Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 67,356 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 |
/-
Copyright (c) 2019 Amelia Livingston. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Amelia Livingston
-/
import group_theory.congruence
import group_theory.submonoid.membership
import algebra.group.units
/-!
# Localizations of commutative monoids
Localizing a commutative ring at one of its submonoids does not rely on the ring's addition, so
we can generalize localizations to commutative monoids.
We characterize the localization of a commutative monoid `M` at a submonoid `S` up to
isomorphism; that is, a commutative monoid `N` is the localization of `M` at `S` iff we can find a
monoid homomorphism `f : M β* N` satisfying 3 properties:
1. For all `y β S`, `f y` is a unit;
2. For all `z : N`, there exists `(x, y) : M Γ S` such that `z * f y = f x`;
3. For all `x, y : M`, `f x = f y` iff there exists `c β S` such that `x * c = y * c`.
Given such a localization map `f : M β* N`, we can define the surjection
`localization_map.mk'` sending `(x, y) : M Γ S` to `f x * (f y)β»ΒΉ`, and
`localization_map.lift`, the homomorphism from `N` induced by a homomorphism from `M` which maps
elements of `S` to invertible elements of the codomain. Similarly, given commutative monoids
`P, Q`, a submonoid `T` of `P` and a localization map for `T` from `P` to `Q`, then a homomorphism
`g : M β* P` such that `g(S) β T` induces a homomorphism of localizations,
`localization_map.map`, from `N` to `Q`.
We treat the special case of localizing away from an element in the sections `away_map` and `away`.
We also define the quotient of `M Γ S` by the unique congruence relation (equivalence relation
preserving a binary operation) `r` such that for any other congruence relation `s` on `M Γ S`
satisfying '`β y β S`, `(1, 1) βΌ (y, y)` under `s`', we have that `(xβ, yβ) βΌ (xβ, yβ)` by `s`
whenever `(xβ, yβ) βΌ (xβ, yβ)` by `r`. We show this relation is equivalent to the standard
localization relation.
This defines the localization as a quotient type, `localization`, but the majority of
subsequent lemmas in the file are given in terms of localizations up to isomorphism, using maps
which satisfy the characteristic predicate.
## Implementation notes
In maths it is natural to reason up to isomorphism, but in Lean we cannot naturally `rewrite` one
structure with an isomorphic one; one way around this is to isolate a predicate characterizing
a structure up to isomorphism, and reason about things that satisfy the predicate.
The infimum form of the localization congruence relation is chosen as 'canonical' here, since it
shortens some proofs.
To apply a localization map `f` as a function, we use `f.to_map`, as coercions don't work well for
this structure.
To reason about the localization as a quotient type, use `mk_eq_monoid_of_mk'` and associated
lemmas. These show the quotient map `mk : M β S β localization S` equals the
surjection `localization_map.mk'` induced by the map
`monoid_of : localization_map S (localization S)` (where `of` establishes the
localization as a quotient type satisfies the characteristic predicate). The lemma
`mk_eq_monoid_of_mk'` hence gives you access to the results in the rest of the file, which are
about the `localization_map.mk'` induced by any localization map.
## Tags
localization, monoid localization, quotient monoid, congruence relation, characteristic predicate,
commutative monoid
-/
namespace add_submonoid
variables {M : Type*} [add_comm_monoid M] (S : add_submonoid M) (N : Type*) [add_comm_monoid N]
/-- The type of add_monoid homomorphisms satisfying the characteristic predicate: if `f : M β+ N`
satisfies this predicate, then `N` is isomorphic to the localization of `M` at `S`. -/
@[nolint has_nonempty_instance] structure localization_map
extends add_monoid_hom M N :=
(map_add_units' : β y : S, is_add_unit (to_fun y))
(surj' : β z : N, β x : M Γ S, z + to_fun x.2 = to_fun x.1)
(eq_iff_exists' : β x y, to_fun x = to_fun y β β c : S, x + c = y + c)
/-- The add_monoid hom underlying a `localization_map` of `add_comm_monoid`s. -/
add_decl_doc localization_map.to_add_monoid_hom
end add_submonoid
section comm_monoid
variables {M : Type*} [comm_monoid M] (S : submonoid M) (N : Type*) [comm_monoid N]
{P : Type*} [comm_monoid P]
namespace submonoid
/-- The type of monoid homomorphisms satisfying the characteristic predicate: if `f : M β* N`
satisfies this predicate, then `N` is isomorphic to the localization of `M` at `S`. -/
@[nolint has_nonempty_instance] structure localization_map
extends monoid_hom M N :=
(map_units' : β y : S, is_unit (to_fun y))
(surj' : β z : N, β x : M Γ S, z * to_fun x.2 = to_fun x.1)
(eq_iff_exists' : β x y, to_fun x = to_fun y β β c : S, x * c = y * c)
attribute [to_additive add_submonoid.localization_map] submonoid.localization_map
attribute [to_additive add_submonoid.localization_map.to_add_monoid_hom]
submonoid.localization_map.to_monoid_hom
/-- The monoid hom underlying a `localization_map`. -/
add_decl_doc localization_map.to_monoid_hom
end submonoid
namespace localization
run_cmd to_additive.map_namespace `localization `add_localization
/-- The congruence relation on `M Γ S`, `M` a `comm_monoid` and `S` a submonoid of `M`, whose
quotient is the localization of `M` at `S`, defined as the unique congruence relation on
`M Γ S` such that for any other congruence relation `s` on `M Γ S` where for all `y β S`,
`(1, 1) βΌ (y, y)` under `s`, we have that `(xβ, yβ) βΌ (xβ, yβ)` by `r` implies
`(xβ, yβ) βΌ (xβ, yβ)` by `s`. -/
@[to_additive "The congruence relation on `M Γ S`, `M` an `add_comm_monoid` and `S`
an `add_submonoid` of `M`, whose quotient is the localization of `M` at `S`, defined as the unique
congruence relation on `M Γ S` such that for any other congruence relation `s` on `M Γ S` where
for all `y β S`, `(0, 0) βΌ (y, y)` under `s`, we have that `(xβ, yβ) βΌ (xβ, yβ)` by `r` implies
`(xβ, yβ) βΌ (xβ, yβ)` by `s`."]
def r (S : submonoid M) : con (M Γ S) :=
Inf {c | β y : S, c 1 (y, y)}
/-- An alternate form of the congruence relation on `M Γ S`, `M` a `comm_monoid` and `S` a
submonoid of `M`, whose quotient is the localization of `M` at `S`. -/
@[to_additive "An alternate form of the congruence relation on `M Γ S`, `M` a `comm_monoid` and
`S` a submonoid of `M`, whose quotient is the localization of `M` at `S`."]
def r' : con (M Γ S) :=
begin
refine { r := Ξ» a b : M Γ S, β c : S, a.1 * b.2 * c = b.1 * a.2 * c,
iseqv := β¨Ξ» a, β¨1, rflβ©, Ξ» a b β¨c, hcβ©, β¨c, hc.symmβ©, _β©,
.. },
{ rintros a b c β¨tβ, htββ© β¨tβ, htββ©,
use b.2 * tβ * tβ,
simp only [submonoid.coe_mul],
calc a.1 * c.2 * (b.2 * tβ * tβ) = a.1 * b.2 * tβ * c.2 * tβ : by ac_refl
... = b.1 * c.2 * tβ * a.2 * tβ : by { rw htβ, ac_refl }
... = c.1 * a.2 * (b.2 * tβ * tβ) : by { rw htβ, ac_refl } },
{ rintros a b c d β¨tβ, htββ© β¨tβ, htββ©,
use tβ * tβ,
calc (a.1 * c.1) * (b.2 * d.2) * (tβ * tβ) = (a.1 * b.2 * tβ) * (c.1 * d.2 * tβ) :
by ac_refl
... = (b.1 * d.1) * (a.2 * c.2) * (tβ * tβ) : by { rw [htβ, htβ], ac_refl } }
end
/-- The congruence relation used to localize a `comm_monoid` at a submonoid can be expressed
equivalently as an infimum (see `localization.r`) or explicitly
(see `localization.r'`). -/
@[to_additive "The additive congruence relation used to localize an `add_comm_monoid` at a
submonoid can be expressed equivalently as an infimum (see `add_localization.r`) or
explicitly (see `add_localization.r'`)."]
theorem r_eq_r' : r S = r' S :=
le_antisymm (Inf_le $ Ξ» _, β¨1, by simpβ©) $
le_Inf $ Ξ» b H β¨p, qβ© y β¨t, htβ©,
begin
rw [β mul_one (p, q), β mul_one y],
refine b.trans (b.mul (b.refl _) (H (y.2 * t))) _,
convert b.symm (b.mul (b.refl y) (H (q * t))) using 1,
rw [prod.mk_mul_mk, submonoid.coe_mul, β mul_assoc, ht, mul_left_comm, mul_assoc],
refl
end
variables {S}
@[to_additive]
lemma r_iff_exists {x y : M Γ S} : r S x y β β c : S, x.1 * y.2 * c = y.1 * x.2 * c :=
by rw r_eq_r' S; refl
end localization
/-- The localization of a `comm_monoid` at one of its submonoids (as a quotient type). -/
@[to_additive add_localization "The localization of an `add_comm_monoid` at one
of its submonoids (as a quotient type)."]
def localization := (localization.r S).quotient
namespace localization
@[to_additive] instance inhabited :
inhabited (localization S) :=
con.quotient.inhabited
/-- Multiplication in a localization is defined as `β¨a, bβ© * β¨c, dβ© = β¨a * c, b * dβ©`. -/
@[to_additive "Addition in an `add_localization` is defined as `β¨a, bβ© + β¨c, dβ© = β¨a + c, b + dβ©`.
Should not be confused with the ring localization counterpart `localization.add`, which maps
`β¨a, bβ© + β¨c, dβ©` to `β¨d * a + b * c, b * dβ©`.", irreducible]
protected def mul : localization S β localization S β localization S :=
(r S).comm_monoid.mul
@[to_additive] instance : has_mul (localization S) :=
β¨localization.mul Sβ©
/-- The identity element of a localization is defined as `β¨1, 1β©`. -/
@[to_additive "The identity element of an `add_localization` is defined as `β¨0, 0β©`.
Should not be confused with the ring localization counterpart `localization.zero`,
which is defined as `β¨0, 1β©`.", irreducible] protected def one : localization S :=
(r S).comm_monoid.one
@[to_additive] instance : has_one (localization S) :=
β¨localization.one Sβ©
/-- Exponentiation in a localization is defined as `β¨a, bβ© ^ n = β¨a ^ n, b ^ nβ©`.
This is a separate `irreducible` def to ensure the elaborator doesn't waste its time
trying to unify some huge recursive definition with itself, but unfolded one step less.
-/
@[to_additive
"Multiplication with a natural in an `add_localization` is defined as `n β’ β¨a, bβ© = β¨n β’ a, n β’ bβ©`.
This is a separate `irreducible` def to ensure the elaborator doesn't waste its time
trying to unify some huge recursive definition with itself, but unfolded one step less.",
irreducible]
protected def npow : β β localization S β localization S :=
(r S).comm_monoid.npow
local attribute [semireducible] localization.mul localization.one localization.npow
@[to_additive] instance : comm_monoid (localization S) :=
{ mul := (*),
one := 1,
mul_assoc :=
show β (x y z : localization S), x * y * z = x * (y * z), from (r S).comm_monoid.mul_assoc,
mul_comm := show β (x y : localization S), x * y = y * x, from (r S).comm_monoid.mul_comm,
mul_one := show β (x : localization S), x * 1 = x, from (r S).comm_monoid.mul_one,
one_mul := show β (x : localization S), 1 * x = x, from (r S).comm_monoid.one_mul,
npow := localization.npow S,
npow_zero' := show β (x : localization S), localization.npow S 0 x = 1, from pow_zero,
npow_succ' := show β (n : β) (x : localization S),
localization.npow S n.succ x = x * localization.npow S n x, from Ξ» n x, pow_succ x n }
variables {S}
/-- Given a `comm_monoid` `M` and submonoid `S`, `mk` sends `x : M`, `y β S` to the equivalence
class of `(x, y)` in the localization of `M` at `S`. -/
@[to_additive "Given an `add_comm_monoid` `M` and submonoid `S`, `mk` sends `x : M`, `y β S` to
the equivalence class of `(x, y)` in the localization of `M` at `S`."]
def mk (x : M) (y : S) : localization S := (r S).mk' (x, y)
@[to_additive] theorem mk_eq_mk_iff {a c : M} {b d : S} :
mk a b = mk c d β r S β¨a, bβ© β¨c, dβ© :=
(r S).eq
universes u
/-- Dependent recursion principle for localizations: given elements `f a b : p (mk a b)`
for all `a b`, such that `r S (a, b) (c, d)` implies `f a b = f c d` (wih the correct coercions),
then `f` is defined on the whole `localization S`. -/
@[elab_as_eliminator, to_additive
"Dependent recursion principle for `add_localizations`: given elements `f a b : p (mk a b)`
for all `a b`, such that `r S (a, b) (c, d)` implies `f a b = f c d` (wih the correct coercions),
then `f` is defined on the whole `add_localization S`."]
def rec {p : localization S β Sort u}
(f : β (a : M) (b : S), p (mk a b))
(H : β {a c : M} {b d : S} (h : r S (a, b) (c, d)),
(eq.rec (f a b) (mk_eq_mk_iff.mpr h) : p (mk c d)) = f c d)
(x) : p x :=
quot.rec (Ξ» y, eq.rec (f y.1 y.2) (prod.mk.eta : (y.1, y.2) = y))
(Ξ» y z h, by { cases y, cases z, exact H h }) x
attribute [irreducible] localization
@[to_additive] lemma mk_mul (a c : M) (b d : S) : mk a b * mk c d = mk (a * c) (b * d) := rfl
@[to_additive] lemma mk_one : mk 1 (1 : S) = 1 := rfl
@[to_additive] lemma mk_pow (n : β) (a : M) (b : S) : (mk a b) ^ n = mk (a ^ n) (b ^ n) := rfl
@[simp, to_additive] lemma rec_mk {p : localization S β Sort u}
(f : β (a : M) (b : S), p (mk a b)) (H) (a : M) (b : S) :
(rec f H (mk a b) : p (mk a b)) = f a b :=
rfl
/-- Non-dependent recursion principle for localizations: given elements `f a b : p`
for all `a b`, such that `r S (a, b) (c, d)` implies `f a b = f c d`,
then `f` is defined on the whole `localization S`. -/
@[elab_as_eliminator, to_additive
"Non-dependent recursion principle for `add_localizations`: given elements `f a b : p`
for all `a b`, such that `r S (a, b) (c, d)` implies `f a b = f c d`,
then `f` is defined on the whole `localization S`."]
def lift_on {p : Sort u} (x : localization S) (f : M β S β p)
(H : β {a c : M} {b d : S} (h : r S (a, b) (c, d)), f a b = f c d) : p :=
rec f (Ξ» a c b d h, by rw [eq_rec_constant, H h]) x
@[to_additive] lemma lift_on_mk {p : Sort u}
(f : β (a : M) (b : S), p) (H) (a : M) (b : S) :
lift_on (mk a b) f H = f a b :=
rfl
@[elab_as_eliminator, to_additive]
theorem ind {p : localization S β Prop}
(H : β (y : M Γ S), p (mk y.1 y.2)) (x) : p x :=
rec (Ξ» a b, H (a, b)) (Ξ» _ _ _ _ _, rfl) x
@[elab_as_eliminator, to_additive]
theorem induction_on {p : localization S β Prop} (x)
(H : β (y : M Γ S), p (mk y.1 y.2)) : p x := ind H x
/-- Non-dependent recursion principle for localizations: given elements `f x y : p`
for all `x` and `y`, such that `r S x x'` and `r S y y'` implies `f x y = f x' y'`,
then `f` is defined on the whole `localization S`. -/
@[elab_as_eliminator, to_additive
"Non-dependent recursion principle for localizations: given elements `f x y : p`
for all `x` and `y`, such that `r S x x'` and `r S y y'` implies `f x y = f x' y'`,
then `f` is defined on the whole `localization S`."]
def lift_onβ {p : Sort u} (x y : localization S) (f : M β S β M β S β p)
(H : β {a a' b b' c c' d d'} (hx : r S (a, b) (a', b')) (hy : r S (c, d) (c', d')),
f a b c d = f a' b' c' d') :
p :=
lift_on x (Ξ» a b, lift_on y (f a b) (Ξ» c c' d d' hy, H ((r S).refl _) hy))
(Ξ» a a' b b' hx, induction_on y (Ξ» β¨c, dβ©, H hx ((r S).refl _)))
@[to_additive] lemma lift_onβ_mk {p : Sort*}
(f : M β S β M β S β p) (H) (a c : M) (b d : S) :
lift_onβ (mk a b) (mk c d) f H = f a b c d :=
rfl
@[elab_as_eliminator, to_additive]
theorem induction_onβ {p : localization S β localization S β Prop} (x y)
(H : β (x y : M Γ S), p (mk x.1 x.2) (mk y.1 y.2)) : p x y :=
induction_on x $ Ξ» x, induction_on y $ H x
@[elab_as_eliminator, to_additive]
theorem induction_onβ
{p : localization S β localization S β localization S β Prop} (x y z)
(H : β (x y z : M Γ S), p (mk x.1 x.2) (mk y.1 y.2) (mk z.1 z.2)) : p x y z :=
induction_onβ x y $ Ξ» x y, induction_on z $ H x y
@[to_additive] lemma one_rel (y : S) : r S 1 (y, y) := Ξ» b hb, hb y
@[to_additive] theorem r_of_eq {x y : M Γ S} (h : y.1 * x.2 = x.1 * y.2) : r S x y :=
r_iff_exists.2 β¨1, by rw hβ©
@[to_additive] lemma mk_self (a : S) : mk (a : M) a = 1 :=
by { symmetry, rw [β mk_one, mk_eq_mk_iff], exact one_rel a }
section scalar
variables {R Rβ Rβ : Type*}
/-- Scalar multiplication in a monoid localization is defined as `c β’ β¨a, bβ© = β¨c β’ a, bβ©`. -/
@[irreducible] protected def smul [has_smul R M] [is_scalar_tower R M M]
(c : R) (z : localization S) : localization S :=
localization.lift_on z (Ξ» a b, mk (c β’ a) b) $
Ξ» a a' b b' h, mk_eq_mk_iff.2
begin
cases b with b hb,
cases b' with b' hb',
rw r_eq_r' at h β’,
cases h with t ht,
use t,
simp only [smul_mul_assoc, ht]
end
instance [has_smul R M] [is_scalar_tower R M M] :
has_smul R (localization S) :=
{ smul := localization.smul }
lemma smul_mk [has_smul R M] [is_scalar_tower R M M] (c : R) (a b) :
c β’ (mk a b : localization S) = mk (c β’ a) b :=
by { unfold has_smul.smul localization.smul, apply lift_on_mk }
instance [has_smul Rβ M] [has_smul Rβ M] [is_scalar_tower Rβ M M] [is_scalar_tower Rβ M M]
[smul_comm_class Rβ Rβ M] : smul_comm_class Rβ Rβ (localization S) :=
{ smul_comm := Ξ» s t, localization.ind $ prod.rec $ by exact Ξ» r x,
by simp only [smul_mk, smul_comm s t r] }
instance [has_smul Rβ M] [has_smul Rβ M] [is_scalar_tower Rβ M M] [is_scalar_tower Rβ M M]
[has_smul Rβ Rβ] [is_scalar_tower Rβ Rβ M] : is_scalar_tower Rβ Rβ (localization S) :=
{ smul_assoc := Ξ» s t, localization.ind $ prod.rec $ by exact Ξ» r x,
by simp only [smul_mk, smul_assoc s t r] }
instance smul_comm_class_right {R : Type*} [has_smul R M] [is_scalar_tower R M M] :
smul_comm_class R (localization S) (localization S) :=
{ smul_comm := Ξ» s, localization.ind $ prod.rec $ by exact Ξ» rβ xβ,
localization.ind $ prod.rec $ by exact Ξ» rβ xβ,
by simp only [smul_mk, smul_eq_mul, mk_mul, mul_comm rβ, smul_mul_assoc] }
instance is_scalar_tower_right {R : Type*} [has_smul R M] [is_scalar_tower R M M] :
is_scalar_tower R (localization S) (localization S) :=
{ smul_assoc := Ξ» s, localization.ind $ prod.rec $ by exact Ξ» rβ xβ,
localization.ind $ prod.rec $ by exact Ξ» rβ xβ,
by simp only [smul_mk, smul_eq_mul, mk_mul, smul_mul_assoc] }
instance [has_smul R M] [has_smul Rα΅α΅α΅ M] [is_scalar_tower R M M] [is_scalar_tower Rα΅α΅α΅ M M]
[is_central_scalar R M] : is_central_scalar R (localization S) :=
{ op_smul_eq_smul := Ξ» s, localization.ind $ prod.rec $ by exact Ξ» r x,
by simp only [smul_mk, op_smul_eq_smul] }
instance [monoid R] [mul_action R M] [is_scalar_tower R M M] : mul_action R (localization S) :=
{ one_smul := localization.ind $ prod.rec $
by { intros, simp only [localization.smul_mk, one_smul] },
mul_smul := Ξ» sβ sβ, localization.ind $ prod.rec $
by { intros, simp only [localization.smul_mk, mul_smul] } }
instance [monoid R] [mul_distrib_mul_action R M] [is_scalar_tower R M M] :
mul_distrib_mul_action R (localization S) :=
{ smul_one := Ξ» s, by simp only [βlocalization.mk_one, localization.smul_mk, smul_one],
smul_mul := Ξ» s x y, localization.induction_onβ x y $
prod.rec $ by exact Ξ» rβ xβ, prod.rec $ by exact Ξ» rβ xβ,
by simp only [localization.smul_mk, localization.mk_mul, smul_mul']}
end scalar
end localization
variables {S N}
namespace monoid_hom
/-- Makes a localization map from a `comm_monoid` hom satisfying the characteristic predicate. -/
@[to_additive "Makes a localization map from an `add_comm_monoid` hom satisfying the characteristic
predicate."]
def to_localization_map (f : M β* N) (H1 : β y : S, is_unit (f y))
(H2 : β z, β x : M Γ S, z * f x.2 = f x.1) (H3 : β x y, f x = f y β β c : S, x * c = y * c) :
submonoid.localization_map S N :=
{ map_units' := H1,
surj' := H2,
eq_iff_exists' := H3,
.. f }
end monoid_hom
namespace submonoid
namespace localization_map
/-- Short for `to_monoid_hom`; used to apply a localization map as a function. -/
@[to_additive "Short for `to_add_monoid_hom`; used to apply a localization map as a function."]
abbreviation to_map (f : localization_map S N) := f.to_monoid_hom
@[ext, to_additive] lemma ext {f g : localization_map S N} (h : β x, f.to_map x = g.to_map x) :
f = g :=
by { rcases f with β¨β¨β©β©, rcases g with β¨β¨β©β©, simp only, exact funext h, }
@[to_additive] lemma ext_iff {f g : localization_map S N} :
f = g β β x, f.to_map x = g.to_map x :=
β¨Ξ» h x, h βΈ rfl, extβ©
@[to_additive] lemma to_map_injective :
function.injective (@localization_map.to_map _ _ S N _) :=
Ξ» _ _ h, ext $ monoid_hom.ext_iff.1 h
@[to_additive] lemma map_units (f : localization_map S N) (y : S) :
is_unit (f.to_map y) := f.2 y
@[to_additive] lemma surj (f : localization_map S N) (z : N) :
β x : M Γ S, z * f.to_map x.2 = f.to_map x.1 := f.3 z
@[to_additive] lemma eq_iff_exists (f : localization_map S N) {x y} :
f.to_map x = f.to_map y β β c : S, x * c = y * c := f.4 x y
/-- Given a localization map `f : M β* N`, a section function sending `z : N` to some
`(x, y) : M Γ S` such that `f x * (f y)β»ΒΉ = z`. -/
@[to_additive "Given a localization map `f : M β+ N`, a section function sending `z : N`
to some `(x, y) : M Γ S` such that `f x - f y = z`."]
noncomputable def sec (f : localization_map S N) (z : N) : M Γ S :=
classical.some $ f.surj z
@[to_additive] lemma sec_spec {f : localization_map S N} (z : N) :
z * f.to_map (f.sec z).2 = f.to_map (f.sec z).1 :=
classical.some_spec $ f.surj z
@[to_additive] lemma sec_spec' {f : localization_map S N} (z : N) :
f.to_map (f.sec z).1 = f.to_map (f.sec z).2 * z :=
by rw [mul_comm, sec_spec]
/-- Given a monoid hom `f : M β* N` and submonoid `S β M` such that `f(S) β NΛ£`, for all
`w : M, z : N` and `y β S`, we have `w * (f y)β»ΒΉ = z β w = f y * z`. -/
@[to_additive "Given an add_monoid hom `f : M β+ N` and submonoid `S β M` such that
`f(S) β add_units N`, for all `w : M, z : N` and `y β S`, we have `w - f y = z β w = f y + z`."]
lemma mul_inv_left {f : M β* N} (h : β y : S, is_unit (f y))
(y : S) (w z) : w * β(is_unit.lift_right (f.restrict S) h y)β»ΒΉ = z β w = f y * z :=
by rw mul_comm; convert units.inv_mul_eq_iff_eq_mul _;
exact (is_unit.coe_lift_right (f.restrict S) h _).symm
/-- Given a monoid hom `f : M β* N` and submonoid `S β M` such that `f(S) β NΛ£`, for all
`w : M, z : N` and `y β S`, we have `z = w * (f y)β»ΒΉ β z * f y = w`. -/
@[to_additive "Given an add_monoid hom `f : M β+ N` and submonoid `S β M` such that
`f(S) β add_units N`, for all `w : M, z : N` and `y β S`, we have `z = w - f y β z + f y = w`."]
lemma mul_inv_right {f : M β* N} (h : β y : S, is_unit (f y))
(y : S) (w z) : z = w * β(is_unit.lift_right (f.restrict S) h y)β»ΒΉ β z * f y = w :=
by rw [eq_comm, mul_inv_left h, mul_comm, eq_comm]
/-- Given a monoid hom `f : M β* N` and submonoid `S β M` such that
`f(S) β NΛ£`, for all `xβ xβ : M` and `yβ, yβ β S`, we have
`f xβ * (f yβ)β»ΒΉ = f xβ * (f yβ)β»ΒΉ β f (xβ * yβ) = f (xβ * yβ)`. -/
@[simp, to_additive "Given an add_monoid hom `f : M β+ N` and submonoid `S β M` such that
`f(S) β add_units N`, for all `xβ xβ : M` and `yβ, yβ β S`, we have
`f xβ - f yβ = f xβ - f yβ β f (xβ + yβ) = f (xβ + yβ)`."]
lemma mul_inv {f : M β* N} (h : β y : S, is_unit (f y)) {xβ xβ} {yβ yβ : S} :
f xβ * β(is_unit.lift_right (f.restrict S) h yβ)β»ΒΉ =
f xβ * β(is_unit.lift_right (f.restrict S) h yβ)β»ΒΉ β f (xβ * yβ) = f (xβ * yβ) :=
by rw [mul_inv_right h, mul_assoc, mul_comm _ (f yβ), βmul_assoc, mul_inv_left h, mul_comm xβ,
f.map_mul, f.map_mul]
/-- Given a monoid hom `f : M β* N` and submonoid `S β M` such that `f(S) β NΛ£`, for all
`y, z β S`, we have `(f y)β»ΒΉ = (f z)β»ΒΉ β f y = f z`. -/
@[to_additive "Given an add_monoid hom `f : M β+ N` and submonoid `S β M` such that
`f(S) β add_units N`, for all `y, z β S`, we have `- (f y) = - (f z) β f y = f z`."]
lemma inv_inj {f : M β* N} (hf : β y : S, is_unit (f y)) {y z}
(h : (is_unit.lift_right (f.restrict S) hf y)β»ΒΉ = (is_unit.lift_right (f.restrict S) hf z)β»ΒΉ) :
f y = f z :=
by rw [βmul_one (f y), eq_comm, βmul_inv_left hf y (f z) 1, h];
convert units.inv_mul _; exact (is_unit.coe_lift_right (f.restrict S) hf _).symm
/-- Given a monoid hom `f : M β* N` and submonoid `S β M` such that `f(S) β NΛ£`, for all
`y β S`, `(f y)β»ΒΉ` is unique. -/
@[to_additive "Given an add_monoid hom `f : M β+ N` and submonoid `S β M` such that
`f(S) β add_units N`, for all `y β S`, `- (f y)` is unique."]
lemma inv_unique {f : M β* N} (h : β y : S, is_unit (f y)) {y : S}
{z} (H : f y * z = 1) : β(is_unit.lift_right (f.restrict S) h y)β»ΒΉ = z :=
by rw [βone_mul β(_)β»ΒΉ, mul_inv_left, βH]
variables (f : localization_map S N)
@[to_additive] lemma map_right_cancel {x y} {c : S} (h : f.to_map (c * x) = f.to_map (c * y)) :
f.to_map x = f.to_map y :=
begin
rw [f.to_map.map_mul, f.to_map.map_mul] at h,
cases f.map_units c with u hu,
rw βhu at h,
exact (units.mul_right_inj u).1 h,
end
@[to_additive] lemma map_left_cancel {x y} {c : S} (h : f.to_map (x * c) = f.to_map (y * c)) :
f.to_map x = f.to_map y :=
f.map_right_cancel $ by rw [mul_comm _ x, mul_comm _ y, h]
/-- Given a localization map `f : M β* N`, the surjection sending `(x, y) : M Γ S` to
`f x * (f y)β»ΒΉ`. -/
@[to_additive "Given a localization map `f : M β+ N`, the surjection sending `(x, y) : M Γ S`
to `f x - f y`."]
noncomputable def mk' (f : localization_map S N) (x : M) (y : S) : N :=
f.to_map x * β(is_unit.lift_right (f.to_map.restrict S) f.map_units y)β»ΒΉ
@[to_additive] lemma mk'_mul (xβ xβ : M) (yβ yβ : S) :
f.mk' (xβ * xβ) (yβ * yβ) = f.mk' xβ yβ * f.mk' xβ yβ :=
(mul_inv_left f.map_units _ _ _).2 $
show _ = _ * (_ * _ * (_ * _)), by
rw [βmul_assoc, βmul_assoc, mul_inv_right f.map_units, mul_assoc, mul_assoc,
mul_comm _ (f.to_map xβ), βmul_assoc, βmul_assoc, mul_inv_right f.map_units,
submonoid.coe_mul, f.to_map.map_mul, f.to_map.map_mul];
ac_refl
@[to_additive] lemma mk'_one (x) : f.mk' x (1 : S) = f.to_map x :=
by rw [mk', monoid_hom.map_one]; exact mul_one _
/-- Given a localization map `f : M β* N` for a submonoid `S β M`, for all `z : N` we have that if
`x : M, y β S` are such that `z * f y = f x`, then `f x * (f y)β»ΒΉ = z`. -/
@[simp, to_additive "Given a localization map `f : M β+ N` for a submonoid `S β M`, for all `z : N`
we have that if `x : M, y β S` are such that `z + f y = f x`, then `f x - f y = z`."]
lemma mk'_sec (z : N) : f.mk' (f.sec z).1 (f.sec z).2 = z :=
show _ * _ = _, by rw [βsec_spec, mul_inv_left, mul_comm]
@[to_additive] lemma mk'_surjective (z : N) : β x (y : S), f.mk' x y = z :=
β¨(f.sec z).1, (f.sec z).2, f.mk'_sec zβ©
@[to_additive] lemma mk'_spec (x) (y : S) :
f.mk' x y * f.to_map y = f.to_map x :=
show _ * _ * _ = _, by rw [mul_assoc, mul_comm _ (f.to_map y), βmul_assoc, mul_inv_left, mul_comm]
@[to_additive] lemma mk'_spec' (x) (y : S) :
f.to_map y * f.mk' x y = f.to_map x :=
by rw [mul_comm, mk'_spec]
@[to_additive] theorem eq_mk'_iff_mul_eq {x} {y : S} {z} :
z = f.mk' x y β z * f.to_map y = f.to_map x :=
β¨Ξ» H, by rw [H, mk'_spec], Ξ» H, by erw [mul_inv_right, H]; reflβ©
@[to_additive] theorem mk'_eq_iff_eq_mul {x} {y : S} {z} :
f.mk' x y = z β f.to_map x = z * f.to_map y :=
by rw [eq_comm, eq_mk'_iff_mul_eq, eq_comm]
@[to_additive] lemma mk'_eq_iff_eq {xβ xβ} {yβ yβ : S} :
f.mk' xβ yβ = f.mk' xβ yβ β f.to_map (xβ * yβ) = f.to_map (xβ * yβ) :=
β¨Ξ» H, by rw [f.to_map.map_mul, f.mk'_eq_iff_eq_mul.1 H, mul_assoc,
mul_comm (f.to_map _), βmul_assoc, mk'_spec, f.to_map.map_mul],
Ξ» H, by rw [mk'_eq_iff_eq_mul, mk', mul_assoc, mul_comm _ (f.to_map yβ), βmul_assoc,
βf.to_map.map_mul, βH, f.to_map.map_mul, mul_inv_right f.map_units]β©
@[to_additive] protected lemma eq {aβ bβ} {aβ bβ : S} :
f.mk' aβ aβ = f.mk' bβ bβ β β c : S, aβ * bβ * c = bβ * aβ * c :=
f.mk'_eq_iff_eq.trans $ f.eq_iff_exists
@[to_additive] protected lemma eq' {aβ bβ} {aβ bβ : S} :
f.mk' aβ aβ = f.mk' bβ bβ β localization.r S (aβ, aβ) (bβ, bβ) :=
by rw [f.eq, localization.r_iff_exists]
@[to_additive] lemma eq_iff_eq (g : localization_map S P) {x y} :
f.to_map x = f.to_map y β g.to_map x = g.to_map y :=
f.eq_iff_exists.trans g.eq_iff_exists.symm
@[to_additive] lemma mk'_eq_iff_mk'_eq (g : localization_map S P) {xβ xβ}
{yβ yβ : S} : f.mk' xβ yβ = f.mk' xβ yβ β g.mk' xβ yβ = g.mk' xβ yβ :=
f.eq'.trans g.eq'.symm
/-- Given a localization map `f : M β* N` for a submonoid `S β M`, for all `xβ : M` and `yβ β S`,
if `xβ : M, yβ β S` are such that `f xβ * (f yβ)β»ΒΉ * f yβ = f xβ`, then there exists `c β S`
such that `xβ * yβ * c = xβ * yβ * c`. -/
@[to_additive "Given a localization map `f : M β+ N` for a submonoid `S β M`, for all `xβ : M`
and `yβ β S`, if `xβ : M, yβ β S` are such that `(f xβ - f yβ) + f yβ = f xβ`, then there exists
`c β S` such that `xβ + yβ + c = xβ + yβ + c`."]
lemma exists_of_sec_mk' (x) (y : S) :
β c : S, x * (f.sec $ f.mk' x y).2 * c = (f.sec $ f.mk' x y).1 * y * c :=
f.eq_iff_exists.1 $ f.mk'_eq_iff_eq.1 $ (mk'_sec _ _).symm
@[to_additive] lemma mk'_eq_of_eq {aβ bβ : M} {aβ bβ : S} (H : bβ * aβ = aβ * bβ) :
f.mk' aβ aβ = f.mk' bβ bβ :=
f.mk'_eq_iff_eq.2 $ H βΈ rfl
@[simp, to_additive] lemma mk'_self' (y : S) :
f.mk' (y : M) y = 1 :=
show _ * _ = _, by rw [mul_inv_left, mul_one]
@[simp, to_additive] lemma mk'_self (x) (H : x β S) :
f.mk' x β¨x, Hβ© = 1 :=
by convert mk'_self' _ _; refl
@[to_additive] lemma mul_mk'_eq_mk'_of_mul (xβ xβ) (y : S) :
f.to_map xβ * f.mk' xβ y = f.mk' (xβ * xβ) y :=
by rw [βmk'_one, βmk'_mul, one_mul]
@[to_additive] lemma mk'_mul_eq_mk'_of_mul (xβ xβ) (y : S) :
f.mk' xβ y * f.to_map xβ = f.mk' (xβ * xβ) y :=
by rw [mul_comm, mul_mk'_eq_mk'_of_mul]
@[to_additive] lemma mul_mk'_one_eq_mk' (x) (y : S) :
f.to_map x * f.mk' 1 y = f.mk' x y :=
by rw [mul_mk'_eq_mk'_of_mul, mul_one]
@[simp, to_additive] lemma mk'_mul_cancel_right (x : M) (y : S) :
f.mk' (x * y) y = f.to_map x :=
by rw [βmul_mk'_one_eq_mk', f.to_map.map_mul, mul_assoc, mul_mk'_one_eq_mk', mk'_self', mul_one]
@[to_additive] lemma mk'_mul_cancel_left (x) (y : S) :
f.mk' ((y : M) * x) y = f.to_map x :=
by rw [mul_comm, mk'_mul_cancel_right]
@[to_additive] lemma is_unit_comp (j : N β* P) (y : S) :
is_unit (j.comp f.to_map y) :=
β¨units.map j $ is_unit.lift_right (f.to_map.restrict S) f.map_units y,
show j _ = j _, from congr_arg j $
(is_unit.coe_lift_right (f.to_map.restrict S) f.map_units _)β©
variables {g : M β* P}
/-- Given a localization map `f : M β* N` for a submonoid `S β M` and a map of `comm_monoid`s
`g : M β* P` such that `g(S) β units P`, `f x = f y β g x = g y` for all `x y : M`. -/
@[to_additive "Given a localization map `f : M β+ N` for a submonoid `S β M` and a map
of `add_comm_monoid`s `g : M β+ P` such that `g(S) β add_units P`, `f x = f y β g x = g y`
for all `x y : M`."]
lemma eq_of_eq (hg : β y : S, is_unit (g y)) {x y} (h : f.to_map x = f.to_map y) :
g x = g y :=
begin
obtain β¨c, hcβ© := f.eq_iff_exists.1 h,
rw [βmul_one (g x), βis_unit.mul_lift_right_inv (g.restrict S) hg c],
show _ * (g c * _) = _,
rw [βmul_assoc, βg.map_mul, hc, mul_inv_left hg, g.map_mul, mul_comm],
end
/-- Given `comm_monoid`s `M, P`, localization maps `f : M β* N, k : P β* Q` for submonoids
`S, T` respectively, and `g : M β* P` such that `g(S) β T`, `f x = f y` implies
`k (g x) = k (g y)`. -/
@[to_additive "Given `add_comm_monoid`s `M, P`, localization maps `f : M β+ N, k : P β+ Q` for
submonoids `S, T` respectively, and `g : M β+ P` such that `g(S) β T`, `f x = f y`
implies `k (g x) = k (g y)`."]
lemma comp_eq_of_eq {T : submonoid P} {Q : Type*} [comm_monoid Q]
(hg : β y : S, g y β T) (k : localization_map T Q)
{x y} (h : f.to_map x = f.to_map y) : k.to_map (g x) = k.to_map (g y) :=
f.eq_of_eq (Ξ» y : S, show is_unit (k.to_map.comp g y), from k.map_units β¨g y, hg yβ©) h
variables (hg : β y : S, is_unit (g y))
/-- Given a localization map `f : M β* N` for a submonoid `S β M` and a map of `comm_monoid`s
`g : M β* P` such that `g y` is invertible for all `y : S`, the homomorphism induced from
`N` to `P` sending `z : N` to `g x * (g y)β»ΒΉ`, where `(x, y) : M Γ S` are such that
`z = f x * (f y)β»ΒΉ`. -/
@[to_additive "Given a localization map `f : M β+ N` for a submonoid `S β M` and a map
of `add_comm_monoid`s `g : M β+ P` such that `g y` is invertible for all `y : S`, the homomorphism
induced from `N` to `P` sending `z : N` to `g x - g y`, where `(x, y) : M Γ S` are such that
`z = f x - f y`."]
noncomputable def lift : N β* P :=
{ to_fun := Ξ» z, g (f.sec z).1 * β(is_unit.lift_right (g.restrict S) hg (f.sec z).2)β»ΒΉ,
map_one' := by rw [mul_inv_left, mul_one]; exact f.eq_of_eq hg
(by rw [βsec_spec, one_mul]),
map_mul' := Ξ» x y,
begin
rw [mul_inv_left hg, βmul_assoc, βmul_assoc, mul_inv_right hg,
mul_comm _ (g (f.sec y).1), βmul_assoc, βmul_assoc, mul_inv_right hg],
repeat { rw βg.map_mul },
exact f.eq_of_eq hg (by repeat { rw f.to_map.map_mul <|> rw sec_spec' }; ac_refl)
end }
variables {S g}
/-- Given a localization map `f : M β* N` for a submonoid `S β M` and a map of `comm_monoid`s
`g : M β* P` such that `g y` is invertible for all `y : S`, the homomorphism induced from
`N` to `P` maps `f x * (f y)β»ΒΉ` to `g x * (g y)β»ΒΉ` for all `x : M, y β S`. -/
@[to_additive "Given a localization map `f : M β+ N` for a submonoid `S β M` and a map
of `add_comm_monoid`s `g : M β+ P` such that `g y` is invertible for all `y : S`, the homomorphism
induced from `N` to `P` maps `f x - f y` to `g x - g y` for all `x : M, y β S`."]
lemma lift_mk' (x y) :
f.lift hg (f.mk' x y) = g x * β(is_unit.lift_right (g.restrict S) hg y)β»ΒΉ :=
(mul_inv hg).2 $ f.eq_of_eq hg $ by
rw [f.to_map.map_mul, f.to_map.map_mul, sec_spec', mul_assoc, f.mk'_spec, mul_comm]
/-- Given a localization map `f : M β* N` for a submonoid `S β M`, if a `comm_monoid` map
`g : M β* P` induces a map `f.lift hg : N β* P` then for all `z : N, v : P`, we have
`f.lift hg z = v β g x = g y * v`, where `x : M, y β S` are such that `z * f y = f x`. -/
@[to_additive "Given a localization map `f : M β+ N` for a submonoid `S β M`, if
an `add_comm_monoid` map `g : M β+ P` induces a map `f.lift hg : N β+ P` then for all
`z : N, v : P`, we have `f.lift hg z = v β g x = g y + v`, where `x : M, y β S` are such that
`z + f y = f x`."]
lemma lift_spec (z v) :
f.lift hg z = v β g (f.sec z).1 = g (f.sec z).2 * v :=
mul_inv_left hg _ _ v
/-- Given a localization map `f : M β* N` for a submonoid `S β M`, if a `comm_monoid` map
`g : M β* P` induces a map `f.lift hg : N β* P` then for all `z : N, v w : P`, we have
`f.lift hg z * w = v β g x * w = g y * v`, where `x : M, y β S` are such that
`z * f y = f x`. -/
@[to_additive "Given a localization map `f : M β+ N` for a submonoid `S β M`, if
an `add_comm_monoid` map `g : M β+ P` induces a map `f.lift hg : N β+ P` then for all
`z : N, v w : P`, we have `f.lift hg z + w = v β g x + w = g y + v`, where `x : M, y β S` are such
that `z + f y = f x`."]
lemma lift_spec_mul (z w v) :
f.lift hg z * w = v β g (f.sec z).1 * w = g (f.sec z).2 * v :=
begin
rw mul_comm,
show _ * (_ * _) = _ β _,
rw [βmul_assoc, mul_inv_left hg, mul_comm],
end
@[to_additive] lemma lift_mk'_spec (x v) (y : S) :
f.lift hg (f.mk' x y) = v β g x = g y * v :=
by rw f.lift_mk' hg; exact mul_inv_left hg _ _ _
/-- Given a localization map `f : M β* N` for a submonoid `S β M`, if a `comm_monoid` map
`g : M β* P` induces a map `f.lift hg : N β* P` then for all `z : N`, we have
`f.lift hg z * g y = g x`, where `x : M, y β S` are such that `z * f y = f x`. -/
@[to_additive "Given a localization map `f : M β+ N` for a submonoid `S β M`, if
an `add_comm_monoid` map `g : M β+ P` induces a map `f.lift hg : N β+ P` then for all `z : N`, we
have `f.lift hg z + g y = g x`, where `x : M, y β S` are such that `z + f y = f x`."]
lemma lift_mul_right (z) :
f.lift hg z * g (f.sec z).2 = g (f.sec z).1 :=
show _ * _ * _ = _, by erw [mul_assoc, is_unit.lift_right_inv_mul, mul_one]
/-- Given a localization map `f : M β* N` for a submonoid `S β M`, if a `comm_monoid` map
`g : M β* P` induces a map `f.lift hg : N β* P` then for all `z : N`, we have
`g y * f.lift hg z = g x`, where `x : M, y β S` are such that `z * f y = f x`. -/
@[to_additive "Given a localization map `f : M β+ N` for a submonoid `S β M`, if
an `add_comm_monoid` map `g : M β+ P` induces a map `f.lift hg : N β+ P` then for all `z : N`, we
have `g y + f.lift hg z = g x`, where `x : M, y β S` are such that `z + f y = f x`."]
lemma lift_mul_left (z) :
g (f.sec z).2 * f.lift hg z = g (f.sec z).1 :=
by rw [mul_comm, lift_mul_right]
@[simp, to_additive] lemma lift_eq (x : M) :
f.lift hg (f.to_map x) = g x :=
by rw [lift_spec, βg.map_mul]; exact f.eq_of_eq hg (by rw [sec_spec', f.to_map.map_mul])
@[to_additive] lemma lift_eq_iff {x y : M Γ S} :
f.lift hg (f.mk' x.1 x.2) = f.lift hg (f.mk' y.1 y.2) β g (x.1 * y.2) = g (y.1 * x.2) :=
by rw [lift_mk', lift_mk', mul_inv hg]
@[simp, to_additive] lemma lift_comp : (f.lift hg).comp f.to_map = g :=
by ext; exact f.lift_eq hg _
@[simp, to_additive] lemma lift_of_comp (j : N β* P) :
f.lift (f.is_unit_comp j) = j :=
begin
ext,
rw lift_spec,
show j _ = j _ * _,
erw [βj.map_mul, sec_spec'],
end
@[to_additive] lemma epic_of_localization_map {j k : N β* P}
(h : β a, j.comp f.to_map a = k.comp f.to_map a) : j = k :=
begin
rw [βf.lift_of_comp j, βf.lift_of_comp k],
congr' 1 with x, exact h x,
end
@[to_additive] lemma lift_unique {j : N β* P}
(hj : β x, j (f.to_map x) = g x) : f.lift hg = j :=
begin
ext,
rw [lift_spec, βhj, βhj, βj.map_mul],
apply congr_arg,
rw βsec_spec',
end
@[simp, to_additive] lemma lift_id (x) : f.lift f.map_units x = x :=
monoid_hom.ext_iff.1 (f.lift_of_comp $ monoid_hom.id N) x
/-- Given two localization maps `f : M β* N, k : M β* P` for a submonoid `S β M`,
the hom from `P` to `N` induced by `f` is left inverse to the hom from `N` to `P`
induced by `k`. -/
@[simp, to_additive "Given two localization maps `f : M β+ N, k : M β+ P` for a submonoid `S β M`,
the hom from `P` to `N` induced by `f` is left inverse to the hom from `N` to `P`
induced by `k`."]
lemma lift_left_inverse {k : localization_map S P} (z : N) :
k.lift f.map_units (f.lift k.map_units z) = z :=
begin
rw lift_spec,
cases f.surj z with x hx,
conv_rhs {congr, skip, rw f.eq_mk'_iff_mul_eq.2 hx},
rw [mk', βmul_assoc, mul_inv_right f.map_units, βf.to_map.map_mul, βf.to_map.map_mul],
apply k.eq_of_eq f.map_units,
rw [k.to_map.map_mul, k.to_map.map_mul, βsec_spec, mul_assoc, lift_spec_mul],
repeat { rw βk.to_map.map_mul },
apply f.eq_of_eq k.map_units,
repeat { rw f.to_map.map_mul },
rw [sec_spec', βhx],
ac_refl,
end
@[to_additive] lemma lift_surjective_iff :
function.surjective (f.lift hg) β β v : P, β x : M Γ S, v * g x.2 = g x.1 :=
begin
split,
{ intros H v,
obtain β¨z, hzβ© := H v,
obtain β¨x, hxβ© := f.surj z,
use x,
rw [βhz, f.eq_mk'_iff_mul_eq.2 hx, lift_mk', mul_assoc, mul_comm _ (g βx.2)],
erw [is_unit.mul_lift_right_inv (g.restrict S) hg, mul_one] },
{ intros H v,
obtain β¨x, hxβ© := H v,
use f.mk' x.1 x.2,
rw [lift_mk', mul_inv_left hg, mul_comm, βhx] }
end
@[to_additive] lemma lift_injective_iff :
function.injective (f.lift hg) β β x y, f.to_map x = f.to_map y β g x = g y :=
begin
split,
{ intros H x y,
split,
{ exact f.eq_of_eq hg },
{ intro h,
rw [βf.lift_eq hg, βf.lift_eq hg] at h,
exact H h } },
{ intros H z w h,
obtain β¨x, hxβ© := f.surj z,
obtain β¨y, hyβ© := f.surj w,
rw [βf.mk'_sec z, βf.mk'_sec w],
exact (mul_inv f.map_units).2 ((H _ _).2 $ (mul_inv hg).1 h) }
end
variables {T : submonoid P} (hy : β y : S, g y β T) {Q : Type*} [comm_monoid Q]
(k : localization_map T Q)
/-- Given a `comm_monoid` homomorphism `g : M β* P` where for submonoids `S β M, T β P` we have
`g(S) β T`, the induced monoid homomorphism from the localization of `M` at `S` to the
localization of `P` at `T`: if `f : M β* N` and `k : P β* Q` are localization maps for `S` and
`T` respectively, we send `z : N` to `k (g x) * (k (g y))β»ΒΉ`, where `(x, y) : M Γ S` are such
that `z = f x * (f y)β»ΒΉ`. -/
@[to_additive "Given a `add_comm_monoid` homomorphism `g : M β+ P` where for submonoids
`S β M, T β P` we have `g(S) β T`, the induced add_monoid homomorphism from the localization of `M`
at `S` to the localization of `P` at `T`: if `f : M β+ N` and `k : P β+ Q` are localization maps
for `S` and `T` respectively, we send `z : N` to `k (g x) - k (g y)`, where `(x, y) : M Γ S` are
such that `z = f x - f y`."]
noncomputable def map : N β* Q :=
@lift _ _ _ _ _ _ _ f (k.to_map.comp g) $ Ξ» y, k.map_units β¨g y, hy yβ©
variables {k}
@[to_additive] lemma map_eq (x) :
f.map hy k (f.to_map x) = k.to_map (g x) := f.lift_eq (Ξ» y, k.map_units β¨g y, hy yβ©) x
@[simp, to_additive] lemma map_comp :
(f.map hy k).comp f.to_map = k.to_map.comp g := f.lift_comp $ Ξ» y, k.map_units β¨g y, hy yβ©
@[to_additive] lemma map_mk' (x) (y : S) :
f.map hy k (f.mk' x y) = k.mk' (g x) β¨g y, hy yβ© :=
begin
rw [map, lift_mk', mul_inv_left],
{ show k.to_map (g x) = k.to_map (g y) * _,
rw mul_mk'_eq_mk'_of_mul,
exact (k.mk'_mul_cancel_left (g x) β¨(g y), hy yβ©).symm },
end
/-- Given localization maps `f : M β* N, k : P β* Q` for submonoids `S, T` respectively, if a
`comm_monoid` homomorphism `g : M β* P` induces a `f.map hy k : N β* Q`, then for all `z : N`,
`u : Q`, we have `f.map hy k z = u β k (g x) = k (g y) * u` where `x : M, y β S` are such that
`z * f y = f x`. -/
@[to_additive "Given localization maps `f : M β+ N, k : P β+ Q` for submonoids `S, T` respectively,
if an `add_comm_monoid` homomorphism `g : M β+ P` induces a `f.map hy k : N β+ Q`, then for all
`z : N`, `u : Q`, we have `f.map hy k z = u β k (g x) = k (g y) + u` where `x : M, y β S` are such
that `z + f y = f x`."]
lemma map_spec (z u) :
f.map hy k z = u β k.to_map (g (f.sec z).1) = k.to_map (g (f.sec z).2) * u :=
f.lift_spec (Ξ» y, k.map_units β¨g y, hy yβ©) _ _
/-- Given localization maps `f : M β* N, k : P β* Q` for submonoids `S, T` respectively, if a
`comm_monoid` homomorphism `g : M β* P` induces a `f.map hy k : N β* Q`, then for all `z : N`,
we have `f.map hy k z * k (g y) = k (g x)` where `x : M, y β S` are such that
`z * f y = f x`. -/
@[to_additive "Given localization maps `f : M β+ N, k : P β+ Q` for submonoids `S, T` respectively,
if an `add_comm_monoid` homomorphism `g : M β+ P` induces a `f.map hy k : N β+ Q`, then
for all `z : N`, we have `f.map hy k z + k (g y) = k (g x)` where `x : M, y β S` are such that
`z + f y = f x`."]
lemma map_mul_right (z) :
f.map hy k z * (k.to_map (g (f.sec z).2)) = k.to_map (g (f.sec z).1) :=
f.lift_mul_right (Ξ» y, k.map_units β¨g y, hy yβ©) _
/-- Given localization maps `f : M β* N, k : P β* Q` for submonoids `S, T` respectively, if a
`comm_monoid` homomorphism `g : M β* P` induces a `f.map hy k : N β* Q`, then for all `z : N`,
we have `k (g y) * f.map hy k z = k (g x)` where `x : M, y β S` are such that
`z * f y = f x`. -/
@[to_additive "Given localization maps `f : M β+ N, k : P β+ Q` for submonoids `S, T` respectively,
if an `add_comm_monoid` homomorphism `g : M β+ P` induces a `f.map hy k : N β+ Q`, then for all
`z : N`, we have `k (g y) + f.map hy k z = k (g x)` where `x : M, y β S` are such that
`z + f y = f x`."]
lemma map_mul_left (z) :
k.to_map (g (f.sec z).2) * f.map hy k z = k.to_map (g (f.sec z).1) :=
by rw [mul_comm, f.map_mul_right]
@[simp, to_additive] lemma map_id (z : N) :
f.map (Ξ» y, show monoid_hom.id M y β S, from y.2) f z = z :=
f.lift_id z
/-- If `comm_monoid` homs `g : M β* P, l : P β* A` induce maps of localizations, the composition
of the induced maps equals the map of localizations induced by `l β g`. -/
@[to_additive "If `add_comm_monoid` homs `g : M β+ P, l : P β+ A` induce maps of localizations,
the composition of the induced maps equals the map of localizations induced by `l β g`."]
lemma map_comp_map {A : Type*} [comm_monoid A] {U : submonoid A} {R} [comm_monoid R]
(j : localization_map U R) {l : P β* A} (hl : β w : T, l w β U) :
(k.map hl j).comp (f.map hy k) = f.map (Ξ» x, show l.comp g x β U, from hl β¨g x, hy xβ©) j :=
begin
ext z,
show j.to_map _ * _ = j.to_map (l _) * _,
{ rw [mul_inv_left, βmul_assoc, mul_inv_right],
show j.to_map _ * j.to_map (l (g _)) = j.to_map (l _) * _,
rw [βj.to_map.map_mul, βj.to_map.map_mul, βl.map_mul, βl.map_mul],
exact k.comp_eq_of_eq hl j
(by rw [k.to_map.map_mul, k.to_map.map_mul, sec_spec', mul_assoc, map_mul_right]) },
end
/-- If `comm_monoid` homs `g : M β* P, l : P β* A` induce maps of localizations, the composition
of the induced maps equals the map of localizations induced by `l β g`. -/
@[to_additive "If `add_comm_monoid` homs `g : M β+ P, l : P β+ A` induce maps of localizations,
the composition of the induced maps equals the map of localizations induced by `l β g`."]
lemma map_map {A : Type*} [comm_monoid A] {U : submonoid A} {R} [comm_monoid R]
(j : localization_map U R) {l : P β* A} (hl : β w : T, l w β U) (x) :
k.map hl j (f.map hy k x) = f.map (Ξ» x, show l.comp g x β U, from hl β¨g x, hy xβ©) j x :=
by rw βf.map_comp_map hy j hl; refl
section away_map
variables (x : M)
/-- Given `x : M`, the type of `comm_monoid` homomorphisms `f : M β* N` such that `N`
is isomorphic to the localization of `M` at the submonoid generated by `x`. -/
@[reducible, to_additive "Given `x : M`, the type of `add_comm_monoid` homomorphisms `f : M β+ N`
such that `N` is isomorphic to the localization of `M` at the submonoid generated by `x`."]
def away_map (N' : Type*) [comm_monoid N'] :=
localization_map (powers x) N'
variables (F : away_map x N)
/-- Given `x : M` and a localization map `F : M β* N` away from `x`, `inv_self` is `(F x)β»ΒΉ`. -/
noncomputable def away_map.inv_self : N :=
F.mk' 1 β¨x, mem_powers _β©
/-- Given `x : M`, a localization map `F : M β* N` away from `x`, and a map of `comm_monoid`s
`g : M β* P` such that `g x` is invertible, the homomorphism induced from `N` to `P` sending
`z : N` to `g y * (g x)β»βΏ`, where `y : M, n : β` are such that `z = F y * (F x)β»βΏ`. -/
noncomputable def away_map.lift (hg : is_unit (g x)) : N β* P :=
F.lift $ Ξ» y, show is_unit (g y.1),
begin
obtain β¨n, hnβ© := y.2,
rw [βhn, g.map_pow],
exact is_unit.pow n hg,
end
@[simp] lemma away_map.lift_eq (hg : is_unit (g x)) (a : M) :
F.lift x hg (F.to_map a) = g a := lift_eq _ _ _
@[simp] lemma away_map.lift_comp (hg : is_unit (g x)) :
(F.lift x hg).comp F.to_map = g := lift_comp _ _
/-- Given `x y : M` and localization maps `F : M β* N, G : M β* P` away from `x` and `x * y`
respectively, the homomorphism induced from `N` to `P`. -/
noncomputable def away_to_away_right (y : M) (G : away_map (x * y) P) : N β* P :=
F.lift x $ show is_unit (G.to_map x), from
is_unit_of_mul_eq_one (G.to_map x) (G.mk' y β¨x * y, mem_powers _β©) $
by rw [mul_mk'_eq_mk'_of_mul, mk'_self]
end away_map
end localization_map
end submonoid
namespace add_submonoid
namespace localization_map
section away_map
variables {A : Type*} [add_comm_monoid A] (x : A) {B : Type*}
[add_comm_monoid B] (F : away_map x B) {C : Type*} [add_comm_monoid C] {g : A β+ C}
/-- Given `x : A` and a localization map `F : A β+ B` away from `x`, `neg_self` is `- (F x)`. -/
noncomputable def away_map.neg_self : B :=
F.mk' 0 β¨x, mem_multiples _β©
/-- Given `x : A`, a localization map `F : A β+ B` away from `x`, and a map of `add_comm_monoid`s
`g : A β+ C` such that `g x` is invertible, the homomorphism induced from `B` to `C` sending
`z : B` to `g y - n β’ g x`, where `y : A, n : β` are such that `z = F y - n β’ F x`. -/
noncomputable def away_map.lift (hg : is_add_unit (g x)) : B β+ C :=
F.lift $ Ξ» y, show is_add_unit (g y.1),
begin
obtain β¨n, hnβ© := y.2,
rw β hn,
dsimp,
rw [g.map_nsmul],
exact is_add_unit.map (nsmul_add_monoid_hom n : C β+ C) hg,
end
@[simp] lemma away_map.lift_eq (hg : is_add_unit (g x)) (a : A) :
F.lift x hg (F.to_map a) = g a := lift_eq _ _ _
@[simp] lemma away_map.lift_comp (hg : is_add_unit (g x)) :
(F.lift x hg).comp F.to_map = g := lift_comp _ _
/-- Given `x y : A` and localization maps `F : A β+ B, G : A β+ C` away from `x` and `x + y`
respectively, the homomorphism induced from `B` to `C`. -/
noncomputable def away_to_away_right (y : A) (G : away_map (x + y) C) : B β+ C :=
F.lift x $ show is_add_unit (G.to_map x), from
is_add_unit_of_add_eq_zero (G.to_map x) (G.mk' y β¨x + y, mem_multiples _β©) $
by rw [add_mk'_eq_mk'_of_add, mk'_self]
end away_map
end localization_map
end add_submonoid
namespace submonoid
namespace localization_map
variables (f : S.localization_map N) {g : M β* P} (hg : β (y : S), is_unit (g y))
{T : submonoid P} {Q : Type*} [comm_monoid Q]
/-- If `f : M β* N` and `k : M β* P` are localization maps for a submonoid `S`, we get an
isomorphism of `N` and `P`. -/
@[to_additive "If `f : M β+ N` and `k : M β+ R` are localization maps for a submonoid `S`,
we get an isomorphism of `N` and `R`."]
noncomputable def mul_equiv_of_localizations
(k : localization_map S P) : N β* P :=
β¨f.lift k.map_units, k.lift f.map_units, f.lift_left_inverse,
k.lift_left_inverse, monoid_hom.map_mul _β©
@[simp, to_additive] lemma mul_equiv_of_localizations_apply
{k : localization_map S P} {x} :
f.mul_equiv_of_localizations k x = f.lift k.map_units x := rfl
@[simp, to_additive] lemma mul_equiv_of_localizations_symm_apply
{k : localization_map S P} {x} :
(f.mul_equiv_of_localizations k).symm x = k.lift f.map_units x := rfl
@[to_additive] lemma mul_equiv_of_localizations_symm_eq_mul_equiv_of_localizations
{k : localization_map S P} :
(k.mul_equiv_of_localizations f).symm = f.mul_equiv_of_localizations k := rfl
/-- If `f : M β* N` is a localization map for a submonoid `S` and `k : N β* P` is an isomorphism
of `comm_monoid`s, `k β f` is a localization map for `M` at `S`. -/
@[to_additive "If `f : M β+ N` is a localization map for a submonoid `S` and `k : N β+ P` is an
isomorphism of `add_comm_monoid`s, `k β f` is a localization map for `M` at `S`."]
def of_mul_equiv_of_localizations (k : N β* P) : localization_map S P :=
(k.to_monoid_hom.comp f.to_map).to_localization_map (Ξ» y, is_unit_comp f k.to_monoid_hom y)
(Ξ» v, let β¨z, hzβ© := k.to_equiv.surjective v in
let β¨x, hxβ© := f.surj z in β¨x, show v * k _ = k _, by rw [βhx, k.map_mul, βhz]; reflβ©)
(Ξ» x y, k.apply_eq_iff_eq.trans f.eq_iff_exists)
@[simp, to_additive] lemma of_mul_equiv_of_localizations_apply {k : N β* P} (x) :
(f.of_mul_equiv_of_localizations k).to_map x = k (f.to_map x) := rfl
@[to_additive] lemma of_mul_equiv_of_localizations_eq {k : N β* P} :
(f.of_mul_equiv_of_localizations k).to_map = k.to_monoid_hom.comp f.to_map := rfl
@[to_additive] lemma symm_comp_of_mul_equiv_of_localizations_apply {k : N β* P} (x) :
k.symm ((f.of_mul_equiv_of_localizations k).to_map x) = f.to_map x :=
k.symm_apply_apply (f.to_map x)
@[to_additive] lemma symm_comp_of_mul_equiv_of_localizations_apply' {k : P β* N} (x) :
k ((f.of_mul_equiv_of_localizations k.symm).to_map x) = f.to_map x :=
k.apply_symm_apply (f.to_map x)
@[to_additive] lemma of_mul_equiv_of_localizations_eq_iff_eq {k : N β* P} {x y} :
(f.of_mul_equiv_of_localizations k).to_map x = y β f.to_map x = k.symm y :=
k.to_equiv.eq_symm_apply.symm
@[to_additive add_equiv_of_localizations_right_inv]
lemma mul_equiv_of_localizations_right_inv (k : localization_map S P) :
f.of_mul_equiv_of_localizations (f.mul_equiv_of_localizations k) = k :=
to_map_injective $ f.lift_comp k.map_units
@[simp, to_additive add_equiv_of_localizations_right_inv_apply]
lemma mul_equiv_of_localizations_right_inv_apply
{k : localization_map S P} {x} :
(f.of_mul_equiv_of_localizations (f.mul_equiv_of_localizations k)).to_map x = k.to_map x :=
ext_iff.1 (f.mul_equiv_of_localizations_right_inv k) x
@[to_additive] lemma mul_equiv_of_localizations_left_inv (k : N β* P) :
f.mul_equiv_of_localizations (f.of_mul_equiv_of_localizations k) = k :=
mul_equiv.ext $ monoid_hom.ext_iff.1 $ f.lift_of_comp k.to_monoid_hom
@[simp, to_additive] lemma mul_equiv_of_localizations_left_inv_apply {k : N β* P} (x) :
f.mul_equiv_of_localizations (f.of_mul_equiv_of_localizations k) x = k x :=
by rw mul_equiv_of_localizations_left_inv
@[simp, to_additive] lemma of_mul_equiv_of_localizations_id :
f.of_mul_equiv_of_localizations (mul_equiv.refl N) = f :=
by ext; refl
@[to_additive] lemma of_mul_equiv_of_localizations_comp {k : N β* P} {j : P β* Q} :
(f.of_mul_equiv_of_localizations (k.trans j)).to_map =
j.to_monoid_hom.comp (f.of_mul_equiv_of_localizations k).to_map :=
by ext; refl
/-- Given `comm_monoid`s `M, P` and submonoids `S β M, T β P`, if `f : M β* N` is a localization
map for `S` and `k : P β* M` is an isomorphism of `comm_monoid`s such that `k(T) = S`, `f β k`
is a localization map for `T`. -/
@[to_additive "Given `comm_monoid`s `M, P` and submonoids `S β M, T β P`, if `f : M β* N` is
a localization map for `S` and `k : P β* M` is an isomorphism of `comm_monoid`s such that
`k(T) = S`, `f β k` is a localization map for `T`."]
def of_mul_equiv_of_dom {k : P β* M} (H : T.map k.to_monoid_hom = S) :
localization_map T N :=
let H' : S.comap k.to_monoid_hom = T :=
H βΈ (set_like.coe_injective $ T.1.preimage_image_eq k.to_equiv.injective) in
(f.to_map.comp k.to_monoid_hom).to_localization_map
(Ξ» y, let β¨z, hzβ© := f.map_units β¨k y, H βΈ set.mem_image_of_mem k y.2β© in β¨z, hzβ©)
(Ξ» z, let β¨x, hxβ© := f.surj z in let β¨v, hvβ© := k.to_equiv.surjective x.1 in
let β¨w, hwβ© := k.to_equiv.surjective x.2 in β¨(v, β¨w, H' βΈ show k w β S, from hw.symm βΈ x.2.2β©),
show z * f.to_map (k.to_equiv w) = f.to_map (k.to_equiv v), by erw [hv, hw, hx]; reflβ©)
(Ξ» x y, show f.to_map _ = f.to_map _ β _, by erw f.eq_iff_exists;
exact β¨Ξ» β¨c, hcβ©, let β¨d, hdβ© := k.to_equiv.surjective c in
β¨β¨d, H' βΈ show k d β S, from hd.symm βΈ c.2β©, by erw [βhd, βk.map_mul, βk.map_mul] at hc;
exact k.to_equiv.injective hcβ©, Ξ» β¨c, hcβ©, β¨β¨k c, H βΈ set.mem_image_of_mem k c.2β©,
by erw βk.map_mul; rw [hc, k.map_mul]; reflβ©β©)
@[simp, to_additive] lemma of_mul_equiv_of_dom_apply
{k : P β* M} (H : T.map k.to_monoid_hom = S) (x) :
(f.of_mul_equiv_of_dom H).to_map x = f.to_map (k x) := rfl
@[to_additive] lemma of_mul_equiv_of_dom_eq
{k : P β* M} (H : T.map k.to_monoid_hom = S) :
(f.of_mul_equiv_of_dom H).to_map = f.to_map.comp k.to_monoid_hom := rfl
@[to_additive] lemma of_mul_equiv_of_dom_comp_symm {k : P β* M}
(H : T.map k.to_monoid_hom = S) (x) :
(f.of_mul_equiv_of_dom H).to_map (k.symm x) = f.to_map x :=
congr_arg f.to_map $ k.apply_symm_apply x
@[to_additive] lemma of_mul_equiv_of_dom_comp {k : M β* P}
(H : T.map k.symm.to_monoid_hom = S) (x) :
(f.of_mul_equiv_of_dom H).to_map (k x) = f.to_map x :=
congr_arg f.to_map $ k.symm_apply_apply x
/-- A special case of `f β id = f`, `f` a localization map. -/
@[simp, to_additive "A special case of `f β id = f`, `f` a localization map."]
lemma of_mul_equiv_of_dom_id :
f.of_mul_equiv_of_dom (show S.map (mul_equiv.refl M).to_monoid_hom = S, from
submonoid.ext $ Ξ» x, β¨Ξ» β¨y, hy, hβ©, h βΈ hy, Ξ» h, β¨x, h, rflβ©β©) = f :=
by ext; refl
/-- Given localization maps `f : M β* N, k : P β* U` for submonoids `S, T` respectively, an
isomorphism `j : M β* P` such that `j(S) = T` induces an isomorphism of localizations
`N β* U`. -/
@[to_additive "Given localization maps `f : M β+ N, k : P β+ U` for submonoids `S, T` respectively,
an isomorphism `j : M β+ P` such that `j(S) = T` induces an isomorphism of
localizations `N β+ U`."]
noncomputable def mul_equiv_of_mul_equiv
(k : localization_map T Q) {j : M β* P} (H : S.map j.to_monoid_hom = T) :
N β* Q :=
f.mul_equiv_of_localizations $ k.of_mul_equiv_of_dom H
@[simp, to_additive] lemma mul_equiv_of_mul_equiv_eq_map_apply
{k : localization_map T Q} {j : M β* P} (H : S.map j.to_monoid_hom = T) (x) :
f.mul_equiv_of_mul_equiv k H x =
f.map (Ξ» y : S, show j.to_monoid_hom y β T, from H βΈ set.mem_image_of_mem j y.2) k x := rfl
@[to_additive] lemma mul_equiv_of_mul_equiv_eq_map
{k : localization_map T Q} {j : M β* P} (H : S.map j.to_monoid_hom = T) :
(f.mul_equiv_of_mul_equiv k H).to_monoid_hom =
f.map (Ξ» y : S, show j.to_monoid_hom y β T, from H βΈ set.mem_image_of_mem j y.2) k := rfl
@[simp, to_additive] lemma mul_equiv_of_mul_equiv_eq {k : localization_map T Q}
{j : M β* P} (H : S.map j.to_monoid_hom = T) (x) :
f.mul_equiv_of_mul_equiv k H (f.to_map x) = k.to_map (j x) :=
f.map_eq (Ξ» y : S, H βΈ set.mem_image_of_mem j y.2) _
@[simp, to_additive] lemma mul_equiv_of_mul_equiv_mk' {k : localization_map T Q}
{j : M β* P} (H : S.map j.to_monoid_hom = T) (x y) :
f.mul_equiv_of_mul_equiv k H (f.mk' x y) = k.mk' (j x) β¨j y, H βΈ set.mem_image_of_mem j y.2β© :=
f.map_mk' (Ξ» y : S, H βΈ set.mem_image_of_mem j y.2) _ _
@[simp, to_additive] lemma of_mul_equiv_of_mul_equiv_apply
{k : localization_map T Q} {j : M β* P} (H : S.map j.to_monoid_hom = T) (x) :
(f.of_mul_equiv_of_localizations (f.mul_equiv_of_mul_equiv k H)).to_map x = k.to_map (j x) :=
ext_iff.1 (f.mul_equiv_of_localizations_right_inv (k.of_mul_equiv_of_dom H)) x
@[to_additive] lemma of_mul_equiv_of_mul_equiv
{k : localization_map T Q} {j : M β* P} (H : S.map j.to_monoid_hom = T) :
(f.of_mul_equiv_of_localizations (f.mul_equiv_of_mul_equiv k H)).to_map =
k.to_map.comp j.to_monoid_hom :=
monoid_hom.ext $ f.of_mul_equiv_of_mul_equiv_apply H
end localization_map
end submonoid
namespace localization
variables (S)
/-- Natural hom sending `x : M`, `M` a `comm_monoid`, to the equivalence class of
`(x, 1)` in the localization of `M` at a submonoid. -/
@[to_additive "Natural homomorphism sending `x : M`, `M` an `add_comm_monoid`, to the equivalence
class of `(x, 0)` in the localization of `M` at a submonoid."]
def monoid_of : submonoid.localization_map S (localization S) :=
{ to_fun := Ξ» x, mk x 1,
map_one' := mk_one,
map_mul' := Ξ» x y, by rw [mk_mul, mul_one],
map_units' := Ξ» y, is_unit_iff_exists_inv.2 β¨mk 1 y, by rw [mk_mul, mul_one, one_mul, mk_self]β©,
surj' := Ξ» z, induction_on z $ Ξ» x, β¨x,
by rw [mk_mul, mul_comm x.fst, β mk_mul, mk_self, one_mul]β©,
eq_iff_exists' := Ξ» x y, mk_eq_mk_iff.trans $ r_iff_exists.trans $
show (β (c : S), x * 1 * c = y * 1 * c) β _, by rw [mul_one, mul_one],
..(r S).mk'.comp $ monoid_hom.inl M S }
variables {S}
@[to_additive] lemma mk_one_eq_monoid_of_mk (x) : mk x 1 = (monoid_of S).to_map x := rfl
@[to_additive] lemma mk_eq_monoid_of_mk'_apply (x y) : mk x y = (monoid_of S).mk' x y :=
show _ = _ * _, from (submonoid.localization_map.mul_inv_right (monoid_of S).map_units _ _ _).2 $
begin
rw [βmk_one_eq_monoid_of_mk, βmk_one_eq_monoid_of_mk,
show mk x y * mk y 1 = mk (x * y) (1 * y), by rw [mul_comm 1 y, mk_mul],
show mk x 1 = mk (x * 1) ((1 : S) * 1), by rw [mul_one, mul_one]],
exact mk_eq_mk_iff.2 (con.symm _ $ (localization.r S).mul
(con.refl _ (x, 1)) $ one_rel _),
end
@[simp, to_additive] lemma mk_eq_monoid_of_mk' : mk = (monoid_of S).mk' :=
funext $ Ξ» _, funext $ Ξ» _, mk_eq_monoid_of_mk'_apply _ _
universes u
@[simp, to_additive] lemma lift_on_mk' {p : Sort u}
(f : β (a : M) (b : S), p) (H) (a : M) (b : S) :
lift_on ((monoid_of S).mk' a b) f H = f a b :=
by rw [β mk_eq_monoid_of_mk', lift_on_mk]
@[simp, to_additive] lemma lift_onβ_mk' {p : Sort*}
(f : M β S β M β S β p) (H) (a c : M) (b d : S) :
lift_onβ ((monoid_of S).mk' a b) ((monoid_of S).mk' c d) f H = f a b c d :=
by rw [β mk_eq_monoid_of_mk', lift_onβ_mk]
variables (f : submonoid.localization_map S N)
/-- Given a localization map `f : M β* N` for a submonoid `S`, we get an isomorphism between
the localization of `M` at `S` as a quotient type and `N`. -/
@[to_additive "Given a localization map `f : M β+ N` for a submonoid `S`, we get an isomorphism
between the localization of `M` at `S` as a quotient type and `N`."]
noncomputable def mul_equiv_of_quotient (f : submonoid.localization_map S N) :
localization S β* N :=
(monoid_of S).mul_equiv_of_localizations f
variables {f}
@[simp, to_additive] lemma mul_equiv_of_quotient_apply (x) :
mul_equiv_of_quotient f x = (monoid_of S).lift f.map_units x := rfl
@[simp, to_additive] lemma mul_equiv_of_quotient_mk' (x y) :
mul_equiv_of_quotient f ((monoid_of S).mk' x y) = f.mk' x y :=
(monoid_of S).lift_mk' _ _ _
@[to_additive] lemma mul_equiv_of_quotient_mk (x y) :
mul_equiv_of_quotient f (mk x y) = f.mk' x y :=
by rw mk_eq_monoid_of_mk'_apply; exact mul_equiv_of_quotient_mk' _ _
@[simp, to_additive] lemma mul_equiv_of_quotient_monoid_of (x) :
mul_equiv_of_quotient f ((monoid_of S).to_map x) = f.to_map x :=
(monoid_of S).lift_eq _ _
@[simp, to_additive] lemma mul_equiv_of_quotient_symm_mk' (x y) :
(mul_equiv_of_quotient f).symm (f.mk' x y) = (monoid_of S).mk' x y :=
f.lift_mk' _ _ _
@[to_additive] lemma mul_equiv_of_quotient_symm_mk (x y) :
(mul_equiv_of_quotient f).symm (f.mk' x y) = mk x y :=
by rw mk_eq_monoid_of_mk'_apply; exact mul_equiv_of_quotient_symm_mk' _ _
@[simp, to_additive] lemma mul_equiv_of_quotient_symm_monoid_of (x) :
(mul_equiv_of_quotient f).symm (f.to_map x) = (monoid_of S).to_map x :=
f.lift_eq _ _
section away
variables (x : M)
/-- Given `x : M`, the localization of `M` at the submonoid generated by `x`, as a quotient. -/
@[reducible, to_additive "Given `x : M`, the localization of `M` at the submonoid generated
by `x`, as a quotient."]
def away := localization (submonoid.powers x)
/-- Given `x : M`, `inv_self` is `xβ»ΒΉ` in the localization (as a quotient type) of `M` at the
submonoid generated by `x`. -/
@[to_additive "Given `x : M`, `neg_self` is `-x` in the localization (as a quotient type) of `M`
at the submonoid generated by `x`."]
def away.inv_self : away x :=
mk 1 β¨x, submonoid.mem_powers _β©
/-- Given `x : M`, the natural hom sending `y : M`, `M` a `comm_monoid`, to the equivalence class
of `(y, 1)` in the localization of `M` at the submonoid generated by `x`. -/
@[reducible, to_additive "Given `x : M`, the natural hom sending `y : M`, `M` an `add_comm_monoid`,
to the equivalence class of `(y, 0)` in the localization of `M` at the submonoid
generated by `x`."]
def away.monoid_of : submonoid.localization_map.away_map x (away x) :=
monoid_of (submonoid.powers x)
@[simp, to_additive] lemma away.mk_eq_monoid_of_mk' : mk = (away.monoid_of x).mk' :=
mk_eq_monoid_of_mk'
/-- Given `x : M` and a localization map `f : M β* N` away from `x`, we get an isomorphism between
the localization of `M` at the submonoid generated by `x` as a quotient type and `N`. -/
@[to_additive "Given `x : M` and a localization map `f : M β+ N` away from `x`, we get an
isomorphism between the localization of `M` at the submonoid generated by `x` as a quotient type
and `N`."]
noncomputable def away.mul_equiv_of_quotient (f : submonoid.localization_map.away_map x N) :
away x β* N :=
mul_equiv_of_quotient f
end away
end localization
end comm_monoid
section comm_monoid_with_zero
variables {M : Type*} [comm_monoid_with_zero M] (S : submonoid M)
(N : Type*) [comm_monoid_with_zero N]
{P : Type*} [comm_monoid_with_zero P]
namespace submonoid
/-- The type of homomorphisms between monoids with zero satisfying the characteristic predicate:
if `f : M β*β N` satisfies this predicate, then `N` is isomorphic to the localization of `M` at
`S`. -/
@[nolint has_nonempty_instance] structure localization_with_zero_map
extends localization_map S N :=
(map_zero' : to_fun 0 = 0)
attribute [nolint doc_blame] localization_with_zero_map.to_localization_map
variables {S N}
/-- The monoid with zero hom underlying a `localization_map`. -/
def localization_with_zero_map.to_monoid_with_zero_hom (f : localization_with_zero_map S N) :
M β*β N :=
{ .. f }
end submonoid
namespace localization
local attribute [semireducible] localization
/-- The zero element in a localization is defined as `(0, 1)`.
Should not be confused with `add_localization.zero` which is `(0, 0)`. -/
@[irreducible] protected def zero : localization S :=
mk 0 1
instance : has_zero (localization S) :=β¨localization.zero Sβ©
local attribute [semireducible] localization.zero localization.mul
instance : comm_monoid_with_zero (localization S) :=
by refine_struct
{ zero := 0, .. localization.comm_monoid S };
exact Ξ» x, localization.induction_on x $ by
{ intros,
refine mk_eq_mk_iff.mpr (r_of_eq _),
simp only [zero_mul, mul_zero] }
attribute [irreducible] localization
variables {S}
lemma mk_zero (x : S) : mk 0 (x : S) = 0 :=
calc mk 0 x = mk 0 1 : mk_eq_mk_iff.mpr (r_of_eq (by simp))
... = 0 : rfl
lemma lift_on_zero {p : Type*} (f : β (x : M) (y : S), p) (H) : lift_on 0 f H = f 0 1 :=
by rw [β mk_zero 1, lift_on_mk]
end localization
variables {S N}
namespace submonoid
@[simp] lemma localization_map.sec_zero_fst {f : localization_map S N} :
f.to_map (f.sec 0).fst = 0 :=
by rw [localization_map.sec_spec', mul_zero]
namespace localization_with_zero_map
/-- Given a localization map `f : M β*β N` for a submonoid `S β M` and a map of
`comm_monoid_with_zero`s `g : M β*β P` such that `g y` is invertible for all `y : S`, the
homomorphism induced from `N` to `P` sending `z : N` to `g x * (g y)β»ΒΉ`, where `(x, y) : M Γ S`
are such that `z = f x * (f y)β»ΒΉ`. -/
noncomputable def lift (f : localization_with_zero_map S N)
(g : M β*β P) (hg : β y : S, is_unit (g y)) : N β*β P :=
{ map_zero' :=
begin
rw [monoid_hom.to_fun_eq_coe, localization_map.lift_spec, mul_zero,
βmap_zero g, βg.to_monoid_hom_coe],
refine f.to_localization_map.eq_of_eq hg _,
rw localization_map.sec_zero_fst,
exact f.to_monoid_with_zero_hom.map_zero.symm
end
.. @localization_map.lift _ _ _ _ _ _ _ f.to_localization_map g.to_monoid_hom hg }
end localization_with_zero_map
end submonoid
end comm_monoid_with_zero
|