Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 15,087 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
fc5e983
4365a98
 
 
 
 
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
4365a98
fc5e983
 
4365a98
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
fc5e983
4365a98
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
fc5e983
4365a98
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/-
Copyright (c) 2020 Fox Thomson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Fox Thomson, Markus Himmel
-/
import data.nat.bitwise
import set_theory.game.birthday
import set_theory.game.impartial

/-!
# Nim and the Sprague-Grundy theorem

This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players
may move to `nim o₂` for any `o₂ < o₁`.
We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that
`G` is equivalent to `nim (grundy_value G)`.
Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`,
where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`.

## Implementation details

The pen-and-paper definition of nim defines the possible moves of `nim o` to be `set.Iio o`.
However, this definition does not work for us because it would make the type of nim
`ordinal.{u} → pgame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy
theorem, since that requires the type of `nim` to be `ordinal.{u} → pgame.{u}`. For this reason, we
instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and
`to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and
vice versa.
-/

noncomputable theory

universe u

open_locale pgame

namespace pgame

/-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can
  take a positive number of stones from it on their turn. -/
-- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error
noncomputable! def nim : ordinal.{u} → pgame.{u}
| o₁ :=
  let f := λ o₂,
    have ordinal.typein o₁.out.r o₂ < o₁ := ordinal.typein_lt_self o₂,
    nim (ordinal.typein o₁.out.r o₂)
  in ⟨o₁.out.α, o₁.out.α, f, f⟩
using_well_founded { dec_tac := tactic.assumption }

open ordinal

lemma nim_def (o : ordinal) : nim o = pgame.mk o.out.α o.out.α
  (λ o₂, nim (ordinal.typein (<) o₂))
  (λ o₂, nim (ordinal.typein (<) o₂)) :=
by { rw nim, refl }

lemma left_moves_nim (o : ordinal) : (nim o).left_moves = o.out.α :=
by { rw nim_def, refl }
lemma right_moves_nim (o : ordinal) : (nim o).right_moves = o.out.α :=
by { rw nim_def, refl }

lemma move_left_nim_heq (o : ordinal) : (nim o).move_left == λ i : o.out.α, nim (typein (<) i) :=
by { rw nim_def, refl }
lemma move_right_nim_heq (o : ordinal) : (nim o).move_right == λ i : o.out.α, nim (typein (<) i) :=
by { rw nim_def, refl }

/-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/
noncomputable def to_left_moves_nim {o : ordinal} : set.Iio o ≃ (nim o).left_moves :=
(enum_iso_out o).to_equiv.trans (equiv.cast (left_moves_nim o).symm)

/-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/
noncomputable def to_right_moves_nim {o : ordinal} : set.Iio o ≃ (nim o).right_moves :=
(enum_iso_out o).to_equiv.trans (equiv.cast (right_moves_nim o).symm)

@[simp] theorem to_left_moves_nim_symm_lt {o : ordinal} (i : (nim o).left_moves) :
  ↑(to_left_moves_nim.symm i) < o :=
(to_left_moves_nim.symm i).prop

@[simp] theorem to_right_moves_nim_symm_lt {o : ordinal} (i : (nim o).right_moves) :
  ↑(to_right_moves_nim.symm i) < o :=
(to_right_moves_nim.symm i).prop

@[simp] lemma move_left_nim' {o : ordinal.{u}} (i) :
  (nim o).move_left i = nim (to_left_moves_nim.symm i).val :=
(congr_heq (move_left_nim_heq o).symm (cast_heq _ i)).symm

lemma move_left_nim {o : ordinal} (i) :
  (nim o).move_left (to_left_moves_nim i) = nim i :=
by simp

@[simp] lemma move_right_nim' {o : ordinal} (i) :
  (nim o).move_right i = nim (to_right_moves_nim.symm i).val :=
(congr_heq (move_right_nim_heq o).symm (cast_heq _ i)).symm

lemma move_right_nim {o : ordinal} (i) :
  (nim o).move_right (to_right_moves_nim i) = nim i :=
by simp

instance is_empty_nim_zero_left_moves : is_empty (nim 0).left_moves :=
by { rw nim_def, exact ordinal.is_empty_out_zero }

instance is_empty_nim_zero_right_moves : is_empty (nim 0).right_moves :=
by { rw nim_def, exact ordinal.is_empty_out_zero }

/-- `nim 0` has exactly the same moves as `0`. -/
def nim_zero_relabelling : nim 0 ≡r 0 := relabelling.is_empty _

theorem nim_zero_equiv : nim 00 := equiv.is_empty _

noncomputable instance unique_nim_one_left_moves : unique (nim 1).left_moves :=
(equiv.cast $ left_moves_nim 1).unique

noncomputable instance unique_nim_one_right_moves : unique (nim 1).right_moves :=
(equiv.cast $ right_moves_nim 1).unique

@[simp] theorem default_nim_one_left_moves_eq :
  (default : (nim 1).left_moves) = @to_left_moves_nim 10, ordinal.zero_lt_one⟩ :=
rfl

@[simp] theorem default_nim_one_right_moves_eq :
  (default : (nim 1).right_moves) = @to_right_moves_nim 10, ordinal.zero_lt_one⟩ :=
rfl

@[simp] theorem to_left_moves_nim_one_symm (i) :
  (@to_left_moves_nim 1).symm i = ⟨0, ordinal.zero_lt_one⟩ :=
by simp

@[simp] theorem to_right_moves_nim_one_symm (i) :
  (@to_right_moves_nim 1).symm i = ⟨0, ordinal.zero_lt_one⟩ :=
by simp

theorem nim_one_move_left (x) : (nim 1).move_left x = nim 0 :=
by simp

theorem nim_one_move_right (x) : (nim 1).move_right x = nim 0 :=
by simp

/-- `nim 1` has exactly the same moves as `star`. -/
def nim_one_relabelling : nim 1 ≡r star :=
begin
  rw nim_def,
  refine ⟨_, _, λ i, _, λ j, _⟩,
  any_goals { dsimp, apply equiv.equiv_of_unique },
  all_goals { simp, exact nim_zero_relabelling }
end

theorem nim_one_equiv : nim 1 ≈ star := nim_one_relabelling.equiv

@[simp] lemma nim_birthday (o : ordinal) : (nim o).birthday = o :=
begin
  induction o using ordinal.induction with o IH,
  rw [nim_def, birthday_def],
  dsimp,
  rw max_eq_right le_rfl,
  convert lsub_typein o,
  exact funext (λ i, IH _ (typein_lt_self i))
end

@[simp] lemma neg_nim (o : ordinal) : -nim o = nim o :=
begin
  induction o using ordinal.induction with o IH,
  rw nim_def, dsimp; congr;
  funext i;
  exact IH _ (ordinal.typein_lt_self i)
end

instance nim_impartial (o : ordinal) : impartial (nim o) :=
begin
  induction o using ordinal.induction with o IH,
  rw [impartial_def, neg_nim],
  refine ⟨equiv_rfl, λ i, _, λ i, _⟩;
  simpa using IH _ (typein_lt_self _)
end

lemma exists_ordinal_move_left_eq {o : ordinal} (i) : ∃ o' < o, (nim o).move_left i = nim o' :=
⟨_, typein_lt_self _, move_left_nim' i⟩

lemma exists_move_left_eq {o o' : ordinal} (h : o' < o) : ∃ i, (nim o).move_left i = nim o' :=
⟨to_left_moves_nim ⟨o', h⟩, by simp⟩

lemma nim_fuzzy_zero_of_ne_zero {o : ordinal} (ho : o ≠ 0) : nim o ∥ 0 :=
begin
  rw [impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le],
  rw ←ordinal.pos_iff_ne_zero at ho,
  exact ⟨(ordinal.principal_seg_out ho).top, by simp⟩
end

@[simp] lemma nim_add_equiv_zero_iff (o₁ o₂ : ordinal) : nim o₁ + nim o₂ ≈ 0 ↔ o₁ = o₂ :=
begin
  split,
  { contrapose,
    intro h,
    rw [impartial.not_equiv_zero_iff],
    wlog h' : o₁ ≤ o₂ using [o₁ o₂, o₂ o₁],
    { exact le_total o₁ o₂ },
    { have h : o₁ < o₂ := lt_of_le_of_ne h' h,
      rw [impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂],
      refine ⟨to_left_moves_add (sum.inr _), _⟩,
      { exact (ordinal.principal_seg_out h).top },
      { simpa using (impartial.add_self (nim o₁)).2 } },
    { exact (fuzzy_congr_left add_comm_equiv).1 (this (ne.symm h)) } },
  { rintro rfl,
    exact impartial.add_self (nim o₁) }
end

@[simp] lemma nim_add_fuzzy_zero_iff {o₁ o₂ : ordinal} : nim o₁ + nim o₂ ∥ 0 ↔ o₁ ≠ o₂ :=
by rw [iff_not_comm, impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff]

@[simp] lemma nim_equiv_iff_eq {o₁ o₂ : ordinal} : nim o₁ ≈ nim o₂ ↔ o₁ = o₂ :=
by rw [impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff]

/-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the
 game is equivalent to -/
noncomputable def grundy_value : Π (G : pgame.{u}), ordinal.{u}
| G := ordinal.mex.{u u} (λ i, grundy_value (G.move_left i))
using_well_founded { dec_tac := pgame_wf_tac }

lemma grundy_value_eq_mex_left (G : pgame) :
  grundy_value G = ordinal.mex.{u u} (λ i, grundy_value (G.move_left i)) :=
by rw grundy_value

/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of
 nim, namely the game of nim corresponding to the games Grundy value -/
theorem equiv_nim_grundy_value : ∀ (G : pgame.{u}) [G.impartial], G ≈ nim (grundy_value G)
| G :=
begin
  introI hG,
  rw [impartial.equiv_iff_add_equiv_zero, ←impartial.forall_left_moves_fuzzy_iff_equiv_zero],
  intro i,
  apply left_moves_add_cases i,
  { intro i₁,
    rw add_move_left_inl,
    apply (fuzzy_congr_left (add_congr_left (equiv_nim_grundy_value (G.move_left i₁)).symm)).1,
    rw nim_add_fuzzy_zero_iff,
    intro heq,
    rw [eq_comm, grundy_value_eq_mex_left G] at heq,
    have h := ordinal.ne_mex _,
    rw heq at h,
    exact (h i₁).irrefl },
  { intro i₂,
    rw [add_move_left_inr, ←impartial.exists_left_move_equiv_iff_fuzzy_zero],
    revert i₂,
    rw nim_def,
    intro i₂,

    have h' : ∃ i : G.left_moves, (grundy_value (G.move_left i)) =
      ordinal.typein (quotient.out (grundy_value G)).r i₂,
    { revert i₂,
      rw grundy_value_eq_mex_left,
      intros i₂,
      have hnotin : _ ∉ _ := λ hin, (le_not_le_of_lt (ordinal.typein_lt_self i₂)).2 (cInf_le' hin),
      simpa using hnotin},

    cases h' with i hi,
    use to_left_moves_add (sum.inl i),
    rw [add_move_left_inl, move_left_mk],
    apply (add_congr_left (equiv_nim_grundy_value (G.move_left i))).trans,
    simpa only [hi] using impartial.add_self (nim (grundy_value (G.move_left i))) }
end
using_well_founded { dec_tac := pgame_wf_tac }

lemma grundy_value_eq_iff_equiv_nim {G : pgame} [G.impartial] {o : ordinal} :
  grundy_value G = o ↔ G ≈ nim o :=
⟨by { rintro rfl, exact equiv_nim_grundy_value G },
  by { intro h, rw ←nim_equiv_iff_eq, exact (equiv_nim_grundy_value G).symm.trans h }⟩

@[simp] lemma nim_grundy_value (o : ordinal.{u}) : grundy_value (nim o) = o :=
grundy_value_eq_iff_equiv_nim.2 pgame.equiv_rfl

lemma grundy_value_eq_iff_equiv (G H : pgame) [G.impartial] [H.impartial] :
  grundy_value G = grundy_value H ↔ G ≈ H :=
grundy_value_eq_iff_equiv_nim.trans (equiv_congr_left.1 (equiv_nim_grundy_value H) _).symm

@[simp] lemma grundy_value_zero : grundy_value 0 = 0 :=
grundy_value_eq_iff_equiv_nim.2 nim_zero_equiv.symm

lemma grundy_value_iff_equiv_zero (G : pgame) [G.impartial] : grundy_value G = 0 ↔ G ≈ 0 :=
by rw [←grundy_value_eq_iff_equiv, grundy_value_zero]

@[simp] lemma grundy_value_star : grundy_value star = 1 :=
grundy_value_eq_iff_equiv_nim.2 nim_one_equiv.symm

@[simp] lemma grundy_value_neg (G : pgame) [G.impartial] : grundy_value (-G) = grundy_value G :=
by rw [grundy_value_eq_iff_equiv_nim, neg_equiv_iff, neg_nim, ←grundy_value_eq_iff_equiv_nim]

lemma grundy_value_eq_mex_right : ∀ (G : pgame) [G.impartial],
  grundy_value G = ordinal.mex.{u u} (λ i, grundy_value (G.move_right i))
| ⟨l, r, L, R⟩ := begin
  introI H,
  rw [←grundy_value_neg, grundy_value_eq_mex_left],
  congr,
  ext i,
  haveI : (R i).impartial := @impartial.move_right_impartial ⟨l, r, L, R⟩ _ i,
  apply grundy_value_neg
end

@[simp] lemma grundy_value_nim_add_nim (n m : ℕ) :
  grundy_value (nim.{u} n + nim.{u} m) = nat.lxor n m :=
begin
  induction n using nat.strong_induction_on with n hn generalizing m,
  induction m using nat.strong_induction_on with m hm,
  rw [grundy_value_eq_mex_left],

  -- We want to show that `n xor m` is the smallest unreachable Grundy value. We will do this in two
  -- steps:
  -- h₀: `n xor m` is not a reachable grundy number.
  -- h₁: every Grundy number strictly smaller than `n xor m` is reachable.

  have h₀ : ∀ i, grundy_value ((nim n + nim m).move_left i) ≠ (nat.lxor n m : ordinal),
  { -- To show that `n xor m` is unreachable, we show that every move produces a Grundy number
    -- different from `n xor m`.
    intro i,

    -- The move operates either on the left pile or on the right pile.
    apply left_moves_add_cases i,

    all_goals
    { -- One of the piles is reduced to `k` stones, with `k < n` or `k < m`.
      intro a,
      obtain ⟨ok, hk, hk'⟩ := exists_ordinal_move_left_eq a,
      obtain ⟨k, rfl⟩ := ordinal.lt_omega.1 (lt_trans hk (ordinal.nat_lt_omega _)),
      replace hk := ordinal.nat_cast_lt.1 hk,

      -- Thus, the problem is reduced to computing the Grundy value of `nim n + nim k` or
      -- `nim k + nim m`, both of which can be dealt with using an inductive hypothesis.
      simp only [hk', add_move_left_inl, add_move_left_inr, id],
      rw hn _ hk <|> rw hm _ hk,

      -- But of course xor is injective, so if we change one of the arguments, we will not get the
      -- same value again.
      intro h,
      rw ordinal.nat_cast_inj at h,
      try { rw [nat.lxor_comm n k, nat.lxor_comm n m] at h },
      exact hk.ne (nat.lxor_left_injective h) } },

  have h₁ : ∀ (u : ordinal), u < nat.lxor n m →
    u ∈ set.range (λ i, grundy_value ((nim n + nim m).move_left i)),
  { -- Take any natural number `u` less than `n xor m`.
    intros ou hu,
    obtain ⟨u, rfl⟩ := ordinal.lt_omega.1 (lt_trans hu (ordinal.nat_lt_omega _)),
    replace hu := ordinal.nat_cast_lt.1 hu,

    -- Our goal is to produce a move that gives the Grundy value `u`.
    rw set.mem_range,

    -- By a lemma about xor, either `u xor m < n` or `u xor n < m`.
    cases nat.lt_lxor_cases hu with h h,

    -- Therefore, we can play the corresponding move, and by the inductive hypothesis the new state
    -- is `(u xor m) xor m = u` or `n xor (u xor n) = u` as required.
    { obtain ⟨i, hi⟩ := exists_move_left_eq (ordinal.nat_cast_lt.2 h),
      refine ⟨to_left_moves_add (sum.inl i), _⟩,
      simp only [hi, add_move_left_inl],
      rw [hn _ h, nat.lxor_assoc, nat.lxor_self, nat.lxor_zero] },
    { obtain ⟨i, hi⟩ := exists_move_left_eq (ordinal.nat_cast_lt.2 h),
      refine ⟨to_left_moves_add (sum.inr i), _⟩,
      simp only [hi, add_move_left_inr],
      rw [hm _ h, nat.lxor_comm, nat.lxor_assoc, nat.lxor_self, nat.lxor_zero] } },

  -- We are done!
  apply (ordinal.mex_le_of_ne.{u u} h₀).antisymm,
  contrapose! h₁,
  exact ⟨_, ⟨h₁, ordinal.mex_not_mem_range _⟩⟩,
end

lemma nim_add_nim_equiv {n m : ℕ} : nim n + nim m ≈ nim (nat.lxor n m) :=
by rw [←grundy_value_eq_iff_equiv_nim, grundy_value_nim_add_nim]

lemma grundy_value_add (G H : pgame) [G.impartial] [H.impartial] {n m : ℕ} (hG : grundy_value G = n)
  (hH : grundy_value H = m) : grundy_value (G + H) = nat.lxor n m :=
begin
  rw [←nim_grundy_value (nat.lxor n m), grundy_value_eq_iff_equiv],
  refine equiv.trans _ nim_add_nim_equiv,
  convert add_congr (equiv_nim_grundy_value G) (equiv_nim_grundy_value H);
  simp only [hG, hH]
end

end pgame