Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 25,477 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
4365a98
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/-
Copyright (c) 2015 Nathaniel Thomas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro
-/
import algebra.big_operators.basic
import algebra.smul_with_zero
import data.rat.cast
import group_theory.group_action.big_operators
import group_theory.group_action.group

/-!
# Modules over a ring

In this file we define

* `module R M` : an additive commutative monoid `M` is a `module` over a
  `semiring R` if for `r : R` and `x : M` their "scalar multiplication `r • x : M` is defined, and
  the operation `•` satisfies some natural associativity and distributivity axioms similar to those
  on a ring.

## Implementation notes

In typical mathematical usage, our definition of `module` corresponds to "semimodule", and the
word "module" is reserved for `module R M` where `R` is a `ring` and `M` an `add_comm_group`.
If `R` is a `field` and `M` an `add_comm_group`, `M` would be called an `R`-vector space.
Since those assumptions can be made by changing the typeclasses applied to `R` and `M`,
without changing the axioms in `module`, mathlib calls everything a `module`.

In older versions of mathlib, we had separate `semimodule` and `vector_space` abbreviations.
This caused inference issues in some cases, while not providing any real advantages, so we decided
to use a canonical `module` typeclass throughout.

## Tags

semimodule, module, vector space
-/

open function
open_locale big_operators

universes u v
variables {α R k S M M₂ M₃ ι : Type*}

/-- A module is a generalization of vector spaces to a scalar semiring.
  It consists of a scalar semiring `R` and an additive monoid of "vectors" `M`,
  connected by a "scalar multiplication" operation `r • x : M`
  (where `r : R` and `x : M`) with some natural associativity and
  distributivity axioms similar to those on a ring. -/
@[ext, protect_proj] class module (R : Type u) (M : Type v) [semiring R]
  [add_comm_monoid M] extends distrib_mul_action R M :=
(add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x)
(zero_smul : ∀x : M, (0 : R) • x = 0)

section add_comm_monoid
variables [semiring R] [add_comm_monoid M] [module R M] (r s : R) (x y : M)

/-- A module over a semiring automatically inherits a `mul_action_with_zero` structure. -/
@[priority 100] -- see Note [lower instance priority]
instance module.to_mul_action_with_zero :
  mul_action_with_zero R M :=
{ smul_zero := smul_zero,
  zero_smul := module.zero_smul,
  ..(infer_instance : mul_action R M) }

instance add_comm_monoid.nat_module : module ℕ M :=
{ one_smul := one_nsmul,
  mul_smul := λ m n a, mul_nsmul a m n,
  smul_add := λ n a b, nsmul_add a b n,
  smul_zero := nsmul_zero,
  zero_smul := zero_nsmul,
  add_smul := λ r s x, add_nsmul x r s }

lemma add_monoid.End.nat_cast_def (n : ℕ) :
  (↑n : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℕ M n := rfl

theorem add_smul : (r + s) • x = r • x + s • x := module.add_smul r s x

lemma convex.combo_self {a b : R} (h : a + b = 1) (x : M) : a • x + b • x = x :=
by rw [←add_smul, h, one_smul]

variables (R)

theorem two_smul : (2 : R) • x = x + x := by rw [bit0, add_smul, one_smul]

theorem two_smul' : (2 : R) • x = bit0 x := two_smul R x

@[simp] lemma inv_of_two_smul_add_inv_of_two_smul [invertible (2 : R)] (x : M) :
  (⅟2 : R) • x + (⅟2 : R) • x = x :=
convex.combo_self inv_of_two_add_inv_of_two _

/-- Pullback a `module` structure along an injective additive monoid homomorphism.
See note [reducible non-instances]. -/
@[reducible]
protected def function.injective.module [add_comm_monoid M₂] [has_smul R M₂] (f : M₂ →+ M)
  (hf : injective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) :
  module R M₂ :=
{ smul := (•),
  add_smul := λ c₁ c₂ x, hf $ by simp only [smul, f.map_add, add_smul],
  zero_smul := λ x, hf $ by simp only [smul, zero_smul, f.map_zero],
  .. hf.distrib_mul_action f smul }

/-- Pushforward a `module` structure along a surjective additive monoid homomorphism. -/
protected def function.surjective.module [add_comm_monoid M₂] [has_smul R M₂] (f : M →+ M₂)
  (hf : surjective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) :
  module R M₂ :=
{ smul := (•),
  add_smul := λ c₁ c₂ x, by { rcases hf x with ⟨x, rfl⟩,
    simp only [add_smul, ← smul, ← f.map_add] },
  zero_smul := λ x, by { rcases hf x with ⟨x, rfl⟩, simp only [← f.map_zero, ← smul, zero_smul] },
  .. hf.distrib_mul_action f smul }

/-- Push forward the action of `R` on `M` along a compatible surjective map `f : R →+* S`.

See also `function.surjective.mul_action_left` and `function.surjective.distrib_mul_action_left`.
-/
@[reducible]
def function.surjective.module_left {R S M : Type*} [semiring R] [add_comm_monoid M]
  [module R M] [semiring S] [has_smul S M]
  (f : R →+* S) (hf : function.surjective f) (hsmul : ∀ c (x : M), f c • x = c • x) :
  module S M :=
{ smul := (•),
  zero_smul := λ x, by rw [← f.map_zero, hsmul, zero_smul],
  add_smul := hf.forall₂.mpr (λ a b x, by simp only [← f.map_add, hsmul, add_smul]),
  .. hf.distrib_mul_action_left f.to_monoid_hom hsmul }

variables {R} (M)

/-- Compose a `module` with a `ring_hom`, with action `f s • m`.

See note [reducible non-instances]. -/
@[reducible] def module.comp_hom [semiring S] (f : S →+* R) :
  module S M :=
{ smul := has_smul.comp.smul f,
  add_smul := λ r s x, by simp [add_smul],
  .. mul_action_with_zero.comp_hom M f.to_monoid_with_zero_hom,
  .. distrib_mul_action.comp_hom M (f : S →* R) }

variables (R) (M)

/-- `(•)` as an `add_monoid_hom`.

This is a stronger version of `distrib_mul_action.to_add_monoid_End` -/
@[simps apply_apply]
def module.to_add_monoid_End : R →+* add_monoid.End M :=
{ map_zero' := add_monoid_hom.ext $ λ r, by simp,
  map_add' := λ x y, add_monoid_hom.ext $ λ r, by simp [add_smul],
  ..distrib_mul_action.to_add_monoid_End R M }

/-- A convenience alias for `module.to_add_monoid_End` as an `add_monoid_hom`, usually to allow the
use of `add_monoid_hom.flip`. -/
def smul_add_hom : R →+ M →+ M :=
(module.to_add_monoid_End R M).to_add_monoid_hom

variables {R M}

@[simp] lemma smul_add_hom_apply (r : R) (x : M) :
  smul_add_hom R M r x = r • x := rfl

lemma module.eq_zero_of_zero_eq_one (zero_eq_one : (0 : R) = 1) : x = 0 :=
by rw [←one_smul R x, ←zero_eq_one, zero_smul]

lemma list.sum_smul {l : list R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum :=
((smul_add_hom R M).flip x).map_list_sum l

lemma multiset.sum_smul {l : multiset R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum :=
((smul_add_hom R M).flip x).map_multiset_sum l

lemma finset.sum_smul {f : ι → R} {s : finset ι} {x : M} :
  (∑ i in s, f i) • x = (∑ i in s, (f i) • x) :=
((smul_add_hom R M).flip x).map_sum f s

end add_comm_monoid

variables (R)

/-- An `add_comm_monoid` that is a `module` over a `ring` carries a natural `add_comm_group`
structure.
See note [reducible non-instances]. -/
@[reducible]
def module.add_comm_monoid_to_add_comm_group [ring R] [add_comm_monoid M] [module R M] :
  add_comm_group M :=
{ neg          := λ a, (-1 : R) • a,
  add_left_neg := λ a, show (-1 : R) • a + a = 0, by
  { nth_rewrite 1 ← one_smul _ a,
    rw [← add_smul, add_left_neg, zero_smul] },
  ..(infer_instance : add_comm_monoid M), }

variables {R}

section add_comm_group

variables (R M) [semiring R] [add_comm_group M]

instance add_comm_group.int_module : module ℤ M :=
{ one_smul := one_zsmul,
  mul_smul := λ m n a, mul_zsmul a m n,
  smul_add := λ n a b, zsmul_add a b n,
  smul_zero := zsmul_zero,
  zero_smul := zero_zsmul,
  add_smul := λ r s x, add_zsmul x r s }

lemma add_monoid.End.int_cast_def (z : ℤ) :
  (↑z : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℤ M z := rfl

/-- A structure containing most informations as in a module, except the fields `zero_smul`
and `smul_zero`. As these fields can be deduced from the other ones when `M` is an `add_comm_group`,
this provides a way to construct a module structure by checking less properties, in
`module.of_core`. -/
@[nolint has_nonempty_instance]
structure module.core extends has_smul R M :=
(smul_add : ∀(r : R) (x y : M), r • (x + y) = r • x + r • y)
(add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x)
(mul_smul : ∀(r s : R) (x : M), (r * s) • x = r • s • x)
(one_smul : ∀x : M, (1 : R) • x = x)

variables {R M}

/-- Define `module` without proving `zero_smul` and `smul_zero` by using an auxiliary
structure `module.core`, when the underlying space is an `add_comm_group`. -/
def module.of_core (H : module.core R M) : module R M :=
by letI := H.to_has_smul; exact
{ zero_smul := λ x, (add_monoid_hom.mk' (λ r : R, r • x) (λ r s, H.add_smul r s x)).map_zero,
  smul_zero := λ r, (add_monoid_hom.mk' ((•) r) (H.smul_add r)).map_zero,
  ..H }

end add_comm_group

/-- A variant of `module.ext` that's convenient for term-mode. -/
-- We'll later use this to show `module ℕ M` and `module ℤ M` are subsingletons.
lemma module.ext' {R : Type*} [semiring R] {M : Type*} [add_comm_monoid M] (P Q : module R M)
  (w : ∀ (r : R) (m : M), by { haveI := P, exact r • m } = by { haveI := Q, exact r • m }) :
  P = Q :=
begin
  ext,
  exact w _ _
end

section module
variables [ring R] [add_comm_group M] [module R M] (r s : R) (x y : M)

@[simp] theorem neg_smul : -r • x = - (r • x) :=
eq_neg_of_add_eq_zero_left $ by rw [← add_smul, add_left_neg, zero_smul]

@[simp] lemma neg_smul_neg : -r • -x = r • x :=
by rw [neg_smul, smul_neg, neg_neg]

@[simp] theorem units.neg_smul (u : Rˣ) (x : M) : -u • x = - (u • x) :=
by rw [units.smul_def, units.coe_neg, neg_smul, units.smul_def]

variables (R)
theorem neg_one_smul (x : M) : (-1 : R) • x = -x := by simp
variables {R}

theorem sub_smul (r s : R) (y : M) : (r - s) • y = r • y - s • y :=
by simp [add_smul, sub_eq_add_neg]

end module

/-- A module over a `subsingleton` semiring is a `subsingleton`. We cannot register this
as an instance because Lean has no way to guess `R`. -/
protected theorem module.subsingleton (R M : Type*) [semiring R] [subsingleton R]
  [add_comm_monoid M] [module R M] :
  subsingleton M :=
⟨λ x y, by rw [← one_smul R x, ← one_smul R y, subsingleton.elim (1:R) 0, zero_smul, zero_smul]⟩

/-- A semiring is `nontrivial` provided that there exists a nontrivial module over this semiring. -/
protected theorem module.nontrivial (R M : Type*) [semiring R] [nontrivial M] [add_comm_monoid M]
  [module R M] :
  nontrivial R :=
(subsingleton_or_nontrivial R).resolve_left $ λ hR, not_subsingleton M $
  by exactI module.subsingleton R M

@[priority 910] -- see Note [lower instance priority]
instance semiring.to_module [semiring R] : module R R :=
{ smul_add := mul_add,
  add_smul := add_mul,
  zero_smul := zero_mul,
  smul_zero := mul_zero }

/-- Like `semiring.to_module`, but multiplies on the right. -/
@[priority 910] -- see Note [lower instance priority]
instance semiring.to_opposite_module [semiring R] : module Rᵐᵒᵖ R :=
{ smul_add := λ r x y, add_mul _ _ _,
  add_smul := λ r x y, mul_add _ _ _,
  ..monoid_with_zero.to_opposite_mul_action_with_zero R}

/-- A ring homomorphism `f : R →+* M` defines a module structure by `r • x = f r * x`. -/
def ring_hom.to_module [semiring R] [semiring S] (f : R →+* S) : module R S :=
module.comp_hom S f

/-- The tautological action by `R →+* R` on `R`.

This generalizes `function.End.apply_mul_action`. -/
instance ring_hom.apply_distrib_mul_action [semiring R] : distrib_mul_action (R →+* R) R :=
{ smul := ($),
  smul_zero := ring_hom.map_zero,
  smul_add := ring_hom.map_add,
  one_smul := λ _, rfl,
  mul_smul := λ _ _ _, rfl }

@[simp] protected lemma ring_hom.smul_def [semiring R] (f : R →+* R) (a : R) :
  f • a = f a := rfl

/-- `ring_hom.apply_distrib_mul_action` is faithful. -/
instance ring_hom.apply_has_faithful_smul [semiring R] : has_faithful_smul (R →+* R) R :=
⟨ring_hom.ext⟩

section add_comm_monoid

variables [semiring R] [add_comm_monoid M] [module R M]

section
variables (R)
/-- `nsmul` is equal to any other module structure via a cast. -/
lemma nsmul_eq_smul_cast (n : ℕ) (b : M) :
  n • b = (n : R) • b :=
begin
  induction n with n ih,
  { rw [nat.cast_zero, zero_smul, zero_smul] },
  { rw [nat.succ_eq_add_one, nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul], }
end
end

/-- Convert back any exotic `ℕ`-smul to the canonical instance. This should not be needed since in
mathlib all `add_comm_monoid`s should normally have exactly one `ℕ`-module structure by design.
-/
lemma nat_smul_eq_nsmul (h : module ℕ M) (n : ℕ) (x : M) :
  @has_smul.smul ℕ M h.to_has_smul n x = n • x :=
by rw [nsmul_eq_smul_cast ℕ n x, nat.cast_id]

/-- All `ℕ`-module structures are equal. Not an instance since in mathlib all `add_comm_monoid`
should normally have exactly one `ℕ`-module structure by design. -/
def add_comm_monoid.nat_module.unique : unique (module ℕ M) :=
{ default := by apply_instance,
  uniq := λ P, module.ext' P _ $ λ n, nat_smul_eq_nsmul P n }

instance add_comm_monoid.nat_is_scalar_tower :
  is_scalar_tower ℕ R M :=
{ smul_assoc := λ n x y, nat.rec_on n
    (by simp only [zero_smul])
    (λ n ih, by simp only [nat.succ_eq_add_one, add_smul, one_smul, ih]) }

end add_comm_monoid

section add_comm_group

variables [semiring S] [ring R] [add_comm_group M] [module S M] [module R M]

section
variables (R)
/-- `zsmul` is equal to any other module structure via a cast. -/
lemma zsmul_eq_smul_cast (n : ℤ) (b : M) : n • b = (n : R) • b :=
have (smul_add_hom ℤ M).flip b = ((smul_add_hom R M).flip b).comp (int.cast_add_hom R),
  by { ext, simp },
add_monoid_hom.congr_fun this n
end

/-- Convert back any exotic `ℤ`-smul to the canonical instance. This should not be needed since in
mathlib all `add_comm_group`s should normally have exactly one `ℤ`-module structure by design. -/
lemma int_smul_eq_zsmul (h : module ℤ M) (n : ℤ) (x : M) :
  @has_smul.smul ℤ M h.to_has_smul n x = n • x :=
by rw [zsmul_eq_smul_cast ℤ n x, int.cast_id]

/-- All `ℤ`-module structures are equal. Not an instance since in mathlib all `add_comm_group`
should normally have exactly one `ℤ`-module structure by design. -/
def add_comm_group.int_module.unique : unique (module ℤ M) :=
{ default := by apply_instance,
  uniq := λ P, module.ext' P _ $ λ n, int_smul_eq_zsmul P n }

end add_comm_group

lemma map_int_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
  [add_monoid_hom_class F M M₂] (f : F) (R S : Type*) [ring R] [ring S] [module R M] [module S M₂]
  (x : ℤ) (a : M) : f ((x : R) • a) = (x : S) • f a :=
by simp only [←zsmul_eq_smul_cast, map_zsmul]

lemma map_nat_cast_smul [add_comm_monoid M] [add_comm_monoid M₂] {F : Type*}
  [add_monoid_hom_class F M M₂] (f : F)
  (R S : Type*) [semiring R] [semiring S] [module R M] [module S M₂] (x : ℕ) (a : M) :
  f ((x : R) • a) = (x : S) • f a :=
by simp only [←nsmul_eq_smul_cast, map_nsmul]

lemma map_inv_int_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
  [add_monoid_hom_class F M M₂] (f : F)
  (R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂]
  (n : ℤ) (x : M) :
  f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x :=
begin
  by_cases hR : (n : R) = 0; by_cases hS : (n : S) = 0,
  { simp [hR, hS] },
  { suffices : ∀ y, f y = 0, by simp [this], clear x, intro x,
    rw [← inv_smul_smul₀ hS (f x), ← map_int_cast_smul f R S], simp [hR] },
  { suffices : ∀ y, f y = 0, by simp [this], clear x, intro x,
    rw [← smul_inv_smul₀ hR x, map_int_cast_smul f R S, hS, zero_smul] },
  { rw [← inv_smul_smul₀ hS (f _), ← map_int_cast_smul f R S, smul_inv_smul₀ hR] }
end

lemma map_inv_nat_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
  [add_monoid_hom_class F M M₂] (f : F)
  (R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂]
  (n : ℕ) (x : M) :
  f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x :=
by exact_mod_cast map_inv_int_cast_smul f R S n x

lemma map_rat_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
  [add_monoid_hom_class F M M₂] (f : F)
  (R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂]
  (c : ℚ) (x : M) :
  f ((c : R) • x) = (c : S) • f x :=
by rw [rat.cast_def, rat.cast_def, div_eq_mul_inv, div_eq_mul_inv, mul_smul, mul_smul,
  map_int_cast_smul f R S, map_inv_nat_cast_smul f R S]

lemma map_rat_smul [add_comm_group M] [add_comm_group M₂] [module ℚ M] [module ℚ M₂] {F : Type*}
  [add_monoid_hom_class F M M₂] (f : F) (c : ℚ) (x : M) :
  f (c • x) = c • f x :=
rat.cast_id c ▸ map_rat_cast_smul f ℚ ℚ c x

/-- There can be at most one `module ℚ E` structure on an additive commutative group. This is not
an instance because `simp` becomes very slow if we have many `subsingleton` instances,
see [gh-6025]. -/
lemma subsingleton_rat_module (E : Type*) [add_comm_group E] : subsingleton (module ℚ E) :=
⟨λ P Q, module.ext' P Q $ λ r x,
  @map_rat_smul _ _ _ _ P Q _ _ (add_monoid_hom.id E) r x⟩

/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications
agree on inverses of integer numbers in `R` and `S`. -/
lemma inv_int_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R]
  [division_ring S] [module R E] [module S E] (n : ℤ) (x : E) :
  (n⁻¹ : R) • x = (n⁻¹ : S) • x :=
map_inv_int_cast_smul (add_monoid_hom.id E) R S n x

/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications
agree on inverses of natural numbers in `R` and `S`. -/
lemma inv_nat_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R]
  [division_ring S] [module R E] [module S E] (n : ℕ) (x : E) :
  (n⁻¹ : R) • x = (n⁻¹ : S) • x :=
map_inv_nat_cast_smul (add_monoid_hom.id E) R S n x

/-- If `E` is a vector space over a division rings `R` and has a monoid action by `α`, then that
action commutes by scalar multiplication of inverses of integers in `R` -/
lemma inv_int_cast_smul_comm {α E : Type*} (R : Type*) [add_comm_group E] [division_ring R]
  [monoid α] [module R E] [distrib_mul_action α E] (n : ℤ) (s : α) (x : E) :
  (n⁻¹ : R) • s • x = s • (n⁻¹ : R) • x :=
(map_inv_int_cast_smul (distrib_mul_action.to_add_monoid_hom E s) R R n x).symm

/-- If `E` is a vector space over a division rings `R` and has a monoid action by `α`, then that
action commutes by scalar multiplication of inverses of natural numbers in `R`. -/
lemma inv_nat_cast_smul_comm {α E : Type*} (R : Type*) [add_comm_group E] [division_ring R]
  [monoid α] [module R E] [distrib_mul_action α E] (n : ℕ) (s : α) (x : E) :
  (n⁻¹ : R) • s • x = s • (n⁻¹ : R) • x :=
(map_inv_nat_cast_smul (distrib_mul_action.to_add_monoid_hom E s) R R n x).symm

/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications
agree on rational numbers in `R` and `S`. -/
lemma rat_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R]
  [division_ring S] [module R E] [module S E] (r : ℚ) (x : E) :
  (r : R) • x = (r : S) • x :=
map_rat_cast_smul (add_monoid_hom.id E) R S r x

instance add_comm_group.int_is_scalar_tower {R : Type u} {M : Type v} [ring R] [add_comm_group M]
  [module R M]: is_scalar_tower ℤ R M :=
{ smul_assoc := λ n x y, ((smul_add_hom R M).flip y).map_zsmul x n }

instance is_scalar_tower.rat {R : Type u} {M : Type v} [ring R] [add_comm_group M]
  [module R M] [module ℚ R] [module ℚ M] : is_scalar_tower ℚ R M :=
{ smul_assoc := λ r x y, map_rat_smul ((smul_add_hom R M).flip y) r x }

instance smul_comm_class.rat {R : Type u} {M : Type v} [semiring R] [add_comm_group M]
  [module R M] [module ℚ M] : smul_comm_class ℚ R M :=
{ smul_comm := λ r x y, (map_rat_smul (smul_add_hom R M x) r y).symm }

instance smul_comm_class.rat' {R : Type u} {M : Type v} [semiring R] [add_comm_group M]
  [module R M] [module ℚ M] : smul_comm_class R ℚ M :=
smul_comm_class.symm _ _ _

section no_zero_smul_divisors
/-! ### `no_zero_smul_divisors`

This section defines the `no_zero_smul_divisors` class, and includes some tests
for the vanishing of elements (especially in modules over division rings).
-/

/-- `no_zero_smul_divisors R M` states that a scalar multiple is `0` only if either argument is `0`.
This a version of saying that `M` is torsion free, without assuming `R` is zero-divisor free.

The main application of `no_zero_smul_divisors R M`, when `M` is a module,
is the result `smul_eq_zero`: a scalar multiple is `0` iff either argument is `0`.

It is a generalization of the `no_zero_divisors` class to heterogeneous multiplication.
-/
class no_zero_smul_divisors (R M : Type*) [has_zero R] [has_zero M] [has_smul R M] : Prop :=
(eq_zero_or_eq_zero_of_smul_eq_zero : ∀ {c : R} {x : M}, c • x = 0 → c = 0 ∨ x = 0)

export no_zero_smul_divisors (eq_zero_or_eq_zero_of_smul_eq_zero)

/-- Pullback a `no_zero_smul_divisors` instance along an injective function. -/
lemma function.injective.no_zero_smul_divisors {R M N : Type*} [has_zero R] [has_zero M]
  [has_zero N] [has_smul R M] [has_smul R N] [no_zero_smul_divisors R N] (f : M → N)
  (hf : function.injective f) (h0 : f 0 = 0) (hs : ∀ (c : R) (x : M), f (c • x) = c • f x) :
  no_zero_smul_divisors R M :=
⟨λ c m h,
  or.imp_right (@hf _ _) $ h0.symm ▸ eq_zero_or_eq_zero_of_smul_eq_zero (by rw [←hs, h, h0])⟩

@[priority 100] -- See note [lower instance priority]
instance no_zero_divisors.to_no_zero_smul_divisors [has_zero R] [has_mul R] [no_zero_divisors R] :
  no_zero_smul_divisors R R :=
⟨λ c x, eq_zero_or_eq_zero_of_mul_eq_zero⟩

section module

variables [semiring R] [add_comm_monoid M] [module R M]

@[simp]
theorem smul_eq_zero [no_zero_smul_divisors R M] {c : R} {x : M} :
  c • x = 0 ↔ c = 0 ∨ x = 0 :=
⟨eq_zero_or_eq_zero_of_smul_eq_zero,
 λ h, h.elim (λ h, h.symm ▸ zero_smul R x) (λ h, h.symm ▸ smul_zero c)⟩

theorem smul_ne_zero [no_zero_smul_divisors R M] {c : R} {x : M} :
  c • x ≠ 0 ↔ c ≠ 0 ∧ x ≠ 0 :=
by simp only [ne.def, smul_eq_zero, not_or_distrib]

section nat

variables (R) (M) [no_zero_smul_divisors R M] [char_zero R]
include R

lemma nat.no_zero_smul_divisors : no_zero_smul_divisors ℕ M :=
⟨by { intros c x, rw [nsmul_eq_smul_cast R, smul_eq_zero], simp }⟩

@[simp] lemma two_nsmul_eq_zero {v : M} : 2 • v = 0 ↔ v = 0 :=
by { haveI := nat.no_zero_smul_divisors R M, simp [smul_eq_zero] }

end nat

variables (R M)

/-- If `M` is an `R`-module with one and `M` has characteristic zero, then `R` has characteristic
zero as well. Usually `M` is an `R`-algebra. -/
lemma char_zero.of_module (M) [add_comm_monoid_with_one M] [char_zero M] [module R M] :
  char_zero R :=
begin
  refine ⟨λ m n h, @nat.cast_injective M _ _ _ _ _⟩,
  rw [← nsmul_one, ← nsmul_one, nsmul_eq_smul_cast R m (1 : M), nsmul_eq_smul_cast R n (1 : M), h]
end

end module

section add_comm_group -- `R` can still be a semiring here

variables [semiring R] [add_comm_group M] [module R M]

section smul_injective

variables (M)

lemma smul_right_injective [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) :
  function.injective ((•) c : M → M) :=
(injective_iff_map_eq_zero (smul_add_hom R M c)).2 $ λ a ha, (smul_eq_zero.mp ha).resolve_left hc

variables {M}

lemma smul_right_inj [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) {x y : M} :
  c • x = c • y ↔ x = y :=
(smul_right_injective M hc).eq_iff

end smul_injective

section nat

variables (R M) [no_zero_smul_divisors R M] [char_zero R]
include R

lemma self_eq_neg {v : M} : v = - v ↔ v = 0 :=
by rw [← two_nsmul_eq_zero R M, two_smul, add_eq_zero_iff_eq_neg]

lemma neg_eq_self {v : M} : - v = v ↔ v = 0 :=
by rw [eq_comm, self_eq_neg R M]

lemma self_ne_neg {v : M} : v ≠ -v ↔ v ≠ 0 :=
(self_eq_neg R M).not

lemma neg_ne_self {v : M} : -v ≠ v ↔ v ≠ 0 :=
(neg_eq_self R M).not

end nat

end add_comm_group

section module

variables [ring R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M]

section smul_injective

variables (R)

lemma smul_left_injective {x : M} (hx : x ≠ 0) :
  function.injective (λ (c : R), c • x) :=
λ c d h, sub_eq_zero.mp ((smul_eq_zero.mp
  (calc (c - d) • x = c • x - d • x : sub_smul c d x
                ... = 0 : sub_eq_zero.mpr h)).resolve_right hx)

end smul_injective

end module

section division_ring

variables [division_ring R] [add_comm_group M] [module R M]

@[priority 100] -- see note [lower instance priority]
instance division_ring.to_no_zero_smul_divisors : no_zero_smul_divisors R M :=
⟨λ c x h, or_iff_not_imp_left.2 $ λ hc, (smul_eq_zero_iff_eq' hc).1 h⟩

end division_ring

end no_zero_smul_divisors

@[simp] lemma nat.smul_one_eq_coe {R : Type*} [semiring R] (m : ℕ) :
  m • (1 : R) = ↑m :=
by rw [nsmul_eq_mul, mul_one]

@[simp] lemma int.smul_one_eq_coe {R : Type*} [ring R] (m : ℤ) :
  m • (1 : R) = ↑m :=
by rw [zsmul_eq_mul, mul_one]

lemma finset.cast_card [comm_semiring R] (s : finset α) : (s.card : R) = ∑ a in s, 1 :=
by rw [finset.sum_const, nat.smul_one_eq_coe]