Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 13,817 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/-
Copyright (c) 2022 Antoine Labelle. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Antoine Labelle
-/
import algebra.module.basic
import algebra.module.linear_map
import algebra.monoid_algebra.basic
import linear_algebra.trace
import linear_algebra.dual
import linear_algebra.free_module.basic

/-!
# Monoid representations

This file introduces monoid representations and their characters and defines a few ways to construct
representations.

## Main definitions

  * representation.representation
  * representation.character
  * representation.tprod
  * representation.lin_hom
  * represensation.dual

## Implementation notes

Representations of a monoid `G` on a `k`-module `V` are implemented as
homomorphisms `G →* (V →ₗ[k] V)`.
-/

open monoid_algebra (lift) (of)
open linear_map

section
variables (k G V : Type*) [comm_semiring k] [monoid G] [add_comm_monoid V] [module k V]

/--
A representation of `G` on the `k`-module `V` is an homomorphism `G →* (V →ₗ[k] V)`.
-/
abbreviation representation := G →* (V →ₗ[k] V)

end

namespace representation

section trivial

variables {k G V : Type*} [comm_semiring k] [monoid G] [add_comm_monoid V] [module k V]

/--
The trivial representation of `G` on the one-dimensional module `k`.
-/
def trivial : representation k G k := 1

@[simp]
lemma trivial_def (g : G) (v : k) : trivial g v = v := rfl

end trivial

section monoid_algebra

variables {k G V : Type*} [comm_semiring k] [monoid G] [add_comm_monoid V] [module k V]
variables (ρ : representation k G V)

/--
A `k`-linear representation of `G` on `V` can be thought of as
an algebra map from `monoid_algebra k G` into the `k`-linear endomorphisms of `V`.
-/
noncomputable def as_algebra_hom : monoid_algebra k G →ₐ[k] (module.End k V) :=
(lift k G _) ρ

lemma as_algebra_hom_def : as_algebra_hom ρ = (lift k G _) ρ :=
rfl

@[simp]
lemma as_algebra_hom_single (g : G) (r : k) :
  (as_algebra_hom ρ (finsupp.single g r)) = r • ρ g :=
by simp only [as_algebra_hom_def, monoid_algebra.lift_single]

lemma as_algebra_hom_single_one (g : G):
  (as_algebra_hom ρ (finsupp.single g 1)) = ρ g :=
by simp

lemma as_algebra_hom_of (g : G) :
  (as_algebra_hom ρ (of k G g)) = ρ g :=
by simp only [monoid_algebra.of_apply, as_algebra_hom_single, one_smul]

/--
If `ρ : representation k G V`, then `ρ.as_module` is a type synonym for `V`,
which we equip with an instance `module (monoid_algebra k G) ρ.as_module`.

You should use `as_module_equiv : ρ.as_module ≃+ V` to translate terms.
-/
@[nolint unused_arguments, derive [add_comm_monoid, module (module.End k V)]]
def as_module (ρ : representation k G V) := V

instance : inhabited ρ.as_module := ⟨0⟩

/--
A `k`-linear representation of `G` on `V` can be thought of as
a module over `monoid_algebra k G`.
-/
noncomputable instance as_module_module : module (monoid_algebra k G) ρ.as_module :=
module.comp_hom V (as_algebra_hom ρ).to_ring_hom

/--
The additive equivalence from the `module (monoid_algebra k G)` to the original vector space
of the representative.

This is just the identity, but it is helpful for typechecking and keeping track of instances.
-/
def as_module_equiv : ρ.as_module ≃+ V :=
add_equiv.refl _

@[simp]
lemma as_module_equiv_map_smul (r : monoid_algebra k G) (x : ρ.as_module) :
  ρ.as_module_equiv (r • x) = ρ.as_algebra_hom r (ρ.as_module_equiv x) :=
rfl

@[simp]
lemma as_module_equiv_symm_map_smul (r : k) (x : V) :
  ρ.as_module_equiv.symm (r • x) =
    algebra_map k (monoid_algebra k G) r • (ρ.as_module_equiv.symm x) :=
begin
  apply_fun ρ.as_module_equiv,
  simp,
end

@[simp]
lemma as_module_equiv_symm_map_rho (g : G) (x : V) :
  ρ.as_module_equiv.symm (ρ g x) = monoid_algebra.of k G g • (ρ.as_module_equiv.symm x) :=
begin
  apply_fun ρ.as_module_equiv,
  simp,
end

/--
Build a `representation k G M` from a `[module (monoid_algebra k G) M]`.

This version is not always what we want, as it relies on an existing `[module k M]`
instance, along with a `[is_scalar_tower k (monoid_algebra k G) M]` instance.

We remedy this below in `of_module`
(with the tradeoff that the representation is defined
only on a type synonym of the original module.)
-/
noncomputable
def of_module' (M : Type*) [add_comm_monoid M] [module k M] [module (monoid_algebra k G) M]
  [is_scalar_tower k (monoid_algebra k G) M] : representation k G M :=
(monoid_algebra.lift k G (M →ₗ[k] M)).symm (algebra.lsmul k M)

section
variables (k G) (M : Type*) [add_comm_monoid M] [module (monoid_algebra k G) M]

/--
Build a `representation` from a `[module (monoid_algebra k G) M]`.

Note that the representation is built on `restrict_scalars k (monoid_algebra k G) M`,
rather than on `M` itself.
-/
noncomputable
def of_module :
  representation k G (restrict_scalars k (monoid_algebra k G) M) :=
(monoid_algebra.lift k G
  (restrict_scalars k (monoid_algebra k G) M →ₗ[k] restrict_scalars k (monoid_algebra k G) M)).symm
  (restrict_scalars.lsmul k (monoid_algebra k G) M)

/-!
## `of_module` and `as_module` are inverses.

This requires a little care in both directions:
this is a categorical equivalence, not an isomorphism.

See `Rep.equivalence_Module_monoid_algebra` for the full statement.

Starting with `ρ : representation k G V`, converting to a module and back again
we have a `representation k G (restrict_scalars k (monoid_algebra k G) ρ.as_module)`.
To compare these, we use the composition of `restrict_scalars_add_equiv` and `ρ.as_module_equiv`.

Similarly, starting with `module (monoid_algebra k G) M`,
after we convert to a representation and back to a module,
we have `module (monoid_algebra k G) (restrict_scalars k (monoid_algebra k G) M)`.
-/

@[simp] lemma of_module_as_algebra_hom_apply_apply
  (r : monoid_algebra k G) (m : restrict_scalars k (monoid_algebra k G) M) :
  ((((of_module k G M).as_algebra_hom) r) m) =
    (restrict_scalars.add_equiv _ _ _).symm (r • restrict_scalars.add_equiv _ _ _ m) :=
begin
  apply monoid_algebra.induction_on r,
  { intros g,
    simp only [one_smul, monoid_algebra.lift_symm_apply, monoid_algebra.of_apply,
      representation.as_algebra_hom_single, representation.of_module,
      add_equiv.apply_eq_iff_eq, restrict_scalars.lsmul_apply_apply], },
  { intros f g fw gw,
    simp only [fw, gw, map_add, add_smul, linear_map.add_apply], },
  { intros r f w,
    simp only [w, alg_hom.map_smul, linear_map.smul_apply,
      restrict_scalars.add_equiv_symm_map_smul_smul], }
end

@[simp]
lemma of_module_as_module_act (g : G) (x : restrict_scalars k (monoid_algebra k G) ρ.as_module) :
  of_module k G (ρ.as_module) g x =
    (restrict_scalars.add_equiv _ _ _).symm ((ρ.as_module_equiv).symm
      (ρ g (ρ.as_module_equiv (restrict_scalars.add_equiv _ _ _ x)))) :=
begin
  apply_fun restrict_scalars.add_equiv _ _ ρ.as_module using
    (restrict_scalars.add_equiv _ _ _).injective,
  dsimp [of_module, restrict_scalars.lsmul_apply_apply],
  simp,
end

lemma smul_of_module_as_module (r : monoid_algebra k G)
  (m : (of_module k G M).as_module) :
   (restrict_scalars.add_equiv _ _ _) ((of_module k G M).as_module_equiv (r • m)) =
     r • (restrict_scalars.add_equiv _ _ _) ((of_module k G M).as_module_equiv m) :=
by { dsimp, simp only [add_equiv.apply_symm_apply, of_module_as_algebra_hom_apply_apply], }

end

end monoid_algebra

section add_comm_group

variables {k G V : Type*} [comm_ring k] [monoid G] [I : add_comm_group V] [module k V]
variables (ρ : representation k G V)

instance : add_comm_group ρ.as_module := I

end add_comm_group

section mul_action
variables (k : Type*) [comm_semiring k] (G : Type*) [monoid G] (H : Type*) [mul_action G H]

/-- A `G`-action on `H` induces a representation `G →* End(k[H])` in the natural way. -/
noncomputable def of_mul_action : representation k G (H →₀ k) :=
{ to_fun := λ g, finsupp.lmap_domain k k ((•) g),
  map_one' := by { ext x y, dsimp, simp },
  map_mul' := λ x y, by { ext z w, simp [mul_smul] }}

variables {k G H}

lemma of_mul_action_def (g : G) : of_mul_action k G H g = finsupp.lmap_domain k k ((•) g) := rfl

end mul_action
section group

variables {k G V : Type*} [comm_semiring k] [group G] [add_comm_monoid V] [module k V]
variables (ρ : representation k G V)

@[simp] lemma of_mul_action_apply {H : Type*} [mul_action G H]
  (g : G) (f : H →₀ k) (h : H) : of_mul_action k G H g f h = f (g⁻¹ • h) :=
begin
  conv_lhs { rw ← smul_inv_smul g h, },
  let h' := g⁻¹ • h,
  change of_mul_action k G H g f (g • h') = f h',
  have hg : function.injective ((•) g : HH), { intros h₁ h₂, simp, },
  simp only [of_mul_action_def, finsupp.lmap_domain_apply, finsupp.map_domain_apply, hg],
end

lemma of_mul_action_self_smul_eq_mul
  (x : monoid_algebra k G) (y : (of_mul_action k G G).as_module) :
  x • y = (x * y : monoid_algebra k G) :=
x.induction_on (λ g, by show as_algebra_hom _ _ _ = _; ext; simp)
  (λ x y hx hy, by simp only [hx, hy, add_mul, add_smul])
  (λ r x hx, by show as_algebra_hom _ _ _ = _; simpa [←hx])

/-- If we equip `k[G]` with the `k`-linear `G`-representation induced by the left regular action of
`G` on itself, the resulting object is isomorphic as a `k[G]`-module to `k[G]` with its natural
`k[G]`-module structure. -/
@[simps] noncomputable def of_mul_action_self_as_module_equiv :
  (of_mul_action k G G).as_module ≃ₗ[monoid_algebra k G] monoid_algebra k G :=
{ map_smul' := of_mul_action_self_smul_eq_mul, ..as_module_equiv _ }

/--
When `G` is a group, a `k`-linear representation of `G` on `V` can be thought of as
a group homomorphism from `G` into the invertible `k`-linear endomorphisms of `V`.
-/
def as_group_hom : G →* units (V →ₗ[k] V) :=
monoid_hom.to_hom_units ρ

lemma as_group_hom_apply (g : G) : ↑(as_group_hom ρ g) = ρ g :=
by simp only [as_group_hom, monoid_hom.coe_to_hom_units]

end group

section tensor_product

variables {k G V W : Type*} [comm_semiring k] [monoid G]
variables [add_comm_monoid V] [module k V] [add_comm_monoid W] [module k W]
variables (ρV : representation k G V) (ρW : representation k G W)

open_locale tensor_product

/--
Given representations of `G` on `V` and `W`, there is a natural representation of `G` on their
tensor product `V ⊗[k] W`.
-/
def tprod : representation k G (V ⊗[k] W) :=
{ to_fun := λ g, tensor_product.map (ρV g) (ρW g),
  map_one' := by simp only [map_one, tensor_product.map_one],
  map_mul' := λ g h, by simp only [map_mul, tensor_product.map_mul] }

local notation ρV ` ⊗ ` ρW := tprod ρV ρW

@[simp]
lemma tprod_apply (g : G) : (ρV ⊗ ρW) g = tensor_product.map (ρV g) (ρW g) := rfl

lemma smul_tprod_one_as_module (r : monoid_algebra k G) (x : V) (y : W) :
  (r • (x ⊗ₜ y) : (ρV.tprod 1).as_module) = (r • x : ρV.as_module) ⊗ₜ y :=
begin
  show as_algebra_hom _ _ _ = as_algebra_hom _ _ _ ⊗ₜ _,
  simp only [as_algebra_hom_def, monoid_algebra.lift_apply,
    tprod_apply, monoid_hom.one_apply, linear_map.finsupp_sum_apply,
    linear_map.smul_apply, tensor_product.map_tmul, linear_map.one_apply],
  simp only [finsupp.sum, tensor_product.sum_tmul],
  refl,
end

lemma smul_one_tprod_as_module (r : monoid_algebra k G) (x : V) (y : W) :
  (r • (x ⊗ₜ y) : ((1 : representation k G V).tprod ρW).as_module) = x ⊗ₜ (r • y : ρW.as_module) :=
begin
  show as_algebra_hom _ _ _ = _ ⊗ₜ as_algebra_hom _ _ _,
  simp only [as_algebra_hom_def, monoid_algebra.lift_apply,
    tprod_apply, monoid_hom.one_apply, linear_map.finsupp_sum_apply,
    linear_map.smul_apply, tensor_product.map_tmul, linear_map.one_apply],
  simp only [finsupp.sum, tensor_product.tmul_sum, tensor_product.tmul_smul],
end

end tensor_product

section linear_hom

variables {k G V W : Type*} [comm_semiring k] [group G]
variables [add_comm_monoid V] [module k V] [add_comm_monoid W] [module k W]
variables (ρV : representation k G V) (ρW : representation k G W)

/--
Given representations of `G` on `V` and `W`, there is a natural representation of `G` on the
module `V →ₗ[k] W`, where `G` acts by conjugation.
-/
def lin_hom : representation k G (V →ₗ[k] W) :=
{ to_fun := λ g,
  { to_fun := λ f, (ρW g) ∘ₗ f ∘ₗ (ρV g⁻¹),
    map_add' := λ f₁ f₂, by simp_rw [add_comp, comp_add],
    map_smul' := λ r f, by simp_rw [ring_hom.id_apply, smul_comp, comp_smul]},
  map_one' := linear_map.ext $ λ x,
    by simp_rw [coe_mk, inv_one, map_one, one_apply, one_eq_id, comp_id, id_comp],
  map_mul' := λ g h,  linear_map.ext $ λ x,
    by simp_rw [coe_mul, coe_mk, function.comp_apply, mul_inv_rev, map_mul, mul_eq_comp,
                comp_assoc ]}

@[simp]
lemma lin_hom_apply (g : G) (f : V →ₗ[k] W) : (lin_hom ρV ρW) g f = (ρW g) ∘ₗ f ∘ₗ (ρV g⁻¹) := rfl

/--
The dual of a representation `ρ` of `G` on a module `V`, given by `(dual ρ) g f = f ∘ₗ (ρ g⁻¹)`,
where `f : module.dual k V`.
-/
def dual : representation k G (module.dual k V) :=
{ to_fun := λ g,
  { to_fun := λ f, f ∘ₗ (ρV g⁻¹),
    map_add' := λ f₁ f₂, by simp only [add_comp],
    map_smul' := λ r f,
      by {ext, simp only [coe_comp, function.comp_app, smul_apply, ring_hom.id_apply]} },
  map_one' :=
    by {ext, simp only [coe_comp, function.comp_app, map_one, inv_one, coe_mk, one_apply]},
  map_mul' := λ g h,
    by {ext, simp only [coe_comp, function.comp_app, mul_inv_rev, map_mul, coe_mk, mul_apply]}}

@[simp]
lemma dual_apply (g : G) : (dual ρV) g = module.dual.transpose (ρV g⁻¹) := rfl

lemma dual_tensor_hom_comm (g : G) :
  (dual_tensor_hom k V W) ∘ₗ (tensor_product.map (ρV.dual g) (ρW g)) =
  (lin_hom ρV ρW) g ∘ₗ (dual_tensor_hom k V W) :=
begin
  ext, simp [module.dual.transpose_apply],
end

end linear_hom

end representation