Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 25,762 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Chris Hughes
-/
import data.polynomial.field_division
import linear_algebra.finite_dimensional
import ring_theory.adjoin.basic
import ring_theory.power_basis
import ring_theory.principal_ideal_domain
/-!
# Adjoining roots of polynomials
This file defines the commutative ring `adjoin_root f`, the ring R[X]/(f) obtained from a
commutative ring `R` and a polynomial `f : R[X]`. If furthermore `R` is a field and `f` is
irreducible, the field structure on `adjoin_root f` is constructed.
## Main definitions and results
The main definitions are in the `adjoin_root` namespace.
* `mk f : R[X] →+* adjoin_root f`, the natural ring homomorphism.
* `of f : R →+* adjoin_root f`, the natural ring homomorphism.
* `root f : adjoin_root f`, the image of X in R[X]/(f).
* `lift (i : R →+* S) (x : S) (h : f.eval₂ i x = 0) : (adjoin_root f) →+* S`, the ring
homomorphism from R[X]/(f) to S extending `i : R →+* S` and sending `X` to `x`.
* `lift_hom (x : S) (hfx : aeval x f = 0) : adjoin_root f →ₐ[R] S`, the algebra
homomorphism from R[X]/(f) to S extending `algebra_map R S` and sending `X` to `x`
* `equiv : (adjoin_root f →ₐ[F] E) ≃ {x // x ∈ (f.map (algebra_map F E)).roots}` a
bijection between algebra homomorphisms from `adjoin_root` and roots of `f` in `S`
-/
noncomputable theory
open_locale classical
open_locale big_operators polynomial
universes u v w
variables {R : Type u} {S : Type v} {K : Type w}
open polynomial ideal
/-- Adjoin a root of a polynomial `f` to a commutative ring `R`. We define the new ring
as the quotient of `polynomial R` by the principal ideal generated by `f`. -/
def adjoin_root [comm_ring R] (f : R[X]) : Type u :=
polynomial R ⧸ (span {f} : ideal R[X])
namespace adjoin_root
section comm_ring
variables [comm_ring R] (f : R[X])
instance : comm_ring (adjoin_root f) := ideal.quotient.comm_ring _
instance : inhabited (adjoin_root f) := ⟨0⟩
instance : decidable_eq (adjoin_root f) := classical.dec_eq _
protected lemma nontrivial [is_domain R] (h : degree f ≠ 0) : nontrivial (adjoin_root f) :=
ideal.quotient.nontrivial
begin
simp_rw [ne.def, span_singleton_eq_top, polynomial.is_unit_iff, not_exists, not_and],
rintro x hx rfl,
exact h (degree_C hx.ne_zero),
end
/-- Ring homomorphism from `R[x]` to `adjoin_root f` sending `X` to the `root`. -/
def mk : R[X] →+* adjoin_root f := ideal.quotient.mk _
@[elab_as_eliminator]
theorem induction_on {C : adjoin_root f → Prop} (x : adjoin_root f)
(ih : ∀ p : R[X], C (mk f p)) : C x :=
quotient.induction_on' x ih
/-- Embedding of the original ring `R` into `adjoin_root f`. -/
def of : R →+* adjoin_root f := (mk f).comp C
instance [comm_semiring S] [algebra S R] : algebra S (adjoin_root f) :=
ideal.quotient.algebra S
instance [comm_semiring S] [comm_semiring K] [has_smul S K] [algebra S R] [algebra K R]
[is_scalar_tower S K R] :
is_scalar_tower S K (adjoin_root f) :=
submodule.quotient.is_scalar_tower _ _
instance [comm_semiring S] [comm_semiring K] [algebra S R] [algebra K R] [smul_comm_class S K R] :
smul_comm_class S K (adjoin_root f) :=
submodule.quotient.smul_comm_class _ _
@[simp] lemma algebra_map_eq : algebra_map R (adjoin_root f) = of f := rfl
variables (S)
lemma algebra_map_eq' [comm_semiring S] [algebra S R] :
algebra_map S (adjoin_root f) = (of f).comp (algebra_map S R) := rfl
variables {S}
/-- The adjoined root. -/
def root : adjoin_root f := mk f X
variables {f}
instance has_coe_t : has_coe_t R (adjoin_root f) := ⟨of f⟩
@[simp] lemma mk_eq_mk {g h : R[X]} : mk f g = mk f h ↔ f ∣ g - h :=
ideal.quotient.eq.trans ideal.mem_span_singleton
@[simp] lemma mk_self : mk f f = 0 :=
quotient.sound' $ quotient_add_group.left_rel_apply.mpr (mem_span_singleton.2 $ by simp)
@[simp] lemma mk_C (x : R) : mk f (C x) = x := rfl
@[simp] lemma mk_X : mk f X = root f := rfl
@[simp] lemma aeval_eq (p : R[X]) : aeval (root f) p = mk f p :=
polynomial.induction_on p (λ x, by { rw aeval_C, refl })
(λ p q ihp ihq, by rw [alg_hom.map_add, ring_hom.map_add, ihp, ihq])
(λ n x ih, by { rw [alg_hom.map_mul, aeval_C, alg_hom.map_pow, aeval_X,
ring_hom.map_mul, mk_C, ring_hom.map_pow, mk_X], refl })
theorem adjoin_root_eq_top : algebra.adjoin R ({root f} : set (adjoin_root f)) = ⊤ :=
algebra.eq_top_iff.2 $ λ x, induction_on f x $ λ p,
(algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩
@[simp] lemma eval₂_root (f : R[X]) : f.eval₂ (of f) (root f) = 0 :=
by rw [← algebra_map_eq, ← aeval_def, aeval_eq, mk_self]
lemma is_root_root (f : R[X]) : is_root (f.map (of f)) (root f) :=
by rw [is_root, eval_map, eval₂_root]
lemma is_algebraic_root (hf : f ≠ 0) : is_algebraic R (root f) :=
⟨f, hf, eval₂_root f⟩
variables [comm_ring S]
/-- Lift a ring homomorphism `i : R →+* S` to `adjoin_root f →+* S`. -/
def lift (i : R →+* S) (x : S) (h : f.eval₂ i x = 0) : (adjoin_root f) →+* S :=
begin
apply ideal.quotient.lift _ (eval₂_ring_hom i x),
intros g H,
rcases mem_span_singleton.1 H with ⟨y, hy⟩,
rw [hy, ring_hom.map_mul, coe_eval₂_ring_hom, h, zero_mul]
end
variables {i : R →+* S} {a : S} (h : f.eval₂ i a = 0)
@[simp] lemma lift_mk (g : R[X]) : lift i a h (mk f g) = g.eval₂ i a :=
ideal.quotient.lift_mk _ _ _
@[simp] lemma lift_root : lift i a h (root f) = a := by rw [root, lift_mk, eval₂_X]
@[simp] lemma lift_of {x : R} : lift i a h x = i x :=
by rw [← mk_C x, lift_mk, eval₂_C]
@[simp] lemma lift_comp_of : (lift i a h).comp (of f) = i :=
ring_hom.ext $ λ _, @lift_of _ _ _ _ _ _ _ h _
variables (f) [algebra R S]
/-- Produce an algebra homomorphism `adjoin_root f →ₐ[R] S` sending `root f` to
a root of `f` in `S`. -/
def lift_hom (x : S) (hfx : aeval x f = 0) : adjoin_root f →ₐ[R] S :=
{ commutes' := λ r, show lift _ _ hfx r = _, from lift_of hfx,
.. lift (algebra_map R S) x hfx }
@[simp] lemma coe_lift_hom (x : S) (hfx : aeval x f = 0) :
(lift_hom f x hfx : adjoin_root f →+* S) = lift (algebra_map R S) x hfx := rfl
@[simp] lemma aeval_alg_hom_eq_zero (ϕ : adjoin_root f →ₐ[R] S) : aeval (ϕ (root f)) f = 0 :=
begin
have h : ϕ.to_ring_hom.comp (of f) = algebra_map R S := ring_hom.ext_iff.mpr (ϕ.commutes),
rw [aeval_def, ←h, ←ring_hom.map_zero ϕ.to_ring_hom, ←eval₂_root f, hom_eval₂],
refl,
end
@[simp] lemma lift_hom_eq_alg_hom (f : R[X]) (ϕ : adjoin_root f →ₐ[R] S) :
lift_hom f (ϕ (root f)) (aeval_alg_hom_eq_zero f ϕ) = ϕ :=
begin
suffices : ϕ.equalizer (lift_hom f (ϕ (root f)) (aeval_alg_hom_eq_zero f ϕ)) = ⊤,
{ exact (alg_hom.ext (λ x, (set_like.ext_iff.mp (this) x).mpr algebra.mem_top)).symm },
rw [eq_top_iff, ←adjoin_root_eq_top, algebra.adjoin_le_iff, set.singleton_subset_iff],
exact (@lift_root _ _ _ _ _ _ _ (aeval_alg_hom_eq_zero f ϕ)).symm,
end
variables (hfx : aeval a f = 0)
@[simp] lemma lift_hom_mk {g : R[X]} : lift_hom f a hfx (mk f g) = aeval a g :=
lift_mk hfx g
@[simp] lemma lift_hom_root : lift_hom f a hfx (root f) = a :=
lift_root hfx
@[simp] lemma lift_hom_of {x : R} : lift_hom f a hfx (of f x) = algebra_map _ _ x :=
lift_of hfx
end comm_ring
section irreducible
variables [field K] {f : K[X]}
instance span_maximal_of_irreducible [fact (irreducible f)] : (span {f}).is_maximal :=
principal_ideal_ring.is_maximal_of_irreducible $ fact.out _
noncomputable instance field [fact (irreducible f)] : field (adjoin_root f) :=
{ ..adjoin_root.comm_ring f,
..ideal.quotient.field (span {f} : ideal K[X]) }
lemma coe_injective (h : degree f ≠ 0) : function.injective (coe : K → adjoin_root f) :=
have _ := adjoin_root.nontrivial f h, by exactI (of f).injective
lemma coe_injective' [fact (irreducible f)] : function.injective (coe : K → adjoin_root f) :=
(of f).injective
variable (f)
lemma mul_div_root_cancel [fact (irreducible f)] :
((X - C (root f)) * (f.map (of f) / (X - C (root f)))) = f.map (of f) :=
mul_div_eq_iff_is_root.2 $ is_root_root _
end irreducible
section is_noetherian_ring
instance [comm_ring R] [is_noetherian_ring R] {f : R[X]} : is_noetherian_ring (adjoin_root f) :=
ideal.quotient.is_noetherian_ring _
end is_noetherian_ring
section power_basis
variables [comm_ring R] {g : R[X]}
lemma is_integral_root' (hg : g.monic) : is_integral R (root g) :=
⟨g, hg, eval₂_root g⟩
/-- `adjoin_root.mod_by_monic_hom` sends the equivalence class of `f` mod `g` to `f %ₘ g`.
This is a well-defined right inverse to `adjoin_root.mk`, see `adjoin_root.mk_left_inverse`. -/
def mod_by_monic_hom (hg : g.monic) :
adjoin_root g →ₗ[R] R[X] :=
(submodule.liftq _ (polynomial.mod_by_monic_hom g)
(λ f (hf : f ∈ (ideal.span {g}).restrict_scalars R),
(mem_ker_mod_by_monic hg).mpr (ideal.mem_span_singleton.mp hf))).comp $
(submodule.quotient.restrict_scalars_equiv R (ideal.span {g} : ideal R[X]))
.symm.to_linear_map
@[simp] lemma mod_by_monic_hom_mk (hg : g.monic) (f : R[X]) :
mod_by_monic_hom hg (mk g f) = f %ₘ g := rfl
lemma mk_left_inverse (hg : g.monic) :
function.left_inverse (mk g) (mod_by_monic_hom hg) :=
λ f, induction_on g f $ λ f, begin
rw [mod_by_monic_hom_mk hg, mk_eq_mk, mod_by_monic_eq_sub_mul_div _ hg,
sub_sub_cancel_left, dvd_neg],
apply dvd_mul_right
end
lemma mk_surjective (hg : g.monic) : function.surjective (mk g) :=
(mk_left_inverse hg).surjective
/-- The elements `1, root g, ..., root g ^ (d - 1)` form a basis for `adjoin_root g`,
where `g` is a monic polynomial of degree `d`. -/
@[simps] def power_basis_aux' (hg : g.monic) :
basis (fin g.nat_degree) R (adjoin_root g) :=
basis.of_equiv_fun
{ to_fun := λ f i, (mod_by_monic_hom hg f).coeff i,
inv_fun := λ c, mk g $ ∑ (i : fin g.nat_degree), monomial i (c i),
map_add' := λ f₁ f₂, funext $ λ i,
by simp only [(mod_by_monic_hom hg).map_add, coeff_add, pi.add_apply],
map_smul' := λ f₁ f₂, funext $ λ i,
by simp only [(mod_by_monic_hom hg).map_smul, coeff_smul, pi.smul_apply, ring_hom.id_apply],
left_inv := λ f, induction_on g f (λ f, eq.symm $ mk_eq_mk.mpr $
by { simp only [mod_by_monic_hom_mk, sum_mod_by_monic_coeff hg degree_le_nat_degree],
rw [mod_by_monic_eq_sub_mul_div _ hg, sub_sub_cancel],
exact dvd_mul_right _ _ }),
right_inv := λ x, funext $ λ i, begin
nontriviality R,
simp only [mod_by_monic_hom_mk],
rw [(mod_by_monic_eq_self_iff hg).mpr, finset_sum_coeff, finset.sum_eq_single i];
try { simp only [coeff_monomial, eq_self_iff_true, if_true] },
{ intros j _ hj, exact if_neg (fin.coe_injective.ne hj) },
{ intros, have := finset.mem_univ i, contradiction },
{ refine (degree_sum_le _ _).trans_lt ((finset.sup_lt_iff _).mpr (λ j _, _)),
{ exact bot_lt_iff_ne_bot.mpr (mt degree_eq_bot.mp hg.ne_zero) },
{ refine (degree_monomial_le _ _).trans_lt _,
rw [degree_eq_nat_degree hg.ne_zero, with_bot.coe_lt_coe],
exact j.2 } },
end}
/-- The power basis `1, root g, ..., root g ^ (d - 1)` for `adjoin_root g`,
where `g` is a monic polynomial of degree `d`. -/
@[simps] def power_basis' (hg : g.monic) : power_basis R (adjoin_root g) :=
{ gen := root g,
dim := g.nat_degree,
basis := power_basis_aux' hg,
basis_eq_pow := λ i, begin
simp only [power_basis_aux', basis.coe_of_equiv_fun, linear_equiv.coe_symm_mk],
rw finset.sum_eq_single i,
{ rw [function.update_same, monomial_one_right_eq_X_pow, (mk g).map_pow, mk_X] },
{ intros j _ hj,
rw ← monomial_zero_right _,
convert congr_arg _ (function.update_noteq hj _ _) }, -- Fix `decidable_eq` mismatch
{ intros, have := finset.mem_univ i, contradiction },
end}
variables [field K] {f : K[X]}
lemma is_integral_root (hf : f ≠ 0) : is_integral K (root f) :=
is_algebraic_iff_is_integral.mp (is_algebraic_root hf)
lemma minpoly_root (hf : f ≠ 0) : minpoly K (root f) = f * C (f.leading_coeff⁻¹) :=
begin
have f'_monic : monic _ := monic_mul_leading_coeff_inv hf,
refine (minpoly.unique K _ f'_monic _ _).symm,
{ rw [alg_hom.map_mul, aeval_eq, mk_self, zero_mul] },
intros q q_monic q_aeval,
have commutes : (lift (algebra_map K (adjoin_root f)) (root f) q_aeval).comp (mk q) = mk f,
{ ext,
{ simp only [ring_hom.comp_apply, mk_C, lift_of], refl },
{ simp only [ring_hom.comp_apply, mk_X, lift_root] } },
rw [degree_eq_nat_degree f'_monic.ne_zero, degree_eq_nat_degree q_monic.ne_zero,
with_bot.coe_le_coe, nat_degree_mul hf, nat_degree_C, add_zero],
apply nat_degree_le_of_dvd,
{ have : mk f q = 0, by rw [←commutes, ring_hom.comp_apply, mk_self, ring_hom.map_zero],
rwa [←ideal.mem_span_singleton, ←ideal.quotient.eq_zero_iff_mem] },
{ exact q_monic.ne_zero },
{ rwa [ne.def, C_eq_zero, inv_eq_zero, leading_coeff_eq_zero] },
end
/-- The elements `1, root f, ..., root f ^ (d - 1)` form a basis for `adjoin_root f`,
where `f` is an irreducible polynomial over a field of degree `d`. -/
def power_basis_aux (hf : f ≠ 0) : basis (fin f.nat_degree) K (adjoin_root f) :=
begin
set f' := f * C (f.leading_coeff⁻¹) with f'_def,
have deg_f' : f'.nat_degree = f.nat_degree,
{ rw [nat_degree_mul hf, nat_degree_C, add_zero],
{ rwa [ne.def, C_eq_zero, inv_eq_zero, leading_coeff_eq_zero] } },
have minpoly_eq : minpoly K (root f) = f' := minpoly_root hf,
apply @basis.mk _ _ _ (λ (i : fin f.nat_degree), (root f ^ i.val)),
{ rw [← deg_f', ← minpoly_eq],
exact (is_integral_root hf).linear_independent_pow },
{ rintros y -,
rw [← deg_f', ← minpoly_eq],
apply (is_integral_root hf).mem_span_pow,
obtain ⟨g⟩ := y,
use g,
rw aeval_eq,
refl }
end
/-- The power basis `1, root f, ..., root f ^ (d - 1)` for `adjoin_root f`,
where `f` is an irreducible polynomial over a field of degree `d`. -/
@[simps] def power_basis (hf : f ≠ 0) :
power_basis K (adjoin_root f) :=
{ gen := root f,
dim := f.nat_degree,
basis := power_basis_aux hf,
basis_eq_pow := basis.mk_apply _ _ }
lemma minpoly_power_basis_gen (hf : f ≠ 0) :
minpoly K (power_basis hf).gen = f * C (f.leading_coeff⁻¹) :=
by rw [power_basis_gen, minpoly_root hf]
lemma minpoly_power_basis_gen_of_monic (hf : f.monic) (hf' : f ≠ 0 := hf.ne_zero) :
minpoly K (power_basis hf').gen = f :=
by rw [minpoly_power_basis_gen hf', hf.leading_coeff, inv_one, C.map_one, mul_one]
end power_basis
section minpoly
variables [comm_ring R] [comm_ring S] [algebra R S] (x : S) (R)
open algebra polynomial
/-- The surjective algebra morphism `R[X]/(minpoly R x) → R[x]`.
If `R` is a GCD domain and `x` is integral, this is an isomorphism,
see `adjoin_root.minpoly.equiv_adjoin`. -/
@[simps] def minpoly.to_adjoin : adjoin_root (minpoly R x) →ₐ[R] adjoin R ({x} : set S) :=
lift_hom _ ⟨x, self_mem_adjoin_singleton R x⟩
(by simp [← subalgebra.coe_eq_zero, aeval_subalgebra_coe])
variables {R x}
lemma minpoly.to_adjoin_apply' (a : adjoin_root (minpoly R x)) : minpoly.to_adjoin R x a =
lift_hom (minpoly R x) (⟨x, self_mem_adjoin_singleton R x⟩ : adjoin R ({x} : set S))
(by simp [← subalgebra.coe_eq_zero, aeval_subalgebra_coe]) a := rfl
lemma minpoly.to_adjoin.apply_X : minpoly.to_adjoin R x (mk (minpoly R x) X) =
⟨x, self_mem_adjoin_singleton R x⟩ :=
by simp
variables (R x)
lemma minpoly.to_adjoin.surjective : function.surjective (minpoly.to_adjoin R x) :=
begin
rw [← range_top_iff_surjective, _root_.eq_top_iff, ← adjoin_adjoin_coe_preimage],
refine adjoin_le _,
simp only [alg_hom.coe_range, set.mem_range],
rintro ⟨y₁, y₂⟩ h,
refine ⟨mk (minpoly R x) X, by simpa using h.symm⟩
end
variables {R} {x} [is_domain R] [normalized_gcd_monoid R] [is_domain S] [no_zero_smul_divisors R S]
lemma minpoly.to_adjoin.injective (hx : is_integral R x) :
function.injective (minpoly.to_adjoin R x) :=
begin
refine (injective_iff_map_eq_zero _).2 (λ P₁ hP₁, _),
obtain ⟨P, hP⟩ := mk_surjective (minpoly.monic hx) P₁,
by_cases hPzero : P = 0,
{ simpa [hPzero] using hP.symm },
have hPcont : P.content ≠ 0 := λ h, hPzero (content_eq_zero_iff.1 h),
rw [← hP, minpoly.to_adjoin_apply', lift_hom_mk, ← subalgebra.coe_eq_zero,
aeval_subalgebra_coe, set_like.coe_mk, P.eq_C_content_mul_prim_part, aeval_mul, aeval_C] at hP₁,
replace hP₁ := eq_zero_of_ne_zero_of_mul_left_eq_zero
((map_ne_zero_iff _ (no_zero_smul_divisors.algebra_map_injective R S)).2 hPcont) hP₁,
obtain ⟨Q, hQ⟩ := minpoly.gcd_domain_dvd hx P.is_primitive_prim_part.ne_zero hP₁,
rw [P.eq_C_content_mul_prim_part] at hP,
simpa [hQ] using hP.symm
end
/-- The algebra isomorphism `adjoin_root (minpoly R x) ≃ₐ[R] adjoin R x` -/
@[simps] def minpoly.equiv_adjoin (hx : is_integral R x) :
adjoin_root (minpoly R x) ≃ₐ[R] adjoin R ({x} : set S) :=
alg_equiv.of_bijective (minpoly.to_adjoin R x)
⟨minpoly.to_adjoin.injective hx, minpoly.to_adjoin.surjective R x⟩
/-- The `power_basis` of `adjoin R {x}` given by `x`. See `algebra.adjoin.power_basis` for a version
over a field. -/
@[simps] def _root_.algebra.adjoin.power_basis' (hx : _root_.is_integral R x) :
_root_.power_basis R (algebra.adjoin R ({x} : set S)) :=
power_basis.map (adjoin_root.power_basis' (minpoly.monic hx)) (minpoly.equiv_adjoin hx)
/-- The power basis given by `x` if `B.gen ∈ adjoin R {x}`. -/
@[simps] noncomputable def _root_.power_basis.of_gen_mem_adjoin' (B : _root_.power_basis R S)
(hint : is_integral R x) (hx : B.gen ∈ adjoin R ({x} : set S)) :
_root_.power_basis R S :=
(algebra.adjoin.power_basis' hint).map $
(subalgebra.equiv_of_eq _ _ $ power_basis.adjoin_eq_top_of_gen_mem_adjoin hx).trans
subalgebra.top_equiv
end minpoly
section equiv
section is_domain
variables [comm_ring R] [is_domain R] [comm_ring S] [is_domain S] [algebra R S]
variables (g : R[X]) (pb : _root_.power_basis R S)
/-- If `S` is an extension of `R` with power basis `pb` and `g` is a monic polynomial over `R`
such that `pb.gen` has a minimal polynomial `g`, then `S` is isomorphic to `adjoin_root g`.
Compare `power_basis.equiv_of_root`, which would require
`h₂ : aeval pb.gen (minpoly R (root g)) = 0`; that minimal polynomial is not
guaranteed to be identical to `g`. -/
@[simps {fully_applied := ff}]
def equiv' (h₁ : aeval (root g) (minpoly R pb.gen) = 0) (h₂ : aeval pb.gen g = 0) :
adjoin_root g ≃ₐ[R] S :=
{ to_fun := adjoin_root.lift_hom g pb.gen h₂,
inv_fun := pb.lift (root g) h₁,
left_inv := λ x, induction_on g x $ λ f, by rw [lift_hom_mk, pb.lift_aeval, aeval_eq],
right_inv := λ x, begin
obtain ⟨f, hf, rfl⟩ := pb.exists_eq_aeval x,
rw [pb.lift_aeval, aeval_eq, lift_hom_mk]
end,
.. adjoin_root.lift_hom g pb.gen h₂ }
@[simp] lemma equiv'_to_alg_hom
(h₁ : aeval (root g) (minpoly R pb.gen) = 0) (h₂ : aeval pb.gen g = 0) :
(equiv' g pb h₁ h₂).to_alg_hom = adjoin_root.lift_hom g pb.gen h₂ :=
rfl
@[simp] lemma equiv'_symm_to_alg_hom
(h₁ : aeval (root g) (minpoly R pb.gen) = 0) (h₂ : aeval pb.gen g = 0) :
(equiv' g pb h₁ h₂).symm.to_alg_hom = pb.lift (root g) h₁ :=
rfl
end is_domain
section field
variables (K) (L F : Type*) [field F] [field K] [field L] [algebra F K] [algebra F L]
variables (pb : _root_.power_basis F K)
/-- If `L` is a field extension of `F` and `f` is a polynomial over `F` then the set
of maps from `F[x]/(f)` into `L` is in bijection with the set of roots of `f` in `L`. -/
def equiv (f : F[X]) (hf : f ≠ 0) :
(adjoin_root f →ₐ[F] L) ≃ {x // x ∈ (f.map (algebra_map F L)).roots} :=
(power_basis hf).lift_equiv'.trans ((equiv.refl _).subtype_equiv (λ x,
begin
rw [power_basis_gen, minpoly_root hf, polynomial.map_mul, roots_mul,
polynomial.map_C, roots_C, add_zero, equiv.refl_apply],
{ rw ← polynomial.map_mul, exact map_monic_ne_zero (monic_mul_leading_coeff_inv hf) }
end))
end field
end equiv
section
open ideal double_quot polynomial
variables [comm_ring R] (I : ideal R) (f : polynomial R)
/-- The natural isomorphism `R[α]/(I[α]) ≅ R[α]/((I[x] ⊔ (f)) / (f))` for `α` a root of
`f : polynomial R` and `I : ideal R`.
See `adjoin_root.quot_map_of_equiv` for the isomorphism with `(R/I)[X] / (f mod I)`. -/
def quot_map_of_equiv_quot_map_C_map_span_mk :
adjoin_root f ⧸ I.map (of f) ≃+*
adjoin_root f ⧸ (I.map (C : R →+* R[X])).map (span {f})^.quotient.mk :=
ideal.quot_equiv_of_eq (by rw [of, adjoin_root.mk, ideal.map_map])
@[simp]
lemma quot_map_of_equiv_quot_map_C_map_span_mk_mk (x : adjoin_root f) :
quot_map_of_equiv_quot_map_C_map_span_mk I f (ideal.quotient.mk (I.map (of f)) x) =
ideal.quotient.mk _ x :=
rfl
--this lemma should have the simp tag but this causes a lint issue
lemma quot_map_of_equiv_quot_map_C_map_span_mk_symm_mk (x : adjoin_root f) :
(quot_map_of_equiv_quot_map_C_map_span_mk I f).symm
(ideal.quotient.mk ((I.map (C : R →+* R[X])).map (span {f})^.quotient.mk) x) =
ideal.quotient.mk (I.map (of f)) x :=
by rw [quot_map_of_equiv_quot_map_C_map_span_mk, ideal.quot_equiv_of_eq_symm,
ideal.quot_equiv_of_eq_mk ]
/-- The natural isomorphism `R[α]/((I[x] ⊔ (f)) / (f)) ≅ (R[x]/I[x])/((f) ⊔ I[x] / I[x])`
for `α` a root of `f : polynomial R` and `I : ideal R`-/
def quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk :
(adjoin_root f) ⧸ (I.map (C : R →+* R[X])).map (span ({f} : set R[X]))^.quotient.mk ≃+*
(R[X] ⧸ I.map (C : R →+* R[X])) ⧸ (span ({f} : set R[X])).map
(I.map (C : R →+* R[X]))^.quotient.mk :=
quot_quot_equiv_comm (ideal.span ({f} : set (polynomial R))) (I.map (C : R →+* polynomial R))
@[simp]
lemma quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk_mk (p : R[X]) :
quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk I f (ideal.quotient.mk _ (mk f p)) =
quot_quot_mk (I.map C) (span {f}) p :=
rfl
@[simp]
lemma quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk_symm_quot_quot_mk (p : R[X]) :
(quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk I f).symm
(quot_quot_mk (I.map C) (span {f}) p) = (ideal.quotient.mk _ (mk f p)) :=
rfl
/-- The natural isomorphism `(R/I)[x]/(f mod I) ≅ (R[x]/I*R[x])/(f mod I[x])` where
`f : polynomial R` and `I : ideal R`-/
def polynomial.quot_quot_equiv_comm :
(R ⧸ I)[X] ⧸ span ({f.map (I^.quotient.mk)} : set (polynomial (R ⧸ I))) ≃+*
(R[X] ⧸ map C I) ⧸ span ({(ideal.quotient.mk (I.map C)) f} : set (R[X] ⧸ map C I)) :=
quotient_equiv (span ({f.map (I^.quotient.mk)} : set (polynomial (R ⧸ I))))
(span {ideal.quotient.mk (I.map polynomial.C) f})
(polynomial_quotient_equiv_quotient_polynomial I)
(by rw [map_span, set.image_singleton, ring_equiv.coe_to_ring_hom,
polynomial_quotient_equiv_quotient_polynomial_map_mk I f])
@[simp]
lemma polynomial.quot_quot_equiv_comm_mk (p : R[X]) :
(polynomial.quot_quot_equiv_comm I f) (ideal.quotient.mk _ (p.map I^.quotient.mk)) =
(ideal.quotient.mk _ (ideal.quotient.mk _ p)) :=
by simp only [polynomial.quot_quot_equiv_comm, quotient_equiv_mk,
polynomial_quotient_equiv_quotient_polynomial_map_mk ]
@[simp]
lemma polynomial.quot_quot_equiv_comm_symm_mk_mk (p : R[X]) :
(polynomial.quot_quot_equiv_comm I f).symm (ideal.quotient.mk _ (ideal.quotient.mk _ p)) =
(ideal.quotient.mk _ (p.map I^.quotient.mk)) :=
by simp only [polynomial.quot_quot_equiv_comm, quotient_equiv_symm_mk,
polynomial_quotient_equiv_quotient_polynomial_symm_mk]
/-- The natural isomorphism `R[α]/I[α] ≅ (R/I)[X]/(f mod I)` for `α` a root of `f : polynomial R`
and `I : ideal R`-/
def quot_adjoin_root_equiv_quot_polynomial_quot : (adjoin_root f) ⧸ (I.map (of f)) ≃+*
polynomial (R ⧸ I) ⧸ (span ({f.map (I^.quotient.mk)} : set (polynomial (R ⧸ I)))) :=
(quot_map_of_equiv_quot_map_C_map_span_mk I f).trans
((quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk I f).trans
((ideal.quot_equiv_of_eq
(show (span ({f} : set (polynomial R))).map (I.map (C : R →+* polynomial R))^.quotient.mk =
span ({(ideal.quotient.mk (I.map polynomial.C)) f} : set (polynomial R ⧸ map C I)),
from by rw [map_span, set.image_singleton])).trans
(polynomial.quot_quot_equiv_comm I f).symm))
@[simp]
lemma quot_adjoin_root_equiv_quot_polynomial_quot_mk_of (p : R[X]) :
quot_adjoin_root_equiv_quot_polynomial_quot I f (ideal.quotient.mk (I.map (of f)) (mk f p)) =
ideal.quotient.mk (span ({f.map (I^.quotient.mk)} : set (polynomial (R ⧸ I))))
(p.map I^.quotient.mk) :=
by rw [quot_adjoin_root_equiv_quot_polynomial_quot, ring_equiv.trans_apply, ring_equiv.trans_apply,
ring_equiv.trans_apply, quot_map_of_equiv_quot_map_C_map_span_mk_mk,
quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk_mk, quot_quot_mk, ring_hom.comp_apply,
quot_equiv_of_eq_mk, polynomial.quot_quot_equiv_comm_symm_mk_mk]
@[simp]
lemma quot_adjoin_root_equiv_quot_polynomial_quot_symm_mk_mk (p : R[X]) :
(quot_adjoin_root_equiv_quot_polynomial_quot I f).symm
(ideal.quotient.mk (span ({f.map (I^.quotient.mk)} : set (polynomial (R ⧸ I))))
(p.map I^.quotient.mk)) = (ideal.quotient.mk (I.map (of f)) (mk f p)) :=
by rw [quot_adjoin_root_equiv_quot_polynomial_quot, ring_equiv.symm_trans_apply,
ring_equiv.symm_trans_apply, ring_equiv.symm_trans_apply, ring_equiv.symm_symm,
polynomial.quot_quot_equiv_comm_mk, ideal.quot_equiv_of_eq_symm,
ideal.quot_equiv_of_eq_mk, ← ring_hom.comp_apply, ← double_quot.quot_quot_mk,
quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk_symm_quot_quot_mk,
quot_map_of_equiv_quot_map_C_map_span_mk_symm_mk]
end
end adjoin_root
|