Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 34,810 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
/-
Copyright (c) 2019 Johannes HΓΆlzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes HΓΆlzl, Patrick Massot, Casper Putz, Anne Baanen
-/
import data.matrix.block
import data.matrix.notation
import linear_algebra.matrix.finite_dimensional
import linear_algebra.std_basis
import ring_theory.algebra_tower
import algebra.module.algebra
/-!
# Linear maps and matrices
This file defines the maps to send matrices to a linear map,
and to send linear maps between modules with a finite bases
to matrices. This defines a linear equivalence between linear maps
between finite-dimensional vector spaces and matrices indexed by
the respective bases.
## Main definitions
In the list below, and in all this file, `R` is a commutative ring (semiring
is sometimes enough), `M` and its variations are `R`-modules, `ΞΉ`, `ΞΊ`, `n` and `m` are finite
types used for indexing.
* `linear_map.to_matrix`: given bases `vβ : ΞΉ β Mβ` and `vβ : ΞΊ β Mβ`,
the `R`-linear equivalence from `Mβ ββ[R] Mβ` to `matrix ΞΊ ΞΉ R`
* `matrix.to_lin`: the inverse of `linear_map.to_matrix`
* `linear_map.to_matrix'`: the `R`-linear equivalence from `(m β R) ββ[R] (n β R)`
to `matrix m n R` (with the standard basis on `m β R` and `n β R`)
* `matrix.to_lin'`: the inverse of `linear_map.to_matrix'`
* `alg_equiv_matrix`: given a basis indexed by `n`, the `R`-algebra equivalence between
`R`-endomorphisms of `M` and `matrix n n R`
## Issues
This file was originally written without attention to non-commutative rings,
and so mostly only works in the commutative setting. This should be fixed.
In particular, `matrix.mul_vec` gives us a linear equivalence
`matrix m n R ββ[R] (n β R) ββ[Rα΅α΅α΅] (m β R)`
while `matrix.vec_mul` gives us a linear equivalence
`matrix m n R ββ[Rα΅α΅α΅] (m β R) ββ[R] (n β R)`.
At present, the first equivalence is developed in detail but only for commutative rings
(and we omit the distinction between `Rα΅α΅α΅` and `R`),
while the second equivalence is developed only in brief, but for not-necessarily-commutative rings.
Naming is slightly inconsistent between the two developments.
In the original (commutative) development `linear` is abbreviated to `lin`,
although this is not consistent with the rest of mathlib.
In the new (non-commutative) development `linear` is not abbreviated, and declarations use `_right`
to indicate they use the right action of matrices on vectors (via `matrix.vec_mul`).
When the two developments are made uniform, the names should be made uniform, too,
by choosing between `linear` and `lin` consistently,
and (presumably) adding `_left` where necessary.
## Tags
linear_map, matrix, linear_equiv, diagonal, det, trace
-/
noncomputable theory
open linear_map matrix set submodule
open_locale big_operators
open_locale matrix
universes u v w
instance {n m} [fintype m] [decidable_eq m] [fintype n] [decidable_eq n] (R) [fintype R] :
fintype (matrix m n R) := by unfold matrix; apply_instance
section to_matrix_right
variables {R : Type*} [semiring R]
variables {l m n : Type*}
/-- `matrix.vec_mul M` is a linear map. -/
@[simps] def matrix.vec_mul_linear [fintype m] (M : matrix m n R) : (m β R) ββ[R] (n β R) :=
{ to_fun := Ξ» x, M.vec_mul x,
map_add' := Ξ» v w, funext (Ξ» i, add_dot_product _ _ _),
map_smul' := Ξ» c v, funext (Ξ» i, smul_dot_product _ _ _) }
variables [fintype m] [decidable_eq m]
@[simp] lemma matrix.vec_mul_std_basis (M : matrix m n R) (i j) :
M.vec_mul (std_basis R (Ξ» _, R) i 1) j = M i j :=
begin
have : (β i', (if i = i' then 1 else 0) * M i' j) = M i j,
{ simp_rw [boole_mul, finset.sum_ite_eq, finset.mem_univ, if_true] },
convert this,
ext,
split_ifs with h; simp only [std_basis_apply],
{ rw [h, function.update_same] },
{ rw [function.update_noteq (ne.symm h), pi.zero_apply] }
end
/--
Linear maps `(m β R) ββ[R] (n β R)` are linearly equivalent over `Rα΅α΅α΅` to `matrix m n R`,
by having matrices act by right multiplication.
-/
def linear_map.to_matrix_right' : ((m β R) ββ[R] (n β R)) ββ[Rα΅α΅α΅] matrix m n R :=
{ to_fun := Ξ» f i j, f (std_basis R (Ξ» _, R) i 1) j,
inv_fun := matrix.vec_mul_linear,
right_inv := Ξ» M, by
{ ext i j, simp only [matrix.vec_mul_std_basis, matrix.vec_mul_linear_apply] },
left_inv := Ξ» f, begin
apply (pi.basis_fun R m).ext,
intro j, ext i,
simp only [pi.basis_fun_apply, matrix.vec_mul_std_basis, matrix.vec_mul_linear_apply]
end,
map_add' := Ξ» f g, by { ext i j, simp only [pi.add_apply, linear_map.add_apply] },
map_smul' := Ξ» c f, by { ext i j, simp only [pi.smul_apply, linear_map.smul_apply,
ring_hom.id_apply] } }
/-- A `matrix m n R` is linearly equivalent over `Rα΅α΅α΅` to a linear map `(m β R) ββ[R] (n β R)`,
by having matrices act by right multiplication. -/
abbreviation matrix.to_linear_map_right' : matrix m n R ββ[Rα΅α΅α΅] ((m β R) ββ[R] (n β R)) :=
linear_map.to_matrix_right'.symm
@[simp] lemma matrix.to_linear_map_right'_apply (M : matrix m n R) (v : m β R) :
matrix.to_linear_map_right' M v = M.vec_mul v := rfl
@[simp] lemma matrix.to_linear_map_right'_mul [fintype l] [decidable_eq l] (M : matrix l m R)
(N : matrix m n R) : matrix.to_linear_map_right' (M β¬ N) =
(matrix.to_linear_map_right' N).comp (matrix.to_linear_map_right' M) :=
linear_map.ext $ Ξ» x, (vec_mul_vec_mul _ M N).symm
lemma matrix.to_linear_map_right'_mul_apply [fintype l] [decidable_eq l] (M : matrix l m R)
(N : matrix m n R) (x) : matrix.to_linear_map_right' (M β¬ N) x =
(matrix.to_linear_map_right' N (matrix.to_linear_map_right' M x)) :=
(vec_mul_vec_mul _ M N).symm
@[simp] lemma matrix.to_linear_map_right'_one :
matrix.to_linear_map_right' (1 : matrix m m R) = id :=
by { ext, simp [linear_map.one_apply, std_basis_apply] }
/-- If `M` and `M'` are each other's inverse matrices, they provide an equivalence between `n β A`
and `m β A` corresponding to `M.vec_mul` and `M'.vec_mul`. -/
@[simps]
def matrix.to_linear_equiv_right'_of_inv [fintype n] [decidable_eq n]
{M : matrix m n R} {M' : matrix n m R}
(hMM' : M β¬ M' = 1) (hM'M : M' β¬ M = 1) :
(n β R) ββ[R] (m β R) :=
{ to_fun := M'.to_linear_map_right',
inv_fun := M.to_linear_map_right',
left_inv := Ξ» x, by
rw [β matrix.to_linear_map_right'_mul_apply, hM'M, matrix.to_linear_map_right'_one, id_apply],
right_inv := Ξ» x, by
rw [β matrix.to_linear_map_right'_mul_apply, hMM', matrix.to_linear_map_right'_one, id_apply],
..linear_map.to_matrix_right'.symm M' }
end to_matrix_right
/-!
From this point on, we only work with commutative rings,
and fail to distinguish between `Rα΅α΅α΅` and `R`.
This should eventually be remedied.
-/
section to_matrix'
variables {R : Type*} [comm_semiring R]
variables {l m n : Type*}
/-- `matrix.mul_vec M` is a linear map. -/
@[simps] def matrix.mul_vec_lin [fintype n] (M : matrix m n R) : (n β R) ββ[R] (m β R) :=
{ to_fun := M.mul_vec,
map_add' := Ξ» v w, funext (Ξ» i, dot_product_add _ _ _),
map_smul' := Ξ» c v, funext (Ξ» i, dot_product_smul _ _ _) }
variables [fintype n] [decidable_eq n]
lemma matrix.mul_vec_std_basis (M : matrix m n R) (i j) :
M.mul_vec (std_basis R (Ξ» _, R) j 1) i = M i j :=
(congr_fun (matrix.mul_vec_single _ _ (1 : R)) i).trans $ mul_one _
@[simp] lemma matrix.mul_vec_std_basis_apply (M : matrix m n R) (j) :
M.mul_vec (std_basis R (Ξ» _, R) j 1) = Mα΅ j :=
funext $ Ξ» i, matrix.mul_vec_std_basis M i j
/-- Linear maps `(n β R) ββ[R] (m β R)` are linearly equivalent to `matrix m n R`. -/
def linear_map.to_matrix' : ((n β R) ββ[R] (m β R)) ββ[R] matrix m n R :=
{ to_fun := Ξ» f, of (Ξ» i j, f (std_basis R (Ξ» _, R) j 1) i),
inv_fun := matrix.mul_vec_lin,
right_inv := Ξ» M, by { ext i j, simp only [matrix.mul_vec_std_basis, matrix.mul_vec_lin_apply,
of_apply] },
left_inv := Ξ» f, begin
apply (pi.basis_fun R n).ext,
intro j, ext i,
simp only [pi.basis_fun_apply, matrix.mul_vec_std_basis, matrix.mul_vec_lin_apply,
of_apply]
end,
map_add' := Ξ» f g, by { ext i j, simp only [pi.add_apply, linear_map.add_apply, of_apply] },
map_smul' := Ξ» c f, by { ext i j, simp only [pi.smul_apply, linear_map.smul_apply,
ring_hom.id_apply, of_apply] } }
/-- A `matrix m n R` is linearly equivalent to a linear map `(n β R) ββ[R] (m β R)`. -/
def matrix.to_lin' : matrix m n R ββ[R] ((n β R) ββ[R] (m β R)) :=
linear_map.to_matrix'.symm
@[simp] lemma linear_map.to_matrix'_symm :
(linear_map.to_matrix'.symm : matrix m n R ββ[R] _) = matrix.to_lin' :=
rfl
@[simp] lemma matrix.to_lin'_symm :
(matrix.to_lin'.symm : ((n β R) ββ[R] (m β R)) ββ[R] _) = linear_map.to_matrix' :=
rfl
@[simp] lemma linear_map.to_matrix'_to_lin' (M : matrix m n R) :
linear_map.to_matrix' (matrix.to_lin' M) = M :=
linear_map.to_matrix'.apply_symm_apply M
@[simp] lemma matrix.to_lin'_to_matrix' (f : (n β R) ββ[R] (m β R)) :
matrix.to_lin' (linear_map.to_matrix' f) = f :=
matrix.to_lin'.apply_symm_apply f
@[simp] lemma linear_map.to_matrix'_apply (f : (n β R) ββ[R] (m β R)) (i j) :
linear_map.to_matrix' f i j = f (Ξ» j', if j' = j then 1 else 0) i :=
begin
simp only [linear_map.to_matrix', linear_equiv.coe_mk, of_apply],
congr,
ext j',
split_ifs with h,
{ rw [h, std_basis_same] },
apply std_basis_ne _ _ _ _ h
end
@[simp] lemma matrix.to_lin'_apply (M : matrix m n R) (v : n β R) :
matrix.to_lin' M v = M.mul_vec v := rfl
@[simp] lemma matrix.to_lin'_one :
matrix.to_lin' (1 : matrix n n R) = id :=
by { ext, simp [linear_map.one_apply, std_basis_apply] }
@[simp] lemma linear_map.to_matrix'_id :
(linear_map.to_matrix' (linear_map.id : (n β R) ββ[R] (n β R))) = 1 :=
by { ext, rw [matrix.one_apply, linear_map.to_matrix'_apply, id_apply] }
@[simp] lemma matrix.to_lin'_mul [fintype m] [decidable_eq m] (M : matrix l m R)
(N : matrix m n R) : matrix.to_lin' (M β¬ N) = (matrix.to_lin' M).comp (matrix.to_lin' N) :=
linear_map.ext $ Ξ» x, (mul_vec_mul_vec _ _ _).symm
/-- Shortcut lemma for `matrix.to_lin'_mul` and `linear_map.comp_apply` -/
lemma matrix.to_lin'_mul_apply [fintype m] [decidable_eq m] (M : matrix l m R)
(N : matrix m n R) (x) : matrix.to_lin' (M β¬ N) x = (matrix.to_lin' M (matrix.to_lin' N x)) :=
by rw [matrix.to_lin'_mul, linear_map.comp_apply]
lemma linear_map.to_matrix'_comp [fintype l] [decidable_eq l]
(f : (n β R) ββ[R] (m β R)) (g : (l β R) ββ[R] (n β R)) :
(f.comp g).to_matrix' = f.to_matrix' β¬ g.to_matrix' :=
suffices (f.comp g) = (f.to_matrix' β¬ g.to_matrix').to_lin',
by rw [this, linear_map.to_matrix'_to_lin'],
by rw [matrix.to_lin'_mul, matrix.to_lin'_to_matrix', matrix.to_lin'_to_matrix']
lemma linear_map.to_matrix'_mul [fintype m] [decidable_eq m]
(f g : (m β R) ββ[R] (m β R)) :
(f * g).to_matrix' = f.to_matrix' β¬ g.to_matrix' :=
linear_map.to_matrix'_comp f g
@[simp] lemma linear_map.to_matrix'_algebra_map (x : R) :
linear_map.to_matrix' (algebra_map R (module.End R (n β R)) x) = scalar n x :=
by simp [module.algebra_map_End_eq_smul_id]
lemma matrix.ker_to_lin'_eq_bot_iff {M : matrix n n R} :
M.to_lin'.ker = β₯ β β v, M.mul_vec v = 0 β v = 0 :=
by simp only [submodule.eq_bot_iff, linear_map.mem_ker, matrix.to_lin'_apply]
lemma matrix.range_to_lin' (M : matrix m n R) : M.to_lin'.range = span R (range Mα΅) :=
by simp_rw [range_eq_map, βsupr_range_std_basis, map_supr, range_eq_map, βideal.span_singleton_one,
ideal.span, submodule.map_span, image_image, image_singleton, matrix.to_lin'_apply,
M.mul_vec_std_basis_apply, supr_span, range_eq_Union]
/-- If `M` and `M'` are each other's inverse matrices, they provide an equivalence between `m β A`
and `n β A` corresponding to `M.mul_vec` and `M'.mul_vec`. -/
@[simps]
def matrix.to_lin'_of_inv [fintype m] [decidable_eq m]
{M : matrix m n R} {M' : matrix n m R}
(hMM' : M β¬ M' = 1) (hM'M : M' β¬ M = 1) :
(m β R) ββ[R] (n β R) :=
{ to_fun := matrix.to_lin' M',
inv_fun := M.to_lin',
left_inv := Ξ» x, by rw [β matrix.to_lin'_mul_apply, hMM', matrix.to_lin'_one, id_apply],
right_inv := Ξ» x, by rw [β matrix.to_lin'_mul_apply, hM'M, matrix.to_lin'_one, id_apply],
.. matrix.to_lin' M' }
/-- Linear maps `(n β R) ββ[R] (n β R)` are algebra equivalent to `matrix n n R`. -/
def linear_map.to_matrix_alg_equiv' : ((n β R) ββ[R] (n β R)) ββ[R] matrix n n R :=
alg_equiv.of_linear_equiv linear_map.to_matrix' linear_map.to_matrix'_mul
linear_map.to_matrix'_algebra_map
/-- A `matrix n n R` is algebra equivalent to a linear map `(n β R) ββ[R] (n β R)`. -/
def matrix.to_lin_alg_equiv' : matrix n n R ββ[R] ((n β R) ββ[R] (n β R)) :=
linear_map.to_matrix_alg_equiv'.symm
@[simp] lemma linear_map.to_matrix_alg_equiv'_symm :
(linear_map.to_matrix_alg_equiv'.symm : matrix n n R ββ[R] _) = matrix.to_lin_alg_equiv' :=
rfl
@[simp] lemma matrix.to_lin_alg_equiv'_symm :
(matrix.to_lin_alg_equiv'.symm : ((n β R) ββ[R] (n β R)) ββ[R] _) =
linear_map.to_matrix_alg_equiv' :=
rfl
@[simp] lemma linear_map.to_matrix_alg_equiv'_to_lin_alg_equiv' (M : matrix n n R) :
linear_map.to_matrix_alg_equiv' (matrix.to_lin_alg_equiv' M) = M :=
linear_map.to_matrix_alg_equiv'.apply_symm_apply M
@[simp] lemma matrix.to_lin_alg_equiv'_to_matrix_alg_equiv' (f : (n β R) ββ[R] (n β R)) :
matrix.to_lin_alg_equiv' (linear_map.to_matrix_alg_equiv' f) = f :=
matrix.to_lin_alg_equiv'.apply_symm_apply f
@[simp] lemma linear_map.to_matrix_alg_equiv'_apply (f : (n β R) ββ[R] (n β R)) (i j) :
linear_map.to_matrix_alg_equiv' f i j = f (Ξ» j', if j' = j then 1 else 0) i :=
by simp [linear_map.to_matrix_alg_equiv']
@[simp] lemma matrix.to_lin_alg_equiv'_apply (M : matrix n n R) (v : n β R) :
matrix.to_lin_alg_equiv' M v = M.mul_vec v := rfl
@[simp] lemma matrix.to_lin_alg_equiv'_one :
matrix.to_lin_alg_equiv' (1 : matrix n n R) = id :=
matrix.to_lin'_one
@[simp] lemma linear_map.to_matrix_alg_equiv'_id :
(linear_map.to_matrix_alg_equiv' (linear_map.id : (n β R) ββ[R] (n β R))) = 1 :=
linear_map.to_matrix'_id
@[simp] lemma matrix.to_lin_alg_equiv'_mul (M N : matrix n n R) :
matrix.to_lin_alg_equiv' (M β¬ N) =
(matrix.to_lin_alg_equiv' M).comp (matrix.to_lin_alg_equiv' N) :=
matrix.to_lin'_mul _ _
lemma linear_map.to_matrix_alg_equiv'_comp (f g : (n β R) ββ[R] (n β R)) :
(f.comp g).to_matrix_alg_equiv' = f.to_matrix_alg_equiv' β¬ g.to_matrix_alg_equiv' :=
linear_map.to_matrix'_comp _ _
lemma linear_map.to_matrix_alg_equiv'_mul
(f g : (n β R) ββ[R] (n β R)) :
(f * g).to_matrix_alg_equiv' = f.to_matrix_alg_equiv' β¬ g.to_matrix_alg_equiv' :=
linear_map.to_matrix_alg_equiv'_comp f g
lemma matrix.rank_vec_mul_vec {K m n : Type u} [field K] [fintype n] [decidable_eq n]
(w : m β K) (v : n β K) :
rank (vec_mul_vec w v).to_lin' β€ 1 :=
begin
rw [vec_mul_vec_eq, matrix.to_lin'_mul],
refine le_trans (rank_comp_le1 _ _) _,
refine (rank_le_domain _).trans_eq _,
rw [dim_fun', fintype.card_unit, nat.cast_one]
end
end to_matrix'
section to_matrix
variables {R : Type*} [comm_semiring R]
variables {l m n : Type*} [fintype n] [fintype m] [decidable_eq n]
variables {Mβ Mβ : Type*} [add_comm_monoid Mβ] [add_comm_monoid Mβ] [module R Mβ] [module R Mβ]
variables (vβ : basis n R Mβ) (vβ : basis m R Mβ)
/-- Given bases of two modules `Mβ` and `Mβ` over a commutative ring `R`, we get a linear
equivalence between linear maps `Mβ ββ Mβ` and matrices over `R` indexed by the bases. -/
def linear_map.to_matrix : (Mβ ββ[R] Mβ) ββ[R] matrix m n R :=
linear_equiv.trans (linear_equiv.arrow_congr vβ.equiv_fun vβ.equiv_fun) linear_map.to_matrix'
/-- `linear_map.to_matrix'` is a particular case of `linear_map.to_matrix`, for the standard basis
`pi.basis_fun R n`. -/
lemma linear_map.to_matrix_eq_to_matrix' :
linear_map.to_matrix (pi.basis_fun R n) (pi.basis_fun R n) = linear_map.to_matrix' :=
rfl
/-- Given bases of two modules `Mβ` and `Mβ` over a commutative ring `R`, we get a linear
equivalence between matrices over `R` indexed by the bases and linear maps `Mβ ββ Mβ`. -/
def matrix.to_lin : matrix m n R ββ[R] (Mβ ββ[R] Mβ) :=
(linear_map.to_matrix vβ vβ).symm
/-- `matrix.to_lin'` is a particular case of `matrix.to_lin`, for the standard basis
`pi.basis_fun R n`. -/
lemma matrix.to_lin_eq_to_lin' :
matrix.to_lin (pi.basis_fun R n) (pi.basis_fun R m) = matrix.to_lin' :=
rfl
@[simp] lemma linear_map.to_matrix_symm :
(linear_map.to_matrix vβ vβ).symm = matrix.to_lin vβ vβ :=
rfl
@[simp] lemma matrix.to_lin_symm :
(matrix.to_lin vβ vβ).symm = linear_map.to_matrix vβ vβ :=
rfl
@[simp] lemma matrix.to_lin_to_matrix (f : Mβ ββ[R] Mβ) :
matrix.to_lin vβ vβ (linear_map.to_matrix vβ vβ f) = f :=
by rw [β matrix.to_lin_symm, linear_equiv.apply_symm_apply]
@[simp] lemma linear_map.to_matrix_to_lin (M : matrix m n R) :
linear_map.to_matrix vβ vβ (matrix.to_lin vβ vβ M) = M :=
by rw [β matrix.to_lin_symm, linear_equiv.symm_apply_apply]
lemma linear_map.to_matrix_apply (f : Mβ ββ[R] Mβ) (i : m) (j : n) :
linear_map.to_matrix vβ vβ f i j = vβ.repr (f (vβ j)) i :=
begin
rw [linear_map.to_matrix, linear_equiv.trans_apply, linear_map.to_matrix'_apply,
linear_equiv.arrow_congr_apply, basis.equiv_fun_symm_apply, finset.sum_eq_single j,
if_pos rfl, one_smul, basis.equiv_fun_apply],
{ intros j' _ hj',
rw [if_neg hj', zero_smul] },
{ intro hj,
have := finset.mem_univ j,
contradiction }
end
lemma linear_map.to_matrix_transpose_apply (f : Mβ ββ[R] Mβ) (j : n) :
(linear_map.to_matrix vβ vβ f)α΅ j = vβ.repr (f (vβ j)) :=
funext $ Ξ» i, f.to_matrix_apply _ _ i j
lemma linear_map.to_matrix_apply' (f : Mβ ββ[R] Mβ) (i : m) (j : n) :
linear_map.to_matrix vβ vβ f i j = vβ.repr (f (vβ j)) i :=
linear_map.to_matrix_apply vβ vβ f i j
lemma linear_map.to_matrix_transpose_apply' (f : Mβ ββ[R] Mβ) (j : n) :
(linear_map.to_matrix vβ vβ f)α΅ j = vβ.repr (f (vβ j)) :=
linear_map.to_matrix_transpose_apply vβ vβ f j
lemma matrix.to_lin_apply (M : matrix m n R) (v : Mβ) :
matrix.to_lin vβ vβ M v = β j, M.mul_vec (vβ.repr v) j β’ vβ j :=
show vβ.equiv_fun.symm (matrix.to_lin' M (vβ.repr v)) = _,
by rw [matrix.to_lin'_apply, vβ.equiv_fun_symm_apply]
@[simp] lemma matrix.to_lin_self (M : matrix m n R) (i : n) :
matrix.to_lin vβ vβ M (vβ i) = β j, M j i β’ vβ j :=
begin
rw [matrix.to_lin_apply, finset.sum_congr rfl (Ξ» j hj, _)],
rw [basis.repr_self, matrix.mul_vec, dot_product, finset.sum_eq_single i,
finsupp.single_eq_same, mul_one],
{ intros i' _ i'_ne, rw [finsupp.single_eq_of_ne i'_ne.symm, mul_zero] },
{ intros,
have := finset.mem_univ i,
contradiction },
end
/-- This will be a special case of `linear_map.to_matrix_id_eq_basis_to_matrix`. -/
lemma linear_map.to_matrix_id : linear_map.to_matrix vβ vβ id = 1 :=
begin
ext i j,
simp [linear_map.to_matrix_apply, matrix.one_apply, finsupp.single, eq_comm]
end
lemma linear_map.to_matrix_one : linear_map.to_matrix vβ vβ 1 = 1 :=
linear_map.to_matrix_id vβ
@[simp]
lemma matrix.to_lin_one : matrix.to_lin vβ vβ 1 = id :=
by rw [β linear_map.to_matrix_id vβ, matrix.to_lin_to_matrix]
theorem linear_map.to_matrix_reindex_range [decidable_eq Mβ] [decidable_eq Mβ]
(f : Mβ ββ[R] Mβ) (k : m) (i : n) :
linear_map.to_matrix vβ.reindex_range vβ.reindex_range f
β¨vβ k, mem_range_self kβ© β¨vβ i, mem_range_self iβ© =
linear_map.to_matrix vβ vβ f k i :=
by simp_rw [linear_map.to_matrix_apply, basis.reindex_range_self, basis.reindex_range_repr]
variables {Mβ : Type*} [add_comm_monoid Mβ] [module R Mβ] (vβ : basis l R Mβ)
lemma linear_map.to_matrix_comp [fintype l] [decidable_eq m] (f : Mβ ββ[R] Mβ) (g : Mβ ββ[R] Mβ) :
linear_map.to_matrix vβ vβ (f.comp g) =
linear_map.to_matrix vβ vβ f β¬ linear_map.to_matrix vβ vβ g :=
by simp_rw [linear_map.to_matrix, linear_equiv.trans_apply,
linear_equiv.arrow_congr_comp _ vβ.equiv_fun, linear_map.to_matrix'_comp]
lemma linear_map.to_matrix_mul (f g : Mβ ββ[R] Mβ) :
linear_map.to_matrix vβ vβ (f * g) =
linear_map.to_matrix vβ vβ f β¬ linear_map.to_matrix vβ vβ g :=
by { rw [show (@has_mul.mul (Mβ ββ[R] Mβ) _) = linear_map.comp, from rfl,
linear_map.to_matrix_comp vβ vβ vβ f g] }
@[simp] lemma linear_map.to_matrix_algebra_map (x : R) :
linear_map.to_matrix vβ vβ (algebra_map R (module.End R Mβ) x) = scalar n x :=
by simp [module.algebra_map_End_eq_smul_id, linear_map.to_matrix_id]
lemma linear_map.to_matrix_mul_vec_repr (f : Mβ ββ[R] Mβ) (x : Mβ) :
(linear_map.to_matrix vβ vβ f).mul_vec (vβ.repr x) = vβ.repr (f x) :=
by { ext i,
rw [β matrix.to_lin'_apply, linear_map.to_matrix, linear_equiv.trans_apply,
matrix.to_lin'_to_matrix', linear_equiv.arrow_congr_apply, vβ.equiv_fun_apply],
congr,
exact vβ.equiv_fun.symm_apply_apply x }
lemma matrix.to_lin_mul [fintype l] [decidable_eq m] (A : matrix l m R) (B : matrix m n R) :
matrix.to_lin vβ vβ (A β¬ B) =
(matrix.to_lin vβ vβ A).comp (matrix.to_lin vβ vβ B) :=
begin
apply (linear_map.to_matrix vβ vβ).injective,
haveI : decidable_eq l := Ξ» _ _, classical.prop_decidable _,
rw linear_map.to_matrix_comp vβ vβ vβ,
repeat { rw linear_map.to_matrix_to_lin },
end
/-- Shortcut lemma for `matrix.to_lin_mul` and `linear_map.comp_apply`. -/
lemma matrix.to_lin_mul_apply [fintype l] [decidable_eq m]
(A : matrix l m R) (B : matrix m n R) (x) :
matrix.to_lin vβ vβ (A β¬ B) x =
(matrix.to_lin vβ vβ A) (matrix.to_lin vβ vβ B x) :=
by rw [matrix.to_lin_mul vβ vβ, linear_map.comp_apply]
/-- If `M` and `M` are each other's inverse matrices, `matrix.to_lin M` and `matrix.to_lin M'`
form a linear equivalence. -/
@[simps]
def matrix.to_lin_of_inv [decidable_eq m]
{M : matrix m n R} {M' : matrix n m R}
(hMM' : M β¬ M' = 1) (hM'M : M' β¬ M = 1) :
Mβ ββ[R] Mβ :=
{ to_fun := matrix.to_lin vβ vβ M,
inv_fun := matrix.to_lin vβ vβ M',
left_inv := Ξ» x, by rw [β matrix.to_lin_mul_apply, hM'M, matrix.to_lin_one, id_apply],
right_inv := Ξ» x, by rw [β matrix.to_lin_mul_apply, hMM', matrix.to_lin_one, id_apply],
.. matrix.to_lin vβ vβ M }
/-- Given a basis of a module `Mβ` over a commutative ring `R`, we get an algebra
equivalence between linear maps `Mβ ββ Mβ` and square matrices over `R` indexed by the basis. -/
def linear_map.to_matrix_alg_equiv :
(Mβ ββ[R] Mβ) ββ[R] matrix n n R :=
alg_equiv.of_linear_equiv (linear_map.to_matrix vβ vβ) (linear_map.to_matrix_mul vβ)
(linear_map.to_matrix_algebra_map vβ)
/-- Given a basis of a module `Mβ` over a commutative ring `R`, we get an algebra
equivalence between square matrices over `R` indexed by the basis and linear maps `Mβ ββ Mβ`. -/
def matrix.to_lin_alg_equiv : matrix n n R ββ[R] (Mβ ββ[R] Mβ) :=
(linear_map.to_matrix_alg_equiv vβ).symm
@[simp] lemma linear_map.to_matrix_alg_equiv_symm :
(linear_map.to_matrix_alg_equiv vβ).symm = matrix.to_lin_alg_equiv vβ :=
rfl
@[simp] lemma matrix.to_lin_alg_equiv_symm :
(matrix.to_lin_alg_equiv vβ).symm = linear_map.to_matrix_alg_equiv vβ :=
rfl
@[simp] lemma matrix.to_lin_alg_equiv_to_matrix_alg_equiv (f : Mβ ββ[R] Mβ) :
matrix.to_lin_alg_equiv vβ (linear_map.to_matrix_alg_equiv vβ f) = f :=
by rw [β matrix.to_lin_alg_equiv_symm, alg_equiv.apply_symm_apply]
@[simp] lemma linear_map.to_matrix_alg_equiv_to_lin_alg_equiv (M : matrix n n R) :
linear_map.to_matrix_alg_equiv vβ (matrix.to_lin_alg_equiv vβ M) = M :=
by rw [β matrix.to_lin_alg_equiv_symm, alg_equiv.symm_apply_apply]
lemma linear_map.to_matrix_alg_equiv_apply (f : Mβ ββ[R] Mβ) (i j : n) :
linear_map.to_matrix_alg_equiv vβ f i j = vβ.repr (f (vβ j)) i :=
by simp [linear_map.to_matrix_alg_equiv, linear_map.to_matrix_apply]
lemma linear_map.to_matrix_alg_equiv_transpose_apply (f : Mβ ββ[R] Mβ) (j : n) :
(linear_map.to_matrix_alg_equiv vβ f)α΅ j = vβ.repr (f (vβ j)) :=
funext $ Ξ» i, f.to_matrix_apply _ _ i j
lemma linear_map.to_matrix_alg_equiv_apply' (f : Mβ ββ[R] Mβ) (i j : n) :
linear_map.to_matrix_alg_equiv vβ f i j = vβ.repr (f (vβ j)) i :=
linear_map.to_matrix_alg_equiv_apply vβ f i j
lemma linear_map.to_matrix_alg_equiv_transpose_apply' (f : Mβ ββ[R] Mβ) (j : n) :
(linear_map.to_matrix_alg_equiv vβ f)α΅ j = vβ.repr (f (vβ j)) :=
linear_map.to_matrix_alg_equiv_transpose_apply vβ f j
lemma matrix.to_lin_alg_equiv_apply (M : matrix n n R) (v : Mβ) :
matrix.to_lin_alg_equiv vβ M v = β j, M.mul_vec (vβ.repr v) j β’ vβ j :=
show vβ.equiv_fun.symm (matrix.to_lin_alg_equiv' M (vβ.repr v)) = _,
by rw [matrix.to_lin_alg_equiv'_apply, vβ.equiv_fun_symm_apply]
@[simp] lemma matrix.to_lin_alg_equiv_self (M : matrix n n R) (i : n) :
matrix.to_lin_alg_equiv vβ M (vβ i) = β j, M j i β’ vβ j :=
matrix.to_lin_self _ _ _ _
lemma linear_map.to_matrix_alg_equiv_id : linear_map.to_matrix_alg_equiv vβ id = 1 :=
by simp_rw [linear_map.to_matrix_alg_equiv, alg_equiv.of_linear_equiv_apply,
linear_map.to_matrix_id]
@[simp]
lemma matrix.to_lin_alg_equiv_one : matrix.to_lin_alg_equiv vβ 1 = id :=
by rw [β linear_map.to_matrix_alg_equiv_id vβ, matrix.to_lin_alg_equiv_to_matrix_alg_equiv]
theorem linear_map.to_matrix_alg_equiv_reindex_range [decidable_eq Mβ]
(f : Mβ ββ[R] Mβ) (k i : n) :
linear_map.to_matrix_alg_equiv vβ.reindex_range f
β¨vβ k, mem_range_self kβ© β¨vβ i, mem_range_self iβ© =
linear_map.to_matrix_alg_equiv vβ f k i :=
by simp_rw [linear_map.to_matrix_alg_equiv_apply,
basis.reindex_range_self, basis.reindex_range_repr]
lemma linear_map.to_matrix_alg_equiv_comp (f g : Mβ ββ[R] Mβ) :
linear_map.to_matrix_alg_equiv vβ (f.comp g) =
linear_map.to_matrix_alg_equiv vβ f β¬ linear_map.to_matrix_alg_equiv vβ g :=
by simp [linear_map.to_matrix_alg_equiv, linear_map.to_matrix_comp vβ vβ vβ f g]
lemma linear_map.to_matrix_alg_equiv_mul (f g : Mβ ββ[R] Mβ) :
linear_map.to_matrix_alg_equiv vβ (f * g) =
linear_map.to_matrix_alg_equiv vβ f β¬ linear_map.to_matrix_alg_equiv vβ g :=
by { rw [show (@has_mul.mul (Mβ ββ[R] Mβ) _) = linear_map.comp, from rfl,
linear_map.to_matrix_alg_equiv_comp vβ f g] }
lemma matrix.to_lin_alg_equiv_mul (A B : matrix n n R) :
matrix.to_lin_alg_equiv vβ (A β¬ B) =
(matrix.to_lin_alg_equiv vβ A).comp (matrix.to_lin_alg_equiv vβ B) :=
by convert matrix.to_lin_mul vβ vβ vβ A B
@[simp] lemma matrix.to_lin_fin_two_prod_apply (a b c d : R) (x : R Γ R) :
matrix.to_lin (basis.fin_two_prod R) (basis.fin_two_prod R) !![a, b; c, d] x =
(a * x.fst + b * x.snd, c * x.fst + d * x.snd) :=
by simp [matrix.to_lin_apply, matrix.mul_vec, matrix.dot_product]
lemma matrix.to_lin_fin_two_prod (a b c d : R) :
matrix.to_lin (basis.fin_two_prod R) (basis.fin_two_prod R) !![a, b; c, d] =
(a β’ linear_map.fst R R R + b β’ linear_map.snd R R R).prod
(c β’ linear_map.fst R R R + d β’ linear_map.snd R R R) :=
linear_map.ext $ matrix.to_lin_fin_two_prod_apply _ _ _ _
end to_matrix
namespace algebra
section lmul
variables {R S T : Type*} [comm_ring R] [comm_ring S] [comm_ring T]
variables [algebra R S] [algebra S T] [algebra R T] [is_scalar_tower R S T]
variables {m n : Type*} [fintype m] [decidable_eq m] [decidable_eq n]
variables (b : basis m R S) (c : basis n S T)
open algebra
lemma to_matrix_lmul' (x : S) (i j) :
linear_map.to_matrix b b (lmul R S x) i j = b.repr (x * b j) i :=
by simp only [linear_map.to_matrix_apply', coe_lmul_eq_mul, linear_map.mul_apply']
@[simp] lemma to_matrix_lsmul (x : R) (i j) :
linear_map.to_matrix b b (algebra.lsmul R S x) i j = if i = j then x else 0 :=
by { rw [linear_map.to_matrix_apply', algebra.lsmul_coe, linear_equiv.map_smul, finsupp.smul_apply,
b.repr_self_apply, smul_eq_mul, mul_boole],
congr' 1; simp only [eq_comm] }
/-- `left_mul_matrix b x` is the matrix corresponding to the linear map `Ξ» y, x * y`.
`left_mul_matrix_eq_repr_mul` gives a formula for the entries of `left_mul_matrix`.
This definition is useful for doing (more) explicit computations with `linear_map.mul_left`,
such as the trace form or norm map for algebras.
-/
noncomputable def left_mul_matrix : S ββ[R] matrix m m R :=
{ to_fun := Ξ» x, linear_map.to_matrix b b (algebra.lmul R S x),
map_zero' := by rw [alg_hom.map_zero, linear_equiv.map_zero],
map_one' := by rw [alg_hom.map_one, linear_map.to_matrix_one],
map_add' := Ξ» x y, by rw [alg_hom.map_add, linear_equiv.map_add],
map_mul' := Ξ» x y, by rw [alg_hom.map_mul, linear_map.to_matrix_mul, matrix.mul_eq_mul],
commutes' := Ξ» r, by { ext, rw [lmul_algebra_map, to_matrix_lsmul,
algebra_map_matrix_apply, id.map_eq_self] } }
lemma left_mul_matrix_apply (x : S) :
left_mul_matrix b x = linear_map.to_matrix b b (lmul R S x) := rfl
lemma left_mul_matrix_eq_repr_mul (x : S) (i j) :
left_mul_matrix b x i j = b.repr (x * b j) i :=
-- This is defeq to just `to_matrix_lmul' b x i j`,
-- but the unfolding goes a lot faster with this explicit `rw`.
by rw [left_mul_matrix_apply, to_matrix_lmul' b x i j]
lemma left_mul_matrix_mul_vec_repr (x y : S) :
(left_mul_matrix b x).mul_vec (b.repr y) = b.repr (x * y) :=
(linear_map.mul_left R x).to_matrix_mul_vec_repr b b y
@[simp] lemma to_matrix_lmul_eq (x : S) :
linear_map.to_matrix b b (linear_map.mul_left R x) = left_mul_matrix b x :=
rfl
lemma left_mul_matrix_injective : function.injective (left_mul_matrix b) :=
Ξ» x x' h, calc x = algebra.lmul R S x 1 : (mul_one x).symm
... = algebra.lmul R S x' 1 : by rw (linear_map.to_matrix b b).injective h
... = x' : mul_one x'
variable [fintype n]
lemma smul_left_mul_matrix (x) (ik jk) :
left_mul_matrix (b.smul c) x ik jk =
left_mul_matrix b (left_mul_matrix c x ik.2 jk.2) ik.1 jk.1 :=
by simp only [left_mul_matrix_apply, linear_map.to_matrix_apply, mul_comm, basis.smul_apply,
basis.smul_repr, finsupp.smul_apply, id.smul_eq_mul, linear_equiv.map_smul, mul_smul_comm,
coe_lmul_eq_mul, linear_map.mul_apply']
lemma smul_left_mul_matrix_algebra_map (x : S) :
left_mul_matrix (b.smul c) (algebra_map _ _ x) = block_diagonal (Ξ» k, left_mul_matrix b x) :=
begin
ext β¨i, kβ© β¨j, k'β©,
rw [smul_left_mul_matrix, alg_hom.commutes, block_diagonal_apply, algebra_map_matrix_apply],
split_ifs with h; simp [h],
end
lemma smul_left_mul_matrix_algebra_map_eq (x : S) (i j k) :
left_mul_matrix (b.smul c) (algebra_map _ _ x) (i, k) (j, k) = left_mul_matrix b x i j :=
by rw [smul_left_mul_matrix_algebra_map, block_diagonal_apply_eq]
lemma smul_left_mul_matrix_algebra_map_ne (x : S) (i j) {k k'}
(h : k β k') : left_mul_matrix (b.smul c) (algebra_map _ _ x) (i, k) (j, k') = 0 :=
by rw [smul_left_mul_matrix_algebra_map, block_diagonal_apply_ne _ _ _ h]
end lmul
end algebra
namespace linear_map
section finite_dimensional
open_locale classical
variables {K : Type*} [field K]
variables {V : Type*} [add_comm_group V] [module K V] [finite_dimensional K V]
variables {W : Type*} [add_comm_group W] [module K W] [finite_dimensional K W]
instance finite_dimensional : finite_dimensional K (V ββ[K] W) :=
linear_equiv.finite_dimensional
(linear_map.to_matrix (basis.of_vector_space K V) (basis.of_vector_space K W)).symm
section
variables {A : Type*} [ring A] [algebra K A] [module A V] [is_scalar_tower K A V]
[module A W] [is_scalar_tower K A W]
/-- Linear maps over a `k`-algebra are finite dimensional (over `k`) if both the source and
target are, since they form a subspace of all `k`-linear maps. -/
instance finite_dimensional' : finite_dimensional K (V ββ[A] W) :=
finite_dimensional.of_injective (restrict_scalars_linear_map K A V W)
(restrict_scalars_injective _)
end
/--
The dimension of the space of linear transformations is the product of the dimensions of the
domain and codomain.
-/
@[simp] lemma finrank_linear_map :
finite_dimensional.finrank K (V ββ[K] W) =
(finite_dimensional.finrank K V) * (finite_dimensional.finrank K W) :=
begin
let hbV := basis.of_vector_space K V,
let hbW := basis.of_vector_space K W,
rw [linear_equiv.finrank_eq (linear_map.to_matrix hbV hbW), matrix.finrank_matrix,
finite_dimensional.finrank_eq_card_basis hbV, finite_dimensional.finrank_eq_card_basis hbW,
mul_comm],
end
end finite_dimensional
end linear_map
section
variables {R : Type v} [comm_ring R] {n : Type*} [decidable_eq n]
variables {M Mβ Mβ : Type*} [add_comm_group M] [module R M]
variables [add_comm_group Mβ] [module R Mβ] [add_comm_group Mβ] [module R Mβ]
/-- The natural equivalence between linear endomorphisms of finite free modules and square matrices
is compatible with the algebra structures. -/
def alg_equiv_matrix' [fintype n] : module.End R (n β R) ββ[R] matrix n n R :=
{ map_mul' := linear_map.to_matrix'_comp,
map_add' := linear_map.to_matrix'.map_add,
commutes' := Ξ» r, by { change (r β’ (linear_map.id : module.End R _)).to_matrix' = r β’ 1,
rw βlinear_map.to_matrix'_id, refl, apply_instance },
..linear_map.to_matrix' }
/-- A linear equivalence of two modules induces an equivalence of algebras of their
endomorphisms. -/
def linear_equiv.alg_conj (e : Mβ ββ[R] Mβ) :
module.End R Mβ ββ[R] module.End R Mβ :=
{ map_mul' := Ξ» f g, by apply e.arrow_congr_comp,
map_add' := e.conj.map_add,
commutes' := Ξ» r, by { change e.conj (r β’ linear_map.id) = r β’ linear_map.id,
rw [linear_equiv.map_smul, linear_equiv.conj_id], },
..e.conj }
/-- A basis of a module induces an equivalence of algebras from the endomorphisms of the module to
square matrices. -/
def alg_equiv_matrix [fintype n] (h : basis n R M) : module.End R M ββ[R] matrix n n R :=
h.equiv_fun.alg_conj.trans alg_equiv_matrix'
end
|