Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 19,566 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
/-
Copyright (c) 2017 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Mario Carneiro, Johannes Hölzl, Chris Hughes, Jens Wagemaker, Jon Eugster
-/
import algebra.group.basic
import logic.nontrivial
/-!
# Units (i.e., invertible elements) of a monoid
An element of a `monoid` is a unit if it has a two-sided inverse.
## Main declarations
* `units M`: the group of units (i.e., invertible elements) of a monoid.
* `is_unit x`: a predicate asserting that `x` is a unit (i.e., invertible element) of a monoid.
For both declarations, there is an additive counterpart: `add_units` and `is_add_unit`.
## Notation
We provide `Mˣ` as notation for `units M`,
resembling the notation $R^{\times}$ for the units of a ring, which is common in mathematics.
-/
open function
universe u
variable {α : Type u}
/-- Units of a `monoid`, bundled version. Notation: `αˣ`.
An element of a `monoid` is a unit if it has a two-sided inverse.
This version bundles the inverse element so that it can be computed.
For a predicate see `is_unit`. -/
structure units (α : Type u) [monoid α] :=
(val : α)
(inv : α)
(val_inv : val * inv = 1)
(inv_val : inv * val = 1)
postfix `ˣ`:1025 := units
-- We don't provide notation for the additive version, because its use is somewhat rare.
/-- Units of an `add_monoid`, bundled version.
An element of an `add_monoid` is a unit if it has a two-sided additive inverse.
This version bundles the inverse element so that it can be computed.
For a predicate see `is_add_unit`. -/
structure add_units (α : Type u) [add_monoid α] :=
(val : α)
(neg : α)
(val_neg : val + neg = 0)
(neg_val : neg + val = 0)
attribute [to_additive] units
section has_elem
@[to_additive] lemma unique_has_one {α : Type*} [unique α] [has_one α] :
default = (1 : α) :=
unique.default_eq 1
end has_elem
namespace units
variables [monoid α]
@[to_additive] instance : has_coe αˣ α := ⟨val⟩
@[to_additive] instance : has_inv αˣ := ⟨λ u, ⟨u.2, u.1, u.4, u.3⟩⟩
/-- See Note [custom simps projection] -/
@[to_additive /-" See Note [custom simps projection] "-/]
def simps.coe (u : αˣ) : α := u
/-- See Note [custom simps projection] -/
@[to_additive /-" See Note [custom simps projection] "-/]
def simps.coe_inv (u : αˣ) : α := ↑(u⁻¹)
initialize_simps_projections units (val → coe as_prefix, inv → coe_inv as_prefix)
initialize_simps_projections add_units (val → coe as_prefix, neg → coe_neg as_prefix)
@[simp, to_additive] lemma coe_mk (a : α) (b h₁ h₂) : ↑(units.mk a b h₁ h₂) = a := rfl
@[ext, to_additive] theorem ext :
function.injective (coe : αˣ → α)
| ⟨v, i₁, vi₁, iv₁⟩ ⟨v', i₂, vi₂, iv₂⟩ e :=
by change v = v' at e; subst v'; congr;
simpa only [iv₂, vi₁, one_mul, mul_one] using mul_assoc i₂ v i₁
@[norm_cast, to_additive] theorem eq_iff {a b : αˣ} :
(a : α) = b ↔ a = b := ext.eq_iff
@[to_additive] theorem ext_iff {a b : αˣ} :
a = b ↔ (a : α) = b := eq_iff.symm
@[to_additive] instance [decidable_eq α] : decidable_eq αˣ :=
λ a b, decidable_of_iff' _ ext_iff
@[simp, to_additive] theorem mk_coe (u : αˣ) (y h₁ h₂) :
mk (u : α) y h₁ h₂ = u :=
ext rfl
/-- Copy a unit, adjusting definition equalities. -/
@[to_additive /-"Copy an `add_unit`, adjusting definitional equalities."-/, simps]
def copy (u : αˣ) (val : α) (hv : val = u) (inv : α) (hi : inv = ↑(u⁻¹)) : αˣ :=
{ val := val, inv := inv,
inv_val := hv.symm ▸ hi.symm ▸ u.inv_val, val_inv := hv.symm ▸ hi.symm ▸ u.val_inv }
@[to_additive]
lemma copy_eq (u : αˣ) (val hv inv hi) :
u.copy val hv inv hi = u :=
ext hv
@[to_additive] instance : mul_one_class αˣ :=
{ mul := λ u₁ u₂, ⟨u₁.val * u₂.val, u₂.inv * u₁.inv,
by rw [mul_assoc, ←mul_assoc u₂.val, val_inv, one_mul, val_inv],
by rw [mul_assoc, ←mul_assoc u₁.inv, inv_val, one_mul, inv_val]⟩,
one := ⟨1, 1, one_mul 1, one_mul 1⟩,
one_mul := λ u, ext $ one_mul u,
mul_one := λ u, ext $ mul_one u }
/-- Units of a monoid form a group. -/
@[to_additive "Additive units of an additive monoid form an additive group."]
instance : group αˣ :=
{ mul := (*),
one := 1,
mul_assoc := λ u₁ u₂ u₃, ext $ mul_assoc u₁ u₂ u₃,
inv := has_inv.inv,
mul_left_inv := λ u, ext u.inv_val,
..units.mul_one_class }
@[to_additive] instance {α} [comm_monoid α] : comm_group αˣ :=
{ mul_comm := λ u₁ u₂, ext $ mul_comm _ _, ..units.group }
@[to_additive] instance : inhabited αˣ := ⟨1⟩
@[to_additive] instance [has_repr α] : has_repr αˣ := ⟨repr ∘ val⟩
variables (a b c : αˣ) {u : αˣ}
@[simp, norm_cast, to_additive] lemma coe_mul : (↑(a * b) : α) = a * b := rfl
@[simp, norm_cast, to_additive] lemma coe_one : ((1 : αˣ) : α) = 1 := rfl
@[simp, norm_cast, to_additive] lemma coe_eq_one {a : αˣ} : (a : α) = 1 ↔ a = 1 :=
by rw [←units.coe_one, eq_iff]
@[simp, to_additive] lemma inv_mk (x y : α) (h₁ h₂) : (mk x y h₁ h₂)⁻¹ = mk y x h₂ h₁ := rfl
@[simp, to_additive] lemma val_eq_coe : a.val = (↑a : α) := rfl
@[simp, to_additive] lemma inv_eq_coe_inv : a.inv = ((a⁻¹ : αˣ) : α) := rfl
@[simp, to_additive] lemma inv_mul : (↑a⁻¹ * a : α) = 1 := inv_val _
@[simp, to_additive] lemma mul_inv : (a * ↑a⁻¹ : α) = 1 := val_inv _
@[to_additive] lemma inv_mul_of_eq {a : α} (h : ↑u = a) : ↑u⁻¹ * a = 1 := by rw [←h, u.inv_mul]
@[to_additive] lemma mul_inv_of_eq {a : α} (h : ↑u = a) : a * ↑u⁻¹ = 1 := by rw [←h, u.mul_inv]
@[simp, to_additive] lemma mul_inv_cancel_left (a : αˣ) (b : α) : (a:α) * (↑a⁻¹ * b) = b :=
by rw [← mul_assoc, mul_inv, one_mul]
@[simp, to_additive] lemma inv_mul_cancel_left (a : αˣ) (b : α) : (↑a⁻¹:α) * (a * b) = b :=
by rw [← mul_assoc, inv_mul, one_mul]
@[simp, to_additive] lemma mul_inv_cancel_right (a : α) (b : αˣ) : a * b * ↑b⁻¹ = a :=
by rw [mul_assoc, mul_inv, mul_one]
@[simp, to_additive] lemma inv_mul_cancel_right (a : α) (b : αˣ) : a * ↑b⁻¹ * b = a :=
by rw [mul_assoc, inv_mul, mul_one]
@[simp, to_additive] theorem mul_right_inj (a : αˣ) {b c : α} : (a:α) * b = a * c ↔ b = c :=
⟨λ h, by simpa only [inv_mul_cancel_left] using congr_arg ((*) ↑(a⁻¹ : αˣ)) h, congr_arg _⟩
@[simp, to_additive] theorem mul_left_inj (a : αˣ) {b c : α} : b * a = c * a ↔ b = c :=
⟨λ h, by simpa only [mul_inv_cancel_right] using congr_arg (* ↑(a⁻¹ : αˣ)) h, congr_arg _⟩
@[to_additive] theorem eq_mul_inv_iff_mul_eq {a b : α} : a = b * ↑c⁻¹ ↔ a * c = b :=
⟨λ h, by rw [h, inv_mul_cancel_right], λ h, by rw [← h, mul_inv_cancel_right]⟩
@[to_additive] theorem eq_inv_mul_iff_mul_eq {a c : α} : a = ↑b⁻¹ * c ↔ ↑b * a = c :=
⟨λ h, by rw [h, mul_inv_cancel_left], λ h, by rw [← h, inv_mul_cancel_left]⟩
@[to_additive] theorem inv_mul_eq_iff_eq_mul {b c : α} : ↑a⁻¹ * b = c ↔ b = a * c :=
⟨λ h, by rw [← h, mul_inv_cancel_left], λ h, by rw [h, inv_mul_cancel_left]⟩
@[to_additive] theorem mul_inv_eq_iff_eq_mul {a c : α} : a * ↑b⁻¹ = c ↔ a = c * b :=
⟨λ h, by rw [← h, inv_mul_cancel_right], λ h, by rw [h, mul_inv_cancel_right]⟩
@[to_additive] protected lemma inv_eq_of_mul_eq_one_left {a : α} (h : a * u = 1) : ↑u⁻¹ = a :=
calc ↑u⁻¹ = 1 * ↑u⁻¹ : by rw one_mul
... = a : by rw [←h, mul_inv_cancel_right]
@[to_additive] protected lemma inv_eq_of_mul_eq_one_right {a : α} (h : ↑u * a = 1) : ↑u⁻¹ = a :=
calc ↑u⁻¹ = ↑u⁻¹ * 1 : by rw mul_one
... = a : by rw [←h, inv_mul_cancel_left]
@[to_additive] protected lemma eq_inv_of_mul_eq_one_left {a : α} (h : ↑u * a = 1) : a = ↑u⁻¹ :=
(units.inv_eq_of_mul_eq_one_right h).symm
@[to_additive] protected lemma eq_inv_of_mul_eq_one_right {a : α} (h : a * u = 1) : a = ↑u⁻¹ :=
(units.inv_eq_of_mul_eq_one_left h).symm
@[simp, to_additive] lemma mul_inv_eq_one {a : α} : a * ↑u⁻¹ = 1 ↔ a = u :=
⟨inv_inv u ▸ units.eq_inv_of_mul_eq_one_right, λ h, mul_inv_of_eq h.symm⟩
@[simp, to_additive] lemma inv_mul_eq_one {a : α} : ↑u⁻¹ * a = 1 ↔ ↑u = a :=
⟨inv_inv u ▸ units.inv_eq_of_mul_eq_one_right, inv_mul_of_eq⟩
@[to_additive] lemma mul_eq_one_iff_eq_inv {a : α} : a * u = 1 ↔ a = ↑u⁻¹ :=
by rw [←mul_inv_eq_one, inv_inv]
@[to_additive] lemma mul_eq_one_iff_inv_eq {a : α} : ↑u * a = 1 ↔ ↑u⁻¹ = a :=
by rw [←inv_mul_eq_one, inv_inv]
@[to_additive] lemma inv_unique {u₁ u₂ : αˣ} (h : (↑u₁ : α) = ↑u₂) : (↑u₁⁻¹ : α) = ↑u₂⁻¹ :=
units.inv_eq_of_mul_eq_one_right $ by rw [h, u₂.mul_inv]
end units
/-- For `a, b` in a `comm_monoid` such that `a * b = 1`, makes a unit out of `a`. -/
@[to_additive "For `a, b` in an `add_comm_monoid` such that `a + b = 0`, makes an add_unit
out of `a`."]
def units.mk_of_mul_eq_one [comm_monoid α] (a b : α) (hab : a * b = 1) :
αˣ :=
⟨a, b, hab, (mul_comm b a).trans hab⟩
@[simp, to_additive] lemma units.coe_mk_of_mul_eq_one [comm_monoid α] {a b : α} (h : a * b = 1) :
(units.mk_of_mul_eq_one a b h : α) = a := rfl
section monoid
variables [monoid α] {a b c : α}
/-- Partial division. It is defined when the
second argument is invertible, and unlike the division operator
in `division_ring` it is not totalized at zero. -/
def divp (a : α) (u) : α := a * (u⁻¹ : αˣ)
infix ` /ₚ `:70 := divp
@[simp] theorem divp_self (u : αˣ) : (u : α) /ₚ u = 1 := units.mul_inv _
@[simp] theorem divp_one (a : α) : a /ₚ 1 = a := mul_one _
theorem divp_assoc (a b : α) (u : αˣ) : a * b /ₚ u = a * (b /ₚ u) :=
mul_assoc _ _ _
/-- `field_simp` needs the reverse direction of `divp_assoc` to move all `/ₚ` to the right. -/
@[field_simps] lemma divp_assoc' (x y : α) (u : αˣ) : x * (y /ₚ u) = (x * y) /ₚ u :=
(divp_assoc _ _ _).symm
@[simp] theorem divp_inv (u : αˣ) : a /ₚ u⁻¹ = a * u := rfl
@[simp] theorem divp_mul_cancel (a : α) (u : αˣ) : a /ₚ u * u = a :=
(mul_assoc _ _ _).trans $ by rw [units.inv_mul, mul_one]
@[simp] theorem mul_divp_cancel (a : α) (u : αˣ) : (a * u) /ₚ u = a :=
(mul_assoc _ _ _).trans $ by rw [units.mul_inv, mul_one]
@[simp] theorem divp_left_inj (u : αˣ) {a b : α} : a /ₚ u = b /ₚ u ↔ a = b :=
units.mul_left_inj _
@[field_simps] theorem divp_divp_eq_divp_mul (x : α) (u₁ u₂ : αˣ) :
(x /ₚ u₁) /ₚ u₂ = x /ₚ (u₂ * u₁) :=
by simp only [divp, mul_inv_rev, units.coe_mul, mul_assoc]
@[field_simps] theorem divp_eq_iff_mul_eq {x : α} {u : αˣ} {y : α} : x /ₚ u = y ↔ y * u = x :=
u.mul_left_inj.symm.trans $ by rw [divp_mul_cancel]; exact ⟨eq.symm, eq.symm⟩
@[field_simps] theorem eq_divp_iff_mul_eq {x : α} {u : αˣ} {y : α} : x = y /ₚ u ↔ x * u = y :=
by rw [eq_comm, divp_eq_iff_mul_eq]
theorem divp_eq_one_iff_eq {a : α} {u : αˣ} : a /ₚ u = 1 ↔ a = u :=
(units.mul_left_inj u).symm.trans $ by rw [divp_mul_cancel, one_mul]
@[simp] theorem one_divp (u : αˣ) : 1 /ₚ u = ↑u⁻¹ :=
one_mul _
/-- Used for `field_simp` to deal with inverses of units. -/
@[field_simps] lemma inv_eq_one_divp (u : αˣ) : ↑u⁻¹ = 1 /ₚ u :=
by rw one_divp
/--
Used for `field_simp` to deal with inverses of units. This form of the lemma
is essential since `field_simp` likes to use `inv_eq_one_div` to rewrite
`↑u⁻¹ = ↑(1 / u)`.
-/
@[field_simps] lemma inv_eq_one_divp' (u : αˣ) :
((1 / u : αˣ) : α) = 1 /ₚ u :=
by rw [one_div, one_divp]
/--
`field_simp` moves division inside `αˣ` to the right, and this lemma
lifts the calculation to `α`.
-/
@[field_simps] lemma coe_div_eq_divp (u₁ u₂ : αˣ) : ↑(u₁ / u₂) = ↑u₁ /ₚ u₂ :=
by rw [divp, division_def, units.coe_mul]
end monoid
section comm_monoid
variables [comm_monoid α]
@[field_simps] theorem divp_mul_eq_mul_divp (x y : α) (u : αˣ) : x /ₚ u * y = x * y /ₚ u :=
by simp_rw [divp, mul_assoc, mul_comm]
-- Theoretically redundant as `field_simp` lemma.
@[field_simps] lemma divp_eq_divp_iff {x y : α} {ux uy : αˣ} :
x /ₚ ux = y /ₚ uy ↔ x * uy = y * ux :=
by rw [divp_eq_iff_mul_eq, divp_mul_eq_mul_divp, divp_eq_iff_mul_eq]
-- Theoretically redundant as `field_simp` lemma.
@[field_simps] lemma divp_mul_divp (x y : α) (ux uy : αˣ) :
(x /ₚ ux) * (y /ₚ uy) = (x * y) /ₚ (ux * uy) :=
by rw [divp_mul_eq_mul_divp, divp_assoc', divp_divp_eq_divp_mul]
end comm_monoid
/-!
# `is_unit` predicate
In this file we define the `is_unit` predicate on a `monoid`, and
prove a few basic properties. For the bundled version see `units`. See
also `prime`, `associated`, and `irreducible` in `algebra/associated`.
-/
section is_unit
variables {M : Type*} {N : Type*}
/-- An element `a : M` of a monoid is a unit if it has a two-sided inverse.
The actual definition says that `a` is equal to some `u : Mˣ`, where
`Mˣ` is a bundled version of `is_unit`. -/
@[to_additive "An element `a : M` of an add_monoid is an `add_unit` if it has
a two-sided additive inverse. The actual definition says that `a` is equal to some
`u : add_units M`, where `add_units M` is a bundled version of `is_add_unit`."]
def is_unit [monoid M] (a : M) : Prop := ∃ u : Mˣ, (u : M) = a
@[nontriviality, to_additive]
lemma is_unit_of_subsingleton [monoid M] [subsingleton M] (a : M) : is_unit a :=
⟨⟨a, a, subsingleton.elim _ _, subsingleton.elim _ _⟩, rfl⟩
attribute [nontriviality] is_add_unit_of_subsingleton
@[to_additive] instance [monoid M] : can_lift M Mˣ :=
{ coe := coe,
cond := is_unit,
prf := λ _, id }
@[to_additive] instance [monoid M] [subsingleton M] : unique Mˣ :=
{ default := 1,
uniq := λ a, units.coe_eq_one.mp $ subsingleton.elim (a : M) 1 }
@[simp, to_additive is_add_unit_add_unit]
protected lemma units.is_unit [monoid M] (u : Mˣ) : is_unit (u : M) := ⟨u, rfl⟩
@[simp, to_additive]
theorem is_unit_one [monoid M] : is_unit (1:M) := ⟨1, rfl⟩
@[to_additive] theorem is_unit_of_mul_eq_one [comm_monoid M]
(a b : M) (h : a * b = 1) : is_unit a :=
⟨units.mk_of_mul_eq_one a b h, rfl⟩
@[to_additive is_add_unit.exists_neg] theorem is_unit.exists_right_inv [monoid M]
{a : M} (h : is_unit a) : ∃ b, a * b = 1 :=
by { rcases h with ⟨⟨a, b, hab, _⟩, rfl⟩, exact ⟨b, hab⟩ }
@[to_additive is_add_unit.exists_neg'] theorem is_unit.exists_left_inv [monoid M]
{a : M} (h : is_unit a) : ∃ b, b * a = 1 :=
by { rcases h with ⟨⟨a, b, _, hba⟩, rfl⟩, exact ⟨b, hba⟩ }
@[to_additive] theorem is_unit_iff_exists_inv [comm_monoid M]
{a : M} : is_unit a ↔ ∃ b, a * b = 1 :=
⟨λ h, h.exists_right_inv,
λ ⟨b, hab⟩, is_unit_of_mul_eq_one _ b hab⟩
@[to_additive] theorem is_unit_iff_exists_inv' [comm_monoid M]
{a : M} : is_unit a ↔ ∃ b, b * a = 1 :=
by simp [is_unit_iff_exists_inv, mul_comm]
@[to_additive]
lemma is_unit.mul [monoid M] {x y : M} : is_unit x → is_unit y → is_unit (x * y) :=
by { rintros ⟨x, rfl⟩ ⟨y, rfl⟩, exact ⟨x * y, units.coe_mul _ _⟩ }
/-- Multiplication by a `u : Mˣ` on the right doesn't affect `is_unit`. -/
@[simp, to_additive "Addition of a `u : add_units M` on the right doesn't
affect `is_add_unit`."]
theorem units.is_unit_mul_units [monoid M] (a : M) (u : Mˣ) :
is_unit (a * u) ↔ is_unit a :=
iff.intro
(assume ⟨v, hv⟩,
have is_unit (a * ↑u * ↑u⁻¹), by existsi v * u⁻¹; rw [←hv, units.coe_mul],
by rwa [mul_assoc, units.mul_inv, mul_one] at this)
(λ v, v.mul u.is_unit)
/-- Multiplication by a `u : Mˣ` on the left doesn't affect `is_unit`. -/
@[simp, to_additive "Addition of a `u : add_units M` on the left doesn't affect `is_add_unit`."]
theorem units.is_unit_units_mul {M : Type*} [monoid M] (u : Mˣ) (a : M) :
is_unit (↑u * a) ↔ is_unit a :=
iff.intro
(assume ⟨v, hv⟩,
have is_unit (↑u⁻¹ * (↑u * a)), by existsi u⁻¹ * v; rw [←hv, units.coe_mul],
by rwa [←mul_assoc, units.inv_mul, one_mul] at this)
u.is_unit.mul
@[to_additive]
theorem is_unit_of_mul_is_unit_left [comm_monoid M] {x y : M}
(hu : is_unit (x * y)) : is_unit x :=
let ⟨z, hz⟩ := is_unit_iff_exists_inv.1 hu in
is_unit_iff_exists_inv.2 ⟨y * z, by rwa ← mul_assoc⟩
@[to_additive] theorem is_unit_of_mul_is_unit_right [comm_monoid M] {x y : M}
(hu : is_unit (x * y)) : is_unit y :=
@is_unit_of_mul_is_unit_left _ _ y x $ by rwa mul_comm
@[simp, to_additive]
lemma is_unit.mul_iff [comm_monoid M] {x y : M} : is_unit (x * y) ↔ is_unit x ∧ is_unit y :=
⟨λ h, ⟨is_unit_of_mul_is_unit_left h, is_unit_of_mul_is_unit_right h⟩,
λ h, is_unit.mul h.1 h.2⟩
/-- The element of the group of units, corresponding to an element of a monoid which is a unit. When
`α` is a `division_monoid`, use `is_unit.unit'` instead. -/
@[to_additive "The element of the additive group of additive units, corresponding to an element of
an additive monoid which is an additive unit. When `α` is a `subtraction_monoid`, use
`is_add_unit.add_unit'` instead."]
noncomputable def is_unit.unit [monoid M] {a : M} (h : is_unit a) : Mˣ :=
(classical.some h).copy a (classical.some_spec h).symm _ rfl
@[simp, to_additive]
lemma is_unit.unit_of_coe_units [monoid M] {a : Mˣ} (h : is_unit (a : M)) : h.unit = a :=
units.ext $ rfl
@[simp, to_additive]
lemma is_unit.unit_spec [monoid M] {a : M} (h : is_unit a) : ↑h.unit = a :=
rfl
@[simp, to_additive]
lemma is_unit.coe_inv_mul [monoid M] {a : M} (h : is_unit a) :
↑(h.unit)⁻¹ * a = 1 :=
units.mul_inv _
@[simp, to_additive]
lemma is_unit.mul_coe_inv [monoid M] {a : M} (h : is_unit a) :
a * ↑(h.unit)⁻¹ = 1 :=
begin
convert units.mul_inv _,
simp [h.unit_spec]
end
/-- `is_unit x` is decidable if we can decide if `x` comes from `Mˣ`. -/
instance [monoid M] (x : M) [h : decidable (∃ u : Mˣ, ↑u = x)] : decidable (is_unit x) := h
section monoid
variables [monoid M] {a b c : M}
@[to_additive] lemma is_unit.mul_left_inj (h : is_unit a) : b * a = c * a ↔ b = c :=
let ⟨u, hu⟩ := h in hu ▸ u.mul_left_inj
@[to_additive] lemma is_unit.mul_right_inj (h : is_unit a) : a * b = a * c ↔ b = c :=
let ⟨u, hu⟩ := h in hu ▸ u.mul_right_inj
@[to_additive] protected lemma is_unit.mul_left_cancel (h : is_unit a) : a * b = a * c → b = c :=
h.mul_right_inj.1
@[to_additive] protected lemma is_unit.mul_right_cancel (h : is_unit b) : a * b = c * b → a = c :=
h.mul_left_inj.1
@[to_additive] protected lemma is_unit.mul_right_injective (h : is_unit a) : injective ((*) a) :=
λ _ _, h.mul_left_cancel
@[to_additive] protected lemma is_unit.mul_left_injective (h : is_unit b) : injective (* b) :=
λ _ _, h.mul_right_cancel
end monoid
end is_unit
section noncomputable_defs
variables {M : Type*}
/-- Constructs a `group` structure on a `monoid` consisting only of units. -/
noncomputable def group_of_is_unit [hM : monoid M] (h : ∀ (a : M), is_unit a) : group M :=
{ inv := λ a, ↑((h a).unit)⁻¹,
mul_left_inv := λ a, by
{ change ↑((h a).unit)⁻¹ * a = 1,
rw [units.inv_mul_eq_iff_eq_mul, (h a).unit_spec, mul_one] },
.. hM }
/-- Constructs a `comm_group` structure on a `comm_monoid` consisting only of units. -/
noncomputable def comm_group_of_is_unit [hM : comm_monoid M] (h : ∀ (a : M), is_unit a) :
comm_group M :=
{ inv := λ a, ↑((h a).unit)⁻¹,
mul_left_inv := λ a, by
{ change ↑((h a).unit)⁻¹ * a = 1,
rw [units.inv_mul_eq_iff_eq_mul, (h a).unit_spec, mul_one] },
.. hM }
end noncomputable_defs
|