆ closure ((closure t)ᶜ ∩ s) : closure_inter_open $ is_open_compl_iff.mpr $ is_closed_closure
  ... = closure (s \ closure t) : by simp only [diff_eq, inter_comm]
  ... ⊆ closure (s \ t) : closure_mono $ diff_subset_diff (subset.refl s) subset_closure

lemma filter.frequently.mem_of_closed {a : α} {s : set α} (h : ∃ᶠ x in 𝓝 a, x ∈ s)
  (hs : is_closed s) : a ∈ s :=
hs.closure_subset h.mem_closure

lemma is_closed.mem_of_frequently_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α}
  (hs : is_closed s) (h : ∃ᶠ x in b, f x ∈ s) (hf : tendsto f b (𝓝 a)) : a ∈ s :=
(hf.frequently $ show ∃ᶠ x in b, (λ y, y ∈ s) (f x), from h).mem_of_closed hs

lemma is_closed.mem_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α}
  [ne_bot b] (hs : is_closed s) (hf : tendsto f b (𝓝 a)) (h : ∀ᶠ x in b, f x ∈ s) : a ∈ s :=
hs.mem_of_frequently_of_tendsto h.frequently hf

lemma mem_closure_of_frequently_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α}
  (h : ∃ᶠ x in b, f x ∈ s) (hf : tendsto f b (𝓝 a)) : a ∈ closure s :=
filter.frequently.mem_closure $ hf.frequently h

lemma mem_closure_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α}
  [ne_bot b] (hf : tendsto f b (𝓝 a)) (h : ∀ᶠ x in b, f x ∈ s) : a ∈ closure s :=
mem_closure_of_frequently_of_tendsto h.frequently hf

/-- Suppose that `f` sends the complement to `s` to a single point `a`, and `l` is some filter.
Then `f` tends to `a` along `l` restricted to `s` if and only if it tends to `a` along `l`. -/
lemma tendsto_inf_principal_nhds_iff_of_forall_eq {f : β → α} {l : filter β} {s : set β}
  {a : α} (h : ∀ x ∉ s, f x = a) :
  tendsto f (l ⊓ 𝓟 s) (𝓝 a) ↔ tendsto f l (𝓝 a) :=
begin
  rw [tendsto_iff_comap, tendsto_iff_comap],
  replace h : 𝓟 sᶜ ≤ comap f (𝓝 a),
  { rintros U ⟨t, ht, htU⟩ x hx,
    have : f x ∈ t, from (h x hx).symm ▸ mem_of_mem_nhds ht,
    exact htU this },
  refine ⟨λ h', _, le_trans inf_le_left⟩,
  have := sup_le h' h,
  rw [sup_inf_right, sup_principal, union_compl_self, principal_univ,
    inf_top_eq, sup_le_iff] at this,
  exact this.1
end

/-!
### Limits of filters in topological spaces
-/

section lim

/-- If `f` is a filter, then `Lim f` is a limit of the filter, if it exists. -/
noncomputable def Lim [nonempty α] (f : filter α) : α := epsilon $ λa, f ≤ 𝓝 a

/--
If `f` is a filter satisfying `ne_bot f`, then `Lim' f` is a limit of the filter, if it exists.
-/
def Lim' (f : filter α) [ne_bot f] : α := @Lim _ _ (nonempty_of_ne_bot f) f

/--
If `F` is an ultrafilter, then `filter.ultrafilter.Lim F` is a limit of the filter, if it exists.
Note that dot notation `F.Lim` can be used for `F : ultrafilter α`.
-/
def ultrafilter.Lim : ultrafilter α → α := λ F, Lim' F

/-- If `f` is a filter in `β` and `g : β → α` is a function, then `lim f` is a limit of `g` at `f`,
if it exists. -/
noncomputable def lim [nonempty α] (f : filter β) (g : β → α) : α :=
Lim (f.map g)

/-- If a filter `f` is majorated by some `𝓝 a`, then it is majorated by `𝓝 (Lim f)`. We formulate
this lemma with a `[nonempty α]` argument of `Lim` derived from `h` to make it useful for types
without a `[nonempty α]` instance. Because of the built-in proof irrelevance, Lean will unify
this instance with any other instance. -/
lemma le_nhds_Lim {f : filter α} (h : ∃a, f ≤ 𝓝 a) : f ≤ 𝓝 (@Lim _ _ (nonempty_of_exists h) f) :=
epsilon_spec h

/-- If `g` tends to some `𝓝 a` along `f`, then it tends to `𝓝 (lim f g)`. We formulate
this lemma with a `[nonempty α]` argument of `lim` derived from `h` to make it useful for types
without a `[nonempty α]` instance. Because of the built-in proof irrelevance, Lean will unify
this instance with any other instance. -/
lemma tendsto_nhds_lim {f : filter β} {g : β → α} (h : ∃ a, tendsto g f (𝓝 a)) :
  tendsto g f (𝓝 $ @lim _ _ _ (nonempty_of_exists h) f g) :=
le_nhds_Lim h

end lim

end topological_space

/-!
### Continuity
-/

section continuous
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
variables [topological_space α] [topological_space β] [topological_space γ]
open_locale topological_space

/-- A function between topological spaces is continuous if the preimage
  of every open set is open. Registered as a structure to make sure it is not unfolded by Lean. -/
structure continuous (f : α → β) : Prop :=
(is_open_preimage : ∀s, is_open s → is_open (f ⁻¹' s))

lemma continuous_def {f : α → β} : continuous f ↔ (∀s, is_open s → is_open (f ⁻¹' s)) :=
⟨λ hf s hs, hf.is_open_preimage s hs, λ h, ⟨h⟩⟩

lemma is_open.preimage {f : α → β} (hf : continuous f) {s : set β} (h : is_open s) :
  is_open (f ⁻¹' s) :=
hf.is_open_preimage s h

lemma continuous.congr {f g : α → β} (h : continuous f) (h' : ∀ x, f x = g x) : continuous g :=
by { convert h, ext, rw h' }

/-- A function between topological spaces is continuous at a point `x₀`
if `f x` tends to `f x₀` when `x` tends to `x₀`. -/
def continuous_at (f : α → β) (x : α) := tendsto f (𝓝 x) (𝓝 (f x))

lemma continuous_at.tendsto {f : α → β} {x : α} (h : continuous_at f x) :
  tendsto f (𝓝 x) (𝓝 (f x)) :=
h

lemma continuous_at_def {f : α → β} {x : α} : continuous_at f x ↔ ∀ A ∈ 𝓝 (f x), f ⁻¹' A ∈ 𝓝 x :=
iff.rfl

lemma continuous_at_congr {f g : α → β} {x : α} (h : f =ᶠ[𝓝 x] g) :
  continuous_at f x ↔ continuous_at g x :=
by simp only [continuous_at, tendsto_congr' h, h.eq_of_nhds]

lemma continuous_at.congr {f g : α → β} {x : α} (hf : continuous_at f x) (h : f =ᶠ[𝓝 x] g) :
  continuous_at g x :=
(continuous_at_congr h).1 hf

lemma continuous_at.preimage_mem_nhds {f : α → β} {x : α} {t : set β} (h : continuous_at f x)
  (ht : t ∈ 𝓝 (f x)) : f ⁻¹' t ∈ 𝓝 x :=
h ht

lemma eventually_eq_zero_nhds {M₀} [has_zero M₀] {a : α} {f : α → M₀} :
  f =ᶠ[𝓝 a] 0 ↔ a ∉ closure (function.support f) :=
by rw [← mem_compl_eq, ← interior_compl, mem_interior_iff_mem_nhds, function.compl_support]; refl

lemma cluster_pt.map {x : α} {la : filter α} {lb : filter β} (H : cluster_pt x la)
  {f : α → β} (hfc : continuous_at f x) (hf : tendsto f la lb) :
  cluster_pt (f x) lb :=
⟨ne_bot_of_le_ne_bot ((map_ne_bot_iff f).2 H).ne $ hfc.tendsto.inf hf⟩

/-- See also `interior_preimage_subset_preimage_interior`. -/
lemma preimage_interior_subset_interior_preimage {f : α → β} {s : set β}
  (hf : continuous f) : f⁻¹' (interior s) ⊆ interior (f⁻¹' s) :=
interior_maximal (preimage_mono interior_subset) (is_open_interior.preimage hf)

lemma continuous_id : continuous (id : α → α) :=
continuous_def.2 $ assume s h, h

lemma continuous.comp {g : β → γ} {f : α → β} (hg : continuous g) (hf : continuous f) :
  continuous (g ∘ f) :=
continuous_def.2 $ assume s h, (h.preimage hg).preimage hf

lemma continuous.iterate {f : α → α} (h : continuous f) (n : ℕ) : continuous (f^[n]) :=
nat.rec_on n continuous_id (λ n ihn, ihn.comp h)

lemma continuous_at.comp {g : β → γ} {f : α → β} {x : α}
  (hg : continuous_at g (f x)) (hf : continuous_at f x) :
  continuous_at (g ∘ f) x :=
hg.comp hf

lemma continuous.tendsto {f : α → β} (hf : continuous f) (x) :
  tendsto f (𝓝 x) (𝓝 (f x)) :=
((nhds_basis_opens x).tendsto_iff $ nhds_basis_opens $ f x).2 $
  λ t ⟨hxt, ht⟩, ⟨f ⁻¹' t, ⟨hxt, ht.preimage hf⟩, subset.refl _⟩

/-- A version of `continuous.tendsto` that allows one to specify a simpler form of the limit.
E.g., one can write `continuous_exp.tendsto' 0 1 exp_zero`. -/
lemma continuous.tendsto' {f : α → β} (hf : continuous f) (x : α) (y : β) (h : f x = y) :
  tendsto f (𝓝 x) (𝓝 y) :=
h ▸ hf.tendsto x

lemma continuous.continuous_at {f : α → β} {x : α} (h : continuous f) :
  continuous_at f x :=
h.tendsto x

lemma continuous_iff_continuous_at {f : α → β} : continuous f ↔ ∀ x, continuous_at f x :=
⟨continuous.tendsto,
  assume hf : ∀x, tendsto f (𝓝 x) (𝓝 (f x)),
  continuous_def.2 $
  assume s, assume hs : is_open s,
  have ∀a, f a ∈ s → s ∈ 𝓝 (f a),
    from λ a ha, is_open.mem_nhds hs ha,
  show is_open (f ⁻¹' s),
    from is_open_iff_nhds.2 $ λ a ha, le_principal_iff.2 $ hf _ (this a ha)⟩

lemma continuous_at_const {x : α} {b : β} : continuous_at (λ a:α, b) x :=
tendsto_const_nhds

lemma continuous_const {b : β} : continuous (λa:α, b) :=
continuous_iff_continuous_at.mpr $ assume a, continuous_at_const

lemma filter.eventually_eq.continuous_at {x : α} {f : α → β} {y : β} (h : f =ᶠ[𝓝 x] (λ _, y)) :
  continuous_at f x :=
(continuous_at_congr h).2 tendsto_const_nhds

lemma continuous_of_const {f : α → β} (h : ∀ x y, f x = f y) : continuous f :=
continuous_iff_continuous_at.mpr $ λ x, filter.eventually_eq.continuous_at $
  eventually_of_forall (λ y, h y x)

lemma continuous_at_id {x : α} : continuous_at id x :=
continuous_id.continuous_at

lemma continuous_at.iterate {f : α → α} {x : α} (hf : continuous_at f x) (hx : f x = x) (n : ℕ) :
  continuous_at (f^[n]) x :=
nat.rec_on n continuous_at_id $ λ n ihn,
show continuous_at (f^[n] ∘ f) x,
from continuous_at.comp (hx.symm ▸ ihn) hf

lemma continuous_iff_is_closed {f : α → β} :
  continuous f ↔ (∀s, is_closed s → is_closed (f ⁻¹' s)) :=
⟨assume hf s hs, by simpa using (continuous_def.1 hf sᶜ hs.is_open_compl).is_closed_compl,
  assume hf, continuous_def.2 $ assume s,
    by rw [←is_closed_compl_iff, ←is_closed_compl_iff]; exact hf _⟩

lemma is_closed.preimage {f : α → β} (hf : continuous f) {s : set β} (h : is_closed s) :
  is_closed (f ⁻¹' s) :=
continuous_iff_is_closed.mp hf s h

lemma mem_closure_image {f : α → β} {x : α} {s : set α} (hf : continuous_at f x)
  (hx : x ∈ closure s) : f x ∈ closure (f '' s) :=
mem_closure_of_frequently_of_tendsto
  ((mem_closure_iff_frequently.1 hx).mono (λ x, mem_image_of_mem _)) hf

lemma continuous_at_iff_ultrafilter {f : α → β} {x} : continuous_at f x ↔
  ∀ g : ultrafilter α, ↑g ≤ 𝓝 x → tendsto f g (𝓝 (f x)) :=
tendsto_iff_ultrafilter f (𝓝 x) (𝓝 (f x))

lemma continuous_iff_ultrafilter {f : α → β} :
  continuous f ↔ ∀ x (g : ultrafilter α), ↑g ≤ 𝓝 x → tendsto f g (𝓝 (f x)) :=
by simp only [continuous_iff_continuous_at, continuous_at_iff_ultrafilter]

lemma continuous.closure_preimage_subset {f : α → β}
  (hf : continuous f) (t : set β) :
  closure (f ⁻¹' t) ⊆ f ⁻¹' (closure t) :=
begin
  rw ← (is_closed_closure.preimage hf).closure_eq,
  exact closure_mono (preimage_mono subset_closure),
end

lemma continuous.frontier_preimage_subset
  {f : α → β} (hf : continuous f) (t : set β) :
  frontier (f ⁻¹' t) ⊆ f ⁻¹' (frontier t) :=
diff_subset_diff (hf.closure_preimage_subset t) (preimage_interior_subset_interior_preimage hf)

/-! ### Continuity and partial functions -/

/-- Continuity of a partial function -/
def pcontinuous (f : α →. β) := ∀ s, is_open s → is_open (f.preimage s)

lemma open_dom_of_pcontinuous {f : α →. β} (h : pcontinuous f) : is_open f.dom :=
by rw [←pfun.preimage_univ]; exact h _ is_open_univ

lemma pcontinuous_iff' {f : α →. β} :
  pcontinuous f ↔ ∀ {x y} (h : y ∈ f x), ptendsto' f (𝓝 x) (𝓝 y) :=
begin
  split,
  { intros h x y h',
    simp only [ptendsto'_def, mem_nhds_iff],
    rintros s ⟨t, tsubs, opent, yt⟩,
    exact ⟨f.preimage t, pfun.preimage_mono _ tsubs, h _ opent, ⟨y, yt, h'⟩⟩ },
  intros hf s os,
  rw is_open_iff_nhds,
  rintros x ⟨y, ys, fxy⟩ t,
  rw [mem_principal],
  assume h : f.preimage s ⊆ t,
  change t ∈ 𝓝 x,
  apply mem_of_superset _ h,
  have h' : ∀ s ∈ 𝓝 y, f.preimage s ∈ 𝓝 x,
  { intros s hs,
     have : ptendsto' f (𝓝 x) (𝓝 y) := hf fxy,
     rw ptendsto'_def at this,
     exact this s hs },
  show f.preimage s ∈ 𝓝 x,
  apply h', rw mem_nhds_iff, exact ⟨s, set.subset.refl _, os, ys⟩
end

/-- If a continuous map `f` maps `s` to `t`, then it maps `closure s` to `closure t`. -/
lemma set.maps_to.closure {s : set α} {t : set β} {f : α → β} (h : maps_to f s t)
  (hc : continuous f) : maps_to f (closure s) (closure t) :=
begin
  simp only [maps_to, mem_closure_iff_cluster_pt],
  exact λ x hx, hx.map hc.continuous_at (tendsto_principal_principal.2 h)
end

lemma image_closure_subset_closure_image {f : α → β} {s : set α} (h : continuous f) :
  f '' closure s ⊆ closure (f '' s) :=
((maps_to_image f s).closure h).image_subset

lemma closure_subset_preimage_closure_image {f : α → β} {s : set α} (h : continuous f) :
  closure s ⊆ f ⁻¹' (closure (f '' s)) :=
by { rw ← set.image_subset_iff, exact image_closure_subset_closure_image h }

lemma map_mem_closure {s : set α} {t : set β} {f : α → β} {a : α}
  (hf : continuous f) (ha : a ∈ closure s) (ht : ∀a∈s, f a ∈ t) : f a ∈ closure t :=
set.maps_to.closure ht hf ha

/-!
### Function with dense range
-/

section dense_range
variables {κ ι : Type*} (f : κ → β) (g : β → γ)

/-- `f : ι → β` has dense range if its range (image) is a dense subset of β. -/
def dense_range := dense (range f)

variables {f}

/-- A surjective map has dense range. -/
lemma function.surjective.dense_range (hf : function.surjective f) : dense_range f :=
λ x, by simp [hf.range_eq]

lemma dense_range_iff_closure_range : dense_range f ↔ closure (range f) = univ :=
dense_iff_closure_eq

lemma dense_range.closure_range (h : dense_range f) : closure (range f) = univ :=
h.closure_eq

lemma dense.dense_range_coe {s : set α} (h : dense s) : dense_range (coe : s → α) :=
by simpa only [dense_range, subtype.range_coe_subtype]

lemma continuous.range_subset_closure_image_dense {f : α → β} (hf : continuous f)
  {s : set α} (hs : dense s) :
  range f ⊆ closure (f '' s) :=
by { rw [← image_univ, ← hs.closure_eq], exact image_closure_subset_closure_image hf }

/-- The image of a dense set under a continuous map with dense range is a dense set. -/
lemma dense_range.dense_image {f : α → β} (hf' : dense_range f) (hf : continuous f)
  {s : set α} (hs : dense s) :
  dense (f '' s)  :=
(hf'.mono $ hf.range_subset_closure_image_dense hs).of_closure

/-- If `f` has dense range and `s` is an open set in the codomain of `f`, then the image of the
preimage of `s` under `f` is dense in `s`. -/
lemma dense_range.subset_closure_image_preimage_of_is_open (hf : dense_range f) {s : set β}
  (hs : is_open s) : s ⊆ closure (f '' (f ⁻¹' s)) :=
by { rw image_preimage_eq_inter_range, exact hf.open_subset_closure_inter hs }

/-- If a continuous map with dense range maps a dense set to a subset of `t`, then `t` is a dense
set. -/
lemma dense_range.dense_of_maps_to {f : α → β} (hf' : dense_range f) (hf : continuous f)
  {s : set α} (hs : dense s) {t : set β} (ht : maps_to f s t) :
  dense t :=
(hf'.dense_image hf hs).mono ht.image_subset

/-- Composition of a continuous map with dense range and a function with dense range has dense
range. -/
lemma dense_range.comp {g : β → γ} {f : κ → β} (hg : dense_range g) (hf : dense_range f)
  (cg : continuous g) :
  dense_range (g ∘ f) :=
by { rw [dense_range, range_comp], exact hg.dense_image cg hf }

lemma dense_range.nonempty_iff (hf : dense_range f) : nonempty κ ↔ nonempty β :=
range_nonempty_iff_nonempty.symm.trans hf.nonempty_iff

lemma dense_range.nonempty [h : nonempty β] (hf : dense_range f) : nonempty κ :=
hf.nonempty_iff.mpr h

/-- Given a function `f : α → β` with dense range and `b : β`, returns some `a : α`. -/
def dense_range.some (hf : dense_range f) (b : β) : κ :=
classical.choice $ hf.nonempty_iff.mpr ⟨b⟩

lemma dense_range.exists_mem_open (hf : dense_range f) {s : set β} (ho : is_open s)
  (hs : s.nonempty) :
  ∃ a, f a ∈ s :=
exists_range_iff.1 $ hf.exists_mem_open ho hs

lemma dense_range.mem_nhds {f : κ → β} (h : dense_range f) {b : β} {U : set β}
  (U_in : U ∈ 𝓝 b) : ∃ a, f a ∈ U :=
let ⟨a, ha⟩ := h.exists_mem_open is_open_interior ⟨b, mem_interior_iff_mem_nhds.2 U_in⟩
in ⟨a, interior_subset ha⟩

end dense_range

end continuous

/--
The library contains many lemmas stating that functions/operations are continuous. There are many
ways to formulate the continuity of operations. Some are more convenient than others.
Note: for the most part this note also applies to other properties
(`measurable`, `differentiable`, `continuous_on`, ...).

### The traditional way
As an example, let's look at addition `(+) : M → M → M`. We can state that this is continuous
in different definitionally equal ways (omitting some typing information)
* `continuous (λ p, p.1 + p.2)`;
* `continuous (function.uncurry (+))`;
* `continuous ↿(+)`. (`↿` is notation for recursively uncurrying a function)

However, lemmas with this conclusion are not nice to use in practice because
1. They confuse the elaborator. The following two examples fail, because of limitations in the
  elaboration process.
  ```
  variables {M : Type*} [has_add M] [topological_space M] [has_continuous_add M]
  example : continuous (λ x : M, x + x) :=
  continuous_add.comp _

  example : continuous (λ x : M, x + x) :=
  continuous_add.comp (continuous_id.prod_mk continuous_id)
  ```
  The second is a valid proof, which is accepted if you write it as
  `continuous_add.comp (continuous_id.prod_mk continuous_id : _)`

2. If the operation has more than 2 arguments, they are impractical to use, because in your
  application the arguments in the domain might be in a different order or associated differently.

### The convenient way
A much more convenient way to write continuity lemmas is like `continuous.add`:
```
continuous.add {f g : X → M} (hf : continuous f) (hg : continuous g) : continuous (λ x, f x + g x)
```
The conclusion can be `continuous (f + g)`, which is definitionally equal.
This has the following advantages
* It supports projection notation, so is shorter to write.
* `continuous.add _ _` is recognized correctly by the elaborator and gives useful new goals.
* It works generally, since the domain is a variable.

As an example for an unary operation, we have `continuous.neg`.
```
continuous.neg {f : α → G} (hf : continuous f) : continuous (λ x, -f x)
```
For unary functions, the elaborator is not confused when applying the traditional lemma
(like `continuous_neg`), but it's still convenient to have the short version available (compare
`hf.neg.neg.neg` with `continuous_neg.comp $ continuous_neg.comp $ continuous_neg.comp hf`).

As a harder example, consider an operation of the following type:
```
def strans {x : F} (γ γ' : path x x) (t₀ : I) : path x x
```
The precise definition is not important, only its type.
The correct continuity principle for this operation is something like this:
```
{f : X → F} {γ γ' : ∀ x, path (f x) (f x)} {t₀ s : X → I}
  (hγ : continuous ↿γ) (hγ' : continuous ↿γ')
  (ht : continuous t₀) (hs : continuous s) :
  continuous (λ x, strans (γ x) (γ' x) (t x) (s x))
```
Note that *all* arguments of `strans` are indexed over `X`, even the basepoint `x`, and the last
argument `s` that arises since `path x x` has a coercion to `I → F`. The paths `γ` and `γ'` (which
are unary functions from `I`) become binary functions in the continuity lemma.

### Summary
* Make sure that your continuity lemmas are stated in the most general way, and in a convenient
  form. That means that:
  - The conclusion has a variable `X` as domain (not something like `Y × Z`);
  - Wherever possible, all point arguments `c : Y` are replaced by functions `c : X → Y`;
  - All `n`-ary function arguments are replaced by `n+1`-ary functions
    (`f : Y → Z` becomes `f : X → Y → Z`);
  - All (relevant) arguments have continuity assumptions, and perhaps there are additional
    assumptions needed to make the operation continuous;
  - The function in the conclusion is fully applied.
* These remarks are mostly about the format of the *conclusion* of a continuity lemma.
  In assumptions it's fine to state that a function with more than 1 argument is continuous using
  `↿` or `function.uncurry`.

### Functions with discontinuities

In some cases, you want to work with discontinuous functions, and in certain expressions they are
still continuous. For example, consider the fractional part of a number, `fract : ℝ → ℝ`.
In this case, you want to add conditions to when a function involving `fract` is continuous, so you
get something like this: (assumption `hf` could be weakened, but the important thing is the shape
of the conclusion)
```
lemma continuous_on.comp_fract {X Y : Type*} [topological_space X] [topological_space Y]
  {f : X → ℝ → Y} {g : X → ℝ} (hf : continuous ↿f) (hg : continuous g) (h : ∀ s, f s 0 = f s 1) :
  continuous (λ x, f x (fract (g x)))
```
With `continuous_at` you can be even more precise about what to prove in case of discontinuities,
see e.g. `continuous_at.comp_div_cases`.
-/
library_note "continuity lemma statement"