Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 5,237 Bytes
4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
/-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import data.vector.basic
/-!
# Small types
A type is `w`-small if there exists an equivalence to some `S : Type w`.
We provide a noncomputable model `shrink α : Type w`, and `equiv_shrink α : α ≃ shrink α`.
A subsingleton type is `w`-small for any `w`.
If `α ≃ β`, then `small.{w} α ↔ small.{w} β`.
-/
universes u w v
/--
A type is `small.{w}` if there exists an equivalence to some `S : Type w`.
-/
class small (α : Type v) : Prop :=
(equiv_small : ∃ (S : Type w), nonempty (α ≃ S))
/--
Constructor for `small α` from an explicit witness type and equivalence.
-/
lemma small.mk' {α : Type v} {S : Type w} (e : α ≃ S) : small.{w} α :=
⟨⟨S, ⟨e⟩⟩⟩
/--
An arbitrarily chosen model in `Type w` for a `w`-small type.
-/
@[nolint has_nonempty_instance]
def shrink (α : Type v) [small.{w} α] : Type w :=
classical.some (@small.equiv_small α _)
/--
The noncomputable equivalence between a `w`-small type and a model.
-/
noncomputable
def equiv_shrink (α : Type v) [small.{w} α] : α ≃ shrink α :=
nonempty.some (classical.some_spec (@small.equiv_small α _))
@[priority 100]
instance small_self (α : Type v) : small.{v} α :=
small.mk' $ equiv.refl α
theorem small_map {α : Type*} {β : Type*} [hβ : small.{w} β] (e : α ≃ β) : small.{w} α :=
let ⟨γ, ⟨f⟩⟩ := hβ.equiv_small in small.mk' (e.trans f)
theorem small_lift (α : Type u) [hα : small.{v} α] : small.{max v w} α :=
let ⟨⟨γ, ⟨f⟩⟩⟩ := hα in small.mk' $ f.trans equiv.ulift.symm
@[priority 100]
instance small_max (α : Type v) : small.{max w v} α :=
small_lift.{v w} α
instance small_ulift (α : Type u) [small.{v} α] : small.{v} (ulift.{w} α) :=
small_map equiv.ulift
theorem small_type : small.{max (u+1) v} (Type u) := small_max.{max (u+1) v} _
section
open_locale classical
theorem small_congr {α : Type*} {β : Type*} (e : α ≃ β) : small.{w} α ↔ small.{w} β :=
⟨λ h, @small_map _ _ h e.symm, λ h, @small_map _ _ h e⟩
instance small_subtype (α : Type v) [small.{w} α] (P : α → Prop) : small.{w} { x // P x } :=
small_map (equiv_shrink α).subtype_equiv_of_subtype'
theorem small_of_injective {α : Type v} {β : Type w} [small.{u} β] {f : α → β}
(hf : function.injective f) : small.{u} α :=
small_map (equiv.of_injective f hf)
theorem small_of_surjective {α : Type v} {β : Type w} [small.{u} α] {f : α → β}
(hf : function.surjective f) : small.{u} β :=
small_of_injective (function.injective_surj_inv hf)
theorem small_subset {α : Type v} {s t : set α} (hts : t ⊆ s) [small.{u} s] : small.{u} t :=
let f : t → s := λ x, ⟨x, hts x.prop⟩ in
@small_of_injective _ _ _ f (λ x y hxy, subtype.ext (subtype.mk.inj hxy))
@[priority 100]
instance small_subsingleton (α : Type v) [subsingleton α] : small.{w} α :=
begin
rcases is_empty_or_nonempty α; resetI,
{ apply small_map (equiv.equiv_pempty α) },
{ apply small_map equiv.punit_of_nonempty_of_subsingleton, assumption' },
end
/-!
We don't define `small_of_fintype` or `small_of_countable` in this file,
to keep imports to `logic` to a minimum.
-/
instance small_Pi {α} (β : α → Type*) [small.{w} α] [∀ a, small.{w} (β a)] :
small.{w} (Π a, β a) :=
⟨⟨Π a' : shrink α, shrink (β ((equiv_shrink α).symm a')),
⟨equiv.Pi_congr (equiv_shrink α) (λ a, by simpa using equiv_shrink (β a))⟩⟩⟩
instance small_sigma {α} (β : α → Type*) [small.{w} α] [∀ a, small.{w} (β a)] :
small.{w} (Σ a, β a) :=
⟨⟨Σ a' : shrink α, shrink (β ((equiv_shrink α).symm a')),
⟨equiv.sigma_congr (equiv_shrink α) (λ a, by simpa using equiv_shrink (β a))⟩⟩⟩
instance small_prod {α β} [small.{w} α] [small.{w} β] : small.{w} (α × β) :=
⟨⟨shrink α × shrink β,
⟨equiv.prod_congr (equiv_shrink α) (equiv_shrink β)⟩⟩⟩
instance small_sum {α β} [small.{w} α] [small.{w} β] : small.{w} (α ⊕ β) :=
⟨⟨shrink α ⊕ shrink β,
⟨equiv.sum_congr (equiv_shrink α) (equiv_shrink β)⟩⟩⟩
instance small_set {α} [small.{w} α] : small.{w} (set α) :=
⟨⟨set (shrink α), ⟨equiv.set.congr (equiv_shrink α)⟩⟩⟩
instance small_range {α : Type v} {β : Type w} (f : α → β) [small.{u} α] :
small.{u} (set.range f) :=
small_of_surjective set.surjective_onto_range
instance small_image {α : Type v} {β : Type w} (f : α → β) (S : set α) [small.{u} S] :
small.{u} (f '' S) :=
small_of_surjective set.surjective_onto_image
theorem not_small_type : ¬ small.{u} (Type (max u v))
| ⟨⟨S, ⟨e⟩⟩⟩ := @function.cantor_injective (Σ α, e.symm α)
(λ a, ⟨_, cast (e.3 _).symm a⟩)
(λ a b e, (cast_inj _).1 $ eq_of_heq (sigma.mk.inj e).2)
instance small_vector {α : Type v} {n : ℕ} [small.{u} α] :
small.{u} (vector α n) :=
small_of_injective (equiv.vector_equiv_fin α n).injective
instance small_list {α : Type v} [small.{u} α] :
small.{u} (list α) :=
begin
let e : (Σ n, vector α n) ≃ list α := equiv.sigma_fiber_equiv list.length,
exact small_of_surjective e.surjective,
end
end
|