Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,237 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import data.vector.basic

/-!
# Small types

A type is `w`-small if there exists an equivalence to some `S : Type w`.

We provide a noncomputable model `shrink α : Type w`, and `equiv_shrink α : α ≃ shrink α`.

A subsingleton type is `w`-small for any `w`.

If `α ≃ β`, then `small.{w} α ↔ small.{w} β`.
-/

universes u w v

/--
A type is `small.{w}` if there exists an equivalence to some `S : Type w`.
-/
class small (α : Type v) : Prop :=
(equiv_small : ∃ (S : Type w), nonempty (α ≃ S))

/--
Constructor for `small α` from an explicit witness type and equivalence.
-/
lemma small.mk' {α : Type v} {S : Type w} (e : α ≃ S) : small.{w} α :=
⟨⟨S, ⟨e⟩⟩⟩

/--
An arbitrarily chosen model in `Type w` for a `w`-small type.
-/
@[nolint has_nonempty_instance]
def shrink (α : Type v) [small.{w} α] : Type w :=
classical.some (@small.equiv_small α _)

/--
The noncomputable equivalence between a `w`-small type and a model.
-/
noncomputable
def equiv_shrink (α : Type v) [small.{w} α] : α ≃ shrink α :=
nonempty.some (classical.some_spec (@small.equiv_small α _))

@[priority 100]
instance small_self (α : Type v) : small.{v} α :=
small.mk' $ equiv.refl α

theorem small_map {α : Type*} {β : Type*} [hβ : small.{w} β] (e : α ≃ β) : small.{w} α :=
let ⟨γ, ⟨f⟩⟩ := hβ.equiv_small in small.mk' (e.trans f)

theorem small_lift (α : Type u) [hα : small.{v} α] : small.{max v w} α :=
let ⟨⟨γ, ⟨f⟩⟩⟩ := hα in small.mk' $ f.trans equiv.ulift.symm

@[priority 100]
instance small_max (α : Type v) : small.{max w v} α :=
small_lift.{v w} α

instance small_ulift (α : Type u) [small.{v} α] : small.{v} (ulift.{w} α) :=
small_map equiv.ulift

theorem small_type : small.{max (u+1) v} (Type u) := small_max.{max (u+1) v} _

section
open_locale classical

theorem small_congr {α : Type*} {β : Type*} (e : α ≃ β) : small.{w} α ↔ small.{w} β :=
⟨λ h, @small_map _ _ h e.symm, λ h, @small_map _ _ h e⟩

instance small_subtype (α : Type v) [small.{w} α] (P : α → Prop) : small.{w} { x // P x } :=
small_map (equiv_shrink α).subtype_equiv_of_subtype'

theorem small_of_injective {α : Type v} {β : Type w} [small.{u} β] {f : α → β}
  (hf : function.injective f) : small.{u} α :=
small_map (equiv.of_injective f hf)

theorem small_of_surjective {α : Type v} {β : Type w} [small.{u} α] {f : α → β}
  (hf : function.surjective f) : small.{u} β :=
small_of_injective (function.injective_surj_inv hf)

theorem small_subset {α : Type v} {s t : set α} (hts : t ⊆ s) [small.{u} s] : small.{u} t :=
let f : t → s := λ x, ⟨x, hts x.prop⟩ in
  @small_of_injective _ _ _ f (λ x y hxy, subtype.ext (subtype.mk.inj hxy))

@[priority 100]
instance small_subsingleton (α : Type v) [subsingleton α] : small.{w} α :=
begin
  rcases is_empty_or_nonempty α; resetI,
  { apply small_map (equiv.equiv_pempty α) },
  { apply small_map equiv.punit_of_nonempty_of_subsingleton, assumption' },
end

/-!
We don't define `small_of_fintype` or `small_of_countable` in this file,
to keep imports to `logic` to a minimum.
-/

instance small_Pi {α} (β : α → Type*) [small.{w} α] [∀ a, small.{w} (β a)] :
  small.{w} (Π a, β a) :=
⟨⟨Π a' : shrink α, shrink (β ((equiv_shrink α).symm a')),
  ⟨equiv.Pi_congr (equiv_shrink α) (λ a, by simpa using equiv_shrink (β a))⟩⟩⟩

instance small_sigma {α} (β : α → Type*) [small.{w} α] [∀ a, small.{w} (β a)] :
  small.{w} (Σ a, β a) :=
⟨⟨Σ a' : shrink α, shrink (β ((equiv_shrink α).symm a')),
  ⟨equiv.sigma_congr (equiv_shrink α) (λ a, by simpa using equiv_shrink (β a))⟩⟩⟩

instance small_prod {α β} [small.{w} α] [small.{w} β] : small.{w} (α × β) :=
⟨⟨shrink α × shrink β,
  ⟨equiv.prod_congr (equiv_shrink α) (equiv_shrink β)⟩⟩⟩

instance small_sum {α β} [small.{w} α] [small.{w} β] : small.{w} (α ⊕ β) :=
⟨⟨shrink α ⊕ shrink β,
  ⟨equiv.sum_congr (equiv_shrink α) (equiv_shrink β)⟩⟩⟩

instance small_set {α} [small.{w} α] : small.{w} (set α) :=
⟨⟨set (shrink α), ⟨equiv.set.congr (equiv_shrink α)⟩⟩⟩

instance small_range {α : Type v} {β : Type w} (f : α → β) [small.{u} α] :
  small.{u} (set.range f) :=
small_of_surjective set.surjective_onto_range

instance small_image {α : Type v} {β : Type w} (f : α → β) (S : set α) [small.{u} S] :
  small.{u} (f '' S) :=
small_of_surjective set.surjective_onto_image

theorem not_small_type : ¬ small.{u} (Type (max u v))
| ⟨⟨S, ⟨e⟩⟩⟩ := @function.cantor_injective (Σ α, e.symm α)
  (λ a, ⟨_, cast (e.3 _).symm a⟩)
  (λ a b e, (cast_inj _).1 $ eq_of_heq (sigma.mk.inj e).2)

instance small_vector {α : Type v} {n : ℕ} [small.{u} α] :
  small.{u} (vector α n) :=
small_of_injective (equiv.vector_equiv_fin α n).injective

instance small_list {α : Type v} [small.{u} α] :
  small.{u} (list α) :=
begin
  let e : (Σ n, vector α n) ≃ list α := equiv.sigma_fiber_equiv list.length,
  exact small_of_surjective e.surjective,
end

end