Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 19,566 Bytes
4365a98
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
fc5e983
 
4365a98
 
fc5e983
4365a98
 
fc5e983
 
 
4365a98
 
 
 
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
 
 
 
 
fc5e983
 
 
 
 
4365a98
fc5e983
4365a98
fc5e983
 
4365a98
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/-
Copyright (c) 2017 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Mario Carneiro, Johannes Hölzl, Chris Hughes, Jens Wagemaker, Jon Eugster
-/
import algebra.group.basic
import logic.nontrivial

/-!
# Units (i.e., invertible elements) of a monoid

An element of a `monoid` is a unit if it has a two-sided inverse.

## Main declarations

* `units M`: the group of units (i.e., invertible elements) of a monoid.
* `is_unit x`: a predicate asserting that `x` is a unit (i.e., invertible element) of a monoid.

For both declarations, there is an additive counterpart: `add_units` and `is_add_unit`.

## Notation

We provide `Mˣ` as notation for `units M`,
resembling the notation $R^{\times}$ for the units of a ring, which is common in mathematics.

-/

open function

universe u
variable {α : Type u}

/-- Units of a `monoid`, bundled version. Notation: `αˣ`.

An element of a `monoid` is a unit if it has a two-sided inverse.
This version bundles the inverse element so that it can be computed.
For a predicate see `is_unit`. -/
structure units (α : Type u) [monoid α] :=
(val : α)
(inv : α)
(val_inv : val * inv = 1)
(inv_val : inv * val = 1)

postfix `ˣ`:1025 := units
-- We don't provide notation for the additive version, because its use is somewhat rare.

/-- Units of an `add_monoid`, bundled version.

An element of an `add_monoid` is a unit if it has a two-sided additive inverse.
This version bundles the inverse element so that it can be computed.
For a predicate see `is_add_unit`. -/
structure add_units (α : Type u) [add_monoid α] :=
(val : α)
(neg : α)
(val_neg : val + neg = 0)
(neg_val : neg + val = 0)

attribute [to_additive] units

section has_elem

@[to_additive] lemma unique_has_one {α : Type*} [unique α] [has_one α] :
  default = (1 : α) :=
unique.default_eq 1

end has_elem

namespace units

variables [monoid α]

@[to_additive] instance : has_coe αˣ α := ⟨val⟩

@[to_additive] instance : has_inv αˣ := ⟨λ u, ⟨u.2, u.1, u.4, u.3⟩⟩

/-- See Note [custom simps projection] -/
@[to_additive /-" See Note [custom simps projection] "-/]
def simps.coe (u : αˣ) : α := u

/-- See Note [custom simps projection] -/
@[to_additive /-" See Note [custom simps projection] "-/]
def simps.coe_inv (u : αˣ) : α := ↑(u⁻¹)

initialize_simps_projections units (val → coe as_prefix, inv → coe_inv as_prefix)
initialize_simps_projections add_units (val → coe as_prefix, neg → coe_neg as_prefix)

@[simp, to_additive] lemma coe_mk (a : α) (b h₁ h₂) : ↑(units.mk a b h₁ h₂) = a := rfl

@[ext, to_additive] theorem ext :
  function.injective (coe : αˣ → α)
| ⟨v, i₁, vi₁, iv₁⟩ ⟨v', i₂, vi₂, iv₂⟩ e :=
  by change v = v' at e; subst v'; congr;
      simpa only [iv₂, vi₁, one_mul, mul_one] using mul_assoc i₂ v i₁

@[norm_cast, to_additive] theorem eq_iff {a b : αˣ} :
  (a : α) = b ↔ a = b := ext.eq_iff

@[to_additive] theorem ext_iff {a b : αˣ} :
  a = b ↔ (a : α) = b := eq_iff.symm

@[to_additive] instance [decidable_eq α] : decidable_eq αˣ :=
λ a b, decidable_of_iff' _ ext_iff

@[simp, to_additive] theorem mk_coe (u : αˣ) (y h₁ h₂) :
  mk (u : α) y h₁ h₂ = u :=
ext rfl

/-- Copy a unit, adjusting definition equalities. -/
@[to_additive /-"Copy an `add_unit`, adjusting definitional equalities."-/, simps]
def copy (u : αˣ) (val : α) (hv : val = u) (inv : α) (hi : inv = ↑(u⁻¹)) : αˣ :=
{ val := val, inv := inv,
  inv_val := hv.symm ▸ hi.symm ▸ u.inv_val, val_inv := hv.symm ▸ hi.symm ▸ u.val_inv }

@[to_additive]
lemma copy_eq (u : αˣ) (val hv inv hi) :
  u.copy val hv inv hi = u :=
ext hv

@[to_additive] instance : mul_one_class αˣ :=
{ mul := λ u₁ u₂, ⟨u₁.val * u₂.val, u₂.inv * u₁.inv,
    by rw [mul_assoc, ←mul_assoc u₂.val, val_inv, one_mul, val_inv],
    by rw [mul_assoc, ←mul_assoc u₁.inv, inv_val, one_mul, inv_val]⟩,
  one := ⟨1, 1, one_mul 1, one_mul 1⟩,
  one_mul := λ u, ext $ one_mul u,
  mul_one := λ u, ext $ mul_one u }

/-- Units of a monoid form a group. -/
@[to_additive "Additive units of an additive monoid form an additive group."]
instance : group αˣ :=
{ mul := (*),
  one := 1,
  mul_assoc := λ u₁ u₂ u₃, ext $ mul_assoc u₁ u₂ u₃,
  inv := has_inv.inv,
  mul_left_inv := λ u, ext u.inv_val,
  ..units.mul_one_class }

@[to_additive] instance {α} [comm_monoid α] : comm_group αˣ :=
{ mul_comm := λ u₁ u₂, ext $ mul_comm _ _, ..units.group }

@[to_additive] instance : inhabited αˣ := ⟨1⟩

@[to_additive] instance [has_repr α] : has_repr αˣ := ⟨repr ∘ val⟩

variables (a b c : αˣ) {u : αˣ}

@[simp, norm_cast, to_additive] lemma coe_mul : (↑(a * b) : α) = a * b := rfl

@[simp, norm_cast, to_additive] lemma coe_one : ((1 : αˣ) : α) = 1 := rfl

@[simp, norm_cast, to_additive] lemma coe_eq_one {a : αˣ} : (a : α) = 1 ↔ a = 1 :=
by rw [←units.coe_one, eq_iff]

@[simp, to_additive] lemma inv_mk (x y : α) (h₁ h₂) : (mk x y h₁ h₂)⁻¹ = mk y x h₂ h₁ := rfl

@[simp, to_additive] lemma val_eq_coe : a.val = (↑a : α) := rfl

@[simp, to_additive] lemma inv_eq_coe_inv : a.inv = ((a⁻¹ : αˣ) : α) := rfl

@[simp, to_additive] lemma inv_mul : (↑a⁻¹ * a : α) = 1 := inv_val _
@[simp, to_additive] lemma mul_inv : (a * ↑a⁻¹ : α) = 1 := val_inv _

@[to_additive] lemma inv_mul_of_eq {a : α} (h : ↑u = a) : ↑u⁻¹ * a = 1 := by rw [←h, u.inv_mul]
@[to_additive] lemma mul_inv_of_eq {a : α} (h : ↑u = a) : a * ↑u⁻¹ = 1 := by rw [←h, u.mul_inv]

@[simp, to_additive] lemma mul_inv_cancel_left (a : αˣ) (b : α) : (a:α) * (↑a⁻¹ * b) = b :=
by rw [← mul_assoc, mul_inv, one_mul]

@[simp, to_additive] lemma inv_mul_cancel_left (a : αˣ) (b : α) : (↑a⁻¹:α) * (a * b) = b :=
by rw [← mul_assoc, inv_mul, one_mul]

@[simp, to_additive] lemma mul_inv_cancel_right (a : α) (b : αˣ) : a * b * ↑b⁻¹ = a :=
by rw [mul_assoc, mul_inv, mul_one]

@[simp, to_additive] lemma inv_mul_cancel_right (a : α) (b : αˣ) : a * ↑b⁻¹ * b = a :=
by rw [mul_assoc, inv_mul, mul_one]

@[simp, to_additive] theorem mul_right_inj (a : αˣ) {b c : α} : (a:α) * b = a * c ↔ b = c :=
⟨λ h, by simpa only [inv_mul_cancel_left] using congr_arg ((*) ↑(a⁻¹ : αˣ)) h, congr_arg _⟩

@[simp, to_additive] theorem mul_left_inj (a : αˣ) {b c : α} : b * a = c * a ↔ b = c :=
⟨λ h, by simpa only [mul_inv_cancel_right] using congr_arg (* ↑(a⁻¹ : αˣ)) h, congr_arg _⟩

@[to_additive] theorem eq_mul_inv_iff_mul_eq {a b : α} : a = b * ↑c⁻¹ ↔ a * c = b :=
⟨λ h, by rw [h, inv_mul_cancel_right], λ h, by rw [← h, mul_inv_cancel_right]⟩

@[to_additive] theorem eq_inv_mul_iff_mul_eq {a c : α} : a = ↑b⁻¹ * c ↔ ↑b * a = c :=
⟨λ h, by rw [h, mul_inv_cancel_left], λ h, by rw [← h, inv_mul_cancel_left]⟩

@[to_additive] theorem inv_mul_eq_iff_eq_mul {b c : α} : ↑a⁻¹ * b = c ↔ b = a * c :=
⟨λ h, by rw [← h, mul_inv_cancel_left], λ h, by rw [h, inv_mul_cancel_left]⟩

@[to_additive] theorem mul_inv_eq_iff_eq_mul {a c : α} : a * ↑b⁻¹ = c ↔ a = c * b :=
⟨λ h, by rw [← h, inv_mul_cancel_right], λ h, by rw [h, mul_inv_cancel_right]⟩

@[to_additive] protected lemma inv_eq_of_mul_eq_one_left {a : α} (h : a * u = 1) : ↑u⁻¹ = a :=
calc ↑u⁻¹ = 1 * ↑u⁻¹ : by rw one_mul
      ... = a : by rw [←h, mul_inv_cancel_right]

@[to_additive] protected lemma inv_eq_of_mul_eq_one_right {a : α} (h : ↑u * a = 1) : ↑u⁻¹ = a :=
calc ↑u⁻¹ = ↑u⁻¹ * 1 : by rw mul_one
      ... = a : by rw [←h, inv_mul_cancel_left]

@[to_additive] protected lemma eq_inv_of_mul_eq_one_left {a : α} (h : ↑u * a = 1) : a = ↑u⁻¹ :=
(units.inv_eq_of_mul_eq_one_right h).symm

@[to_additive] protected lemma eq_inv_of_mul_eq_one_right {a : α} (h : a * u = 1) : a = ↑u⁻¹ :=
(units.inv_eq_of_mul_eq_one_left h).symm

@[simp, to_additive] lemma mul_inv_eq_one {a : α} : a * ↑u⁻¹ = 1 ↔ a = u :=
⟨inv_inv u ▸ units.eq_inv_of_mul_eq_one_right, λ h, mul_inv_of_eq h.symm⟩

@[simp, to_additive] lemma inv_mul_eq_one {a : α} : ↑u⁻¹ * a = 1 ↔ ↑u = a :=
⟨inv_inv u ▸ units.inv_eq_of_mul_eq_one_right, inv_mul_of_eq⟩

@[to_additive] lemma mul_eq_one_iff_eq_inv {a : α} : a * u = 1 ↔ a = ↑u⁻¹ :=
by rw [←mul_inv_eq_one, inv_inv]

@[to_additive] lemma mul_eq_one_iff_inv_eq {a : α} : ↑u * a = 1 ↔ ↑u⁻¹ = a :=
by rw [←inv_mul_eq_one, inv_inv]

@[to_additive] lemma inv_unique {u₁ u₂ : αˣ} (h : (↑u₁ : α) = ↑u₂) : (↑u₁⁻¹ : α) = ↑u₂⁻¹ :=
units.inv_eq_of_mul_eq_one_right $ by rw [h, u₂.mul_inv]

end units

/-- For `a, b` in a `comm_monoid` such that `a * b = 1`, makes a unit out of `a`. -/
@[to_additive "For `a, b` in an `add_comm_monoid` such that `a + b = 0`, makes an add_unit
out of `a`."]
def units.mk_of_mul_eq_one [comm_monoid α] (a b : α) (hab : a * b = 1) :
  αˣ :=
⟨a, b, hab, (mul_comm b a).trans hab⟩

@[simp, to_additive] lemma units.coe_mk_of_mul_eq_one [comm_monoid α] {a b : α} (h : a * b = 1) :
  (units.mk_of_mul_eq_one a b h : α) = a := rfl

section monoid
variables [monoid α] {a b c : α}

/-- Partial division. It is defined when the
  second argument is invertible, and unlike the division operator
  in `division_ring` it is not totalized at zero. -/
def divp (a : α) (u) : α := a * (u⁻¹ : αˣ)

infix ` /ₚ `:70 := divp

@[simp] theorem divp_self (u : αˣ) : (u : α) /ₚ u = 1 := units.mul_inv _

@[simp] theorem divp_one (a : α) : a /ₚ 1 = a := mul_one _

theorem divp_assoc (a b : α) (u : αˣ) : a * b /ₚ u = a * (b /ₚ u) :=
mul_assoc _ _ _

/-- `field_simp` needs the reverse direction of `divp_assoc` to move all `/ₚ` to the right. -/
@[field_simps] lemma divp_assoc' (x y : α) (u : αˣ) : x * (y /ₚ u) = (x * y) /ₚ u :=
(divp_assoc _ _ _).symm

@[simp] theorem divp_inv (u : αˣ) : a /ₚ u⁻¹ = a * u := rfl

@[simp] theorem divp_mul_cancel (a : α) (u : αˣ) : a /ₚ u * u = a :=
(mul_assoc _ _ _).trans $ by rw [units.inv_mul, mul_one]

@[simp] theorem mul_divp_cancel (a : α) (u : αˣ) : (a * u) /ₚ u = a :=
(mul_assoc _ _ _).trans $ by rw [units.mul_inv, mul_one]

@[simp] theorem divp_left_inj (u : αˣ) {a b : α} : a /ₚ u = b /ₚ u ↔ a = b :=
units.mul_left_inj _

@[field_simps] theorem divp_divp_eq_divp_mul (x : α) (u₁ u₂ : αˣ) :
  (x /ₚ u₁) /ₚ u₂ = x /ₚ (u₂ * u₁) :=
by simp only [divp, mul_inv_rev, units.coe_mul, mul_assoc]

@[field_simps] theorem divp_eq_iff_mul_eq {x : α} {u : αˣ} {y : α} : x /ₚ u = y ↔ y * u = x :=
u.mul_left_inj.symm.trans $ by rw [divp_mul_cancel]; exact ⟨eq.symm, eq.symm⟩

@[field_simps] theorem eq_divp_iff_mul_eq {x : α} {u : αˣ} {y : α} : x = y /ₚ u ↔ x * u = y :=
by rw [eq_comm, divp_eq_iff_mul_eq]

theorem divp_eq_one_iff_eq {a : α} {u : αˣ} : a /ₚ u = 1 ↔ a = u :=
(units.mul_left_inj u).symm.trans $ by rw [divp_mul_cancel, one_mul]

@[simp] theorem one_divp (u : αˣ) : 1 /ₚ u = ↑u⁻¹ :=
one_mul _

/-- Used for `field_simp` to deal with inverses of units. -/
@[field_simps] lemma inv_eq_one_divp (u : αˣ) : ↑u⁻¹ = 1 /ₚ u :=
by rw one_divp

/--
Used for `field_simp` to deal with inverses of units. This form of the lemma
is essential since `field_simp` likes to use `inv_eq_one_div` to rewrite
`↑u⁻¹ = ↑(1 / u)`.
-/
@[field_simps] lemma inv_eq_one_divp' (u : αˣ) :
  ((1 / u : αˣ) : α) = 1 /ₚ u :=
by rw [one_div, one_divp]

/--
`field_simp` moves division inside `αˣ` to the right, and this lemma
lifts the calculation to `α`.
-/
@[field_simps] lemma coe_div_eq_divp (u₁ u₂ : αˣ) : ↑(u₁ / u₂) = ↑u₁ /ₚ u₂ :=
by rw [divp, division_def, units.coe_mul]

end monoid

section comm_monoid

variables [comm_monoid α]

@[field_simps] theorem divp_mul_eq_mul_divp (x y : α) (u : αˣ) : x /ₚ u * y = x * y /ₚ u :=
by simp_rw [divp, mul_assoc, mul_comm]

-- Theoretically redundant as `field_simp` lemma.
@[field_simps] lemma divp_eq_divp_iff {x y : α} {ux uy : αˣ} :
  x /ₚ ux = y /ₚ uy ↔ x * uy = y * ux :=
by rw [divp_eq_iff_mul_eq, divp_mul_eq_mul_divp, divp_eq_iff_mul_eq]

-- Theoretically redundant as `field_simp` lemma.
@[field_simps] lemma divp_mul_divp (x y : α) (ux uy : αˣ) :
  (x /ₚ ux) * (y /ₚ uy) = (x * y) /ₚ (ux * uy) :=
by rw [divp_mul_eq_mul_divp, divp_assoc', divp_divp_eq_divp_mul]

end comm_monoid

/-!
# `is_unit` predicate

In this file we define the `is_unit` predicate on a `monoid`, and
prove a few basic properties. For the bundled version see `units`. See
also `prime`, `associated`, and `irreducible` in `algebra/associated`.

-/

section is_unit

variables {M : Type*} {N : Type*}

/-- An element `a : M` of a monoid is a unit if it has a two-sided inverse.
The actual definition says that `a` is equal to some `u : Mˣ`, where
`Mˣ` is a bundled version of `is_unit`. -/
@[to_additive "An element `a : M` of an add_monoid is an `add_unit` if it has
a two-sided additive inverse. The actual definition says that `a` is equal to some
`u : add_units M`, where `add_units M` is a bundled version of `is_add_unit`."]
def is_unit [monoid M] (a : M) : Prop := ∃ u : Mˣ, (u : M) = a

@[nontriviality, to_additive]
lemma is_unit_of_subsingleton [monoid M] [subsingleton M] (a : M) : is_unit a :=
⟨⟨a, a, subsingleton.elim _ _, subsingleton.elim _ _⟩, rfl⟩

attribute [nontriviality] is_add_unit_of_subsingleton

@[to_additive] instance [monoid M] : can_lift M Mˣ :=
{ coe := coe,
  cond := is_unit,
  prf := λ _, id }

@[to_additive] instance [monoid M] [subsingleton M] : unique Mˣ :=
{ default := 1,
  uniq := λ a, units.coe_eq_one.mp $ subsingleton.elim (a : M) 1 }

@[simp, to_additive is_add_unit_add_unit]
protected lemma units.is_unit [monoid M] (u : Mˣ) : is_unit (u : M) := ⟨u, rfl⟩

@[simp, to_additive]
theorem is_unit_one [monoid M] : is_unit (1:M) := ⟨1, rfl⟩

@[to_additive] theorem is_unit_of_mul_eq_one [comm_monoid M]
  (a b : M) (h : a * b = 1) : is_unit a :=
⟨units.mk_of_mul_eq_one a b h, rfl⟩

@[to_additive is_add_unit.exists_neg] theorem is_unit.exists_right_inv [monoid M]
  {a : M} (h : is_unit a) : ∃ b, a * b = 1 :=
by { rcases h with ⟨⟨a, b, hab, _⟩, rfl⟩, exact ⟨b, hab⟩ }

@[to_additive is_add_unit.exists_neg'] theorem is_unit.exists_left_inv [monoid M]
  {a : M} (h : is_unit a) : ∃ b, b * a = 1 :=
by { rcases h with ⟨⟨a, b, _, hba⟩, rfl⟩, exact ⟨b, hba⟩ }

@[to_additive] theorem is_unit_iff_exists_inv [comm_monoid M]
  {a : M} : is_unit a ↔ ∃ b, a * b = 1 :=
⟨λ h, h.exists_right_inv,
 λ ⟨b, hab⟩, is_unit_of_mul_eq_one _ b hab⟩

@[to_additive] theorem is_unit_iff_exists_inv' [comm_monoid M]
  {a : M} : is_unit a ↔ ∃ b, b * a = 1 :=
by simp [is_unit_iff_exists_inv, mul_comm]

@[to_additive]
lemma is_unit.mul [monoid M] {x y : M} : is_unit x → is_unit y → is_unit (x * y) :=
by { rintros ⟨x, rfl⟩ ⟨y, rfl⟩, exact ⟨x * y, units.coe_mul _ _⟩ }

/-- Multiplication by a `u : Mˣ` on the right doesn't affect `is_unit`. -/
@[simp, to_additive "Addition of a `u : add_units M` on the right doesn't
affect `is_add_unit`."]
theorem units.is_unit_mul_units [monoid M] (a : M) (u : Mˣ) :
  is_unit (a * u) ↔ is_unit a :=
iff.intro
  (assume ⟨v, hv⟩,
    have is_unit (a * ↑u * ↑u⁻¹), by existsi v * u⁻¹; rw [←hv, units.coe_mul],
    by rwa [mul_assoc, units.mul_inv, mul_one] at this)
  (λ v, v.mul u.is_unit)

/-- Multiplication by a `u : Mˣ` on the left doesn't affect `is_unit`. -/
@[simp, to_additive "Addition of a `u : add_units M` on the left doesn't affect `is_add_unit`."]
theorem units.is_unit_units_mul {M : Type*} [monoid M] (u : Mˣ) (a : M) :
  is_unit (↑u * a) ↔ is_unit a :=
iff.intro
  (assume ⟨v, hv⟩,
    have is_unit (↑u⁻¹ * (↑u * a)), by existsi u⁻¹ * v; rw [←hv, units.coe_mul],
    by rwa [←mul_assoc, units.inv_mul, one_mul] at this)
  u.is_unit.mul

@[to_additive]
theorem is_unit_of_mul_is_unit_left [comm_monoid M] {x y : M}
  (hu : is_unit (x * y)) : is_unit x :=
let ⟨z, hz⟩ := is_unit_iff_exists_inv.1 hu in
is_unit_iff_exists_inv.2 ⟨y * z, by rwa ← mul_assoc⟩

@[to_additive] theorem is_unit_of_mul_is_unit_right [comm_monoid M] {x y : M}
  (hu : is_unit (x * y)) : is_unit y :=
@is_unit_of_mul_is_unit_left _ _ y x $ by rwa mul_comm

@[simp, to_additive]
lemma is_unit.mul_iff [comm_monoid M] {x y : M} : is_unit (x * y) ↔ is_unit x ∧ is_unit y :=
⟨λ h, ⟨is_unit_of_mul_is_unit_left h, is_unit_of_mul_is_unit_right h⟩,
  λ h, is_unit.mul h.1 h.2⟩

/-- The element of the group of units, corresponding to an element of a monoid which is a unit. When
`α` is a `division_monoid`, use `is_unit.unit'` instead. -/
@[to_additive "The element of the additive group of additive units, corresponding to an element of
an additive monoid which is an additive unit. When `α` is a `subtraction_monoid`, use
`is_add_unit.add_unit'` instead."]
noncomputable def is_unit.unit [monoid M] {a : M} (h : is_unit a) : Mˣ :=
(classical.some h).copy a (classical.some_spec h).symm _ rfl

@[simp, to_additive]
lemma is_unit.unit_of_coe_units [monoid M] {a : Mˣ} (h : is_unit (a : M)) : h.unit = a :=
units.ext $ rfl

@[simp, to_additive]
lemma is_unit.unit_spec [monoid M] {a : M} (h : is_unit a) : ↑h.unit = a :=
rfl

@[simp, to_additive]
lemma is_unit.coe_inv_mul [monoid M] {a : M} (h : is_unit a) :
  ↑(h.unit)⁻¹ * a = 1 :=
units.mul_inv _

@[simp, to_additive]
lemma is_unit.mul_coe_inv [monoid M] {a : M} (h : is_unit a) :
  a * ↑(h.unit)⁻¹ = 1 :=
begin
  convert units.mul_inv _,
  simp [h.unit_spec]
end

/-- `is_unit x` is decidable if we can decide if `x` comes from `Mˣ`. -/
instance [monoid M] (x : M) [h : decidable (∃ u : Mˣ, ↑u = x)] : decidable (is_unit x) := h

section monoid
variables [monoid M] {a b c : M}

@[to_additive] lemma is_unit.mul_left_inj (h : is_unit a) : b * a = c * a ↔ b = c :=
let ⟨u, hu⟩ := h in hu ▸ u.mul_left_inj

@[to_additive] lemma is_unit.mul_right_inj (h : is_unit a) : a * b = a * c ↔ b = c :=
let ⟨u, hu⟩ := h in hu ▸ u.mul_right_inj

@[to_additive] protected lemma is_unit.mul_left_cancel (h : is_unit a) : a * b = a * c → b = c :=
h.mul_right_inj.1

@[to_additive] protected lemma is_unit.mul_right_cancel (h : is_unit b) : a * b = c * b → a = c :=
h.mul_left_inj.1

@[to_additive] protected lemma is_unit.mul_right_injective (h : is_unit a) : injective ((*) a) :=
λ _ _, h.mul_left_cancel

@[to_additive] protected lemma is_unit.mul_left_injective (h : is_unit b) : injective (* b) :=
λ _ _, h.mul_right_cancel

end monoid
end is_unit

section noncomputable_defs

variables {M : Type*}

/-- Constructs a `group` structure on a `monoid` consisting only of units. -/
noncomputable def group_of_is_unit [hM : monoid M] (h : ∀ (a : M), is_unit a) : group M :=
{ inv := λ a, ↑((h a).unit)⁻¹,
  mul_left_inv := λ a, by
  { change ↑((h a).unit)⁻¹ * a = 1,
    rw [units.inv_mul_eq_iff_eq_mul, (h a).unit_spec, mul_one] },
  .. hM }

/-- Constructs a `comm_group` structure on a `comm_monoid` consisting only of units. -/
noncomputable def comm_group_of_is_unit [hM : comm_monoid M] (h : ∀ (a : M), is_unit a) :
  comm_group M :=
{ inv := λ a, ↑((h a).unit)⁻¹,
  mul_left_inv := λ a, by
  { change ↑((h a).unit)⁻¹ * a = 1,
    rw [units.inv_mul_eq_iff_eq_mul, (h a).unit_spec, mul_one] },
  .. hM }

end noncomputable_defs