Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 38,622 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
/-
Copyright (c) 2021 Aaron Anderson, Jesse Michael Han, Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jesse Michael Han, Floris van Doorn
-/
import data.list.prod_sigma
import data.set.prod
import logic.equiv.fin
import model_theory.language_map

/-!
# Basics on First-Order Syntax
This file defines first-order terms, formulas, sentences, and theories in a style inspired by the
[Flypitch project](https://flypitch.github.io/).

## Main Definitions
* A `first_order.language.term` is defined so that `L.term α` is the type of `L`-terms with free
  variables indexed by `α`.
* A `first_order.language.formula` is defined so that `L.formula α` is the type of `L`-formulas with
  free variables indexed by `α`.
* A `first_order.language.sentence` is a formula with no free variables.
* A `first_order.language.Theory` is a set of sentences.
* The variables of terms and formulas can be relabelled with `first_order.language.term.relabel`,
`first_order.language.bounded_formula.relabel`, and `first_order.language.formula.relabel`.
* Given an operation on terms and an operation on relations,
  `first_order.language.bounded_formula.map_term_rel` gives an operation on formulas.
* `first_order.language.bounded_formula.cast_le` adds more `fin`-indexed variables.
* `first_order.language.bounded_formula.lift_at` raises the indexes of the `fin`-indexed variables
above a particular index.
* `first_order.language.term.subst` and `first_order.language.bounded_formula.subst` substitute
variables with given terms.
* Language maps can act on syntactic objects with functions such as
`first_order.language.Lhom.on_formula`.
* `first_order.language.term.constants_vars_equiv` and
`first_order.language.bounded_formula.constants_vars_equiv` switch terms and formulas between having
constants in the language and having extra variables indexed by the same type.

## Implementation Notes
* Formulas use a modified version of de Bruijn variables. Specifically, a `L.bounded_formula α n`
is a formula with some variables indexed by a type `α`, which cannot be quantified over, and some
indexed by `fin n`, which can. For any `φ : L.bounded_formula α (n + 1)`, we define the formula
`∀' φ : L.bounded_formula α n` by universally quantifying over the variable indexed by
`n : fin (n + 1)`.

## References
For the Flypitch project:
- [J. Han, F. van Doorn, *A formal proof of the independence of the continuum hypothesis*]
[flypitch_cpp]
- [J. Han, F. van Doorn, *A formalization of forcing and the unprovability of
the continuum hypothesis*][flypitch_itp]

-/

universes u v w u' v'

namespace first_order
namespace language

variables (L : language.{u v}) {L' : language}
variables {M : Type w} {N P : Type*} [L.Structure M] [L.Structure N] [L.Structure P]
variables {α : Type u'} {β : Type v'} {γ : Type*}
open_locale first_order
open Structure fin

/-- A term on `α` is either a variable indexed by an element of `α`
  or a function symbol applied to simpler terms. -/
inductive term (α : Type u') : Type (max u u')
| var {} : ∀ (a : α), term
| func {} : ∀ {l : ℕ} (f : L.functions l) (ts : fin l → term), term
export term

variable {L}

namespace term

open finset

/-- The `finset` of variables used in a given term. -/
@[simp] def var_finset [decidable_eq α] : L.term α → finset α
| (var i) := {i}
| (func f ts) := univ.bUnion (λ i, (ts i).var_finset)

/-- The `finset` of variables from the left side of a sum used in a given term. -/
@[simp] def var_finset_left [decidable_eq α] : L.term (α ⊕ β) → finset α
| (var (sum.inl i)) := {i}
| (var (sum.inr i)) := ∅
| (func f ts) := univ.bUnion (λ i, (ts i).var_finset_left)

/-- Relabels a term's variables along a particular function. -/
@[simp] def relabel (g : α → β) : L.term α → L.term β
| (var i) := var (g i)
| (func f ts) := func f (λ i, (ts i).relabel)

lemma relabel_id (t : L.term α) :
  t.relabel id = t :=
begin
  induction t with _ _ _ _ ih,
  { refl, },
  { simp [ih] },
end

@[simp] lemma relabel_id_eq_id :
  (term.relabel id : L.term α → L.term α) = id :=
funext relabel_id

@[simp] lemma relabel_relabel (f : α → β) (g : β → γ) (t : L.term α) :
  (t.relabel f).relabel g = t.relabel (g ∘ f) :=
begin
  induction t with _ _ _ _ ih,
  { refl, },
  { simp [ih] },
end

@[simp] lemma relabel_comp_relabel (f : α → β) (g : β → γ) :
  (term.relabel g ∘ term.relabel f : L.term α → L.term γ) = term.relabel (g ∘ f) :=
funext (relabel_relabel f g)

/-- Relabels a term's variables along a bijection. -/
@[simps] def relabel_equiv (g : α ≃ β) : L.term α ≃ L.term β :=
⟨relabel g, relabel g.symm, λ t, by simp, λ t, by simp⟩

/-- Restricts a term to use only a set of the given variables. -/
def restrict_var [decidable_eq α] : Π (t : L.term α) (f : t.var_finset → β), L.term β
| (var a) f := var (f ⟨a, mem_singleton_self a⟩)
| (func F ts) f := func F (λ i, (ts i).restrict_var
  (f ∘ set.inclusion (subset_bUnion_of_mem _ (mem_univ i))))

/-- Restricts a term to use only a set of the given variables on the left side of a sum. -/
def restrict_var_left [decidable_eq α] {γ : Type*} :
  Π (t : L.term (α ⊕ γ)) (f : t.var_finset_left → β), L.term (β ⊕ γ)
| (var (sum.inl a)) f := var (sum.inl (f ⟨a, mem_singleton_self a⟩))
| (var (sum.inr a)) f := var (sum.inr a)
| (func F ts) f := func F (λ i, (ts i).restrict_var_left
  (f ∘ set.inclusion (subset_bUnion_of_mem _ (mem_univ i))))

end term

/-- The representation of a constant symbol as a term. -/
def constants.term (c : L.constants) : (L.term α) :=
func c default

/-- Applies a unary function to a term. -/
def functions.apply₁ (f : L.functions 1) (t : L.term α) : L.term α := func f ![t]

/-- Applies a binary function to two terms. -/
def functions.apply₂ (f : L.functions 2) (t₁ t₂ : L.term α) : L.term α := func f ![t₁, t₂]

namespace term

/-- Sends a term with constants to a term with extra variables. -/
@[simp] def constants_to_vars : L[[γ]].term α → L.term (γ ⊕ α)
| (var a) := var (sum.inr a)
| (@func _ _ 0 f ts) := sum.cases_on f (λ f, func f (λ i, (ts i).constants_to_vars))
    (λ c, var (sum.inl c))
| (@func _ _ (n + 1) f ts) := sum.cases_on f (λ f, func f (λ i, (ts i).constants_to_vars))
    (λ c, is_empty_elim c)

/-- Sends a term with extra variables to a term with constants. -/
@[simp] def vars_to_constants : L.term (γ ⊕ α) → L[[γ]].term α
| (var (sum.inr a)) := var a
| (var (sum.inl c)) := constants.term (sum.inr c)
| (func f ts) := func (sum.inl f) (λ i, (ts i).vars_to_constants)

/-- A bijection between terms with constants and terms with extra variables. -/
@[simps] def constants_vars_equiv : L[[γ]].term α ≃ L.term (γ ⊕ α) :=
⟨constants_to_vars, vars_to_constants, begin
  intro t,
  induction t with _ n f _ ih,
  { refl },
  { cases n,
    { cases f,
      { simp [constants_to_vars, vars_to_constants, ih] },
      { simp [constants_to_vars, vars_to_constants, constants.term] } },
    { cases f,
      { simp [constants_to_vars, vars_to_constants, ih] },
      { exact is_empty_elim f } } }
end, begin
  intro t,
  induction t with x n f _ ih,
  { cases x;
    refl },
  { cases n;
    { simp [vars_to_constants, constants_to_vars, ih] } }
end⟩

/-- A bijection between terms with constants and terms with extra variables. -/
def constants_vars_equiv_left : L[[γ]].term (α ⊕ β) ≃ L.term ((γ ⊕ α) ⊕ β) :=
constants_vars_equiv.trans (relabel_equiv (equiv.sum_assoc _ _ _)).symm

@[simp] lemma constants_vars_equiv_left_apply (t : L[[γ]].term (α ⊕ β)) :
  constants_vars_equiv_left t = (constants_to_vars t).relabel (equiv.sum_assoc _ _ _).symm :=
rfl

@[simp] lemma constants_vars_equiv_left_symm_apply (t : L.term ((γ ⊕ α) ⊕ β)) :
  constants_vars_equiv_left.symm t = vars_to_constants (t.relabel (equiv.sum_assoc _ _ _)) :=
rfl

instance inhabited_of_var [inhabited α] : inhabited (L.term α) :=
⟨var default⟩

instance inhabited_of_constant [inhabited L.constants] : inhabited (L.term α) :=
⟨(default : L.constants).term⟩

/-- Raises all of the `fin`-indexed variables of a term greater than or equal to `m` by `n'`. -/
def lift_at {n : ℕ} (n' m : ℕ) : L.term (α ⊕ fin n) → L.term (α ⊕ fin (n + n')) :=
relabel (sum.map id (λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i))

/-- Substitutes the variables in a given term with terms. -/
@[simp] def subst : L.term α → (α → L.term β) → L.term β
| (var a) tf := tf a
| (func f ts) tf := (func f (λ i, (ts i).subst tf))

end term

localized "prefix `&`:max := first_order.language.term.var ∘ sum.inr" in first_order

namespace Lhom

/-- Maps a term's symbols along a language map. -/
@[simp] def on_term (φ : L →ᴸ L') : L.term α → L'.term α
| (var i) := var i
| (func f ts) := func (φ.on_function f) (λ i, on_term (ts i))

@[simp] lemma id_on_term :
  ((Lhom.id L).on_term : L.term α → L.term α) = id :=
begin
  ext t,
  induction t with _ _ _ _ ih,
  { refl },
  { simp_rw [on_term, ih],
    refl, },
end

@[simp] lemma comp_on_term {L'' : language} (φ : L' →ᴸ L'') (ψ : L →ᴸ L') :
  ((φ.comp ψ).on_term : L.term α → L''.term α) = φ.on_term ∘ ψ.on_term :=
begin
  ext t,
  induction t with _ _ _ _ ih,
  { refl },
  { simp_rw [on_term, ih],
    refl, },
end

end Lhom

/-- Maps a term's symbols along a language equivalence. -/
@[simps] def Lequiv.on_term (φ : L ≃ᴸ L') : L.term α ≃ L'.term α :=
{ to_fun := φ.to_Lhom.on_term,
  inv_fun := φ.inv_Lhom.on_term,
  left_inv := by rw [function.left_inverse_iff_comp, ← Lhom.comp_on_term, φ.left_inv,
    Lhom.id_on_term],
  right_inv := by rw [function.right_inverse_iff_comp, ← Lhom.comp_on_term, φ.right_inv,
    Lhom.id_on_term] }

variables (L) (α)
/-- `bounded_formula α n` is the type of formulas with free variables indexed by `α` and up to `n`
  additional free variables. -/
inductive bounded_formula : ℕ → Type (max u v u')
| falsum {} {n} : bounded_formula n
| equal {n} (t₁ t₂ : L.term (α ⊕ fin n)) : bounded_formula n
| rel {n l : ℕ} (R : L.relations l) (ts : fin l → L.term (α ⊕ fin n)) : bounded_formula n
| imp {n} (f₁ f₂ : bounded_formula n) : bounded_formula n
| all {n} (f : bounded_formula (n+1)) : bounded_formula n

/-- `formula α` is the type of formulas with all free variables indexed by `α`. -/
@[reducible] def formula := L.bounded_formula α 0

/-- A sentence is a formula with no free variables. -/
@[reducible] def sentence := L.formula empty

/-- A theory is a set of sentences. -/
@[reducible] def Theory := set L.sentence

variables {L} {α} {n : ℕ}

/-- Applies a relation to terms as a bounded formula. -/
def relations.bounded_formula {l : ℕ} (R : L.relations n) (ts : fin n → L.term (α ⊕ fin l)) :
  L.bounded_formula α l := bounded_formula.rel R ts

/-- Applies a unary relation to a term as a bounded formula. -/
def relations.bounded_formula₁ (r : L.relations 1) (t : L.term (α ⊕ fin n)) :
  L.bounded_formula α n :=
r.bounded_formula ![t]

/-- Applies a binary relation to two terms as a bounded formula. -/
def relations.bounded_formula₂ (r : L.relations 2) (t₁ t₂ : L.term (α ⊕ fin n)) :
  L.bounded_formula α n :=
r.bounded_formula ![t₁, t₂]

/-- The equality of two terms as a bounded formula. -/
def term.bd_equal (t₁ t₂ : L.term (α ⊕ fin n)) : (L.bounded_formula α n) :=
bounded_formula.equal t₁ t₂

/-- Applies a relation to terms as a bounded formula. -/
def relations.formula (R : L.relations n) (ts : fin n → L.term α) :
  L.formula α := R.bounded_formula (λ i, (ts i).relabel sum.inl)

/-- Applies a unary relation to a term as a formula. -/
def relations.formula₁ (r : L.relations 1) (t : L.term α) :
  L.formula α :=
r.formula ![t]

/-- Applies a binary relation to two terms as a formula. -/
def relations.formula₂ (r : L.relations 2) (t₁ t₂ : L.term α) :
  L.formula α :=
r.formula ![t₁, t₂]

/-- The equality of two terms as a first-order formula. -/
def term.equal (t₁ t₂ : L.term α) : (L.formula α) :=
(t₁.relabel sum.inl).bd_equal (t₂.relabel sum.inl)

namespace bounded_formula

instance : inhabited (L.bounded_formula α n) :=
⟨falsum⟩

instance : has_bot (L.bounded_formula α n) := ⟨falsum⟩

/-- The negation of a bounded formula is also a bounded formula. -/
@[pattern] protected def not (φ : L.bounded_formula α n) : L.bounded_formula α n := φ.imp ⊥

/-- Puts an `∃` quantifier on a bounded formula. -/
@[pattern] protected def ex (φ : L.bounded_formula α (n + 1)) : L.bounded_formula α n :=
  φ.not.all.not

instance : has_top (L.bounded_formula α n) := ⟨bounded_formula.not ⊥⟩

instance : has_inf (L.bounded_formula α n) := ⟨λ f g, (f.imp g.not).not⟩

instance : has_sup (L.bounded_formula α n) := ⟨λ f g, f.not.imp g⟩

/-- The biimplication between two bounded formulas. -/
protected def iff (φ ψ : L.bounded_formula α n) := φ.imp ψ ⊓ ψ.imp φ

open finset

/-- The `finset` of variables used in a given formula. -/
@[simp] def free_var_finset [decidable_eq α] :
  ∀ {n}, L.bounded_formula α n → finset α
| n falsum := ∅
| n (equal t₁ t₂) := t₁.var_finset_left ∪ t₂.var_finset_left
| n (rel R ts) := univ.bUnion (λ i, (ts i).var_finset_left)
| n (imp f₁ f₂) := f₁.free_var_finset ∪ f₂.free_var_finset
| n (all f) := f.free_var_finset

/-- Casts `L.bounded_formula α m` as `L.bounded_formula α n`, where `m ≤ n`. -/
@[simp] def cast_le : ∀ {m n : ℕ} (h : m ≤ n), L.bounded_formula α m → L.bounded_formula α n
| m n h falsum := falsum
| m n h (equal t₁ t₂) := equal (t₁.relabel (sum.map id (fin.cast_le h)))
    (t₂.relabel (sum.map id (fin.cast_le h)))
| m n h (rel R ts) := rel R (term.relabel (sum.map id (fin.cast_le h)) ∘ ts)
| m n h (imp f₁ f₂) := (f₁.cast_le h).imp (f₂.cast_le h)
| m n h (all f) := (f.cast_le (add_le_add_right h 1)).all

@[simp] lemma cast_le_rfl {n} (h : n ≤ n) (φ : L.bounded_formula α n) :
  φ.cast_le h = φ :=
begin
  induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
  { refl },
  { simp [fin.cast_le_of_eq], },
  { simp [fin.cast_le_of_eq], },
  { simp [fin.cast_le_of_eq, ih1, ih2], },
  { simp [fin.cast_le_of_eq, ih3], },
end

@[simp] lemma cast_le_cast_le {k m n} (km : k ≤ m) (mn : m ≤ n) (φ : L.bounded_formula α k) :
  (φ.cast_le km).cast_le mn = φ.cast_le (km.trans mn) :=
begin
  revert m n,
  induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3;
  intros m n km mn,
  { refl },
  { simp },
  { simp only [cast_le, eq_self_iff_true, heq_iff_eq, true_and],
    rw [← function.comp.assoc, relabel_comp_relabel],
    simp },
  { simp [ih1, ih2] },
  { simp only [cast_le, ih3] }
end

@[simp] lemma cast_le_comp_cast_le {k m n} (km : k ≤ m) (mn : m ≤ n) :
  (bounded_formula.cast_le mn ∘ bounded_formula.cast_le km :
    L.bounded_formula α k → L.bounded_formula α n) =
    bounded_formula.cast_le (km.trans mn) :=
funext (cast_le_cast_le km mn)

/-- Restricts a bounded formula to only use a particular set of free variables. -/
def restrict_free_var [decidable_eq α] : Π {n : ℕ} (φ : L.bounded_formula α n)
  (f : φ.free_var_finset → β), L.bounded_formula β n
| n falsum f := falsum
| n (equal t₁ t₂) f := equal
  (t₁.restrict_var_left (f ∘ set.inclusion (subset_union_left _ _)))
  (t₂.restrict_var_left (f ∘ set.inclusion (subset_union_right _ _)))
| n (rel R ts) f := rel R (λ i, (ts i).restrict_var_left
  (f ∘ set.inclusion (subset_bUnion_of_mem _ (mem_univ i))))
| n (imp φ₁ φ₂) f :=
  (φ₁.restrict_free_var (f ∘ set.inclusion (subset_union_left _ _))).imp
  (φ₂.restrict_free_var (f ∘ set.inclusion (subset_union_right _ _)))
| n (all φ) f := (φ.restrict_free_var f).all

/-- Places universal quantifiers on all extra variables of a bounded formula. -/
def alls : ∀ {n}, L.bounded_formula α n → L.formula α
| 0 φ := φ
| (n + 1) φ := φ.all.alls

/-- Places existential quantifiers on all extra variables of a bounded formula. -/
def exs : ∀ {n}, L.bounded_formula α n → L.formula α
| 0 φ := φ
| (n + 1) φ := φ.ex.exs

/-- Maps bounded formulas along a map of terms and a map of relations. -/
def map_term_rel {g : ℕ → ℕ}
  (ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin (g n)))
  (fr : ∀ n, L.relations n → L'.relations n)
  (h : ∀ n, L'.bounded_formula β (g (n + 1)) → L'.bounded_formula β (g n + 1)) :
  ∀ {n}, L.bounded_formula α n → L'.bounded_formula β (g n)
| n falsum := falsum
| n (equal t₁ t₂) := equal (ft _ t₁) (ft _ t₂)
| n (rel R ts) := rel (fr _ R) (λ i, ft _ (ts i))
| n (imp φ₁ φ₂) := φ₁.map_term_rel.imp φ₂.map_term_rel
| n (all φ) := (h n φ.map_term_rel).all

/-- Raises all of the `fin`-indexed variables of a formula greater than or equal to `m` by `n'`. -/
def lift_at : ∀ {n : ℕ} (n' m : ℕ), L.bounded_formula α n → L.bounded_formula α (n + n') :=
λ n n' m φ, φ.map_term_rel (λ k t, t.lift_at n' m) (λ _, id)
  (λ _, cast_le (by rw [add_assoc, add_comm 1, add_assoc]))

@[simp] lemma map_term_rel_map_term_rel {L'' : language}
  (ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin n))
  (fr : ∀ n, L.relations n → L'.relations n)
  (ft' : ∀ n, L'.term (β ⊕ fin n) → L''.term (γ ⊕ fin n))
  (fr' : ∀ n, L'.relations n → L''.relations n)
  {n} (φ : L.bounded_formula α n) :
  (φ.map_term_rel ft fr (λ _, id)).map_term_rel ft' fr' (λ _, id) =
    φ.map_term_rel (λ _, (ft' _) ∘ (ft _)) (λ _, (fr' _) ∘ (fr _)) (λ _, id) :=
begin
  induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
  { refl },
  { simp [map_term_rel] },
  { simp [map_term_rel] },
  { simp [map_term_rel, ih1, ih2] },
  { simp [map_term_rel, ih3], }
end

@[simp] lemma map_term_rel_id_id_id {n} (φ : L.bounded_formula α n) :
  φ.map_term_rel (λ _, id) (λ _, id) (λ _, id) = φ :=
begin
  induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
  { refl },
  { simp [map_term_rel] },
  { simp [map_term_rel] },
  { simp [map_term_rel, ih1, ih2] },
  { simp [map_term_rel, ih3], }
end

/-- An equivalence of bounded formulas given by an equivalence of terms and an equivalence of
relations. -/
@[simps] def map_term_rel_equiv (ft : ∀ n, L.term (α ⊕ fin n) ≃ L'.term (β ⊕ fin n))
  (fr : ∀ n, L.relations n ≃ L'.relations n) {n} :
  L.bounded_formula α n ≃ L'.bounded_formula β n :=
⟨map_term_rel (λ n, ft n) (λ n, fr n) (λ _, id),
  map_term_rel (λ n, (ft n).symm) (λ n, (fr n).symm) (λ _, id),
  λ φ, by simp, λ φ, by simp⟩

/-- A function to help relabel the variables in bounded formulas. -/
def relabel_aux (g : α → β ⊕ fin n) (k : ℕ) :
  α ⊕ fin k → β ⊕ fin (n + k) :=
sum.map id fin_sum_fin_equiv ∘ equiv.sum_assoc _ _ _ ∘ sum.map g id

@[simp] lemma sum_elim_comp_relabel_aux {m : ℕ} {g : α → (β ⊕ fin n)}
  {v : β → M} {xs : fin (n + m) → M} :
  sum.elim v xs ∘ relabel_aux g m =
    sum.elim (sum.elim v (xs ∘ cast_add m) ∘ g) (xs ∘ nat_add n) :=
begin
  ext x,
  cases x,
  { simp only [bounded_formula.relabel_aux, function.comp_app, sum.map_inl, sum.elim_inl],
    cases g x with l r;
    simp },
  { simp [bounded_formula.relabel_aux] }
end

@[simp] lemma relabel_aux_sum_inl (k : ℕ) :
  relabel_aux (sum.inl : α → α ⊕ fin n) k =
  sum.map id (nat_add n) :=
begin
  ext x,
  cases x;
  { simp [relabel_aux] },
end

/-- Relabels a bounded formula's variables along a particular function. -/
def relabel (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α k) :
  L.bounded_formula β (n + k) :=
φ.map_term_rel (λ _ t, t.relabel (relabel_aux g _)) (λ _, id)
  (λ _, cast_le (ge_of_eq (add_assoc _ _ _)))

@[simp] lemma relabel_falsum (g : α → (β ⊕ fin n)) {k} :
  (falsum : L.bounded_formula α k).relabel g = falsum :=
rfl

@[simp] lemma relabel_bot (g : α → (β ⊕ fin n)) {k} :
  (⊥ : L.bounded_formula α k).relabel g = ⊥ :=
rfl

@[simp] lemma relabel_imp (g : α → (β ⊕ fin n)) {k} (φ ψ : L.bounded_formula α k) :
  (φ.imp ψ).relabel g = (φ.relabel g).imp (ψ.relabel g) :=
rfl

@[simp] lemma relabel_not (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α k) :
  φ.not.relabel g = (φ.relabel g).not :=
by simp [bounded_formula.not]

@[simp] lemma relabel_all (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α (k + 1)) :
  φ.all.relabel g = (φ.relabel g).all :=
begin
  rw [relabel, map_term_rel, relabel],
  simp,
end

@[simp] lemma relabel_ex (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α (k + 1)) :
  φ.ex.relabel g = (φ.relabel g).ex :=
by simp [bounded_formula.ex]

@[simp] lemma relabel_sum_inl (φ : L.bounded_formula α n) :
  (φ.relabel sum.inl : L.bounded_formula α (0 + n)) =
  φ.cast_le (ge_of_eq (zero_add n)) :=
begin
  simp only [relabel, relabel_aux_sum_inl],
  induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
  { refl },
  { simp [fin.nat_add_zero, cast_le_of_eq, map_term_rel] },
  { simp [fin.nat_add_zero, cast_le_of_eq, map_term_rel] },
  { simp [map_term_rel, ih1, ih2], },
  { simp [map_term_rel, ih3, cast_le], },
end

/-- Substitutes the variables in a given formula with terms. -/
@[simp] def subst {n : ℕ} (φ : L.bounded_formula α n) (f : α → L.term β) : L.bounded_formula β n :=
φ.map_term_rel (λ _ t, t.subst (sum.elim (term.relabel sum.inl ∘ f) (var ∘ sum.inr)))
  (λ _, id) (λ _, id)

/-- A bijection sending formulas with constants to formulas with extra variables. -/
def constants_vars_equiv : L[[γ]].bounded_formula α n ≃ L.bounded_formula (γ ⊕ α) n :=
map_term_rel_equiv (λ _, term.constants_vars_equiv_left) (λ _, equiv.sum_empty _ _)

/-- Turns the extra variables of a bounded formula into free variables. -/
@[simp] def to_formula : ∀ {n : ℕ}, L.bounded_formula α n → L.formula (α ⊕ fin n)
| n falsum := falsum
| n (equal t₁ t₂) := t₁.equal t₂
| n (rel R ts) := R.formula ts
| n (imp φ₁ φ₂) := φ₁.to_formula.imp φ₂.to_formula
| n (all φ) := (φ.to_formula.relabel
  (sum.elim (sum.inl ∘ sum.inl) (sum.map sum.inr id ∘ fin_sum_fin_equiv.symm))).all

variables {l : ℕ} {φ ψ : L.bounded_formula α l} {θ : L.bounded_formula α l.succ}
variables {v : α → M} {xs : fin l → M}

/-- An atomic formula is either equality or a relation symbol applied to terms.
  Note that `⊥` and `⊤` are not considered atomic in this convention. -/
inductive is_atomic : L.bounded_formula α n → Prop
| equal (t₁ t₂ : L.term (α ⊕ fin n)) : is_atomic (bd_equal t₁ t₂)
| rel {l : ℕ} (R : L.relations l) (ts : fin l → L.term (α ⊕ fin n)) :
    is_atomic (R.bounded_formula ts)

lemma not_all_is_atomic (φ : L.bounded_formula α (n + 1)) :
  ¬ φ.all.is_atomic :=
λ con, by cases con

lemma not_ex_is_atomic (φ : L.bounded_formula α (n + 1)) :
  ¬ φ.ex.is_atomic :=
λ con, by cases con

lemma is_atomic.relabel {m : ℕ} {φ : L.bounded_formula α m} (h : φ.is_atomic)
  (f : α → β ⊕ (fin n)) :
  (φ.relabel f).is_atomic :=
is_atomic.rec_on h (λ _ _, is_atomic.equal _ _) (λ _ _ _, is_atomic.rel _ _)

lemma is_atomic.lift_at {k m : ℕ} (h : is_atomic φ) : (φ.lift_at k m).is_atomic :=
is_atomic.rec_on h (λ _ _, is_atomic.equal _ _) (λ _ _ _, is_atomic.rel _ _)

lemma is_atomic.cast_le {h : l ≤ n} (hφ : is_atomic φ) :
  (φ.cast_le h).is_atomic :=
is_atomic.rec_on hφ (λ _ _, is_atomic.equal _ _) (λ _ _ _, is_atomic.rel _ _)

/-- A quantifier-free formula is a formula defined without quantifiers. These are all equivalent
to boolean combinations of atomic formulas. -/
inductive is_qf : L.bounded_formula α n → Prop
| falsum : is_qf falsum
| of_is_atomic {φ} (h : is_atomic φ) : is_qf φ
| imp {φ₁ φ₂} (h₁ : is_qf φ₁) (h₂ : is_qf φ₂) : is_qf (φ₁.imp φ₂)

lemma is_atomic.is_qf {φ : L.bounded_formula α n} : is_atomic φ → is_qf φ :=
is_qf.of_is_atomic

lemma is_qf_bot : is_qf (⊥ : L.bounded_formula α n) :=
is_qf.falsum

lemma is_qf.not {φ : L.bounded_formula α n} (h : is_qf φ) :
  is_qf φ.not :=
h.imp is_qf_bot

lemma is_qf.relabel {m : ℕ} {φ : L.bounded_formula α m} (h : φ.is_qf)
  (f : α → β ⊕ (fin n)) :
  (φ.relabel f).is_qf :=
is_qf.rec_on h is_qf_bot (λ _ h, (h.relabel f).is_qf) (λ _ _ _ _ h1 h2, h1.imp h2)

lemma is_qf.lift_at {k m : ℕ} (h : is_qf φ) : (φ.lift_at k m).is_qf :=
is_qf.rec_on h is_qf_bot (λ _ ih, ih.lift_at.is_qf) (λ _ _ _ _ ih1 ih2, ih1.imp ih2)

lemma is_qf.cast_le {h : l ≤ n} (hφ : is_qf φ) :
  (φ.cast_le h).is_qf :=
is_qf.rec_on hφ is_qf_bot (λ _ ih, ih.cast_le.is_qf) (λ _ _ _ _ ih1 ih2, ih1.imp ih2)

lemma not_all_is_qf (φ : L.bounded_formula α (n + 1)) :
  ¬ φ.all.is_qf :=
λ con, begin
  cases con with _ con,
  exact (φ.not_all_is_atomic con),
end

lemma not_ex_is_qf (φ : L.bounded_formula α (n + 1)) :
  ¬ φ.ex.is_qf :=
λ con, begin
  cases con with _ con _ _ con,
  { exact (φ.not_ex_is_atomic con) },
  { exact not_all_is_qf _ con }
end

/-- Indicates that a bounded formula is in prenex normal form - that is, it consists of quantifiers
  applied to a quantifier-free formula. -/
inductive is_prenex : ∀ {n}, L.bounded_formula α n → Prop
| of_is_qf {n} {φ : L.bounded_formula α n} (h : is_qf φ) : is_prenex φ
| all {n} {φ : L.bounded_formula α (n + 1)} (h : is_prenex φ) : is_prenex φ.all
| ex {n} {φ : L.bounded_formula α (n + 1)} (h : is_prenex φ) : is_prenex φ.ex

lemma is_qf.is_prenex {φ : L.bounded_formula α n} : is_qf φ → is_prenex φ :=
is_prenex.of_is_qf

lemma is_atomic.is_prenex {φ : L.bounded_formula α n} (h : is_atomic φ) : is_prenex φ :=
h.is_qf.is_prenex

lemma is_prenex.induction_on_all_not {P : ∀ {n}, L.bounded_formula α n → Prop}
  {φ : L.bounded_formula α n}
  (h : is_prenex φ)
  (hq : ∀ {m} {ψ : L.bounded_formula α m}, ψ.is_qf → P ψ)
  (ha : ∀ {m} {ψ : L.bounded_formula α (m + 1)}, P ψ → P ψ.all)
  (hn : ∀ {m} {ψ : L.bounded_formula α m}, P ψ → P ψ.not) :
  P φ :=
is_prenex.rec_on h (λ _ _, hq) (λ _ _ _, ha) (λ _ _ _ ih, hn (ha (hn ih)))

lemma is_prenex.relabel {m : ℕ} {φ : L.bounded_formula α m} (h : φ.is_prenex)
  (f : α → β ⊕ (fin n)) :
  (φ.relabel f).is_prenex :=
is_prenex.rec_on h
  (λ _ _ h, (h.relabel f).is_prenex)
  (λ _ _ _ h, by simp [h.all])
  (λ _ _ _ h, by simp [h.ex])

lemma is_prenex.cast_le (hφ : is_prenex φ) :
  ∀ {n} {h : l ≤ n}, (φ.cast_le h).is_prenex :=
is_prenex.rec_on hφ
  (λ _ _ ih _ _, ih.cast_le.is_prenex)
  (λ _ _ _ ih _ _, ih.all)
  (λ _ _ _ ih _ _, ih.ex)

lemma is_prenex.lift_at {k m : ℕ} (h : is_prenex φ) : (φ.lift_at k m).is_prenex :=
is_prenex.rec_on h
  (λ _ _ ih, ih.lift_at.is_prenex)
  (λ _ _ _ ih, ih.cast_le.all)
  (λ _ _ _ ih, ih.cast_le.ex)

/-- An auxiliary operation to `first_order.language.bounded_formula.to_prenex`.
  If `φ` is quantifier-free and `ψ` is in prenex normal form, then `φ.to_prenex_imp_right ψ`
  is a prenex normal form for `φ.imp ψ`. -/
def to_prenex_imp_right :
  ∀ {n}, L.bounded_formula α n → L.bounded_formula α n → L.bounded_formula α n
| n φ (bounded_formula.ex ψ) := ((φ.lift_at 1 n).to_prenex_imp_right ψ).ex
| n φ (all ψ) := ((φ.lift_at 1 n).to_prenex_imp_right ψ).all
| n φ ψ := φ.imp ψ

lemma is_qf.to_prenex_imp_right {φ : L.bounded_formula α n} :
  Π {ψ : L.bounded_formula α n}, is_qf ψ → (φ.to_prenex_imp_right ψ = φ.imp ψ)
| _ is_qf.falsum := rfl
| _ (is_qf.of_is_atomic (is_atomic.equal _ _)) := rfl
| _ (is_qf.of_is_atomic (is_atomic.rel _ _)) := rfl
| _ (is_qf.imp is_qf.falsum _) := rfl
| _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.equal _ _)) _) := rfl
| _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.rel _ _)) _) := rfl
| _ (is_qf.imp (is_qf.imp _ _) _) := rfl

lemma is_prenex_to_prenex_imp_right {φ ψ : L.bounded_formula α n}
  (hφ : is_qf φ) (hψ : is_prenex ψ) :
  is_prenex (φ.to_prenex_imp_right ψ) :=
begin
  induction hψ with _ _ hψ _ _ _ ih1 _ _ _ ih2,
  { rw hψ.to_prenex_imp_right,
    exact (hφ.imp hψ).is_prenex },
  { exact (ih1 hφ.lift_at).all },
  { exact (ih2 hφ.lift_at).ex }
end

/-- An auxiliary operation to `first_order.language.bounded_formula.to_prenex`.
  If `φ` and `ψ` are in prenex normal form, then `φ.to_prenex_imp ψ`
  is a prenex normal form for `φ.imp ψ`. -/
def to_prenex_imp :
  ∀ {n}, L.bounded_formula α n → L.bounded_formula α n → L.bounded_formula α n
| n (bounded_formula.ex φ) ψ := (φ.to_prenex_imp (ψ.lift_at 1 n)).all
| n (all φ) ψ := (φ.to_prenex_imp (ψ.lift_at 1 n)).ex
| _ φ ψ := φ.to_prenex_imp_right ψ

lemma is_qf.to_prenex_imp : Π {φ ψ : L.bounded_formula α n}, φ.is_qf →
  φ.to_prenex_imp ψ = φ.to_prenex_imp_right ψ
| _ _ is_qf.falsum := rfl
| _ _ (is_qf.of_is_atomic (is_atomic.equal _ _)) := rfl
| _ _ (is_qf.of_is_atomic (is_atomic.rel _ _)) := rfl
| _ _ (is_qf.imp is_qf.falsum _) := rfl
| _ _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.equal _ _)) _) := rfl
| _ _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.rel _ _)) _) := rfl
| _ _ (is_qf.imp (is_qf.imp _ _) _) := rfl

lemma is_prenex_to_prenex_imp {φ ψ : L.bounded_formula α n}
  (hφ : is_prenex φ) (hψ : is_prenex ψ) :
  is_prenex (φ.to_prenex_imp ψ) :=
begin
  induction hφ with _ _ hφ _ _ _ ih1 _ _ _ ih2,
  { rw hφ.to_prenex_imp,
    exact is_prenex_to_prenex_imp_right hφ hψ },
  { exact (ih1 hψ.lift_at).ex },
  { exact (ih2 hψ.lift_at).all }
end

/-- For any bounded formula `φ`, `φ.to_prenex` is a semantically-equivalent formula in prenex normal
  form. -/
def to_prenex : ∀ {n}, L.bounded_formula α n → L.bounded_formula α n
| _ falsum        := ⊥
| _ (equal t₁ t₂) := t₁.bd_equal t₂
| _ (rel R ts)    := rel R ts
| _ (imp f₁ f₂)   := f₁.to_prenex.to_prenex_imp f₂.to_prenex
| _ (all f)       := f.to_prenex.all

lemma to_prenex_is_prenex (φ : L.bounded_formula α n) :
  φ.to_prenex.is_prenex :=
bounded_formula.rec_on φ
  (λ _, is_qf_bot.is_prenex)
  (λ _ _ _, (is_atomic.equal _ _).is_prenex)
  (λ _ _ _ _, (is_atomic.rel _ _).is_prenex)
  (λ _ _ _ h1 h2, is_prenex_to_prenex_imp h1 h2)
  (λ _ _, is_prenex.all)

end bounded_formula

namespace Lhom
open bounded_formula

/-- Maps a bounded formula's symbols along a language map. -/
@[simp] def on_bounded_formula (g : L →ᴸ L') :
  ∀ {k : ℕ}, L.bounded_formula α k → L'.bounded_formula α k
| k falsum := falsum
| k (equal t₁ t₂) := (g.on_term t₁).bd_equal (g.on_term t₂)
| k (rel R ts) := (g.on_relation R).bounded_formula (g.on_term ∘ ts)
| k (imp f₁ f₂) := (on_bounded_formula f₁).imp (on_bounded_formula f₂)
| k (all f) := (on_bounded_formula f).all

@[simp] lemma id_on_bounded_formula :
  ((Lhom.id L).on_bounded_formula : L.bounded_formula α n → L.bounded_formula α n) = id :=
begin
  ext f,
  induction f with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
  { refl },
  { rw [on_bounded_formula, Lhom.id_on_term, id.def, id.def, id.def, bd_equal] },
  { rw [on_bounded_formula, Lhom.id_on_term],
    refl, },
  { rw [on_bounded_formula, ih1, ih2, id.def, id.def, id.def] },
  { rw [on_bounded_formula, ih3, id.def, id.def] }
end

@[simp] lemma comp_on_bounded_formula {L'' : language} (φ : L' →ᴸ L'') (ψ : L →ᴸ L') :
  ((φ.comp ψ).on_bounded_formula : L.bounded_formula α n → L''.bounded_formula α n) =
    φ.on_bounded_formula ∘ ψ.on_bounded_formula :=
begin
  ext f,
  induction f with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
  { refl },
  { simp only [on_bounded_formula, comp_on_term, function.comp_app],
    refl, },
  { simp only [on_bounded_formula, comp_on_relation, comp_on_term, function.comp_app],
    refl },
  { simp only [on_bounded_formula, function.comp_app, ih1, ih2, eq_self_iff_true, and_self], },
  { simp only [ih3, on_bounded_formula, function.comp_app] }
end

/-- Maps a formula's symbols along a language map. -/
def on_formula (g : L →ᴸ L') : L.formula α → L'.formula α :=
g.on_bounded_formula

/-- Maps a sentence's symbols along a language map. -/
def on_sentence (g : L →ᴸ L') : L.sentence → L'.sentence :=
g.on_formula

/-- Maps a theory's symbols along a language map. -/
def on_Theory (g : L →ᴸ L') (T : L.Theory) : L'.Theory :=
g.on_sentence '' T

@[simp] lemma mem_on_Theory {g : L →ᴸ L'} {T : L.Theory} {φ : L'.sentence} :
  φ ∈ g.on_Theory T ↔ ∃ φ₀, φ₀ ∈ T ∧ g.on_sentence φ₀ = φ :=
set.mem_image _ _ _

end Lhom

namespace Lequiv

/-- Maps a bounded formula's symbols along a language equivalence. -/
@[simps] def on_bounded_formula (φ : L ≃ᴸ L') :
  L.bounded_formula α n ≃ L'.bounded_formula α n :=
{ to_fun := φ.to_Lhom.on_bounded_formula,
  inv_fun := φ.inv_Lhom.on_bounded_formula,
  left_inv := by rw [function.left_inverse_iff_comp, ← Lhom.comp_on_bounded_formula, φ.left_inv,
    Lhom.id_on_bounded_formula],
  right_inv := by rw [function.right_inverse_iff_comp, ← Lhom.comp_on_bounded_formula, φ.right_inv,
    Lhom.id_on_bounded_formula] }

lemma on_bounded_formula_symm (φ : L ≃ᴸ L') :
  (φ.on_bounded_formula.symm : L'.bounded_formula α n ≃ L.bounded_formula α n) =
    φ.symm.on_bounded_formula :=
rfl

/-- Maps a formula's symbols along a language equivalence. -/
def on_formula (φ : L ≃ᴸ L') :
  L.formula α ≃ L'.formula α :=
φ.on_bounded_formula

@[simp] lemma on_formula_apply (φ : L ≃ᴸ L') :
  (φ.on_formula : L.formula α → L'.formula α) = φ.to_Lhom.on_formula :=
rfl

@[simp] lemma on_formula_symm (φ : L ≃ᴸ L') :
  (φ.on_formula.symm : L'.formula α ≃ L.formula α) = φ.symm.on_formula :=
rfl

/-- Maps a sentence's symbols along a language equivalence. -/
@[simps] def on_sentence (φ : L ≃ᴸ L') :
  L.sentence ≃ L'.sentence :=
φ.on_formula

end Lequiv

localized "infix ` =' `:88 := first_order.language.term.bd_equal" in first_order
  -- input \~- or \simeq
localized "infixr ` ⟹ `:62 := first_order.language.bounded_formula.imp" in first_order
  -- input \==>
localized "prefix `∀'`:110 := first_order.language.bounded_formula.all" in first_order
localized "prefix `∼`:max := first_order.language.bounded_formula.not" in first_order
  -- input \~, the ASCII character ~ has too low precedence
localized "infix ` ⇔ `:61 := first_order.language.bounded_formula.iff" in first_order -- input \<=>
localized "prefix `∃'`:110 := first_order.language.bounded_formula.ex" in first_order -- input \ex

namespace formula

/-- Relabels a formula's variables along a particular function. -/
def relabel (g : α → β) : L.formula α → L.formula β :=
@bounded_formula.relabel _ _ _ 0 (sum.inl ∘ g) 0

/-- The graph of a function as a first-order formula. -/
def graph (f : L.functions n) : L.formula (fin (n + 1)) :=
equal (var 0) (func f (λ i, var i.succ))

/-- The negation of a formula. -/
protected def not (φ : L.formula α) : L.formula α := φ.not

/-- The implication between formulas, as a formula. -/
protected def imp : L.formula α → L.formula α → L.formula α := bounded_formula.imp

/-- The biimplication between formulas, as a formula. -/
protected def iff (φ ψ : L.formula α) : L.formula α := φ.iff ψ

lemma is_atomic_graph (f : L.functions n) : (graph f).is_atomic :=
bounded_formula.is_atomic.equal _ _

end formula

namespace relations

variable (r : L.relations 2)

/-- The sentence indicating that a basic relation symbol is reflexive. -/
protected def reflexive : L.sentence := ∀' r.bounded_formula₂ &0 &0

/-- The sentence indicating that a basic relation symbol is irreflexive. -/
protected def irreflexive : L.sentence := ∀' ∼ (r.bounded_formula₂ &0 &0)

/-- The sentence indicating that a basic relation symbol is symmetric. -/
protected def symmetric : L.sentence := ∀' ∀' (r.bounded_formula₂ &0 &1 ⟹ r.bounded_formula₂ &1 &0)

/-- The sentence indicating that a basic relation symbol is antisymmetric. -/
protected def antisymmetric : L.sentence :=
  ∀' ∀' (r.bounded_formula₂ &0 &1 ⟹ (r.bounded_formula₂ &1 &0 ⟹ term.bd_equal &0 &1))

/-- The sentence indicating that a basic relation symbol is transitive. -/
protected def transitive : L.sentence :=
  ∀' ∀'' (r.bounded_formula₂ &0 &1 ⟹ r.bounded_formula₂ &1 &2 ⟹ r.bounded_formula₂ &0 &2)

/-- The sentence indicating that a basic relation symbol is total. -/
protected def total : L.sentence :=
  ∀'' (r.bounded_formula₂ &0 &1 ⊔ r.bounded_formula₂ &1 &0)

end relations

section cardinality

variable (L)

/-- A sentence indicating that a structure has `n` distinct elements. -/
protected def sentence.card_ge (n) : L.sentence :=
(((((list.fin_range n).product (list.fin_range n)).filter (λ ij : _ × _, ij.1 ≠ ij.2)).map
  (λ (ij : _ × _), ∼ ((& ij.1).bd_equal (& ij.2)))).foldr (⊓) ⊤).exs

/-- A theory indicating that a structure is infinite. -/
def infinite_theory : L.Theory := set.range (sentence.card_ge L)

/-- A theory that indicates a structure is nonempty. -/
def nonempty_theory : L.Theory := {sentence.card_ge L 1}

/-- A theory indicating that each of a set of constants is distinct. -/
def distinct_constants_theory (s : set α) : L[[α]].Theory :=
(λ ab : α × α, (((L.con ab.1).term.equal (L.con ab.2).term).not)) '' (s ×ˢ s ∩ (set.diagonal α)ᶜ)

variables {L} {α}

open set

lemma monotone_distinct_constants_theory :
  monotone (L.distinct_constants_theory : set α → L[[α]].Theory) :=
λ s t st, (image_subset _ (inter_subset_inter_left _ (prod_mono st st)))

lemma directed_distinct_constants_theory :
  directed (⊆) (L.distinct_constants_theory : set α → L[[α]].Theory) :=
monotone.directed_le monotone_distinct_constants_theory

lemma distinct_constants_theory_eq_Union (s : set α) :
  L.distinct_constants_theory s = ⋃ (t : finset s), L.distinct_constants_theory
    (t.map (function.embedding.subtype (λ x, x ∈ s))) :=
begin
  classical,
  simp only [distinct_constants_theory],
  rw [← image_Union, ← Union_inter],
  refine congr rfl (congr (congr rfl _) rfl),
  ext ⟨i, j⟩,
  simp only [prod_mk_mem_set_prod_eq, finset.coe_map, function.embedding.coe_subtype, mem_Union,
    mem_image, finset.mem_coe, subtype.exists, subtype.coe_mk, exists_and_distrib_right,
    exists_eq_right],
  refine ⟨λ h, ⟨{⟨i, h.1⟩, ⟨j, h.2⟩}, ⟨h.1, _⟩, ⟨h.2, _⟩⟩, _⟩,
  { simp },
  { simp },
  { rintros ⟨t, ⟨is, _⟩, ⟨js, _⟩⟩,
    exact ⟨is, js⟩ }
end

end cardinality

end language
end first_order