Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 25,477 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
/-
Copyright (c) 2015 Nathaniel Thomas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro
-/
import algebra.big_operators.basic
import algebra.smul_with_zero
import data.rat.cast
import group_theory.group_action.big_operators
import group_theory.group_action.group
/-!
# Modules over a ring
In this file we define
* `module R M` : an additive commutative monoid `M` is a `module` over a
`semiring R` if for `r : R` and `x : M` their "scalar multiplication `r • x : M` is defined, and
the operation `•` satisfies some natural associativity and distributivity axioms similar to those
on a ring.
## Implementation notes
In typical mathematical usage, our definition of `module` corresponds to "semimodule", and the
word "module" is reserved for `module R M` where `R` is a `ring` and `M` an `add_comm_group`.
If `R` is a `field` and `M` an `add_comm_group`, `M` would be called an `R`-vector space.
Since those assumptions can be made by changing the typeclasses applied to `R` and `M`,
without changing the axioms in `module`, mathlib calls everything a `module`.
In older versions of mathlib, we had separate `semimodule` and `vector_space` abbreviations.
This caused inference issues in some cases, while not providing any real advantages, so we decided
to use a canonical `module` typeclass throughout.
## Tags
semimodule, module, vector space
-/
open function
open_locale big_operators
universes u v
variables {α R k S M M₂ M₃ ι : Type*}
/-- A module is a generalization of vector spaces to a scalar semiring.
It consists of a scalar semiring `R` and an additive monoid of "vectors" `M`,
connected by a "scalar multiplication" operation `r • x : M`
(where `r : R` and `x : M`) with some natural associativity and
distributivity axioms similar to those on a ring. -/
@[ext, protect_proj] class module (R : Type u) (M : Type v) [semiring R]
[add_comm_monoid M] extends distrib_mul_action R M :=
(add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x)
(zero_smul : ∀x : M, (0 : R) • x = 0)
section add_comm_monoid
variables [semiring R] [add_comm_monoid M] [module R M] (r s : R) (x y : M)
/-- A module over a semiring automatically inherits a `mul_action_with_zero` structure. -/
@[priority 100] -- see Note [lower instance priority]
instance module.to_mul_action_with_zero :
mul_action_with_zero R M :=
{ smul_zero := smul_zero,
zero_smul := module.zero_smul,
..(infer_instance : mul_action R M) }
instance add_comm_monoid.nat_module : module ℕ M :=
{ one_smul := one_nsmul,
mul_smul := λ m n a, mul_nsmul a m n,
smul_add := λ n a b, nsmul_add a b n,
smul_zero := nsmul_zero,
zero_smul := zero_nsmul,
add_smul := λ r s x, add_nsmul x r s }
lemma add_monoid.End.nat_cast_def (n : ℕ) :
(↑n : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℕ M n := rfl
theorem add_smul : (r + s) • x = r • x + s • x := module.add_smul r s x
lemma convex.combo_self {a b : R} (h : a + b = 1) (x : M) : a • x + b • x = x :=
by rw [←add_smul, h, one_smul]
variables (R)
theorem two_smul : (2 : R) • x = x + x := by rw [bit0, add_smul, one_smul]
theorem two_smul' : (2 : R) • x = bit0 x := two_smul R x
@[simp] lemma inv_of_two_smul_add_inv_of_two_smul [invertible (2 : R)] (x : M) :
(⅟2 : R) • x + (⅟2 : R) • x = x :=
convex.combo_self inv_of_two_add_inv_of_two _
/-- Pullback a `module` structure along an injective additive monoid homomorphism.
See note [reducible non-instances]. -/
@[reducible]
protected def function.injective.module [add_comm_monoid M₂] [has_smul R M₂] (f : M₂ →+ M)
(hf : injective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) :
module R M₂ :=
{ smul := (•),
add_smul := λ c₁ c₂ x, hf $ by simp only [smul, f.map_add, add_smul],
zero_smul := λ x, hf $ by simp only [smul, zero_smul, f.map_zero],
.. hf.distrib_mul_action f smul }
/-- Pushforward a `module` structure along a surjective additive monoid homomorphism. -/
protected def function.surjective.module [add_comm_monoid M₂] [has_smul R M₂] (f : M →+ M₂)
(hf : surjective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) :
module R M₂ :=
{ smul := (•),
add_smul := λ c₁ c₂ x, by { rcases hf x with ⟨x, rfl⟩,
simp only [add_smul, ← smul, ← f.map_add] },
zero_smul := λ x, by { rcases hf x with ⟨x, rfl⟩, simp only [← f.map_zero, ← smul, zero_smul] },
.. hf.distrib_mul_action f smul }
/-- Push forward the action of `R` on `M` along a compatible surjective map `f : R →+* S`.
See also `function.surjective.mul_action_left` and `function.surjective.distrib_mul_action_left`.
-/
@[reducible]
def function.surjective.module_left {R S M : Type*} [semiring R] [add_comm_monoid M]
[module R M] [semiring S] [has_smul S M]
(f : R →+* S) (hf : function.surjective f) (hsmul : ∀ c (x : M), f c • x = c • x) :
module S M :=
{ smul := (•),
zero_smul := λ x, by rw [← f.map_zero, hsmul, zero_smul],
add_smul := hf.forall₂.mpr (λ a b x, by simp only [← f.map_add, hsmul, add_smul]),
.. hf.distrib_mul_action_left f.to_monoid_hom hsmul }
variables {R} (M)
/-- Compose a `module` with a `ring_hom`, with action `f s • m`.
See note [reducible non-instances]. -/
@[reducible] def module.comp_hom [semiring S] (f : S →+* R) :
module S M :=
{ smul := has_smul.comp.smul f,
add_smul := λ r s x, by simp [add_smul],
.. mul_action_with_zero.comp_hom M f.to_monoid_with_zero_hom,
.. distrib_mul_action.comp_hom M (f : S →* R) }
variables (R) (M)
/-- `(•)` as an `add_monoid_hom`.
This is a stronger version of `distrib_mul_action.to_add_monoid_End` -/
@[simps apply_apply]
def module.to_add_monoid_End : R →+* add_monoid.End M :=
{ map_zero' := add_monoid_hom.ext $ λ r, by simp,
map_add' := λ x y, add_monoid_hom.ext $ λ r, by simp [add_smul],
..distrib_mul_action.to_add_monoid_End R M }
/-- A convenience alias for `module.to_add_monoid_End` as an `add_monoid_hom`, usually to allow the
use of `add_monoid_hom.flip`. -/
def smul_add_hom : R →+ M →+ M :=
(module.to_add_monoid_End R M).to_add_monoid_hom
variables {R M}
@[simp] lemma smul_add_hom_apply (r : R) (x : M) :
smul_add_hom R M r x = r • x := rfl
lemma module.eq_zero_of_zero_eq_one (zero_eq_one : (0 : R) = 1) : x = 0 :=
by rw [←one_smul R x, ←zero_eq_one, zero_smul]
lemma list.sum_smul {l : list R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum :=
((smul_add_hom R M).flip x).map_list_sum l
lemma multiset.sum_smul {l : multiset R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum :=
((smul_add_hom R M).flip x).map_multiset_sum l
lemma finset.sum_smul {f : ι → R} {s : finset ι} {x : M} :
(∑ i in s, f i) • x = (∑ i in s, (f i) • x) :=
((smul_add_hom R M).flip x).map_sum f s
end add_comm_monoid
variables (R)
/-- An `add_comm_monoid` that is a `module` over a `ring` carries a natural `add_comm_group`
structure.
See note [reducible non-instances]. -/
@[reducible]
def module.add_comm_monoid_to_add_comm_group [ring R] [add_comm_monoid M] [module R M] :
add_comm_group M :=
{ neg := λ a, (-1 : R) • a,
add_left_neg := λ a, show (-1 : R) • a + a = 0, by
{ nth_rewrite 1 ← one_smul _ a,
rw [← add_smul, add_left_neg, zero_smul] },
..(infer_instance : add_comm_monoid M), }
variables {R}
section add_comm_group
variables (R M) [semiring R] [add_comm_group M]
instance add_comm_group.int_module : module ℤ M :=
{ one_smul := one_zsmul,
mul_smul := λ m n a, mul_zsmul a m n,
smul_add := λ n a b, zsmul_add a b n,
smul_zero := zsmul_zero,
zero_smul := zero_zsmul,
add_smul := λ r s x, add_zsmul x r s }
lemma add_monoid.End.int_cast_def (z : ℤ) :
(↑z : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℤ M z := rfl
/-- A structure containing most informations as in a module, except the fields `zero_smul`
and `smul_zero`. As these fields can be deduced from the other ones when `M` is an `add_comm_group`,
this provides a way to construct a module structure by checking less properties, in
`module.of_core`. -/
@[nolint has_nonempty_instance]
structure module.core extends has_smul R M :=
(smul_add : ∀(r : R) (x y : M), r • (x + y) = r • x + r • y)
(add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x)
(mul_smul : ∀(r s : R) (x : M), (r * s) • x = r • s • x)
(one_smul : ∀x : M, (1 : R) • x = x)
variables {R M}
/-- Define `module` without proving `zero_smul` and `smul_zero` by using an auxiliary
structure `module.core`, when the underlying space is an `add_comm_group`. -/
def module.of_core (H : module.core R M) : module R M :=
by letI := H.to_has_smul; exact
{ zero_smul := λ x, (add_monoid_hom.mk' (λ r : R, r • x) (λ r s, H.add_smul r s x)).map_zero,
smul_zero := λ r, (add_monoid_hom.mk' ((•) r) (H.smul_add r)).map_zero,
..H }
end add_comm_group
/-- A variant of `module.ext` that's convenient for term-mode. -/
-- We'll later use this to show `module ℕ M` and `module ℤ M` are subsingletons.
lemma module.ext' {R : Type*} [semiring R] {M : Type*} [add_comm_monoid M] (P Q : module R M)
(w : ∀ (r : R) (m : M), by { haveI := P, exact r • m } = by { haveI := Q, exact r • m }) :
P = Q :=
begin
ext,
exact w _ _
end
section module
variables [ring R] [add_comm_group M] [module R M] (r s : R) (x y : M)
@[simp] theorem neg_smul : -r • x = - (r • x) :=
eq_neg_of_add_eq_zero_left $ by rw [← add_smul, add_left_neg, zero_smul]
@[simp] lemma neg_smul_neg : -r • -x = r • x :=
by rw [neg_smul, smul_neg, neg_neg]
@[simp] theorem units.neg_smul (u : Rˣ) (x : M) : -u • x = - (u • x) :=
by rw [units.smul_def, units.coe_neg, neg_smul, units.smul_def]
variables (R)
theorem neg_one_smul (x : M) : (-1 : R) • x = -x := by simp
variables {R}
theorem sub_smul (r s : R) (y : M) : (r - s) • y = r • y - s • y :=
by simp [add_smul, sub_eq_add_neg]
end module
/-- A module over a `subsingleton` semiring is a `subsingleton`. We cannot register this
as an instance because Lean has no way to guess `R`. -/
protected theorem module.subsingleton (R M : Type*) [semiring R] [subsingleton R]
[add_comm_monoid M] [module R M] :
subsingleton M :=
⟨λ x y, by rw [← one_smul R x, ← one_smul R y, subsingleton.elim (1:R) 0, zero_smul, zero_smul]⟩
/-- A semiring is `nontrivial` provided that there exists a nontrivial module over this semiring. -/
protected theorem module.nontrivial (R M : Type*) [semiring R] [nontrivial M] [add_comm_monoid M]
[module R M] :
nontrivial R :=
(subsingleton_or_nontrivial R).resolve_left $ λ hR, not_subsingleton M $
by exactI module.subsingleton R M
@[priority 910] -- see Note [lower instance priority]
instance semiring.to_module [semiring R] : module R R :=
{ smul_add := mul_add,
add_smul := add_mul,
zero_smul := zero_mul,
smul_zero := mul_zero }
/-- Like `semiring.to_module`, but multiplies on the right. -/
@[priority 910] -- see Note [lower instance priority]
instance semiring.to_opposite_module [semiring R] : module Rᵐᵒᵖ R :=
{ smul_add := λ r x y, add_mul _ _ _,
add_smul := λ r x y, mul_add _ _ _,
..monoid_with_zero.to_opposite_mul_action_with_zero R}
/-- A ring homomorphism `f : R →+* M` defines a module structure by `r • x = f r * x`. -/
def ring_hom.to_module [semiring R] [semiring S] (f : R →+* S) : module R S :=
module.comp_hom S f
/-- The tautological action by `R →+* R` on `R`.
This generalizes `function.End.apply_mul_action`. -/
instance ring_hom.apply_distrib_mul_action [semiring R] : distrib_mul_action (R →+* R) R :=
{ smul := ($),
smul_zero := ring_hom.map_zero,
smul_add := ring_hom.map_add,
one_smul := λ _, rfl,
mul_smul := λ _ _ _, rfl }
@[simp] protected lemma ring_hom.smul_def [semiring R] (f : R →+* R) (a : R) :
f • a = f a := rfl
/-- `ring_hom.apply_distrib_mul_action` is faithful. -/
instance ring_hom.apply_has_faithful_smul [semiring R] : has_faithful_smul (R →+* R) R :=
⟨ring_hom.ext⟩
section add_comm_monoid
variables [semiring R] [add_comm_monoid M] [module R M]
section
variables (R)
/-- `nsmul` is equal to any other module structure via a cast. -/
lemma nsmul_eq_smul_cast (n : ℕ) (b : M) :
n • b = (n : R) • b :=
begin
induction n with n ih,
{ rw [nat.cast_zero, zero_smul, zero_smul] },
{ rw [nat.succ_eq_add_one, nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul], }
end
end
/-- Convert back any exotic `ℕ`-smul to the canonical instance. This should not be needed since in
mathlib all `add_comm_monoid`s should normally have exactly one `ℕ`-module structure by design.
-/
lemma nat_smul_eq_nsmul (h : module ℕ M) (n : ℕ) (x : M) :
@has_smul.smul ℕ M h.to_has_smul n x = n • x :=
by rw [nsmul_eq_smul_cast ℕ n x, nat.cast_id]
/-- All `ℕ`-module structures are equal. Not an instance since in mathlib all `add_comm_monoid`
should normally have exactly one `ℕ`-module structure by design. -/
def add_comm_monoid.nat_module.unique : unique (module ℕ M) :=
{ default := by apply_instance,
uniq := λ P, module.ext' P _ $ λ n, nat_smul_eq_nsmul P n }
instance add_comm_monoid.nat_is_scalar_tower :
is_scalar_tower ℕ R M :=
{ smul_assoc := λ n x y, nat.rec_on n
(by simp only [zero_smul])
(λ n ih, by simp only [nat.succ_eq_add_one, add_smul, one_smul, ih]) }
end add_comm_monoid
section add_comm_group
variables [semiring S] [ring R] [add_comm_group M] [module S M] [module R M]
section
variables (R)
/-- `zsmul` is equal to any other module structure via a cast. -/
lemma zsmul_eq_smul_cast (n : ℤ) (b : M) : n • b = (n : R) • b :=
have (smul_add_hom ℤ M).flip b = ((smul_add_hom R M).flip b).comp (int.cast_add_hom R),
by { ext, simp },
add_monoid_hom.congr_fun this n
end
/-- Convert back any exotic `ℤ`-smul to the canonical instance. This should not be needed since in
mathlib all `add_comm_group`s should normally have exactly one `ℤ`-module structure by design. -/
lemma int_smul_eq_zsmul (h : module ℤ M) (n : ℤ) (x : M) :
@has_smul.smul ℤ M h.to_has_smul n x = n • x :=
by rw [zsmul_eq_smul_cast ℤ n x, int.cast_id]
/-- All `ℤ`-module structures are equal. Not an instance since in mathlib all `add_comm_group`
should normally have exactly one `ℤ`-module structure by design. -/
def add_comm_group.int_module.unique : unique (module ℤ M) :=
{ default := by apply_instance,
uniq := λ P, module.ext' P _ $ λ n, int_smul_eq_zsmul P n }
end add_comm_group
lemma map_int_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F) (R S : Type*) [ring R] [ring S] [module R M] [module S M₂]
(x : ℤ) (a : M) : f ((x : R) • a) = (x : S) • f a :=
by simp only [←zsmul_eq_smul_cast, map_zsmul]
lemma map_nat_cast_smul [add_comm_monoid M] [add_comm_monoid M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F)
(R S : Type*) [semiring R] [semiring S] [module R M] [module S M₂] (x : ℕ) (a : M) :
f ((x : R) • a) = (x : S) • f a :=
by simp only [←nsmul_eq_smul_cast, map_nsmul]
lemma map_inv_int_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F)
(R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂]
(n : ℤ) (x : M) :
f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x :=
begin
by_cases hR : (n : R) = 0; by_cases hS : (n : S) = 0,
{ simp [hR, hS] },
{ suffices : ∀ y, f y = 0, by simp [this], clear x, intro x,
rw [← inv_smul_smul₀ hS (f x), ← map_int_cast_smul f R S], simp [hR] },
{ suffices : ∀ y, f y = 0, by simp [this], clear x, intro x,
rw [← smul_inv_smul₀ hR x, map_int_cast_smul f R S, hS, zero_smul] },
{ rw [← inv_smul_smul₀ hS (f _), ← map_int_cast_smul f R S, smul_inv_smul₀ hR] }
end
lemma map_inv_nat_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F)
(R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂]
(n : ℕ) (x : M) :
f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x :=
by exact_mod_cast map_inv_int_cast_smul f R S n x
lemma map_rat_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F)
(R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂]
(c : ℚ) (x : M) :
f ((c : R) • x) = (c : S) • f x :=
by rw [rat.cast_def, rat.cast_def, div_eq_mul_inv, div_eq_mul_inv, mul_smul, mul_smul,
map_int_cast_smul f R S, map_inv_nat_cast_smul f R S]
lemma map_rat_smul [add_comm_group M] [add_comm_group M₂] [module ℚ M] [module ℚ M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F) (c : ℚ) (x : M) :
f (c • x) = c • f x :=
rat.cast_id c ▸ map_rat_cast_smul f ℚ ℚ c x
/-- There can be at most one `module ℚ E` structure on an additive commutative group. This is not
an instance because `simp` becomes very slow if we have many `subsingleton` instances,
see [gh-6025]. -/
lemma subsingleton_rat_module (E : Type*) [add_comm_group E] : subsingleton (module ℚ E) :=
⟨λ P Q, module.ext' P Q $ λ r x,
@map_rat_smul _ _ _ _ P Q _ _ (add_monoid_hom.id E) r x⟩
/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications
agree on inverses of integer numbers in `R` and `S`. -/
lemma inv_int_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R]
[division_ring S] [module R E] [module S E] (n : ℤ) (x : E) :
(n⁻¹ : R) • x = (n⁻¹ : S) • x :=
map_inv_int_cast_smul (add_monoid_hom.id E) R S n x
/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications
agree on inverses of natural numbers in `R` and `S`. -/
lemma inv_nat_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R]
[division_ring S] [module R E] [module S E] (n : ℕ) (x : E) :
(n⁻¹ : R) • x = (n⁻¹ : S) • x :=
map_inv_nat_cast_smul (add_monoid_hom.id E) R S n x
/-- If `E` is a vector space over a division rings `R` and has a monoid action by `α`, then that
action commutes by scalar multiplication of inverses of integers in `R` -/
lemma inv_int_cast_smul_comm {α E : Type*} (R : Type*) [add_comm_group E] [division_ring R]
[monoid α] [module R E] [distrib_mul_action α E] (n : ℤ) (s : α) (x : E) :
(n⁻¹ : R) • s • x = s • (n⁻¹ : R) • x :=
(map_inv_int_cast_smul (distrib_mul_action.to_add_monoid_hom E s) R R n x).symm
/-- If `E` is a vector space over a division rings `R` and has a monoid action by `α`, then that
action commutes by scalar multiplication of inverses of natural numbers in `R`. -/
lemma inv_nat_cast_smul_comm {α E : Type*} (R : Type*) [add_comm_group E] [division_ring R]
[monoid α] [module R E] [distrib_mul_action α E] (n : ℕ) (s : α) (x : E) :
(n⁻¹ : R) • s • x = s • (n⁻¹ : R) • x :=
(map_inv_nat_cast_smul (distrib_mul_action.to_add_monoid_hom E s) R R n x).symm
/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications
agree on rational numbers in `R` and `S`. -/
lemma rat_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R]
[division_ring S] [module R E] [module S E] (r : ℚ) (x : E) :
(r : R) • x = (r : S) • x :=
map_rat_cast_smul (add_monoid_hom.id E) R S r x
instance add_comm_group.int_is_scalar_tower {R : Type u} {M : Type v} [ring R] [add_comm_group M]
[module R M]: is_scalar_tower ℤ R M :=
{ smul_assoc := λ n x y, ((smul_add_hom R M).flip y).map_zsmul x n }
instance is_scalar_tower.rat {R : Type u} {M : Type v} [ring R] [add_comm_group M]
[module R M] [module ℚ R] [module ℚ M] : is_scalar_tower ℚ R M :=
{ smul_assoc := λ r x y, map_rat_smul ((smul_add_hom R M).flip y) r x }
instance smul_comm_class.rat {R : Type u} {M : Type v} [semiring R] [add_comm_group M]
[module R M] [module ℚ M] : smul_comm_class ℚ R M :=
{ smul_comm := λ r x y, (map_rat_smul (smul_add_hom R M x) r y).symm }
instance smul_comm_class.rat' {R : Type u} {M : Type v} [semiring R] [add_comm_group M]
[module R M] [module ℚ M] : smul_comm_class R ℚ M :=
smul_comm_class.symm _ _ _
section no_zero_smul_divisors
/-! ### `no_zero_smul_divisors`
This section defines the `no_zero_smul_divisors` class, and includes some tests
for the vanishing of elements (especially in modules over division rings).
-/
/-- `no_zero_smul_divisors R M` states that a scalar multiple is `0` only if either argument is `0`.
This a version of saying that `M` is torsion free, without assuming `R` is zero-divisor free.
The main application of `no_zero_smul_divisors R M`, when `M` is a module,
is the result `smul_eq_zero`: a scalar multiple is `0` iff either argument is `0`.
It is a generalization of the `no_zero_divisors` class to heterogeneous multiplication.
-/
class no_zero_smul_divisors (R M : Type*) [has_zero R] [has_zero M] [has_smul R M] : Prop :=
(eq_zero_or_eq_zero_of_smul_eq_zero : ∀ {c : R} {x : M}, c • x = 0 → c = 0 ∨ x = 0)
export no_zero_smul_divisors (eq_zero_or_eq_zero_of_smul_eq_zero)
/-- Pullback a `no_zero_smul_divisors` instance along an injective function. -/
lemma function.injective.no_zero_smul_divisors {R M N : Type*} [has_zero R] [has_zero M]
[has_zero N] [has_smul R M] [has_smul R N] [no_zero_smul_divisors R N] (f : M → N)
(hf : function.injective f) (h0 : f 0 = 0) (hs : ∀ (c : R) (x : M), f (c • x) = c • f x) :
no_zero_smul_divisors R M :=
⟨λ c m h,
or.imp_right (@hf _ _) $ h0.symm ▸ eq_zero_or_eq_zero_of_smul_eq_zero (by rw [←hs, h, h0])⟩
@[priority 100] -- See note [lower instance priority]
instance no_zero_divisors.to_no_zero_smul_divisors [has_zero R] [has_mul R] [no_zero_divisors R] :
no_zero_smul_divisors R R :=
⟨λ c x, eq_zero_or_eq_zero_of_mul_eq_zero⟩
section module
variables [semiring R] [add_comm_monoid M] [module R M]
@[simp]
theorem smul_eq_zero [no_zero_smul_divisors R M] {c : R} {x : M} :
c • x = 0 ↔ c = 0 ∨ x = 0 :=
⟨eq_zero_or_eq_zero_of_smul_eq_zero,
λ h, h.elim (λ h, h.symm ▸ zero_smul R x) (λ h, h.symm ▸ smul_zero c)⟩
theorem smul_ne_zero [no_zero_smul_divisors R M] {c : R} {x : M} :
c • x ≠ 0 ↔ c ≠ 0 ∧ x ≠ 0 :=
by simp only [ne.def, smul_eq_zero, not_or_distrib]
section nat
variables (R) (M) [no_zero_smul_divisors R M] [char_zero R]
include R
lemma nat.no_zero_smul_divisors : no_zero_smul_divisors ℕ M :=
⟨by { intros c x, rw [nsmul_eq_smul_cast R, smul_eq_zero], simp }⟩
@[simp] lemma two_nsmul_eq_zero {v : M} : 2 • v = 0 ↔ v = 0 :=
by { haveI := nat.no_zero_smul_divisors R M, simp [smul_eq_zero] }
end nat
variables (R M)
/-- If `M` is an `R`-module with one and `M` has characteristic zero, then `R` has characteristic
zero as well. Usually `M` is an `R`-algebra. -/
lemma char_zero.of_module (M) [add_comm_monoid_with_one M] [char_zero M] [module R M] :
char_zero R :=
begin
refine ⟨λ m n h, @nat.cast_injective M _ _ _ _ _⟩,
rw [← nsmul_one, ← nsmul_one, nsmul_eq_smul_cast R m (1 : M), nsmul_eq_smul_cast R n (1 : M), h]
end
end module
section add_comm_group -- `R` can still be a semiring here
variables [semiring R] [add_comm_group M] [module R M]
section smul_injective
variables (M)
lemma smul_right_injective [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) :
function.injective ((•) c : M → M) :=
(injective_iff_map_eq_zero (smul_add_hom R M c)).2 $ λ a ha, (smul_eq_zero.mp ha).resolve_left hc
variables {M}
lemma smul_right_inj [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) {x y : M} :
c • x = c • y ↔ x = y :=
(smul_right_injective M hc).eq_iff
end smul_injective
section nat
variables (R M) [no_zero_smul_divisors R M] [char_zero R]
include R
lemma self_eq_neg {v : M} : v = - v ↔ v = 0 :=
by rw [← two_nsmul_eq_zero R M, two_smul, add_eq_zero_iff_eq_neg]
lemma neg_eq_self {v : M} : - v = v ↔ v = 0 :=
by rw [eq_comm, self_eq_neg R M]
lemma self_ne_neg {v : M} : v ≠ -v ↔ v ≠ 0 :=
(self_eq_neg R M).not
lemma neg_ne_self {v : M} : -v ≠ v ↔ v ≠ 0 :=
(neg_eq_self R M).not
end nat
end add_comm_group
section module
variables [ring R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M]
section smul_injective
variables (R)
lemma smul_left_injective {x : M} (hx : x ≠ 0) :
function.injective (λ (c : R), c • x) :=
λ c d h, sub_eq_zero.mp ((smul_eq_zero.mp
(calc (c - d) • x = c • x - d • x : sub_smul c d x
... = 0 : sub_eq_zero.mpr h)).resolve_right hx)
end smul_injective
end module
section division_ring
variables [division_ring R] [add_comm_group M] [module R M]
@[priority 100] -- see note [lower instance priority]
instance division_ring.to_no_zero_smul_divisors : no_zero_smul_divisors R M :=
⟨λ c x h, or_iff_not_imp_left.2 $ λ hc, (smul_eq_zero_iff_eq' hc).1 h⟩
end division_ring
end no_zero_smul_divisors
@[simp] lemma nat.smul_one_eq_coe {R : Type*} [semiring R] (m : ℕ) :
m • (1 : R) = ↑m :=
by rw [nsmul_eq_mul, mul_one]
@[simp] lemma int.smul_one_eq_coe {R : Type*} [ring R] (m : ℤ) :
m • (1 : R) = ↑m :=
by rw [zsmul_eq_mul, mul_one]
lemma finset.cast_card [comm_semiring R] (s : finset α) : (s.card : R) = ∑ a in s, 1 :=
by rw [finset.sum_const, nat.smul_one_eq_coe]
|