Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 18,333 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import data.fun_like.embedding
import data.prod.pprod
import data.set.basic
import data.sigma.basic
import logic.equiv.basic

/-!
# Injective functions
-/

universes u v w x

namespace function

/-- `α ↪ β` is a bundled injective function. -/
@[nolint has_nonempty_instance] -- depending on cardinalities, an injective function may not exist
structure embedding (α : Sort*) (β : Sort*) :=
(to_fun : α → β)
(inj'   : injective to_fun)

infixr ` ↪ `:25 := embedding

instance  : Sort u} {β : Sort v} : has_coe_to_fun (α ↪ β) (λ _, α → β) := ⟨embedding.to_fun⟩

initialize_simps_projections embedding (to_fun → apply)

instance  : Sort u} {β : Sort v} : embedding_like (α ↪ β) α β :=
{ coe := embedding.to_fun,
  injective' := embedding.inj',
  coe_injective' := λ f g h, by { cases f, cases g, congr' } }

instance {α β : Sort*} : can_lift (α → β) (α ↪ β) :=
{ coe := coe_fn,
  cond := injective,
  prf := λ f hf, ⟨⟨f, hf⟩, rfl⟩ }

end function

section equiv

variables {α : Sort u} {β : Sort v} (f : α ≃ β)

/-- Convert an `α ≃ β` to `α ↪ β`.

This is also available as a coercion `equiv.coe_embedding`.
The explicit `equiv.to_embedding` version is preferred though, since the coercion can have issues
inferring the type of the resulting embedding. For example:

```lean
-- Works:
example (s : finset (fin 3)) (f : equiv.perm (fin 3)) : s.map f.to_embedding = s.map f := by simp
-- Error, `f` has type `fin 3 ≃ fin 3` but is expected to have type `fin 3 ↪ ?m_1 : Type ?`
example (s : finset (fin 3)) (f : equiv.perm (fin 3)) : s.map f = s.map f.to_embedding := by simp
```
-/
@[simps] protected def equiv.to_embedding : α ↪ β := ⟨f, f.injective⟩

instance equiv.coe_embedding : has_coe (α ≃ β) (α ↪ β) := ⟨equiv.to_embedding⟩

@[reducible]
instance equiv.perm.coe_embedding : has_coe (equiv.perm α) (α ↪ α) := equiv.coe_embedding

@[simp] lemma equiv.coe_eq_to_embedding  : ↑f = f.to_embedding := rfl

/-- Given an equivalence to a subtype, produce an embedding to the elements of the corresponding
set. -/
@[simps]
def equiv.as_embedding {p : β → Prop} (e : α ≃ subtype p) : α ↪ β :=
⟨coe ∘ e, subtype.coe_injective.comp e.injective⟩

@[simp]
lemma equiv.as_embedding_range {α β : Sort*} {p : β → Prop} (e : α ≃ subtype p) :
  set.range e.as_embedding = set_of p :=
set.ext $ λ x, ⟨λ ⟨y, h⟩, h ▸ subtype.coe_prop (e y), λ hs, ⟨e.symm ⟨x, hs⟩, by simp⟩⟩

end equiv

namespace function
namespace embedding

lemma coe_injective {α β} : @function.injective (α ↪ β) (α → β) coe_fn := fun_like.coe_injective

@[ext] lemma ext {α β} {f g : embedding α β} (h : ∀ x, f x = g x) : f = g := fun_like.ext f g h

lemma ext_iff {α β} {f g : embedding α β} : (∀ x, f x = g x) ↔ f = g := fun_like.ext_iff.symm

@[simp] theorem to_fun_eq_coe {α β} (f : α ↪ β) : to_fun f = f := rfl

@[simp] theorem coe_fn_mk {α β} (f : α → β) (i) :
  (@mk _ _ f i : α → β) = f := rfl

@[simp] lemma mk_coe {α β : Type*} (f : α ↪ β) (inj) : (⟨f, inj⟩ : α ↪ β) = f :=
by { ext, simp }

protected theorem injective {α β} (f : α ↪ β) : injective f := embedding_like.injective f

lemma apply_eq_iff_eq {α β} (f : α ↪ β) (x y : α) : f x = f y ↔ x = y :=
embedding_like.apply_eq_iff_eq f

/-- The identity map as a `function.embedding`. -/
@[refl, simps {simp_rhs := tt}]
protected def refl (α : Sort*) : α ↪ α :=
⟨id, injective_id⟩

/-- Composition of `f : α ↪ β` and `g : β ↪ γ`. -/
@[trans, simps {simp_rhs := tt}]
protected def trans {α β γ} (f : α ↪ β) (g : β ↪ γ) : α ↪ γ :=
⟨g ∘ f, g.injective.comp f.injective⟩

@[simp]
lemma equiv_to_embedding_trans_symm_to_embedding {α β : Sort*} (e : α ≃ β) :
  e.to_embedding.trans e.symm.to_embedding = embedding.refl _ :=
by { ext, simp, }

@[simp]
lemma equiv_symm_to_embedding_trans_to_embedding {α β : Sort*} (e : α ≃ β) :
  e.symm.to_embedding.trans e.to_embedding = embedding.refl _ :=
by { ext, simp, }

/-- Transfer an embedding along a pair of equivalences. -/
@[simps { fully_applied := ff }]
protected def congr {α : Sort u} {β : Sort v} {γ : Sort w} {δ : Sort x}
  (e₁ : α ≃ β) (e₂ : γ ≃ δ) (f : α ↪ γ) : (β ↪ δ) :=
(equiv.to_embedding e₁.symm).trans (f.trans e₂.to_embedding)

/-- A right inverse `surj_inv` of a surjective function as an `embedding`. -/
protected noncomputable def of_surjective {α β} (f : β → α) (hf : surjective f) :
  α ↪ β :=
⟨surj_inv hf, injective_surj_inv _⟩

/-- Convert a surjective `embedding` to an `equiv` -/
protected noncomputable def equiv_of_surjective {α β} (f : α ↪ β) (hf : surjective f) :
  α ≃ β :=
equiv.of_bijective f ⟨f.injective, hf⟩

/-- There is always an embedding from an empty type. --/
protected def of_is_empty {α β} [is_empty α] : α ↪ β :=
⟨is_empty_elim, is_empty_elim⟩

/-- Change the value of an embedding `f` at one point. If the prescribed image
is already occupied by some `f a'`, then swap the values at these two points. -/
def set_value {α β} (f : α ↪ β) (a : α) (b : β) [∀ a', decidable (a' = a)]
  [∀ a', decidable (f a' = b)] : α ↪ β :=
⟨λ a', if a' = a then b else if f a' = b then f a else f a',
  begin
    intros x y h,
    dsimp at h,
    split_ifs at h; try { substI b }; try { simp only [f.injective.eq_iff] at * }; cc
  end⟩

theorem set_value_eq {α β} (f : α ↪ β) (a : α) (b : β) [∀ a', decidable (a' = a)]
  [∀ a', decidable (f a' = b)] : set_value f a b a = b :=
by simp [set_value]

/-- Embedding into `option α` using `some`. -/
@[simps { fully_applied := ff }] protected def some {α} : α ↪ option α :=
⟨some, option.some_injective α⟩

/-- Embedding into `option α` using `coe`. Usually the correct synctatical form for `simp`. -/
@[simps { fully_applied := ff }]
def coe_option {α} : α ↪ option α := ⟨coe, option.some_injective α⟩

/-- Embedding into `with_top α`. -/
@[simps]
def coe_with_top {α} : α ↪ with_top α := { to_fun := coe, ..embedding.some}

/-- Given an embedding `f : α ↪ β` and a point outside of `set.range f`, construct an embedding
`option α ↪ β`. -/
@[simps] def option_elim {α β} (f : α ↪ β) (x : β) (h : x ∉ set.range f) :
  option α ↪ β :=
⟨option.elim x f, option.injective_iff.2 ⟨f.2, h⟩⟩

/-- Equivalence between embeddings of `option α` and a sigma type over the embeddings of `α`. -/
@[simps]
def option_embedding_equiv (α β) : (option α ↪ β) ≃ Σ f : α ↪ β, ↥(set.range f)ᶜ :=
{ to_fun := λ f, ⟨coe_option.trans f, f none, λ ⟨x, hx⟩, option.some_ne_none x $ f.injective hx⟩,
  inv_fun := λ f, f.1.option_elim f.2 f.2.2,
  left_inv := λ f, ext $ by { rintro (_|_); simp [option.coe_def] },
  right_inv := λ ⟨f, y, hy⟩, by { ext; simp [option.coe_def] } }

/-- A version of `option.map` for `function.embedding`s. -/
@[simps { fully_applied := ff }]
def option_map {α β} (f : α ↪ β) : option α ↪ option β :=
⟨option.map f, option.map_injective f.injective⟩

/-- Embedding of a `subtype`. -/
def subtype {α} (p : α → Prop) : subtype p ↪ α :=
⟨coe, λ _ _, subtype.ext_val⟩

@[simp] lemma coe_subtype {α} (p : α → Prop) : ⇑(subtype p) = coe := rfl

/-- `quotient.out` as an embedding. -/
noncomputable def quotient_out (α) [s : setoid α] : quotient s ↪ α :=
⟨_, quotient.out_injective⟩

@[simp] theorem coe_quotient_out (α) [s : setoid α] : ⇑(quotient_out α) = quotient.out := rfl

/-- Choosing an element `b : β` gives an embedding of `punit` into `β`. -/
def punit {β : Sort*} (b : β) : punit ↪ β :=
⟨λ _, b, by { rintros ⟨⟩ ⟨⟩ _, refl, }⟩

/-- Fixing an element `b : β` gives an embedding `α ↪ α × β`. -/
@[simps] def sectl (α : Sort*) {β : Sort*} (b : β) : α ↪ α × β :=
⟨λ a, (a, b), λ a a' h, congr_arg prod.fst h⟩

/-- Fixing an element `a : α` gives an embedding `β ↪ α × β`. -/
@[simps] def sectr {α : Sort*} (a : α) (β : Sort*): β ↪ α × β :=
⟨λ b, (a, b), λ b b' h, congr_arg prod.snd h⟩

/-- Restrict the codomain of an embedding. -/
def cod_restrict {α β} (p : set β) (f : α ↪ β) (H : ∀ a, f a ∈ p) : α ↪ p :=
⟨λ a, ⟨f a, H a⟩, λ a b h, f.injective (@congr_arg _ _ _ _ subtype.val h)⟩

@[simp] theorem cod_restrict_apply {α β} (p) (f : α ↪ β) (H a) :
  cod_restrict p f H a = ⟨f a, H a⟩ := rfl

/-- If `e₁` and `e₂` are embeddings, then so is `prod.map e₁ e₂ : (a, b) ↦ (e₁ a, e₂ b)`. -/
def prod_map {α β γ δ : Type*} (e₁ : α ↪ β) (e₂ : γ ↪ δ) : α × γ ↪ β × δ :=
⟨prod.map e₁ e₂, e₁.injective.prod_map e₂.injective⟩

@[simp] lemma coe_prod_map {α β γ δ : Type*} (e₁ : α ↪ β) (e₂ : γ ↪ δ) :
  ⇑(e₁.prod_map e₂) = prod.map e₁ e₂ :=
rfl

/-- If `e₁` and `e₂` are embeddings, then so is `λ ⟨a, b⟩, ⟨e₁ a, e₂ b⟩ : pprod α γ → pprod β δ`. -/
def pprod_map {α β γ δ : Sort*} (e₁ : α ↪ β) (e₂ : γ ↪ δ) : pprod α γ ↪ pprod β δ :=
⟨λ x, ⟨e₁ x.1, e₂ x.2⟩, e₁.injective.pprod_map e₂.injective⟩

section sum
open sum

/-- If `e₁` and `e₂` are embeddings, then so is `sum.map e₁ e₂`. -/
def sum_map {α β γ δ : Type*} (e₁ : α ↪ β) (e₂ : γ ↪ δ) : α ⊕ γ ↪ β ⊕ δ :=
⟨sum.map e₁ e₂,
    assume s₁ s₂ h, match s₁, s₂, h with
    | inl a₁, inl a₂, h := congr_arg inl $ e₁.injective $ inl.inj h
    | inr b₁, inr b₂, h := congr_arg inr $ e₂.injective $ inr.inj h
    end⟩

@[simp] theorem coe_sum_map {α β γ δ} (e₁ : α ↪ β) (e₂ : γ ↪ δ) :
  ⇑(sum_map e₁ e₂) = sum.map e₁ e₂ :=
rfl

/-- The embedding of `α` into the sum `α ⊕ β`. -/
@[simps] def inl {α β : Type*} : α ↪ α ⊕ β :=
⟨sum.inl, λ a b, sum.inl.inj⟩

/-- The embedding of `β` into the sum `α ⊕ β`. -/
@[simps] def inr {α β : Type*} : β ↪ α ⊕ β :=
⟨sum.inr, λ a b, sum.inr.inj⟩

end sum

section sigma

variables {α α' : Type*} {β : α → Type*} {β' : α' → Type*}

/-- `sigma.mk` as an `function.embedding`. -/
@[simps apply] def sigma_mk (a : α) : β a ↪ Σ x, β x :=
⟨sigma.mk a, sigma_mk_injective⟩

/-- If `f : α ↪ α'` is an embedding and `g : Π a, β α ↪ β' (f α)` is a family
of embeddings, then `sigma.map f g` is an embedding. -/
@[simps apply] def sigma_map (f : α ↪ α') (g : Π a, β a ↪ β' (f a)) :
  (Σ a, β a) ↪ Σ a', β' a' :=
⟨sigma.map f (λ a, g a), f.injective.sigma_map (λ a, (g a).injective)⟩

end sigma

/-- Define an embedding `(Π a : α, β a) ↪ (Π a : α, γ a)` from a family of embeddings
`e : Π a, (β a ↪ γ a)`. This embedding sends `f` to `λ a, e a (f a)`. -/
@[simps] def Pi_congr_right {α : Sort*} {β γ : α → Sort*} (e : ∀ a, β a ↪ γ a) :
  (Π a, β a) ↪ (Π a, γ a) :=
⟨λf a, e a (f a), λ f₁ f₂ h, funext $ λ a, (e a).injective (congr_fun h a)⟩

/-- An embedding `e : α ↪ β` defines an embedding `(γ → α) ↪ (γ → β)` that sends each `f`
to `e ∘ f`. -/
def arrow_congr_right {α : Sort u} {β : Sort v} {γ : Sort w}
  (e : α ↪ β) : (γ → α) ↪ (γ → β) :=
Pi_congr_right (λ _, e)

@[simp] lemma arrow_congr_right_apply {α : Sort u} {β : Sort v} {γ : Sort w}
  (e : α ↪ β) (f : γ ↪ α) : arrow_congr_right e f = e ∘ f := rfl

/-- An embedding `e : α ↪ β` defines an embedding `(α → γ) ↪ (β → γ)` for any inhabited type `γ`.
This embedding sends each `f : α → γ` to a function `g : β → γ` such that `g ∘ e = f` and
`g y = default` whenever `y ∉ range e`. -/
noncomputable def arrow_congr_left {α : Sort u} {β : Sort v} {γ : Sort w} [inhabited γ]
  (e : α ↪ β) : (α → γ) ↪ (β → γ) :=
⟨λ f, extend e f default, λ f₁ f₂ h, funext $ λ x,
  by simpa only [extend_apply e.injective] using congr_fun h (e x)⟩

/-- Restrict both domain and codomain of an embedding. -/
protected def subtype_map {α β} {p : α → Prop} {q : β → Prop} (f : α ↪ β)
  (h : ∀{{x}}, p x → q (f x)) : {x : α // p x} ↪ {y : β // q y} :=
⟨subtype.map f h, subtype.map_injective h f.2⟩

open set

/-- `set.image` as an embedding `set α ↪ set β`. -/
@[simps apply] protected def image {α β} (f : α ↪ β) : set α ↪ set β :=
⟨image f, f.2.image_injective⟩

lemma swap_apply {α β : Type*} [decidable_eq α] [decidable_eq β] (f : α ↪ β) (x y z : α) :
  equiv.swap (f x) (f y) (f z) = f (equiv.swap x y z) :=
f.injective.swap_apply x y z

lemma swap_comp {α β : Type*} [decidable_eq α] [decidable_eq β] (f : α ↪ β) (x y : α) :
  equiv.swap (f x) (f y) ∘ f = f ∘ equiv.swap x y :=
f.injective.swap_comp x y

end embedding
end function

namespace equiv

open function.embedding

/-- The type of embeddings `α ↪ β` is equivalent to
    the subtype of all injective functions `α → β`. -/
def subtype_injective_equiv_embedding (α β : Sort*) :
  {f : α → β // function.injective f} ≃ (α ↪ β) :=
{ to_fun := λ f, ⟨f.val, f.property⟩,
  inv_fun := λ f, ⟨f, f.injective⟩,
  left_inv := λ f, by simp,
  right_inv := λ f, by {ext, refl} }

/-- If `α₁ ≃ α₂` and `β₁ ≃ β₂`, then the type of embeddings `α₁ ↪ β₁`
is equivalent to the type of embeddings `α₂ ↪ β₂`. -/
@[congr, simps apply] def embedding_congr {α β γ δ : Sort*}
  (h : α ≃ β) (h' : γ ≃ δ) : (α ↪ γ) ≃ (β ↪ δ) :=
{ to_fun := λ f, f.congr h h',
  inv_fun := λ f, f.congr h.symm h'.symm,
  left_inv := λ x, by {ext, simp},
  right_inv := λ x, by {ext, simp} }

@[simp] lemma embedding_congr_refl {α β : Sort*} :
  embedding_congr (equiv.refl α) (equiv.refl β) = equiv.refl (α ↪ β) :=
by {ext, refl}

@[simp] lemma embedding_congr_trans {α₁ β₁ α₂ β₂ α₃ β₃ : Sort*}
  (e₁ : α₁ ≃ α₂) (e₁' : β₁ ≃ β₂) (e₂ : α₂ ≃ α₃) (e₂' : β₂ ≃ β₃) :
  embedding_congr (e₁.trans e₂) (e₁'.trans e₂') =
  (embedding_congr e₁ e₁').trans (embedding_congr e₂ e₂') :=
rfl

@[simp] lemma embedding_congr_symm {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) :
  (embedding_congr e₁ e₂).symm = embedding_congr e₁.symm e₂.symm :=
rfl

lemma embedding_congr_apply_trans {α₁ β₁ γ₁ α₂ β₂ γ₂ : Sort*}
  (ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) (ec : γ₁ ≃ γ₂) (f : α₁ ↪ β₁) (g : β₁ ↪ γ₁) :
  equiv.embedding_congr ea ec (f.trans g) =
  (equiv.embedding_congr ea eb f).trans (equiv.embedding_congr eb ec g) :=
by {ext, simp}

@[simp]
lemma refl_to_embedding {α : Type*} : (equiv.refl α).to_embedding = function.embedding.refl α := rfl

@[simp]
lemma trans_to_embedding {α β γ : Type*} (e : α ≃ β) (f : β ≃ γ) :
  (e.trans f).to_embedding = e.to_embedding.trans f.to_embedding := rfl

end equiv

namespace set

/-- The injection map is an embedding between subsets. -/
@[simps apply] def embedding_of_subset {α} (s t : set α) (h : s ⊆ t) : s ↪ t :=
⟨λ x, ⟨x.1, h x.2⟩, λ ⟨x, hx⟩ ⟨y, hy⟩ h, by { congr, injection h }⟩

end set

section subtype

variable {α : Type*}

/-- A subtype `{x // p x ∨ q x}` over a disjunction of `p q : α → Prop` can be injectively split
into a sum of subtypes `{x // p x} ⊕ {x // q x}` such that `¬ p x` is sent to the right. -/
def subtype_or_left_embedding (p q : α → Prop) [decidable_pred p] :
  {x // p x ∨ q x} ↪ {x // p x} ⊕ {x // q x} :=
⟨λ x, if h : p x then sum.inl ⟨x, h⟩ else sum.inr ⟨x, x.prop.resolve_left h⟩,
  begin
    intros x y,
    dsimp only,
    split_ifs;
    simp [subtype.ext_iff]
  end⟩

lemma subtype_or_left_embedding_apply_left {p q : α → Prop} [decidable_pred p]
  (x : {x // p x ∨ q x}) (hx : p x) : subtype_or_left_embedding p q x = sum.inl ⟨x, hx⟩ :=
dif_pos hx

lemma subtype_or_left_embedding_apply_right {p q : α → Prop} [decidable_pred p]
  (x : {x // p x ∨ q x}) (hx : ¬ p x) :
  subtype_or_left_embedding p q x = sum.inr ⟨x, x.prop.resolve_left hx⟩ :=
dif_neg hx

/-- A subtype `{x // p x}` can be injectively sent to into a subtype `{x // q x}`,
if `p x → q x` for all `x : α`. -/
@[simps] def subtype.imp_embedding (p q : α → Prop) (h : p ≤ q) :
  {x // p x} ↪ {x // q x} :=
⟨λ x, ⟨x, h x x.prop⟩, λ x y, by simp [subtype.ext_iff]⟩

/-- A subtype `{x // p x ∨ q x}` over a disjunction of `p q : α → Prop` is equivalent to a sum of
subtypes `{x // p x} ⊕ {x // q x}` such that `¬ p x` is sent to the right, when
`disjoint p q`.

See also `equiv.sum_compl`, for when `is_compl p q`.  -/
@[simps apply] def subtype_or_equiv (p q : α → Prop) [decidable_pred p] (h : disjoint p q) :
  {x // p x ∨ q x} ≃ {x // p x} ⊕ {x // q x} :=
{ to_fun := subtype_or_left_embedding p q,
  inv_fun := sum.elim
    (subtype.imp_embedding _ _ (λ x hx, (or.inl hx : p x ∨ q x)))
    (subtype.imp_embedding _ _ (λ x hx, (or.inr hx : p x ∨ q x))),
  left_inv := λ x, begin
    by_cases hx : p x,
    { rw subtype_or_left_embedding_apply_left _ hx,
      simp [subtype.ext_iff] },
    { rw subtype_or_left_embedding_apply_right _ hx,
      simp [subtype.ext_iff] },
  end,
  right_inv := λ x, begin
    cases x,
    { simp only [sum.elim_inl],
      rw subtype_or_left_embedding_apply_left,
      { simp },
      { simpa using x.prop } },
    { simp only [sum.elim_inr],
      rw subtype_or_left_embedding_apply_right,
      { simp },
      { suffices : ¬ p x,
        { simpa },
        intro hp,
        simpa using h x ⟨hp, x.prop⟩ } }
  end }

@[simp] lemma subtype_or_equiv_symm_inl (p q : α → Prop) [decidable_pred p] (h : disjoint p q)
  (x : {x // p x}) : (subtype_or_equiv p q h).symm (sum.inl x) = ⟨x, or.inl x.prop⟩ :=
rfl

@[simp] lemma subtype_or_equiv_symm_inr (p q : α → Prop) [decidable_pred p] (h : disjoint p q)
  (x : {x // q x}) : (subtype_or_equiv p q h).symm (sum.inr x) = ⟨x, or.inr x.prop⟩ :=
rfl

end subtype